
1

On the Observability of Attitude with Single Direction
Measurements

Weixin Wang, Kanishke Gamagedara, and Taeyoung Lee

Abstract—The attitude of a rigid body evolves on the three-dimensional
special orthogonal group, and it is often estimated by measuring reference
directions, such as gravity or magnetic field, using onboard sensors. As
a single direction measurement provides a two-dimensional constraint,
it has been widely accepted that at least two non-parallel reference
directions should be measured, or the reference direction should change
over time, to determine the attitude completely. This paper uncovers
an intriguing fact that the attitude can actually be estimated by using
multiple measurements of a single, fixed reference direction, provided
that the angular velocity and the direction measurements are resolved in
appropriate frames, respectively. More specifically, after recognizing that
the attitude uncertainties propagated over the left-trivialized stochastic
kinematics are distinct from those over the right-trivialized one, stochastic
attitude observability with single direction measurements is formulated
by an information theoretic analysis. These are illustrated by experiments.

I. INTRODUCTION

Rigid body attitude estimation using angular velocity and di-
rection measurements is fundamental for numerous aerospace and
robotics applications. A wide variety of attitude estimators have
been developed, including the multiplicative extended Kalman fil-
ter (MEKF) [1], a deterministic attitude observer [2], an invariant
extended Kalman filter on matrix Lie groups [3], and an attitude
estimator based on the matrix Fisher distribution [4], [5]. It has
been understood that at least two non-parallel reference directions are
required to determine the attitude completely. For a single direction
measurement, the rotation about the reference vector is unobservable,
except in a few special cases, for example, when the single reference
direction is time-varying in the inertial frame [6], [7], [8], and when
the gyroscope can capture the rotation of the earth [9].

This paper presents attitude observability in stochastic formula-
tions, where it is discovered that there are two additional cases in
which attitude can be completely estimated using a single fixed
reference direction (Table I). In particular, it is shown that the
attitude uncertainties are propagated in different ways, depending on
whether the angular velocity is resolved in the body-fixed frame or
in the inertial frame. For the former, the direction of one-dimensional
ambiguity caused by a single direction measurement remains fixed in
the inertial frame, but for the latter, it is fixed in the body-fixed frame.
This explains the fundamental reason why the attitude is unobservable
with a single inertial reference direction and the angular velocity
measured by a gyroscope: the direction of ambiguity caused by the
inertial reference direction measurement remains unchanged by the
angular velocity resolved in the body-fixed frame. This leads to two
strategies to achieve full attitude observability with single direction
measurements, namely utilizing the angular velocity resolved in the
inertial frame such that the direction of ambiguity is rotated over
propagation, or measuring a reference direction fixed to the body
such that the next measurement can resolve the ambiguity.
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TABLE I
ATTITUDE OBSERVABILITY WITH SINGLE DIRECTION MEASUREMENTS

ref. vec.
ang. vel. body-fixed frame inertial frame

body-fixed frame observable unobservable
inertial frame unobservable observable

This discovery is more rigorously studied by introducing two for-
mulations of stochastic attitude observability. For a given probability
density function on SO(3), the attitude that minimizes the mean
square error may not be unique [10], [11]. This gives a character-
ization of the attitude observability, since if multiple attitudes can
minimize the mean square error, it indicates deficiency of information
to distinguish them. Alternatively, the inverse of Fisher information
gives a lower bound for the variance of all unbiased estimators, known
as the Cramér–Rao bound, and the observability can be characterized
by the positive-definiteness of the Fisher information matrix [12]. We
adopt the method in [13] which generalizes the Fisher information
to Riemannian manifold to calculate the Fisher information of the
mean attitude of a matrix Fisher distribution. It is further shown that
the two attitude observability criteria are consistent with each other,
and they also agree with a classic deterministic observability analysis
when only a single direction measurement is available. Finally, the
presented two cases of observability are illustrated by experiments.
An extended version of this paper with more detailed proofs and
numerical examples is available in [14].

II. MATHEMATICAL PRELIMINARY

A. Attitude Kinematics

We define an inertial frame I = {e1, e2, e3}, where ei denotes the
vector for the i-th axis of I. Throughout this paper, we distinguish a
vector from its coordinates resolved in a selected basis. For example,
the coordinates of ei in I is denoted by ei ∈ R3, e.g., e1 = (1, 0, 0).
Similarly, we define a body-fixed frame, B = {b1,b2,b3}. The
attitude of the rigid body is the orientation of B relative to I, and
it can be defined by a rotation matrix R ∈ R3×3 in the special
orthogonal group

SO(3) = {R ∈ R3×3 |RTR = I3×3, det[R] = 1}.

The matrix R transforms the coordinates of a vector from B to I.
Next, let w be the angular velocity vector of the rigid body, or

equivalently, ḃi = w × bi for all i ∈ {1, 2, 3}. As the coordinates
of bi in I are Rei, it implies Ṙei = ω×Rei, where ω ∈ R3 is the
coordinates of w in I. Thus,

Ṙ = ω̂R, (1)

where the hat map ∧ : R3 → so(3) is defined such that x̂y = x× y
for any x, y ∈ R3, and so(3) denotes the Lie algebra composed of 3×
3 skew-symmetric matrices, i.e., so(3) = {S ∈ R3×3 |ST = −S}.
Let Ω = RTω ∈ R3 be the coordinates of w in B. As R̂x = RxRT

for any R ∈ SO(3) and x ∈ R3, (1) can be rewritten as

Ṙ = RΩ̂. (2)
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Both of (1) and (2) ensure that their solutions evolve on SO(3),
or Ṙ belongs to the tangent space of SO(3) at R. Right-multiplying
(1) with RT , we obtain ω̂ = ṘRT , which is referred to as right-
trivialization of the tangent space. Similarly, Ω̂ = RT Ṙ is referred
to as left-trivialization. Given Ω = RTw, (1) is equivalent to (2).

B. Matrix Fisher Distribution

The matrix Fisher distribution is an exponential density formulated
for random matrices [15], [16], and its stochastic properties on SO(3)
are presented in [4]. A random matrix R ∈ SO(3) is distributed
according to the matrix Fisher distribution with the matrix parameter
F ∈ R3×3, or R ∼M(F ), if its probability density is given by

p(R) =
1

c(F )
exp(tr[FTR]), (3)

where c(F ) =
∫
R∈SO(3)

exp(tr[FTR])dR is the normalizing con-
stant [4].

The role of F in specifying the shape and dispersion of the
distribution can be described after decomposing it into the proper
singular value decomposition (pSVD) [17] as follows:

F = USV T , (4)

where U, V ∈ SO(3) and S = diag[s1, s2, s3] ∈ R3×3 is a diagonal
matrix with s1 ≥ s2 ≥ |s3| ≥ 0. This is a variation of the common
singular value decomposition, defined to ensure U, V ∈ SO(3). These
provide the following interpretation of M(F ):
• UV T ∈ SO(3): mean attitude in the sense of the least Frobenius

mean square error, and it is denoted by M[F ] ∈ SO(3).
• U ∈ SO(3): the columns represent the coordinates of principal

axes in the inertial frame.
• V ∈ SO(3): the columns represent the coordinates of principal

axes in the body-fixed frame of the mean attitude.
• s1, s2, s3 ∈ R3: degree of concentration; the rotation about the
i-th principal axis is more concentrated as sj + sk is increased,
for (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

The mean and principal axes are interpreted similarly as the Gaussian
distribution, and sj + sk can be interpreted in a vague sense as the
inverse of variance along the i-th principal axis. More specifically, the
rotations about principal axes are uncorrelated. The first and the last
principal axes represent the most and the least uncertain directions,
respectively.

The first moment of the matrix Fisher distribution is

E[R] = UDV T , (5)

where D = diag[d1, d2, d3] is given by

di =
1

c(S)

∂c(S)

∂si
, i = 1, 2, 3. (6)

The relationship between S and D is summarized as follows.

Lemma II.1. Suppose a random rotation matrix Q ∈ SO(3) is
distributed according to Q ∼M(S) for S = diag[s1, s2, s3]. Based
on (5), E[Q] = D = diag[d1, d2, d3] is diagonal. Then, the following
properties hold:

1) si + sj = 0 if and only if di + dj = 0;
2) si = sj = 0 if and only if di = dj = 0;
3) di + dj is monotonically increasing with si + sj ,

for any (i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}.

Proof. The proof uses the one dimensional integral formula of c(S)
given in [4], and it is available in [14].

According to Lemma II.1, S and D have a one-to-one correspon-
dence, which is denoted by E [S] = D as given in (6). This implies

F and E[R] carry the same information, and we can construct a
matrix Fisher distribution from E[R]. Let E[R] = UDV T be its
pSVD, the maximum likelihood estimation (MLE) for F is given by
F = USV T , where S = E−1[D] [4], [16].

III. ATTITUDE UNCERTAINTY PROPAGATION

In this section, we consider a stochastic version of the attitude
kinematics equations (1) and (2), and we study how the uncertainty
distribution of R evolves over time.

A. Stochastic Attitude Kinematics

The stochastic attitude kinematics equations corresponding to (1)
and (2) are given by

dR = (ω(t)dt+H(t)dW )∧R, (7)

dR = R(Ω(t)dt+H(t)dW )∧, (8)

respectively. The angular velocity ω(t) is resolved in I, and Ω(t)
is resolved in B. Both are assumed to be given as deterministic
functions of time. The angular velocity is perturbed by the additive
noise H(t)dW , which is a Wiener process W ∈ R3 scaled by a
matrix H(t) ∈ R3×3. The above stochastic differential equations
are defined according to the Stratonovich sense so that the random
matrix R evolves on SO(3) [18]. As presented in Section II, we call
(7) and (8) right-trivialized and left-trivialized, respectively. In the
deterministic case, the right-trivialized (1) and the left-trivialized (2)
are equivalent. One of the fundamental discoveries of this paper is
that such equivalence does not hold in the stochastic case.

To make the argument more accessible, we study the discretized
versions of (7) and (8). Let the time be discretized by a sequence
{tk}∞k=0 with a fixed time step h = tk+1 − tk for all k ∈ N. Then
as h→ 0, the solutions of

Rk+1 = exp
(
hω̂k + (Hk∆W )∧

)
Rk (9)

Rk+1 = Rk exp
(
hΩ̂k + (Hk∆W )∧

)
(10)

converge in probability to the solutions of the continuous equations
(7) and (8), respectively [18], where ∆W is the stochastic increment
of W over a time step h. We further assume the noise is isotropic
[18], i.e., Hk = γI3×3 for γ > 0. Unfortunately, there is no explicit
analytical solution to the stochastic difference equations (9) and (10).
Instead, we study how the first moment of R evolves, and interpret
its uncertainty utilizing the matrix Fisher distribution.

B. Propagation of First Moments

The moments E[Rk] for the right-trivialized (9) and left-trivialized
(10) are propagated into E[Rk+1] according to the following theorem.

Theorem III.1. Suppose R follows the right-trivialized stochastic
difference equation (9), then

E[Rk+1]R = (1− hγ2) exp(hω̂k)E[Rk] +O(h2). (11)

If instead R follows the left-trivialized (10), then

E[Rk+1]L = (1− hγ2)E[Rk] exp(hΩ̂k) +O(h2). (12)

Proof. By the Baker–Campbell–Hausdorff formula, (9) can be writ-
ten as

Rk+1 = exp(hω̂k) exp
(
(Hk∆W )∧ +O(h∆W )

)
Rk.

Expanding the exponential term in the middle of the right hand side,
and noting that E[∆W ] = 0, we have

E
[

exp
(
(Hk∆W )∧ +O(h∆W )

)]
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=I3×3 + 1
2
E
[(

(Hk∆W )∧ +O(h∆W )
)2]

+O(h2)

=(1− hγ2)I3×3 +O(h2),

where we used E[∆W∆WT ] = hI3×3, and the fact that for any
x ∈ R3, x̂2 = −xTxI3×3 + xxT in the second equality. The left-
trivialized (12) can be derived similarly.

In (11) and (12), the propagation of the first moment of R from tk
to tk+1 is composed of two parts: the exponential term corresponds
to the advection, or the rotation of the distribution, due to the
deterministic angular velocity, which acts on the left or on the right
of the original expectation depending on whether the right- or left-
trivialized kinematics is used; and the scalar 1− hγ2 represents the
diffusion due to noise.

C. Difference Between Right- and Left-Trivialization

The expectation of R carries the similar information as the first
two moments of random vectors in Euclidean space, and it can be in-
terpreted using the matrix Fisher distribution. Suppose Rk ∼M(Fk)
with Fk = UkSkV

T
k ∈ R3×3. From (5), its first moment is given by

E[Rk] = UkDkV
T
k . Therefore, (11) and (12) are rewritten as

E[Rk+1]R = exp(hω̂k)Uk × (1− hγ2)Dk × V Tk ,
E[Rk+1]L = Uk × (1− hγ2)Dk × (exp(−hΩ̂k)Vk)T

respectively, after omitting the higher order terms of h. We assume
Rk+1 ∼M(FRk+1) for (9), and Rk+1 ∼M(FLk+1) for (10), with
the pSVD of the parameters given by FRk+1 = URk+1SRk+1V

T
Rk+1

,
and FLk+1 = ULk+1SLk+1V

T
Lk+1

. Then using the MLE for matrix
Fisher distribution, for (9) we have

URk+1 = exp(hω̂k)Uk, VRk+1 = Vk, (13)

and for (10) we have

ULk+1 = Uk, VLk+1 = exp(−hΩ̂k)Vk. (14)

Next, for both of (9) and (10),

SRk+1 = SLk+1 = E−1((1− hγ2)Dk) , Sk+1. (15)

Now, we consider how the uncertainty of R is propagated in three
aspects: the mean attitude, the degree of dispersion, and the principal
axes. First, the mean attitude is rotated from M[Fk] = UkV

T
k into

M[FRk+1 ] = URk+1V
T
Rk+1

= exp(hω̂k)UkV
T
k , (16)

M[FLk+1 ] = ULk+1V
T
Lk+1

= UkV
T
k exp(hΩ̂k), (17)

for (9) and (10) respectively, which is rotated by the deterministic
angular velocity as expected. If the angular velocities are transformed
to each other by the mean attitude at tk, then the propagated mean
attitudes are identical, i.e., Ωk = (UkV

T
k )Tωk implies M[FRk+1 ] =

M[FLk+1 ]. Second, the uncertainty becomes more dispersed in the
same manner for (9) and (10), as Sk+1 is reduced from Sk according
to (15) and Lemma II.1.

Finally, the most notable distinction between (9) and (10) is how
the principal axes are rotated. For (9), since URk+1 = exp(hω̂k)Uk,
the principal axes are rotated by the rotation vector hωk when per-
ceived in the inertial frame. However, as VRk+1 = Vk, the principal
axes remain unchanged when observed from the body-fixed frame.
For (10), it is exactly the opposite: since VLk+1 = exp(−hΩ̂k)Vk,
the principal axes are rotated by the rotation vector −hΩk when
perceived in the body-fixed frame, and they remain unchanged when
observed from the inertial frame. In other words, for (9), the shape
of uncertainty represented by the most and least uncertain directions
remains fixed in the body-fixed frame, but it is rotated in the inertial
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Fig. 1. Illustration of propagated uncertainties: (a-c) by the right-trivialized
(9); (d-f) by the left-trivialized (10). The initial distribution is R0 ∼M(F0)
with F0 = diag[150, 10, 0]. The angular velocities are ω = Ω =
π
2
e3rad s−1 without any noise, which can be transformed to each other by

the initial mean attitude I3×3. The red, green and blue arrows represent the
mean directions of the body-fixed b1, b2, b3 axes, and the corresponding
shades represent the marginal distribution for each body-fixed axis. It can be
observed that the mean attitude and the degree of dispersion are consistent
between (9) and (10). However, for (9), the most uncertain direction is fixed
along the body-fixed b1 axis (red), but it is rotated in the inertial frame; and
the most uncertain direction for (10) is rotated in the body-fixed frame (from
red to green), but it remains fixed along the inertial e1 axis, thereby causing
all of the shades circular about e1.

frame. On the other hand, for (10), the most and least uncertain
directions are rotated in the body-fixed frame, but they are fixed in
the inertial frame. These are illustrated in Figure 1.

IV. SINGLE DIRECTION MEASUREMENTS

In this section, we present two types of direction measurements,
and we show how they differ in characterizing attitude uncertainties.

A. Measurement Update

The first type of direction measurement, referred to as inertial
direction measurement, is when the reference direction is known in
the inertial frame, and the measurement output is resolved in the
body-fixed frame. For example, this corresponds to a magnetometer
that measures the direction of magnetic field, or an accelerometer
that measures the direction of gravity. Alternatively, in the less com-
mon second type, referred to as body-fixed direction measurement,
the reference direction is known in the body-fixed frame, and the
measurement output is resolved in the inertial frame. For instance,
a differential GPS has been utilized in attitude determination of an
aircraft, where two GPS antennas are attached to the left wing-tip
and the right-wing tip, and GPS measurements provide the direction
from the left wing to the right wing in the inertial frame.

For the inertial direction measurement, let a be a reference vector
fixed in the inertial frame, and a ∈ S2 = {q ∈ R3 | ‖q‖ = 1} be its
coordinates in the inertial frame. The reference direction is measured
with a sensor fixed to the body, which provides the measurement
x ∈ S2 resolved in the body-fixed frame. It is assumed that the
sensor measurement for a given attitude is distributed according to
the von Mises-Fisher distribution on S2 [19] as follows:

p(x|R) =
κ

4π sinhκ
exp(κaTRx), (18)

for a parameter κ > 0. This distribution is centered at RT a and it
is more concentrated as κ is increased, implying a more accurate
sensor.
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Similarly, for the body-fixed direction measurement, a reference
vector b fixed to the body with the coordinates b ∈ S2 in the body-
fixed frame, is measured by a sensor as y ∈ S2 resolved in the inertial
frame. And for κ > 0, y|R is assumed to be distributed by

p(y|R) =
κ

4π sinhκ
exp(κbTRT y). (19)

The additional information in the direction measurement is injected
into the prior uncertainty by calculating the conditional distribution
R|x or R|y, using Bayes’ rule.

Theorem IV.1. Let R ∼ M(F−) be a prior distribution for a
given F− ∈ R3×3. Then, for the inertial direction measurement, the
posterior distribution of the attitude conditioned by x is also matrix
Fisher with R|x ∼ M(F+

I ), where the posterior matrix parameter
F+
I ∈ R3×3 is given by

F+
I = F− + κaxT . (20)

And for the body-fixed direction measurement, the posterior distribu-
tion is R|y ∼M(F+

B ), where F+
B ∈ R3×3 is given by

F+
B = F− + κybT . (21)

Proof. The proof for inertial direction measurement is given in
Theorem 3.2 of [4], and the body-fixed direction measurement can
be derived similarly.

B. Difference Between Inertial and Body-Fixed Measurement

Now, we study the implication of (20) and (21). Suppose that the
attitude is completely unknown before the measurement, i.e., F− =
03×3. For the inertial direction measurement, the matrix parameter
(20) for the posterior distribution is decomposed into

F+
I =

[
a a′ a′′

]
diag[κ, 0, 0]

[
x x′ x′′

]T
, (22)

where a′, a′′ ∈ S2 are arbitrarily chosen such that the matrix
[a, a′, a′′] ∈ SO(3), and x′, x′′ ∈ S2 are defined similarly. Therefore,
F+
I is written in the form of pSVD with S = diag[κ, 0, 0]. The

first principal axis is a when resolved in the inertial frame, or x
when resolved in the body-fixed frame. Also, the rotation about the
first principal axis is completely unknown as s2 + s3 = 0. More
intuitively, the marginal distribution of each body-fixed axis makes
a circle normal to a (the top row of Figure 2), which implies the
rotation about a cannot be determined. Since a is fixed in the inertial
frame, the direction of this ambiguity is also fixed in the inertial frame
regardless of the measurement.

Next, the matrix parameter (21) for the posterior distribution of a
body-fixed direction measurement is decomposed into

F+
B =

[
y y′ y′′

]
diag[κ, 0, 0]

[
b b′ b′′

]T
, (23)

where y′, y′′ ∈ S2 and b′, b′′ ∈ S3 are chosen such that the
corresponding matrices in brackets belong to SO(3). The resulting
first principal axis is b when resolved in the body-fixed frame, or
y when resolved in the inertial frame. The marginal distribution of
each body-fixed axis makes a circle normal to b (the bottom row of
Figure 2), about which the rotation cannot be determined. Since b is
fixed in the body-fixed frame, the direction of this ambiguity is also
fixed to the body.

V. STOCHASTIC ATTITUDE OBSERVABILITY

Here, we introduce two stochastic attitude observability criteria.
Since the posterior distribution of R conditioned by measurements
contains all the information available to determine the attitude, we
study: (i) whether there is a unique attitude that minimizes the mean
square error for the posterior distribution, and (ii) whether the Fisher
information matrix for the mean attitude of R is positive-definite
when R is distributed according to the matrix Fisher distribution.
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Fig. 2. Posterior distribution with single direction measurements (κ = 500):
(a-c) inertial direction measurements with a = e1; (d-f) body-fixed direction
measurements with b = e1.

A. Uniqueness of Attitude Estimate

One of the methods to estimate an attitude from a density function
on SO(3) is to solve an optimization problem that minimizes the
mean square Frobenius norm [20], [21].

Definition V.1. Let p(R) be the probability density function for a
random R ∈ SO(3). Its minimum mean square estimate (MMSE) is
defined as

MMMSE[R] = arg min
Q∈SO(3)

{E[‖R−Q‖2F ]}, (24)

where ‖ · ‖F denotes the Frobenius norm.

Finding MMSE can be addressed in terms of pSVD as follows.

Lemma V.1. Suppose R ∈ SO(3) is a random rotation matrix.
Let the pSVD of its first moment be E[R] = UDV T with D =
diag[d1, d2, d3]. Depending on D, the MMSE of R is given by

1) d2 + d3 > 0: UV T (unique),
2) d1 6= d2 and d2 + d3 = 0: {U exp(θê1)V T | θ ∈ [−π, π)}

(1D),
3) d1 = d2 = −d3 > 0: {U exp(θâ)V T | a ∈ S2, a3 = 0, θ ∈

[−π, π)} (2D),
4) d1 = d2 = d3 = 0: SO(3) (3D),

where the number in the parentheses indicates the dimension of the
set corresponding to the solution of MMSE.

Proof. The proof uses the equivalent definition [4]

MMMSE[R] = arg max
Q∈SO(3)

{tr[QTE[R]]},

and is based on a careful analysis of the uniqueness of pSVD depend-
ing on the multiplicity of singular values. The detailed procedure is
available in [14].

For all cases, the set of MMSE contains UV T . Nevertheless, only
when d2 + d3 > 0, the MMSE is unique. Otherwise, it can only
be determined up to a rotation, where the dimension of the set
representing the solution of MMSE is equivalent to 3 minus the rank
of tr[D]I3×3 − D = diag[d2 + d3, d1 + d3, d1 + d2]. Therefore,
we claim that the attitude is completely observable given a density
function on SO(3) if tr[D]I3×3 −D is positive-definite, i.e., when
the MMSE is unique.
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B. Information Theoretic Observability Analysis

The above observability criterion is solely based on the first
moment, and therefore, it can be applied to an unknown attitude
following an arbitrary distribution. Here, we assume that the attitude
is distributed by a matrix Fisher distribution to present an alternative
information theoretic observability criterion.

Suppose R ∼ M(F ) where the pSVD of F ∈ R3×3 is given
by F = USV T . As discussed in Section II-B, the MMSE of R ∼
M(USV T ) is given by the mean attitude R∗ = UV T , and we
want to calculate its Fisher information I(R∗). We first study a more
general problem of estimating U , S, and V from the given samples
of R. The log-likelihood is

l(R|U, S, V ) = tr[USV TRT ]− log c(S). (25)

And the corresponding Fisher information matrix is calculated as
follows [13].

Lemma V.2. The Fisher information matrix of (25), namely
I(U, S, V ) : R9 × R9 → R is constructed as

I(U, S, V ) = −E[∇2l(R|U, S, V )]

=

tr[DS]I3×3 −DS 0
∑3
i=1 e

T
i sêiDêi

0 ∂2 log c(S)

∂s2
0∑3

i=1 e
T
i sêiDêi 0 tr[DS]I3×3 −DS

 , (26)

where D ∈ R3×3 is the diagonal matrix composed of the proper
singular values of E[R|U, S, V ], s =

[
s1 s2 s3

]T , and ∇2 is
the covariant Hessian on SO(3)× R3 × SO(3).

Proof. Let Q = SO(3) × R3 × SO(3), and q = (U, S, V ) ∈ Q.
The tangent space TqQ is identified with TqQ ' R9 through the hat
map, and the cotangent space is also identified with R9 using the dot
product. More specifically, for ξ = (u, ς, v) ∈ R9, the corresponding
tangent vector is given by (Uû, ς, V v̂) ∈ TqQ.

Since l is a real-valued function on Q, its covariant derivative ∇ξl
along ξ is equivalent to the differential dl(ξ) given by

∇ξl =
d

dε

∣∣∣∣
ε=0

l(R|U exp(εû), S + εdiag[ς], V exp(εv̂))

= tr[(UûSV T + Udiag[ς]V T − USv̂V T )TR]− ∂ log c(S)

∂s
· ς

=

 (QS − SQT )∨

diag[Q]− 1
c(S)

∂c(S)
∂s

(QTS − SQ)∨

 · ξ,
where Q = UTRV . Because E[Q] = D is diagonal, it is straight-
forward to show E[dl(ξ)] = 0 for any ξ ∈ R9.

The covariant Hessian of l along ξ1 and ξ2 is given by ∇2
ξ1,ξ2

l =
ξ2(ξ1l) − (∇ξ2ξ1)l = ξ2(dl(ξ1)) − dl(∇ξ2ξ1), where the second
term vanishes after taking expectation. The first term is bi-linear in
ξ1 and ξ2, thus it can be written as a matrix as in (26). Suppose
ξ1 = (u1, 0, 0) and ξ2 = (u2, 0, 0). We have

ξ2(dl(ξ1)) = (−û2QS − SQT û2)∨ · u1

= uT1

{
1

2
(QS + SQT )− tr[QS] I3×3

}
u2.

Taking the expectation of the expression in the braces with E[Q] = D
and multiplying it with −1 yield the upper-left 3-by-3 block of (26).
The remaining blocks can be obtained similarly.

Next, we calculate the Fisher information I(R∗) with the above
information matrix. Since the variations of U and V are written as
δU = Uû and δV = V v̂ for u, v ∈ R3, we have

δR∗ = UûV T − Uv̂V T .

Let η = u − v ∈ R3 so that δR∗ = Uη̂V T . Thus, the Fisher
information matrix for the mean attitude R∗ is constructed by left-
multiplying (26) with the matrix 1

2
[I3×3; 03×3;−I3×3], and by right-

multiplying (26) with its transpose, to obtain

I(R∗) =
1

2
diag

(d2 + d3)(s2 + s3)
(d3 + d1)(s3 + s1)
(d1 + d2)(s1 + s2)

 . (27)

According to the Cramér–Rao inequality, the inverse of Fisher
information I(R∗) is a lower bound of the variance of all unbiased
estimates, up to additional curvature terms. Therefore, its positive-
definiteness can be used to define observability [12]. Interestingly,
by Lemma II.1, the positive-definiteness of I(R∗) is equivalent to
the uniqueness of MMSE presented in Lemma V.1. Based on these
results, we formulate stochastic attitude observability for an arbitrary
density as follows.

Definition V.2. A random rotation matrix R ∼ p(R) is stochastically
observable if d2 + d3 > 0, or equivalently

O = tr[D]I3×3 −D � 0, (28)

where D = diag[d1, d2, d3] is the proper singular values of E[R].
The corresponding measure of observability is

ρ(R) = det[O] = (d1 + d2)(d3 + d1)(d2 + d3). (29)

When R ∼M(USV T ), it is straightforward to show that (28) is
equivalent to tr[S]I3×3−S � 0 with Lemma II.1. Note that these are
readily applied to the stochastic observability considered in this paper,
as the posterior distribution conditioned by direction measurements
is assumed to be a matrix Fisher distribution according to Theorem
IV.1, which is presented in the next section.

VI. ATTITUDE OBSERVABILITY WITH SINGLE DIRECTION

MEASUREMENTS

The attitude uncertainty propagation in Section III, and the mea-
surement update in Section IV constitute a Bayesian estimator, which
provides the posterior distribution of the attitude conditioned by the
history of direction measurements. The posterior distribution can then
be used in Definition V.2 to determine attitude observability. As there
are two cases for each of uncertainty propagation and measurement
update, we have four possible combinations as summarized in Table I.
This section identifies two combinations that yield unobservability,
and two other cases resulting in observability with single direction
measurements. The same results can also be derived in a deterministic
sense as presented in Appendix.

A. Combinations with Unobservability

We first discuss why the common IMU cannot estimate the
full attitude with single direction measurements. In a typical IMU,
the angular velocity is measured in the body-fixed frame using a
gyroscope, and the reference direction in the inertial frame, such as
the direction of gravity, is measured in the body-fixed frame. As
such it is a combination of the left-trivialized (10) and the inertial
direction measurement (18). Looking at the bottom row of Figure 1
and the top row of Figure 2, it is clear why the attitude cannot be
determined in this case: the direction about which the rotation cannot
be determined, namely the first principal axis, remains unchanged in
the inertial frame for both (10) and (18). This is formulated in the
next theorem.

Theorem VI.1. Consider the two Bayesian attitude estimators for
• right-trivialized angular velocity in the inertial frame (9) and

body-fixed direction measurement (19)
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Prior dist. at t = 0 Posterior dist. at t = 0 Propagated dist. at t = 1 Propagated dist. overlapped
with measured dist. at t = 1

Posterior dist. at t = 1

Fig. 3. Combinations when the attitude is observable. (a-e) right-trivialized (9) and inertial direction measurement (18); (f-j) left-trivialized (10) and body-fixed
direction measurement (19).

• left-trivialized angular velocity in the body-fixed frame (10), and
inertial direction measurement (18)

with the initial distribution F0 = 03×3. For both cases, the attitude
is not observable.

Proof. First consider the filter given by (13), (15), and (21). The
propagated uncertainty before the first measurement is F−1 = 03×3,
thus F1 = κy1b

T after conditioning the first measurement. As shown
in (23), (s2)1 = (s3)1 = 0, and V1e1 = b. We proceed with
induction. Suppose (s2)k = (s3)k = 0, and Vke1 = b. Then by
(13), (15) and Lemma II.1, the propagated parameters before the next
measurement still satisfy (s2)−k+1 = (s3)−k+1 = 0 and V −k+1e1 = b.
Next consider the update Fk+1 = F−k+1 + κyk+1b

T , which can be
written as

Fk+1 =
(
(s1)−k+1U

−
k+1e1 + κyk+1

)
bT , ubT ,

where u ∈ R3. Let Uk+1 =
[
u
‖u‖ u′ u′′

]
, where u′, u′′ ∈ S2

are arbitrarily chosen such that Uk+1 ∈ SO(3). Also let Sk+1 =
diag[‖u‖ , 0, 0], and Vk+1 =

[
b b′ b′′

]
as in (23). Then Fk+1 =

Uk+1Sk+1V
T
k+1 = ubT is the pSVD of Fk+1, and we have shown

that (s2)k+1 = (s3)k+1 = 0 and Vk+1e1 = b. Therefore, (s2)k =
(s3)k = 0 for all k ∈ N, and by Lemma II.1, the attitude is not
observable. The proof for the second case is similar.

B. Combinations with Observability

Next, we present examples illustrating that the other two combina-
tions yield observability. Consider the combination of right-trivialized
(9) and inertial direction measurement (18) for a specific case where
the true attitude evolves according to

R(t) = R0 exp(Ω̂t) = exp(ω̂t)R0, (30)

with R0 = I3×3 and Ω = ω = − π

2
√
3
[1, 1, 1] ∈ R3. Initially, it is

assumed that the attitude is completely unknown, i.e., F0 = 03×3, as
illustrated in Figure 3(a). Then after updated by an inertial direction
measurement with a = e1, the rotation about the reference direction
is unobservable and the resulting distribution is axially symmetric
about e1 (Figure 3(b)). For the right-trivialized (9), the distribution
rotates in the inertial frame over the propagation, and therefore, the
direction of ambiguity is no longer along e1 (Figure 3(c)). The next
inertial direction measurement is fixed in the inertial frame along

e1 (Figure 3(d)). Thus, it resolves the ambiguity of the propagated
density to determine the attitude completely (Figure 3(e)).

The other combination of left-trivialized (10) and body-fixed
direction measurement (19) is similar. The direction of ambiguity
caused by the first body-fixed direction measurement with b = e1 is
fixed in the inertial frame after propagation (Figure 3(h)). However,
the ambiguous direction of the next direction measurement is rotated
in the inertial frame (Figure 3(i)), and this resolves the previous
ambiguity (Figure 3(j)). The above intuition is formally presented
in the next theorem.

Theorem VI.2. Consider the two Bayesian attitude estimators for

• right-trivialized angular velocity in the inertial frame (9) and
inertial direction measurement (18)

• left-trivialized angular velocity in the body-fixed frame (10), and
body-fixed direction measurement (19)

with the initial distribution F0 = 03×3. Suppose there is some k0
such that ωk0 × a 6= 0 for the first case, and Ωk0 × b 6= 0 for the
second case. Then the attitude is observable with probability one for
both cases.

Proof. Consider the first case. The posterior distribution after the
first measurement is given by F1 = κaxT1 . Suppose k0 = 1 and
denote exp(hω̂1) = δR, then by (22), (13), (15) and Lemma II.1,
U−2 = δR

[
a a′ a′′

]
, S−2 = diag([(s1)−2 , 0, 0]), V −2 e1 = x1,

where (s1)−2 > 0 satisfies

1

c(S−2 )

∂c(S−2 )

∂(s1)−2
= (1− hγ2)

1

c(S1)

∂c(S1)

∂(s1)1
.

Thus, the posterior distribution after the second measurement is

F2 = (s1)−2 δRax
T
1 + κaxT2 . (31)

Let δRa = αa+α′a′+α′′a′′ for some α, α′, α′′ ∈ R. Since ω1×a 6=
0, α′ and α′′ cannot both be zeros. Then

F2 = (s1)−2 (αa+ α′a′ + α′′a′′)xT1 + κaxT2

= a((s1)−2 αx1 + κx2)T + (s1)−2 α
′a′xT1 + (s1)−2 α

′′a′′xT1 .

Let v = (s1)−2 α1x1 +κx2, and v′, v′′ be arbitrarily chosen such that[
v
‖v‖ v′ v′′

]
∈ SO(3). Also, let x1 = β v

‖v‖ +β′v′+β′′v′′. Note
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that β2 and β3 cannot both be zeros almost surely. Using these, F2

is written as

F2 =
[
a a′ a′′

]
Λ
[
v
‖v‖ v′ v′′

]T
,

where Λ ∈ R3×3 is

Λ =

 ‖v‖ 0 0
(s1)−2 α

′β (s1)−2 α
′β′ (s1)−2 α

′β′′

(s1)−2 α
′′β (s1)−2 α

′′β′ (s1)−2 α
′′β′′

 .
Since F2 is obtained by multiplying rotation matrices to Λ, it is
straightforward to see that F2 and Λ share the same proper singular
values. We have det(Λ) = 0, so there is at least one zero singular
value. However, the rank of Λ is two almost surely, as at least one
element of the right bottom 2-by-2 block is nonzero. Thus, Λ has only
one zero singular value. By the definition of proper singular value
decomposition, this concludes tr[S2]I3×3 − S2 is positive-definite,
and therefore the attitude is observable with probability one.

Next suppose k0 > 1. By (31), F2 = a((s2)−1 x1+κx2)T since δR
does not rotate a, which means both the uncertainty propagation and
update steps leave Uke1 = a, (s1)k > 0, and (s2)k = (s3)k = 0.
Thus, the argument in the last paragraph still applies at time t = tk0 .
The proof for the other estimator is similar.

Finally, it should be noted that although we have assumed the
attitude follows matrix Fisher distribution, it is not restrictive in the
sense that if the initial distribution is uniform, and the angular velocity
noise in (9) and (10) is zero, i.e., γ = 0, then the attitude conditioned
by single direction measurements exactly follows the matrix Fisher
distribution. Therefore, we suppose that the result presented in Table I
is not specific to the estimator. Instead, it is inherent to the observed
stochastic dynamical system given by (9), (10) and (18), (19). Indeed,
it is shown by experiments in the next section that multiplicative
extended Kalman filter also exhibits the same observability.

VII. EXPERIMENTS

In this section, the attitude observability presented above is vali-
dated through experiments. We use a custom-made hardware platform
to collect measurements while moving it with hands. A VICON
motion capture system detects reflective markers attached to the
platform to determine its attitude, which is used as the ground truth.
An IMU (VectorNav VN100) is attached to the platform, and the
onboard gyroscope provides the angular velocity measurement in the
body-fixed frame, which is also transformed into the inertial frame
using the true attitude. For the inertial direction measurement, the
direction of gravity is measured by the accelerometer on IMU. And
for the body-fixed direction measurement, two additional markers
are attached to the platform as the reference direction in the body-
fixed frame, which is measured by the Vicon motion system in the
inertial frame. All Vicon and IMU measurements are synchronized
and sampled at 100 Hz. The platform was rotated by hands about its
roll, pitch and yaw axes during the data collection.

The matrix Fisher estimator and MEKF are executed off-board
using the collected experimental data, with the single direction
measurement update applied at 20 Hz. The initial attitude is set as
the true attitude rotated about the body-fixed b1 axis by 180 deg,
and the initial uncertainty is set as uniform, i.e., F0 = 03×3. The
noise parameters are chosen as γ = 10 deg /

√
s, and κ = 200. The

four combinations of angular velocity and direction measurements
are labeled as:

ref. vec.
ang. vel. body-fixed frame inertial frame

body-fixed frame AVB RVB AVI RVB
inertial frame AVB RVI AVI RVI

0

180
 AVI_RVI  full error

MF

MEKF

 AVB_RVB full error

0

180
AVI_RVB full error

A
tt

it
u

d
e 

E
rr

o
r 

(d
eg

)

0 10 20 30 40
0

180
AVI_RVB partial error

Time (second)

AVB_RVI full error

0 10 20 30 40

AVB_RVI partial error

Fig. 4. Attitude errors for the matrix Fisher estimator (MF) and MEKF.

where the boldface font indicates the cases with observability. The
full attitude error denotes the angle between the estimated and true
attitude. For the two unobservable cases, the partial attitude error
is also calculated, which is the angle between the reference vector
resolved in the measurement frame using the true and estimated
attitudes, neglecting the rotation about the reference vector.

The attitude errors for the four combinations are presented in
Figure 4. It is shown that for the two observable cases (AVI RVI
and AVB RVB), the full attitude error converges, whereas it does not
converge for the two unobservable cases (AVI RVB and AVB RVI).
However, the partial attitude error for the unobservable cases con-
verges to around zero, indicating only the rotation about the reference
direction cannot be estimated. The attitude uncertainty is presented
in Fig. 5. For all combinations, the uncertainty along the directions
perpendicular to the reference direction (blue and red lines) remains
very low at around 3 deg. On the other hand, the uncertainty along the
reference direction (yellow lines) is low only for the two observable
cases, and it is almost a uniform distribution (around 107deg) for the
two unobservable cases. An exception is for MEKF, the uncertainty
along the reference vector for AVB RVI is also low. This is caused
by that the attitude error is formulated in the body-fixed frame, rather
than in the inertial frame. And if the reference vector is known in
the inertial frame, MEKF has been shown to apply some slight but
erroneous corrections to the rotation about the reference vector due
to the linearization of the measurement function [22].

VIII. CONCLUSIONS

This paper addresses the fundamental question whether the attitude
of a rigid body is observable with angular velocity and single
direction measurements. By observing that the attitude uncertainties
are propagated distinctively depending on how the angular velocity
measurements are resolved, this paper has discovered two particular
cases where the attitude is observable with multiple measurements of
a single, fixed reference direction, which has been widely accepted
to be impossible. This is further studied by formulating stochastic
attitude observability through information-theoretic analysis, and it
is also validated by experimental results.

APPENDIX

In this appendix, attitude observability with single direction mea-
surements is presented in a deterministic sense, which is consistent
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Fig. 5. Attitude uncertainty for the matrix Fisher estimator (MF) and MEKF.
In the “RVI” cases, the attitude covariance matrix is expressed in the inertial
frame; and in the “RVB” cases, it is expressed in the b′-b′′-b frame, where
b is the reference vector when resolved in the body-fixed frame, and b′, b′′
are perpendicular to b. For the MF filter, (tr[S] I3×3 − S)−1 is used as the
attitude covariance matrix in the principal axes frame.

with Theorem VI.1 and Theorem VI.2.

Theorem A.1. Let the deterministic inertial and body-fixed direction
measurements be

x = RT a, (32)

y = Rb, (33)

respectively, where a, b ∈ S2 are reference vectors. Then the system
(1) and (32), and the system (2) and (33) are weakly locally
observable. Conversely, the system (1) and (33), and the system (2)
and (32) are unobservable.

Proof. The proof is based on the results of [23], and we adopt
notations therein without reintroducing them here for brevity. Without
loss of generality, we assume a = b = e1.

For (1), F0(R) is spanned by {êiR}3i=1. For any R ∈ SO(3) and
η̂ ∈ so(3), the Lie derivative of x(R) along η̂R is

(L(η̂R)x)(R) =
d

dt

∣∣∣
t=0

RT exp(tη̂)T a = RT η̂T a. (34)

Let G̃ = {L(ê2R)x, L(ê3R)x} ⊂ G. For any R0 ∈ SO(3), define a
local coordinate θ ∈ R3 with R(θ) = exp(θ̂)R0. Then dR = d̂θR0,
and we have

d(L(ê2R0)x)(R0) = RT0 d̂θ
T
êT2 e1 = RT0 ê3dθ,

d(L(ê3R0)x)(R0) = RT0 d̂θ
T
êT3 e1 = −RT0 ê2dθ.

Thus, dG̃(R0) = RT0 [ê3,−ê2]dθ. Since rank[ê3,−ê2] = 3, it
follows that the dimension of dG(R0) is three. Therefore, the system
(1) and (32) is weakly locally observable [23, Theorem 3.2].

Next, for any R ∈ SO(3) and η̂1, η̂2 ∈ so(3), we have

d
(
L(η̂1R)(L(η̂2R)y)

)
(R0) = η̂1η̂2d̂θR0b = −η̂1η̂2R̂0bdθ.

As such, any higher-order Lie derivative of y along (1) would include
the factor R̂0b, which has rank two. Thus, the dimension of dG(R0)
is at most two. Because the system (1) is locally controllable, the
system of (1) and (33) is unobservable according to [23, Theorem
3.12]. The remaining cases with (2) can be shown similarly.
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