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ABSTRACT

Learning the graph structure underlying observed graph signals is
important in many graph signal processing (GSP) applications. This
problem has been extensively addressed as graph Laplacian learn-
ing with the constraint that the graph signals have smooth variations
on the resulting topology. The current approaches focus primarily
on the case that the signals are observed across all nodes and pos-
sibly corrupted by additive Gaussian noise. In this paper, we pro-
pose a general framework for graph learning where the graph signal
is partially observed and corrupted by sparse outliers in addition to
Gaussian noise. We present a general optimization framework that
addresses this problem and show how this formulation encapsulates
a variety of problems in GSP including Laplacian learning and graph
regularized low-rank matrix completion. The proposed optimization
is solved with ADMM and the resulting algorithms are evaluated on
both simulated graphs with different topology and real world graph-
based data clustering.

Index Terms— Graph Signal Processing, Graph Learning, Ma-
trix Completion, Graph Signal Recovery

1. INTRODUCTION

In many modern data science applications, the observed high-
dimensional data lives in a non-Euclidean space. Some examples
include point cloud data and graph signals. In graph signal process-
ing, it is assumed that the observed data live on the vertices of a
graph. Numerous examples can be found in real world applications,
such as temperatures within a geographical area, transportation ca-
pacities at hubs in a transportation network, and neuronal signals
recorded across a brain network [1, 2]. While most of the research
efforts in GSP have focused on extracting information from such
graph signals using the a priori known graph structure, in most
cases the graph structure may be unknown, corrupted or noisy [3].
Recent research has addressed this issue by proposing graph learning
techniques from observed graph signals. The main techniques are
statistical methods such as Gaussian graphical models and graphical
Lasso; learning graphs from data assumed to be smooth over the
graph; diffusion based models, where the graph signals are assumed
to be stationary over the graph and are produced by a diffusion
process defined by the graph shift operators [4]. In this paper, the
focus is on learning graphs from observations of smooth signals.
There are various reasons to focus on learning graphs with the
assumption that signals must vary smoothly with respect to the graph
structure. First, smooth signals have low-frequency and sparse rep-
resentation in the graph spectral domain. Thus, the graph learn-
ing problem under smoothness assumption is equal to finding ef-
ficient information processing transforms for graph signals. Sec-
ond, smoothness is a fundamental principle for several graph reg-
ularized learning tasks, such as denoising, semi-supervised learning,
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and spectral clustering. Finally, many real-world graph signals are
smooth as similarity between nodes’ properties are usually employed
to construct graphs [4].

The pioneer work on graph learning with smoothness assump-
tion is proposed in [5], where factor analysis model is used to de-
scribe graph signals. In particular, the signals are assumed to be gen-
erated from a set of latent variables, which represent low-frequency
graph spectral representation of signals. The latent variables are then
transformed to the observed graph signals by graph Fourier basis,
which involves information about graph topology. This modeling
results in an optimization problem whose objective function con-
sisting of terms that minimize the error between the observed sig-
nal and the underlying signal while ensuring that the graph signals
are smooth on the underlying network. Kalofolias et al. [6] ex-
tended this framework by establishing the link between smoothness
and sparsity and regularizing the problem such that that each vertex
has at least one incident edge in the learnt graph. Different varia-
tions of these frameworks were considered in [7, 8, 9, 10, 11, 12].
For example, in [7], the Frobenius norm of the error between the ob-
served and constructed data matrices in [5] is replaced by ¢;-norm,
such that the learned Laplacian is robust against sparse outliers in
the graph signals. [11] considers the problem of simultaneous low-
rank data recovery and graph learning where the focus is on detect-
ing sparse outliers using the underlying graph structure as a regular-
izer. More recently, [8] considered missing data in the framework of
graph learning.

In this paper, we introduce a comprehensive framework for
graph learning from corrupted signals with possibly missing entries.
The proposed framework extends and generalizes existing graph
learning methods based on signal smoothness assumptions in some
key ways. First, the proposed approach can simultaneously recover
the low-rank data matrix and the underlying graph from data. Sec-
ond, compared to previous works, the proposed work handles three
types of corruptions simultaneously, i.e. Gaussian noise, sparse
outliers and missing data. Finally, the optimization framework is
formulated in a general way such that the objective functions of
both [5] and [6] are considered. The resulting optimization prob-
lem is non-convex and solved by alternating minimization with two
subproblems. The first subproblem is reformulated in terms of vec-
torized Laplacian matrices providing a fast and scalable algorithm,
while the second subproblem can be solved with fast algorithms
developed in nuclear norm minimization literature [13].

2. BACKGROUND
2.1. Notations

An undirected graph is represented by a tuple G = (V, E), where V
is the node set with |V| = nand E € V x V is the edge set. Al-
gebraically, a graph is represented by a symmetric adjacency matrix
W € R™". The degree matrix of G is a diagonal matrix D with
Dii = 7%, Wij. A graph signal is a column vector x € R™ with
x; being the graph signal value on node i.

556

Authorized licensed use limited to: Michigan State University. Downloaded on June 22,2022 at 20:58:35 UTC from IEEE Xplore. Restrictions apply.



978-1-7281-5767-2/21/$31.00 ©2021 IEEE

2021 IEEE Statistical Signal Processing Workshop (SSP)

All-one and all-zero vectors and matrices are indicated by 1 and
0, respectively. diag(-) operator is defined on vectors and matrices.
If the input is a vector, it returns a diagonal matrix whose diagonal
is equal to the input vector. Otherwise, it returns the diagonal of
the input matrix as a vector. We also define the operator upper(-),
which takes an n x n symmetric matrix and returns a n(n — 1)/2-
dimensional vector that corresponds to the upper triangular part of
the input matrix. Finally, we define the matrix P € R™*"(n—1)/2
such that Pupper(W) = W1 — diag(W).

2.2. Graph Learning from Smooth Signals

A graph signal x is said to be smooth if strongly connected vertices
have similar values, while weakly connected vertices have dissimilar
values. Mathematically, the smoothness of x can be measured using
various metrics. One common approach is to calculate the total vari-
ation of x with respect to graph Laplacian L = D — W as:

x ' Lx = %ZZWij($i_mj)2~ (D

i=1 j=1

Graph learning aims to infer the connectivity of an unknown graph
G from m graph signals that are assumed to be smooth on G by
minimizing the smoothness measure in (1) with respect to L. Given
a matrix of graphs signals, X € R™*™, L can be learned by solving
the following optimization problem [5]:

min tr(X LX) + %HLII% s.t. tr(L) = n, 2)
where L. = {L|L = LT, L;; = L;; < 0Vi # j,L1 = 0} is the
set of Laplacian matrices, ||L||r is the Frobenius norm of L that
controls sparsity of the learned graph and the constraint is employed
to prevent the trivial solution L = 0. In [6], the objective function in
(2) is augmented with the log-barrier function of diag(L) to ensure
that each node has at least one connection.

2.3. Graph Signal Recovery

In real world applications, measurements of graphs signals are usu-
ally contaminated by sparse outliers, Gaussian noise or missing val-
ues. One important task in GSP is to recover the graph signals from
the observed corrupted signals with the assumption that the underly-
ing signals are smooth on the graph [14]. Given a graph G and the
corrupted graph signal matrix X € R™*™ , graph signal recovery
can be formulated as the following optimization problem:

. A
win (Y LY )+ Y e8]+ 5 [Mo(Y+S-X) [}, ()

where Y is the signal to be recovered, S is the sparse outlier matrix,
M is the binary mask matrix with M;; = 0 if X; is missing and 1
otherwise and o is Hadamard product. The first term in (3) measures
the smoothness of graph signals Y on G, the second term models
Y to be low-rank based on the assumption that Y includes redun-
dant information as each graph signal is generated from the same
graph topology [14] and the last two terms model sparse outliers and
Gaussian noise in the observations, respectively.

3. GRAPH LEARNING FROM CORRUPTED SIGNALS

As mentioned in the introduction, previous approaches on graph
learning from corrupted data are limited in some key ways. In this
paper, we extend prior work in graph learning by proposing a com-
prehensive optimization framework that considers different types of
corruptions, i.e. sparse outliers, Gaussian noise and missing values,
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simultaneously. Moreover, the proposed framework addresses the
problem of graph signal recovery jointly with graph learning. Thus,
aforementioned works are special cases of the proposed framework.

Before formulating our approach, we first present some obser-
vations on the problem considered in (2) and its augmented version
considered in [6]. Since we are learning a symmetric matrix L, the
problem can be written in vector form, where we learn upper trian-
gular and diagonal part of L. Let £ = upper(L), d = diag(L),
y = upper(YY") and d, = diag(YY"). Then we have the
following general formulation for (2):

min 2y £+d,d+ Bif(d) + B2g(8) st. PE=-d, (4

£<0,d

where the first two terms correspond to tr(Y T LY), f(d) is a func-
tion that controls the degree distribution and g(£) is a function that
controls the sparsity of learned graph, respectively. By using dif-
ferent f(d) and g(£), one can obtain different graph learning ap-
proaches that are based on smoothness assumptions. For example,
in (2), f(d) is set to ||d||3/2 with the constraint 17 d = n. In [6],
f(d) = —17 log(d) is log-barrier function to make sure each node
has at least a connection. In prior work, g(€) = ||£]|3/2 is employed.
In the remaining of this paper, we provide solutions for both choices
of f(d) and set g(£) = ||£]|3/2.

To learn the graph from corrupted graph signals, we combine (3)
and (4) to obtain the following optimization problem:

min tr(Y "LY) + B1 f(diag(L)) + B2g(upper(L))

Lel,Y,

AANY [ 4+ A2l[S]l 4 As/2[Mo (Y +S — X)||7. O
s.t Pupper(L) = -diag(L).

This problem is not jointly convex in L, Y and S. Therefore, we em-
ploy an alternating minimization approach similar to [5], [8]. First,
we fix Y and S and solve the problem for L, then fixing L we solve
with respect to Y and S. In the following, both subproblems are
solved with alternating direction method of multipliers (ADMM).
L-subproblem: In this section, we present the solution for f(d) =
[|d||3/2 with the constraint 17d = n using ADMM. Due to space
constraints, the solution for f(d) = -1 log(d) is not given. How-
ever, its performance is reported in Section 4. The augmented La-
grangian of the problem is:

L, (£, dmn,~) = 2yTE+%ZTZ+%de +d,d+n'(d+Pe
+”—21||d + P +y1Td—n)+ %(1Td —n)% (6
The steps of ADMM are as follows:

¢ = argmin £, (¢, d"*,n") )
£<0

=Mgnmn-1)/2 [-[BI4+p1 P TP ' 2y+P " (n"+p1d"))], (8)

"t = argmin L, (£*',d,n") ©)

=[(Br+p))I+p111 7] [(p1n—y)1-dy-n"-p: PL*"'], (10)
N =n" o (@ PETY, (in
Y =4t p(1Td" = n), (12)

where I n(n—1)/2 is the Euclidean projection on negative orthant.

The problems in (7) and (9) are quadratic, which yield closed form
solutions in (8) and (10), respectively. Note that the inverses in £ and
d steps have closed form solutions.
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(Y, S)-subproblem: The solution of (Y, S)-subproblem is com-
puted with ADMM. By introducing an auxiliary variable Z, the op-
timization problem can be written as:

i (Y T P 2] s8]+ 5 Mo (Y +8-X)
st. Y—-Z=0. (13)
The corresponding augmented Lagrangian is:
Lop(Y,S,Z,A) = tr(Y 'LY) + M[|Z]|. + X2||S[:  (14)
+ 2 Mo (Y +8-X)[} + (A, Y-2) + 2| Y-2|}.

The different variables are updated as:

Yt :arg;nin L, (Y, 8", 25 A"), (13
Y =[2L + Asdiag(my) + po] 7} (p2zf - As(sF T xi)-AD),
QR+l _ argénin L, (Y 8, ZF A", (16)
:S¥ (Mo (X —Y*y),
3
Zh 1 argénin Ly, (YT 5T 7, AF) a7

=Dy, (YT AR,
Ak+1 :Ak + p2(Yk+l _ Zk+1)7 (18)

where y;, zi, si, Xi, m; and A; are the ith columns of the corre-
sponding matrices, S-(-) is the elementwise shrinkage operator and
D~ () is the singular value thresholding operator. The problem in
(15) is separable across columns of Y, therefore it is solved for each
column separately. (16) and (17) are proximal operators of ¢; and
nuclear norm, respectively and have closed form solutions [15].
Convergence: L-subproblem is convex and the proposed solution
is a two-block ADMM, whose convergence can be shown using ap-
proaches in [16]. Similarly, (Y, S)-subproblem is convex and the
provided solution is a two-block ADMM with convergence guaran-
tee. In our experiments, we observe the alternating minimization to
converge. However, since the problem in (5) is non-convex, it is not
guaranteed to converge to the global minimizer.

Parameter Selection: There are five hyperparameters in (5) that
need to be tuned. In our experiments, we utilized the following ob-
servations to select these parameters. Following the literature on

robust PCA [17], we set A2 = A1 /+/max(n, m). Next, A3 = cA1
where c is a constant that can be selected based on prior knowledge
on how noisy the observed data is. Since 82 controls the density of
the learned graph, it can be set to a value that gives the desired edge
density. For selection of 51 and A1, we apply grid search and ob-
serve that there is a large range of values for which the algorithms
perform well.

4. RESULTS

Proposed methods are compared to the state-of-art graph learning
algorithms in [5] and [6] on simulated data. For implementation of
[5], we use our algorithm since the optimization in (5) is equal to
the one in [5] when 81 = B2, A1 = A2 = Oand f(d) = %de.
For [6], we used GSPBOX '. We also report the performance of the
methods on a real-world clustering problem. In the following, the
proposed methods are referred to as RoOGL-MC; and RoGL-MC,
for f(d)=d"d/2and f(d)=-1" log(d), respectively.

Simulated Data: Synthetic graphs are generated from three differ-
ent random graph models: Gaussian RBF (GRBF), Erd6s—Rényi
(ER) [18] and Barabdasi—Albert (BA) [19]. GRBEF is constructed
from 100 points uniformly sampled from [0, 1] x [0, 1]. Each pair
of sampled points (4, 7) is connected with an edge whose weight
is w;; = exp(—d(i,5)*/20°) where d(i,j) is the Euclidean dis-
tance between points ¢ and 5. We set ¢ = 0.5 and edges with
weights smaller than 0.75 are removed. ER graphs are generated
with edge probability 0.05. Finally, BA graph is constructed by
growing an initial graph with 2 nodes and 1 edge. At each itera-
tion, a new node is added to the graph by connecting it to 2 other
nodes. From each random graph model, 1000 smooth graph sig-
nals are generated as described in [5]. In particular, y; ~ A/ (0, L)
where L is the pseudo-inverse of graph Laplacian of the generated
random graph. To generate corrupted signals x;, we first add Gaus-
sian noise with standard deviation o = 0.3 to each signal y;. A
mask matrix M is generated such that M;; = 0 with probability
pm and 1, otherwise. Finally, ps% of the observed entries are con-
taminated by additive binary sparse noise whose value is selected
from {+ max(abs(Y))/2, — max(abs(Y))/2}, where max(-) and
abs(+) are elementwise operations.

Performance of the different graph learning algorithms is evalu-
ated by the F-measure which is calculated by comparing the learned
graphs to the ground truth graph structure. Each simulation is re-
peated 10 times and mean values of F-measure are reported in Table
1 for various ps and p,, values. The performance of all methods

Thttps://github.com/epfl-Its2/gspbox

Table 1. Graph learning performances of various algorithms for different network structures and corruption levels.

Gaussian RBF Erdds-Rényi Barabasi-Albert
» Ps Methods 5% 10% 15% 5% 10% 15% 5% 10% 15%
[5] 0.784 0.712 0.653 0.734 0.587 0.490 0.796 0.727 0.694
0 [6] 0.778 0.714 0.666 0.768 0.608 0.504 0.780 0.694 0.636
RoGL-MC; 0.823 0.775 0.743 0.876 0.814 0.770 0.824 0.792 0.770
RoGL-MC, 0.812 0.765 0.732 0.840 0.776 0.748 0.828 0.806 0.780
® [5] 0.725 0.657 0.580 0.596 0.481 0.353 0.706 0.669 0.597
é 025 [6] 0.712 0.658 0.602 0.628 0.487 0.352 0.715 0.641 0.547
o ’ RoGL-MC; 0.775 0.726 0.669 0.794 0.731 0.629 0.781 0.755 0.707
E RoGL-MC, 0.760 0.716 0.657 0.770 0.703 0.601 0.788 0.766 0.709
[5] 0.638 0.573 0.554 0.492 0.335 0.259 0.587 0.511 0.436
05 [6] 0.639 0.580 0.551 0.514 0.339 0.259 0.614 0.510 0.418
’ RoGL-MC; 0.703 0.623 0.604 0.657 0.536 0.430 0.696 0.630 0.549
RoGL-MC, 0.694 0.616 0.591 0.627 0.532 0.436 0.721 0.641 0.561
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Table 2. Data recovery performances of various algorithms for different network structures and corruption levels.

Gaussian RBF Erddos—Rényi Barabasi-Albert
» Ps Methods 5% 10% 15% 5% 10% 15% 5% 10% 15%
[5] 0.543 0.954 1.415 0.981 1.945 3.153 0.619 1.241 1.707
00 RPCA-MC 0.278 0.431 0.635 0.336 0.555 0.870 0.356 0.583 0.841
’ RoGL-MC, 0.280 0.420 0.600 0.336 0.532 0.802 0.360 0.566 0.796
RoGL-MC, 0.281 0.420 0.600 0.338 0.533 0.801 0.361 0.566 0.796
[5] 0.699 1.040 1.552 1.268 2.081 3.015 0.951 1.347 1.796
% 025 RPCA-MC 0.504 0.650 0.973 0.650 0.866 1.148 0.704 0.891 1.143
= ’ RoGL-MC, 0.503 0.638 0.951 0.645 0.841 1.083 0.701 0.873 1.100
RoGL-MC, 0.503 0.639 0.951 0.646 0.842 1.084 0.701 0.873 1.100
[5] 0.866 1.142 1.277 1.272 1.828 2.540 1.271 1.523 1.822
05 RPCA-MC 0.744 0.870 0.973 0.966 1.146 1.410 1.096 1.249 1.446
’ RoGL-MC, 0.741 0.859 0.951 0.958 1.124 1.359 1.086 1.230 1.411
RoGL-MC, 0.741 0.859 0.951 0.959 1.125 1.361 1.086 1.230 1.411

deteriorates as the amount of missing data and the number of sparse
outliers increase. However, the proposed framework performs bet-
ter than the methods in [5] and [6] especially for larger values of ps
and p,,. Finally, it can be observed that RoGL-MC; results in bet-
ter performance than RoGL-MC; in BA networks, while the latter
performs better than the former in ER and GRBF networks. This is
due to the fact that BA is a graph with power-law degree distribu-
tion, while the other two models do not. This means that log-barrier
might be a better degree regularizer for power-law degree distribu-
tion, which is commonly observed in real world graphs.

Finally, the performance of the proposed methods in signal re-
covery is compared to those of [5] and robust PCA with matrix com-
pletion (RPCA-MC), which corresponds to (3) without smoothness
term. The performance is quantified by mean-squared error (MSE)
and reported in Table 2 for various ps and p,, values. RoGL-MC;
and RoGL-MC, have similar MSE values and are better than [5],
which is not robust against sparse outliers and missing values. More-
over, the proposed methods perform better than RPCA-MC for larger
values of ps and p,,, which indicates that incorporating the graph
structure results in better signal recovery. The proposed methods
achieve this task while learning the graph, simultaneously.

Real Data: We also apply the proposed method to a real-world
clustering problem considered in [6]. In particular, we select 100
images from each of the digits 1 and 2 of MNIST dataset®>. Im-
ages are resized to 20 x 20 and pixel values are normalized to the
range [0, 1]. By vectorizing each image, we construct the data ma-
trix Y € R209%4%0  Aq in the simulations, missing values are
added to Y with probability p,, and ps% of the observed entries
are contaminated with sparse noise whose value is selected from
{+ max(abs(Y)), — max(abs(Y))}. We learn graphs for vary-

Zhttp://yann.lecun.com/exdb/mnist/

(a) Classification accuracy for ps = 20%, pym = 0.25
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ing average degree k from corrupted data using RoGL-MC;. We
do not report the results for RoGL-MCs as its performance is ob-
served to be similar. Fiedler vector [20] of the learned graphs is
used to cluster the images such that the negative and positive entries
of the Fiedler vector are used to bipartition the data. Classification
accuracy is calculated as the ratio of correctly classified images to
the total number. We compare the results with clustering on a KNN
graph constructed from original data Y and the graph learned by [5].
Fig. 1a and 1b illustrate the classification accuracy as a function of
the network density, i.e. average degree, for ps = 20% and two
different values of p,,. For both values of p,,, graph learning ap-
proaches achieve better accuracy than kNN graph, which indicates
graph learning is better at revealing the relations between image sam-
ples. Moreover, RoGL-MC; performs better than [5] as it recovers
the data from the corrupted samples and learns meaningful graphs.

5. CONCLUSIONS

In this work, we proposed a comprehensive optimization framework
to address graph learning from corrupted signals problem. Differ-
ent from previous works, we addressed two inter-related problems
simultaneously: graph learning from signals that are corrupted by
sparse outliers, Gaussian noise and missing data; and graph signal re-
covery. The proposed problem extends two widely used graph learn-
ing approaches by rewriting the L-subproblem in a general frame-
work and providing an efficient solution with ADMM by exploiting
its vectorized form.

Future work will consider faster implementations of (Y, S)-
subproblem by approximating the nuclear norm minimization with
scalable algorithms. Different regularization functions for f(d) and
g(€) will also be considered to tailor the proposed methods to a wide
variety of graph structures.

Classification accuracy for ps = 20%, pm = 0.50

(b)
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Fig. 1. Classification accuracy when Fiedler vector of learned graphs is used to cluster digits 1 and 2 of MNIST dataset.
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