How Complex is DNS?

Siva Kesava Reddy Kakarla
UCLA

Todd Millstein
UCLA & Intentionet

ABSTRACT

Motivated by recent results that show that Internet protocols
can be surprisingly complex and, in particular, that BGP is
Turing complete, we ask the same question for the Domain
Name System (DNS). DNS is at least as pervasive and essen-
tial as BGP in the global Internet infrastructure. Besides the
scientific interest, the complexity of DNS can have implica-
tions for new applications (that can utilize the unsuspected
power of DNS), and for verification (to understand basic
complexity limits and suggest new verification algorithms).
In this paper, we show that using the power of DNAME record
type, DNS can express regular languages and pushdown
systems. The first result can be used to build a system for
controlling domain access (of which parental control is a
special case). The second result shows that verification of
DNS zone files is likely to take time that is at least cubic in
the number of records.
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1 INTRODUCTION

Network protocols often have surprising and accidental com-
plexity. Such complexity can arise when practitioners design
new protocol features or extensions targeted towards realis-
tic use cases, without considering the collective impact such
extensions can have on the system through their mutual in-
teractions. Perhaps the best example of accidental complexity
is in the Border Gateway Protocol (BGP) [24]. Designed to
enable routing over the Internet among organizations with
different, often conflicting policies, BGP was created to sup-
port an extremely rich set of policies. It took many years for
theoreticians to “catch up” to practice, demonstrating that
the seemingly simple policy mechanisms in BGP can be used
to simulate an arbitrary Turing machine [8].

The theoretical complexity of a networked system is im-
portant because it has broad ramifications related to the ease
with which humans and machines can analyze the system.
For instance, even for finite network topologies, simply de-
termining if BGP will converge is NP-Complete [13].

In this paper, we seek to analyze and understand the theo-
retical complexity of the Domain Name System (DNS) [22,
23], one of the oldest and most widely used distributed
networking protocols on the Internet. DNS provides the
“glue” that holds the Internet together, by translating user-
recognizable domain names (e.g., hotcrp.com) to machine-
recognizable IP addresses, text data, mail records, and more [11,
30]. Arguably, DNS is as crucial and widely deployed as BGP,
and understanding its complexity has implications on the
cost of verification. Further, unlike BGP, DNS’s power can
be directly used by applications [2, 7].

As part of our investigation, we find that the DNS has sur-
prising complexity. We first show that DNAME rewriting [27],
a seemingly simple record type for domain redirection, al-
lows the DNS to recognize arbitrary regular languages en-
coded in the string labels of the DNS query. Hence users can
perform complex validation and lookup logic (e.g., string
validation, domain filtering, parental controls, etc.) in the
DNS itself as part of the configurable records that are pro-
cessed at authoritative nameservers. Second, we demonstrate
that the expressiveness of the DNS is beyond that of regular
languages. Specifically, the combination of DNAME records
and nondeterminism due to nameserver delegation allows
the DNS to encode both deterministic and nondeterministic
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pushdown systems (PDS) [1, 3, 26] and hence to generate
strings of arbitrary context-free grammars (e.g., strings of the
form a"b"). As a consequence of these results, verification for
arbitrary DNS zone files is likely to have a time complexity
that is at least cubic in the number of DNS records.

2 BACKGROUND

The domain namespace is a tree-like hierarchy, starting with
the root node, an empty label under which nodes like com and
edu exist. These child nodes can have child nodes recursively.
Nodes at any depth of the hierarchy can contain data, which
users can request by querying the domain name formed by
concatenating the labels from that node to the root. Data
is stored as DNS records where each record has a domain
(owner) name, a type, contents, and other attributes.

To scale to the worldwide Internet, the DNS namespace
is divided into smaller manageable portions called zones. A
zone starts at a domain and extends downward in the tree
to the leaf nodes or to the top-level of subdomains where
other zones start. Therefore, a zone is a collection of records
that share a common end domain name. For example, the
hotcrp.com zone has only records ending with hotcrp.com.

A distributed collection of organizations manage the zones
and provide the translation service through publicly accessi-
ble DNS servers, called nameservers. Each nameserver serves
one or more zones. Multiple servers also serve the same zone
to ensure redundancy and availability. Each nameserver can
provide the data requested for a domain name directly or
point to other nameservers. A resolver is the client-side soft-
ware that goes back and forth among different nameservers
to fetch the data requested by the client.

DNS supports many record types, including records for IP
addresses, text records, domain aliases, delegation records,
and more. Table 1 shows a few example records. When a
query (a pair of domain name and a type) arrives at a name-
server, it first checks the available zones to select the best
matching zone and then uses the best matching records from
that zone to answer the query. If the selected best records are
of type A or AAAA or TXT, then the resolver gets the intended
response. If the nameserver responds with an NS record then
the resolver must contact another nameserver. If the best
records are of type CNAME or DNAME then the original query
is rewritten.

Consider the CNAME and DNAME records in Table 1. For the
CNAME to apply, the input query domain name has to be the
same as the CNAME record name (c.uni.edu.), and the query
name is completely replaced by the content of the record
(w.uni.edu.). For a DNAME to apply on the other hand, the
query domain name only has to be a subdomain (for example,
x.y.b.uni.edu.) of the name in the DNAME record (b.uni.edu.).
The new query will preserve the subdomain and replace the
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Example Record Description
a.uni.edu. A 1.1.1.1 IPv4 record
*x.uni.edu. TXT  “Awesome”  Wildcard Text record
s.uni.edu. NS ns.dns.com. Delegation record
b.uni.edu. DNAME cs.edu. Domain redirection
c.uni.edu. CNAME w.uni.edu. Canonical name

Table 1: Examples of common DNS record types.

suffix that matches the DNAME record name (producing the
new query name X.y.cs.edu.). The DNAME record’s ability to
rewrite a suffix of the query, regardless of what comes before
it, turns out to be surprisingly powerful.

3 DETERMINISTIC FINITE AUTOMATA

We first define a deterministic finite automaton (DFA) and
then show how a DFA can be encoded in DNS. We then give
an example and conclude with potential applications.

A DFA is a finite-state machine that accepts or rejects a
given string of symbols, by running through a state sequence
uniquely determined by the input string [15]. DFAs recog-
nize exactly the set of regular languages — languages that
use regular expressions [15]. Formally, a deterministic finite
automaton M is a quintuple M = (Q, %, §, qo, F) such that
Q is a finite set of states, X is a finite set of input symbols
called the alphabet, § : Q X X — Q is the transition function,
qo € Q is an initial or start state, and F C Q is a set of final
or accept states. The language of M, denoted L (M), is the
set of strings whose processing by M ends in a final state.

While a DFA is a mathematical concept, it is often imple-
mented in hardware and software for solving specific prob-
lems such as lexical analysis in compilers and pattern match-
ing. For example, a DFA can model software that decides
whether or not online user input such as email addresses are
syntactically valid.

3.1 Encoding an arbitrary DFA in DNS

Let M = (Q, %, 8, qo, F) be any DFA. Let Q = {qo, g1, - , qn}>
Y ={ag, - ,am}. We show that M can be encoded in DNS
using a single zone. Let the zone file be for the domain
dfa.com.. Intuitively, we use the DNS query to encode both
the remaining input string and the current state. We then
use DNAME records to encode the transition relation and use
TXT records to encode the final accept/reject status.

The steps to encode a DFA M as a zone file z are:

e Start: For each symbol g; in the alphabet, add a DNAME
record of the form “a; DNAME aj;.qe”, where gy is the
start state.! These records add the start state to the
beginning of the query without consuming any input.

For exposition purposes we use relative domains here, which lack the

trailing “.”: implicitly the zone domain dfa.com. is appended to form the
complete domain.
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e Transition: For each transition of the form ¢; x a; —
gk in &, add a DNAME record “a;.q; DNAME qi”. These
records consume an input symbol a; in a state g; and
move to the state gi. By the DNS semantics, these
DNAME records only apply to a query if it is a strict
subdomain of a;.qj, so these records have the effect
of transitioning the system from the start state to the
penultimate state, with one input symbol remaining.

e Decision: For each transition of the form ¢; Xa; — qx,
add a TXT record - “ aj.q; TXT “accept™ if gy € F;
otherwise add “aj.q; TXT “reject”. These records
are the final step in the transition system, where a; is
the last input symbol and the system is in state g;.

To test whether a given string S € X* is accepted by
the DFA M, we encode S = sys; - - - S, as the domain name
Sn. - - +.S1.Sg.dfa.com.. This query is then sent by the resolver
to the nameserver that contains the zone file z. The text
record response will contain “accept” if and only if the string
Se L(W).

3.2 Example

In this subsection, we show an example DFA and its encoding
in DNS using the three steps mentioned above. Consider
the DFA M over alphabet {a, b} shown in Figure 1, which
accepts all strings that contain an odd number of a’s.

b b

;

Figure 1: An example DFA M that accepts strings
only if they contain an odd number of a’s

Table 2 shows the encoding of DFA M« shown in Figure 1
in DNS as a zone file z. To make it a valid zone, there must also
exist an SOA and NS record for dfa.com., which are omitted
for brevity. To test whether the string abaa is accepted by
the Mg, we send the query (a.a.b.a.dfa.com., TXT) to the
nameserver serving z. The steps followed by the nameserver
to resolve the query are shown below.

(a.a.b.a, TXT) 9 (a.a.b.a.p, TXT) @ (a.a.b.q, TXT)

l®
(D <— (a.p, TXT) ~— (a.a.q, TXT)

The nameserver returns the entire trace along with the TXT
() record. Since the TXT record received contains “accept”
in its content, the string is accepted by M.

In practice, there are zone files with millions of records;
therefore, complex DFAs with many states and transitions
can easily be encoded in DNS. We wrote a small script to
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(@D, a IN DNAME ap
Start '@ _'_b_IN DNAME bp
"® ", ap 1IN DNAME q
.. 1@ '"bp IN DNAME p
Transition : ® : aq IN DNAME p
,,,,,,, @ 1 ba_IN DNAME g
@ yap IN TXT “accept”
L bp IN TXT  “reject”
Descision : ® : a.g IN TXT “reject”
] 'b.g IN TXT “accept”

Table 2: Zone file z showing the enconding of DFA Mg
shown in Figure 1.

encode a DFA in DNS and successfully tested it with two
popular DNS implementations, BIND [9] and Nsp [20]. In
DNS, the domain name has certain length restrictions; specif-
ically, the domain name cannot be longer than 255 charac-
ters, and each label cannot be more than 63 characters. The
nameserver can also limit the number of rewrites that it will
perform on a query. However, various techniques can be
used to overcome such limitations. For example, we can map
pairs of alphabet symbols from the DFA to single labels in
DNS and then change the encoding of the transition relation
to consume multiple symbols at a time, thereby processing
longer DFA input strings.

3.3 Applications

Regexes are frequently used to validate user in-
put for well-formedness. For example, the regex
““La-zA-Z0-9+_.-]1+@[a-zA-Z0-9.-]+" is a simple

validator for email addresses. Since a regex can be repre-
sented as a DFA [29], using the construction detailed in the
previous subsection we can validate if user input is a proper
email address or not.

While the idea of using the DNS to check input well-
formedness may seem far-fetched, we believe that it could
have some natural use cases. For example, organizations gen-
erally want to control what domains their employees can
visit while using their office devices, due to security and vari-
ous other reasons. If the allowed domains can be represented
as a regular expression, then this validation can be done in
the DNS, as part of the DNS lookup for the domain. Office de-
vices are generally configured to use specific DNS resolvers.
Therefore, the resolver could first use our approach, with
a local DNS nameserver implementing the policy DFA, to
check that the user’s DNS query is to an allowed domain,
and only then send it to the outside world in order to resolve
it to an IP address. A similar setup could be used for parental
control in the home setting. Doing this directly in the DNS
gives a single, global, always-available vantage from which
to enforce policies.
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4 PUSHDOWN SYSTEM

While the DNS can encode finite automata, its expressiveness
goes beyond that of regular languages. In this section, we
show that the DNS can express nondeterministic pushdown
systems and by extension can generate strings in arbitrary
context-free languages.

Definition 4.1. A pushdown system P = (P,T, A, ¢g) is a
quadruple, where P and I' are finite sets called the control lo-
cations and the stack alphabet, respectively. A configuration
of P is a pair (p, w), where p € P and w € I'*, and ¢y is the
initial configuration. The set of all configurations is denoted
by Conf(P). A is a finite subset of (P X I') X (P X T¥),
which consists rules of the form (p,y) <—p (p’,w),
where p,p’ € P,y € T, and w € I'". These rules define the
transition relation = between configurations of P as follows:
If (p,y) = (p’,w), then (p,yw’) = (p’,ww’) forallw’ e T'*.

As shown above, each step depends only on the control
location (p) and the topmost element (y) of the stack (yw’).
The rest of the stack (w’) is unchanged and has no influence
on the possible next actions. A pushdown system may
have infinitely many reachable states. An important use of
pushdown system is in representing sequential programs
with (possibly recursive) functions [25]. These programs in
general cannot be modeled using FSMs as there is no limit
on the depth of the call stack for function calls [28].

4.1 Encoding a PDS in DNS

With the help of an example, we show how a PDS can be
encoded in DNS. Similar to how we encoded a DFA, we will
encode both the stack and the current state in the query
and use DNAME records to implement the transition relation.
We employ multiple zone files and nameservers and delegate
among them to encode any nondeterminism in the transition
relation.

Consider a PDS P with P = {p,q}, T = {a,b,c,d}, ¢y =
(p,c) and A given by:

ri = (pa) = (qb) r = (pa) = (pc)
rs = <q’ b> — <P’ d) ry = (P’ C> — <P’ ad>
rs = (P, d> — <P’ E>

We show some transitions between different configura-
tions of P starting with ¢y and with the rules given by A.
/<q, bd) — (p, dd) — (p, d) — (p, €) (})
{p, &>~ <{p. ad>\ /<q, bdd) — (ii)

(p, ¢d) — (p, add)

(p, cdd) — (iii)

As with the DFA encoding, we assume we control the
pds.com. domain and all its subdomains. We create the
pds.com. zone file as shown below and place it in the
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server1.pds.com. nameserver. The resolver is bootstrapped
with the IP address of this nameserver.

nameserver: serverl.pds.com.

$ORIGIN pds.com.

b.q IN DNAME d.p
c.p IN DNAME d.a.p
d.p IN DNAME p
a.p IN NS server?2
a.p IN NS server3
server2 IN A 2.2.2.2 [e]
server3 IN A 3.3.3.3

In the pds.com. zone, we first encode all the deterministic
rules, rs, rq, rs with DNAME records, [1], [2], and [3]. We then
use DNS delegation (referral to a new nameserver) for each
nondeterministic set of rules. This apporach leverages the
nondeterminism inherent in DNS delegation - given multiple
NS records, DNS implementations will chose one nondeter-
ministically. Here we have only one set of nondeterministic
rules, namely (p, a) with two rules. For each rule, we create
an NS record ([4]and [5]) and assign it a nameserver not previ-
ously assigned. For each NS record, we also add a glue record
(l6]and [7]) to provide the IP address of the nameserver.

We then create a zone file for a.p.pds.com. at each of the
delegated nameservers and place a DNAME record for each
nondeterministic rule at a unique nameserver. In our example
we end up with two nameservers and zone files:

nameserver: server2.pds.com.

$ORIGIN a.p.pds.com.

a.p.pds.com. IN DNAME b.q.pds.com.
nameserver: server3.pds.com.

$ORIGIN a.p.pds.com.

a.p.pds.com. IN DNAME c.p.pds.com. [9]

To execute the PDS from the initial configuration {(p, c), we
ask the DNS query (f.c.p, TXT). As with the DFA, the query
encodes the current stack followed by current state. Addi-
tionally, we start the query with a dummy subdomain S.
This is necessary since DNAME records only apply to strict
subdomains; doing so ensures that the DNAME records apply
even when the stack contains only a single element.

One possible execution starting from the query
(B.c.p, TXT) at the resolver is as follows:

(1) Resolver: Queries the default server Server1 with the
query (f.c.p, TXT).

(2) Server1: The server first rewrites the query, and the
best records for the new query are NS records. The
server returns the rewrite, the delegation records, and
the corresponding glue records to the resolver.
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(a) Ry - (B.c.p, TXT) (B.d.a.p, TXT)
(b) Delegation -[4],[5], [6], and
(3) Resolver: The resolver now has a choice to con-
tact either Server2 ([4]) or Server3 ([5]). We show
the sequence of steps if the resolver sends the query
(f.d.a.p, TXT) to Server2.
(4) Server2: Rewrites the query and returns it.
R, - (p.d.a.p, TXT) E» {f.d.b.q, TXT)
(5) Resolver: Queries Server1 again.
(6) Server1: Rewrites the query three times and returns
the final rewritten query ({f.p, TXT)) to the resolver.

(a) Rs - (B.d.b.q, TXT) (B.d.d.p, TXT)

—_—

(b) Ry - (B.d.d.p, TXT) (B.d.p, TXT)
(c) Rs - {B.d.p, TXT) (B.p, TXT)

When the resolver gets the response from the Serverl in
step 6, it is clear that the stack is empty as the domain name
has only the control symbol and the dummy subdomain. If we
put together all the rewrites (R, Ry, Rs, Ry, and Rs) starting
from the first rewrite then we have the trace corresponding to
the top trace (i) shown earlier in transitions between different
configurations in §3.2. A different set of configurations can
be explored if the resolver instead chooses Server3 at step 3.

In this way we can use the DNS to explore the reachable
configurations of a PDS. Generally records returned to the
resolver have a time to live (TTL) field for caching. The re-
solver will use the local cache when a matching query comes,
thus slowing down the exploration of other configurations.
We can avoid this by setting the TTL of the DNAME records to
be small, even to 0. Another issue is that nameservers often
have a limit on the number of rewrites they will perform,
at which point they stop processing the query further and
return it. To overcome this limitation and explore more con-
figurations, the resolver can then send a fresh query from
that last configuration.

So far, we have seen how to explore reachable configura-
tions of a PDS using the DNS. In the next subsection we will
describe how we can use this capability to generate strings
from any context-free language.

4.2 Context-free Language Generator

A formal grammar is a set of production rules that describe
all possible strings in a given formal language. A context-free
grammar (CFG) is a formal grammar whose production rules
are of the form “A — «”, with A being a single nonterminal
symbol, and « a string of terminals and/or nonterminals («
can be empty). Context-free grammars generate context-free
languages, which are strictly more expressive than regular
expressions. Context-free languages have many applications
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in programming languages; in particular, most programming
language syntaxes are specified by context-free grammars.

Formally, a context-free grammar G is defined as a 4-tuple
G = (N,X,P,S), where N is a finite set of non-terminal
symbols, and ¥ is a finite set of terminal symbols disjoint
from N. The set of terminals is the alphabet of the language
defined by the grammar G. P is the set of production rules
and is a finite relation in N X (N U 2)*. S is the start symbol
and is one of the non-terminal symbols in N.

We derive strings in the language of a CFG by starting with
the start symbol and repeatedly replacing some non-terminal
by the right side of one of its production rules. Consider the
context-free language L = {a"b" : n > 1}. The grammar of
this language, with the start symbol S is:

S — aSb
S —ab

(1)
()

The string a®b® in this language is generated by applying
rule (1) twice followed by (2): S — aSb — aaSbb — aaabbb.
We first describe a program variant of the above grammar
and show how that program can be represented using a
pushdown system. Then based on the encoding described in
§4.1 we can implement this in the DNS.
A program that generates the strings in L is:

procedure S;: procedure S;: procedure S:

£, output a fs output a ty if ?

£, call S f, output b fo call S,

fz output b f7  return f1p else call S,
ty return f11 return

Here ¢, £,, and other such symbols are used to denote
each program location (line of code) uniquely, which will
be later used as the stack alphabet I' in our PDS. Since S is
the start symbol in the grammar, the procedure S would be
called to start the program. The symbol “?” in #; represents
nondeterministic choice, reflecting the nondeterminism in
the original grammar.

The technique used to convert the above grammar into
a program can be generalized as follows. Let G be a CFG.
First, create a uniquely named procedure (disjoint from X U
N) for each production rule in P, as in S1 and S2 in the
above example. The body of the procedure then encodes the
right side of the corresponding rule. Specifically, there is an
“output t” line for each terminal symbol ¢ in the right side
and a “call A”line for each non-terminal A in the right side
of the rule, in order of their appearance in the rule. Finally,
for every non-terminal A in N create a “procedure A” and
use an if statement to nondeterministically call one of the
procedures created in the previous step whose corresponding
rule has A on the left side.

We can create a PDS that encodes all possible executions
of such a program [28]. The PDS has a single control location
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and uses the program labels as the stack alphabet. For ex-
ample, a PDS P, for the program shown above has P = {p},
I'={0,---,f1},and ¢y = (p, £s). A is given by:

P (1) = Ap L) Aps 5) = Ap, f6)  {p, ) = (p, (o)

(s L2) = (ps al3)  (ps L6) = (ps 17) (P, f8) = (p, (10)

(p. 3) = Ap, tr)  {p, 1) = (p. &) {p, lo) = {p, L1l11)

(p: L2) = (p, € P f10) = «ps L5011)
(P, l11) = (p: €)

Intuitively, A encodes the control flow of the program.
For statements where control passes from one line to the
next (here just output), we add rules of the form (p, £;) —
{p, ). A procedure call (for example, at ;) is encoded by
pushing the return point (#3) followed by the called proce-
dure’s (f3) starting statement. A return statement is encoded
as a stack pop (e).

Finally, we can use this encoding to generate strings in
our original CFG L. Define a full trace in #;, as the sequence
of configurations starting with ¢y and ending with an empty
stack. Given a full trace, consider the top symbol of the stack
in each configuration, and retain only those symbols that
correspond to an output code line. If we concatenate the
output of those lines, then we obtain a string. The set of such
strings is exactly the set of strings defined by the CFG L.

For example, the full trace that would generate a®b® is
shown in Figure 2. In the trace, among all the top stack
elements only six symbols, shown with circles and squares,
represent output code lines. If we concatenate them in the
order given by the full trace then we obtain the string aaabbb.

In summary, we have shown how to encode a PDS in DNS
in §4.1, and here we have shown how to encode a generator
for a CFG as a PDS. Hence we can use the DNS system to
generate strings in the language of a given CFG.

5 DISCUSSION

Our paper represents an initial investigation into the com-
plexity of DNS, and there are several directions for future
research.

Impact on DNS Verification. The most efficient algo-
rithms known for PDS reachability — determining whether
a given configuration can be reached in a given PDS —
have near-cubic time complexity in the number of rules [4-
6, 12, 14]. Hence DNS zone-file verification [17], which re-
quires reasoning about all possible query lookups, also has
at least this complexity today. This has not only theoretical
implications but is also a problem for real zone-file verifiers
like GRooT [17]. Even a simple four-record zone file with
interacting DNAME loops can create close to a million query
equivalence classes in GrooT, quickly blowing up its verifi-
cation time. Interestingly, however, verification in GRoOT is
linear time in the absence of DNAME records. Can we design
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le) —p, Loy —>(p. (L)1) —(p, Ll11)—>{p, lslst11)
(72[1l[3[}11>H(p;@l]ﬂ%ﬁl)‘*(pa bolstsy)
¥

p:
{p,

(ps lsl3t1103011) —{p, Fl()ﬁﬂ’llﬁ#ﬁl)"(P,@'Hf:sfll[’isﬁl)

(p, tiitbstintztin)<—p, trti1b3t1163001)<p, [lf11636116301)

(p, (G111 3t11) —(p, Lalialstin)—={p, l11l3011)

(p. €)~(p, t11)~p, fulrr) ~—<p,[L:}11)

Figure 2: The full trace of PDS #;, that generates string
a’b’. The output code lines that are on top of the stack
are shown with circles for a and squares for b.

new verification algorithms that scale well with the number
of DNAME records for real-world configurations?

Tighter Bounds. Can we show that the DNS is even more
expressive than a PDS? Alternatively can we reduce the DNS
to a PDS and hence show that they are equivalent?

Applications. The applications that we have presented
are somewhat contrived. Can we build a real application
that takes advantage of the complexity of DNS? We can
take inspiration from existing applications that use the DNS,
ranging from service discovery [7] to load balancing [2, 16]
to spam filtering [10, 11, 18, 19].

New Record Types. Contributors frequently add new
drafts and RFCs to the DNS specification, with new record
types intended to enable new use cases. For example, the
recent NAPTR record type [21] supports prioritized regular
expressions that provide lookup for dynamic resources. How
do these newly proposed types affect DNS complexity?

Security Implications. Does the complexity of DNS have
security implications? This is a natural direction to explore.
However, we note that, unlike for conventional DNS attacks,
the attacker must control the target’s zone files in order to
leverage the complexity of DNS.

6 CONCLUSION

In this paper, we have investigated the computational com-
plexity of DNS and shown its ability to simulate both a finite-
state machine and a pushdown system. While this work is
in the spirit of earlier investigations into the complexity of
protocols like BGP, we note that, unlike BGP, DNS features
are available to applications. Thus in addition to the implica-
tions for verification complexity, the computational power
of DNS is potentially an enabler of new applications.
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