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RANDOM QUANTUM GRAPHS

ALEXANDRU CHIRVASITU AND MATEUSZ WASILEWSKI

ABSTRACT. We prove a number of results to the effect that generic quan-
tum graphs (defined via operator systems as in the work of Duan-Severini-
Winter /| Weaver) have few symmetries: for a Zariski-dense open set of tu-
ples (X1,---,Xq) of traceless self-adjoint operators in the n x n matrix al-
gebra the corresponding operator system has trivial automorphism group, in
the largest possible range for the parameters: 2 < d < n? — 3. Moreover,
the automorphism group is generically abelian in the larger parameter range
1 < d < n?—2. This then implies that for those respective parameters the cor-
responding random-quantum-graph model built on the GUE ensembles of X;’s
(mimicking the Erdés-Rényi G(n, p) model) has trivial/abelian automorphism
group almost surely.

INTRODUCTION

The theory of quantum graphs can be traced back to the work of Duan, Severini
and Winter ([DSW13]) and Weaver ([Weal2]). In the former the authors define a
quantum confusability graph associated to a quantum channel, much like a con-
fusability graph arises from a classical channel. In the latter the author develops
the theory of quantum relations, inspired by his previous work with Kuperberg
([KW12]) on quantum metric spaces. In both cases quantum graphs turn out to be
encoded by operator systems.

The work of Weaver provides a unified framework for classical and quantum
relations. In particular, one can identify classical graphs with operator systems
of a specific kind. As proved in [OP15, Theorem 3.3], these operator systems are
actually complete invariants of the graphs; two graphs are isomorphic if and only
if the associated operator systems are unitally completely order isomorphic. This
allowed the authors to associate new — quantum — invariants to classical graphs.

Another approach to quantum graphs was developed in [MRV18]. The authors,
inspired by previous work on quantum isomorphisms of graphs [LMR20], developed
a categorical framework for quantum functions. What turned out from their inves-
tigations is that most of the information about the quantum isomorphisms can be
recovered from appropriate categories, apart from commutativity of the algebra of

Received by the editors December 19, 2020, and, in revised form, March 29, 2021, and May
24, 2021.

2020 Mathematics Subject Classification. Primary 60B20, 05C80, 20G20, 20B25, 22E45,
15A30.

Key words and phrases. Random matrix, random graph, quantum graph, operator system,
quantum relation.

The first author is grateful for funding through NSF grant DMS-2001128. The second author
was supported by the Research Foundation—Flanders (FWO) through a Postdoctoral Fellowship
and by long term structural funding—Methusalem grant of the Flemish Government.

(©2022 American Mathematical Society
3061

Licensed to Univ at Buffalo-SUNY. Prepared on Wed Jun 22 17:04:04 EDT 2022 for download from IP 128.205.204.27.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3062 ALEXANDRU CHIRVASITU AND MATEUSZ WASILEWSKI

functions on the vertices. This led them to include quantum graphs into their con-
siderations, which they define to be finite dimensional C*-algebras equipped with
a noncommutative analogue of an adjacency matrix. A priori there is no reason for
this notion of a quantum graph to be the same as the one mentioned above, but
both approaches turn out to be essentially equivalent (cf. §1.2).

In this article we start studying random quantum graphs; random classical
graphs have a long history (see [ER59]). One of the first considered issues was,
whether a typical graph admits non-trivial symmetries. Symmetric objects are ex-
pected to be special and it was confirmed in [ER63] that, as the size of the graph
increases, the proportion of graphs admitting a non-trivial automorphism tends to
0. We will address two different quantum versions of this problem.

The first one has to do with quantum automorphisms of graphs. In [LMR20] the
authors discovered an intriguing connection between certain non-local games, orig-
inating in quantum information theory, and the quantum automorphism groups of
graphs introduced by Banica in [Ban05] (see also [Bic03]). In Section 2 we improve
upon known results about quantum automorphism groups of random graphs, in
particular we treat the case of the Erdés-Rényi G(n,p) model.

Theorem A (Theorem 2.5). Fiz p € (0,1). Then the quantum automorphism
group of a random graph in the G(n,p) model is trivial with overwhelming proba-
bility.

What is more, we treat the case of random regular graphs (Theorem 2.6) and use
it to produce large families of isospectral graphs that are not quantum isomorphic
(Proposition 2.8).

In Section 3 we start exploring a different quantum variant, namely automor-
phism groups of random quantum graphs. The easiest way to provide a random
model for a quantum graph is to view it as an operator subsystem V C M, of
a matrix algebra — then V of a fixed dimension can be chosen according to the
Haar measure on the Grassmannian. In this way we arrive at the QG(n, d) model.
The automorphism group of V' C M, consists of those automorphisms of M,, that
preserve V. Our first result is that the automorphism group is typically abelian,
unless d = 0 or d = n? — 1, which correspond to the operator systems C1 and M,,,
respectively. An important difference from the classical results about Erdés-Rényi
graphs is that in our case the dimension of the quantum graph is kept fixed, we do
not need to let it go to infinity. It is mostly a consequence of the fact that the set
of quantum graphs of fixed dimension is not discrete, so the outliers can (and do)
form a non-trivial measure zero set.

Theorem B (Corollary 3.20). Letn € N and 1 < d < n? — 2. Then the automor-
phism group of a quantum graph in the QG(n,d) model is almost surely abelian.

Note that we cannot hope for a better result in this regime, because for d = 1
the random operator system we get is spanned by the identity and one self-adjoint
operator, so it would generate an abelian subalgebra, which clearly has a non-
trivial automorphism group, for example all the unitaries lying in the algebra itself.
It turns out, however, that if we exclude this case (and the corresponding case
d = n? — 2 on the other edge) then we do get trivial automorphism groups almost
surely.

Theorem C (Theorem 3.19). Letn > 3 and 2 < d < n? — 3. Then the automor-
phism group of a quantum graph in the QG(n,d) model is almost surely trivial.
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In graph theory there are two main models of random graphs: G(n, M) and
G(n,p). Our QG(n,d) is an analogue of G(n, M) and we can also consider the
counterpart of G(n, p) denoted by QG(n,p). However, we cannot define this model
as is done classically, because quantum graphs notoriously lack an analogue of
vertices. But we can easily derive the QG(n,p) as a weighted sum of QG(n,d)
models and an elementary computation yields Corollary D. Note that in this case
we do come closer to the original statements about Erdés-Rényi graphs, where the
size goes to infinity.

Corollary D (Proposition 1.18). If p(n) € (0, 1) satisfies lim,, o, n*p(n) = oo and
lim,, 00 (1 — p(n))n? = oo then as n goes to infinity the automorphism group of a
quantum graph in the QG(n,p(n)) model is trivial asymptotically almost surely.

There is another corollary that we would like to mention here. We view quantum
graphs as operator subsystems V' C M,, of matrix algebras and the matrix algebra
itself is part of the structure, being a quantum counterpart of the coordinate algebra
of the vertex set. But operator systems are interesting in their own right and it
is important to see what kind of information about them we can recover. It turns
out that in a suitable regime one can obtain M,, from an operator system V chosen
according to QG(n,d) as its C*-envelope, thus we can conclude that these operator
systems do not have non-trivial automorphisms.

Corollary E (Proposition 1.16). Let n > 3 and 2 < d < n? — 3. For almost
every operator system V in the QG(n,d) model the only unital complete order self-
isomorphism of V is the identity.

1. PRELIMINARIES

1.1. Random structures. As is customary in the literature, for p € [0,1] and a
positive integer n we denote by G(n, p) the simple random graph built on the Erdos-
Rényi model with probability p: n vertices and each of the possible (g) edges has
probability p of being present, independently of each other.

On the other hand, given positive integers r < n, we write G(n,r) for the
random r-regular graph: an r-regular graph on vertex set [n] = {1,--- ,n} with all
such graphs being assigned equal probability (as in [Bol82], for instance).

We use the following terminology, following, e.g. [TV11, Definition 3].

Definition 1.1. We say that an n-dependent event E holds with overwhelming
probability (or overwhelmingly) if P(E) =1 — O(n™°) for every positive constant ¢
(where the scaling factor implicit in the O notation is c-dependent). ¢

1.2. Quantum graphs—the quantum adjacency matrix and the quantum
relations perspective. The aim of this section is to roughly outline how quantum
graphs can be seen in two distinct but ultimately equivalent lights. The following
results can essentially be deduced from Section 7 of [MRV18].

Definition 1.2 ([Weal2], Definition 2.1). Let H be a finite dimensional Hilbert
space and M C B(H) be a finite dimensional C*-algebra. A quantum relation
on M is an M’ — M’-bimodule V' C B(H), i.e. a linear subspace V such that
M'VM' C V. We call such a quantum relation V on M symmetric if V is self-
adjoint: V = V*, and reflexive if M’ C V.

A symmetric and reflexive quantum relation on M is called a quantum graph.

Licensed to Univ at Buffalo-SUNY. Prepared on Wed Jun 22 17:04:04 EDT 2022 for download from IP 128.205.204.27.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3064 ALEXANDRU CHIRVASITU AND MATEUSZ WASILEWSKI

In this article we will be mostly interested in the case M = M,, C B(C") ~ M,,.
Then M’ = C1, so a quantum graph on M,, will be an operator subsystem V C M,,.
¢

In particular, a reflexive and symmetric quantum relation over any M is an
operator system in B(H), and every operator system is a reflexive, symmetric
quantum relation on B(H). The classical motivation for this terminology comes
from the following fact:

Proposition 1.3 ([Weal2], Proposition 2.2). Let X be a finite set. There is a
bijective correspondence between relations R C X X X and quantum relations on

((X) C B(?(X)). The bijection is given by
R — Vg = span{e;; : (i,j) € R}
V= Ry ={(i,j) e X x X :3T €V s.t. T;; # 0}.

Since any graph on a vertex set X with self-loops and no multiple edges cor-
responds to a reflexive symmetric relation R C X x X (R is the set of edges),
Weaver’s notion of a quantum graph generalizes both the classical finite graphs
and matrix quantum graphs coming from Duan-Severini-Winter (quantum confus-
ability graphs, see [DSW13]).

In the classical setting we have therefore three ways to view a graph: an adja-
cency matrix, a relation on the set of vertices and an operator system of a special
kind. We would like to explain how a similar correspondence works for quantum
graphs, where we replace the algebra of functions on the vertex set by a matrix alge-
bra. To make the approach cleaner, we will first discuss the case of general quantum
relations and then we will discuss what the symmetry and reflexivity mean in all
three pictures.

In order to work with adjacency matrices in the sense of [MRV18], we have to
pick a specific functional on the matrix algebra, and the choice of normalization is
not consistent in the literature. We will be working with the pair (M, 7), where
7(x) := nTr(z) so that 7(1) = n? = dim M,,.

Lemma 1.4. Let m : M,, ® M,, — M, be the multiplication map. Let m* : M,, —
M, @ M, be the adjoint with respect to the inner product induced by 7. Then
m*(e;;) = % Dok Cik @ exj. It follows that mm* = Id.

Proof. Direct verification. ]

We will first handle the correspondence between subspaces of M,, (quantum
relations in the sense of Weaver) and projections in M,, ® M2P.

Proposition 1.5 ([Weal2], Proposition 2.23). There is a bijective correspondence
between the set of subspaces of M, and projections in M, @ MPZP.

Proof. Recall that M,, ® M2 acts on M,, by left-right multiplication. Denote the
action map M, ® M — B(M,) by ®; it is actually a linear isomorphism, as
verified by a simple dimension count. Let V' C M, be a subspace. Define the
corresponding left ideal Iy C M, ® M via Iy = {x € M,y ® MP : ®(x)y = 0}.
It is a well-known fact that left ideals in finite dimensional C*-algebras are principal
and represented by a unique projection 1:-’\\// The projection Py = Id — ]/D\V/ will be
the one we are interested in. So far we have established a map V — Py, which is
actually order preserving. It is not difficult to check that ®(Py ) is the orthogonal
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projection from M, onto V (with respect to the trace), so the correspondence
between V and Py is bijective. (]

We will now go from the projection P € M,, ® M/P to the corresponding adja-
cency matrix.

Lemma 1.6. There is a bijective correspondence between elements X € M, @ MZP
and linear maps T € B(M,) given by Tx(z) := (Id ® 7)(X(1 ® x)) and Xp =
(T @ Idym*(1).

Proof. Let us begin by noting that X is essentially the Choi matrix of the map

T: we have
n

Z T(eij) ® €ji-

ij=1

Xr =

On the other hand, any X € M, ® M2 can uniquely represented as X = % Z?J T;;®
eji- By a simple computation we get

Tx(l') = Z Tij Tr(xejl—) = Z xijTij~

i,j=1 i,j=1

It follows that T;; = T'x (e;;), so we indeed have a bijective correspondence. O

We will now describe a class of linear maps on M,, for which the corresponding
Choi matrix is a projection.

Proposition 1.7. The element P € M, ® MSP is a projection if and only if the
corresponding linear map A := Tp € B(M,,) satisfies m(A ® Aym* = A and is
completely positive.

Proof. Recall that P is of the form P = %szzl A(e;j) ® ej;. It is a projection if
and only if it is idempotent and a positive operator. Choi’s theorem says that it is
positive iff the corresponding linear map A is completely positive. It is idempotent
if it is equal to (recall that we multiply in M,, ® M2P):

1 n
F Z A(eZJ)A(ekl) ® €lkCji-

i,k l=1
It follows that j = k and we are left with

n

1 n
ﬁ Z ZA(eij)A(ejl) ®eli-
i,l=1 \j=1

It follows that %22:1 Aleij)A(eji) = Aley), which means exactly that m(A ®

A)ym* = A, when applied to e;;, so we are done. O

Definition 1.8. We call a completely positive map A : M,, — M, a quantum
adjacency matrix if it satisfies

m(A® Aym* = A.
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1.2.1. Symmetry and reflezivity in different guises. In Weaver’s terminology, a
quantum graph is a symmetric and reflexive quantum relation: for an operator
space V € M, these conditions mean that V= V* and 1 € V, respectively. Thus
a quantum graph is exactly an operator subsystem of M,. We would like to check
now what do these conditions mean in terms of the associated projection and the
quantum adjacency matrix.

Proposition 1.9. Let V C M, and let Py € M, ® MZP be the corresponding
projection. Then V- =V™* if and only if Py = o(Py), where o is an automorphism
of My, ® MSP that flips the two tensor factors. The condition 1 € V' corresponds to
m(Py) = 1, where we abuse the notation slightly and view the multiplication map
as acting from My, @ MSP to M,.

Proof. Recall that ®(Py) : M,, — M, is the orthogonal projection onto V. There-
fore 1 € V iff ®(Py)(1) = 1, which can be translated into m(Py) = 1. If P
is the orthogonal projection onto V, then the orthogonal projection onto V* is
given by P(z) := (Pz*)*. If P, = > Xi ®Y; then ®(Py)(z) = Y, X;zY;. It
follows that the orthogonal projection onto V* is equal to z — ), Y;*2 X . Recall
that Py = >, X; ®Y; = >, X ® V" is self-adjoint, so the projection onto V*
corresponds to o(Py), i.e. V =V*iff Py = o(Py). O

We will now check what the symmetry and reflexivity conditions mean in terms
of the quantum adjacency matrix.

Proposition 1.10. Let V C M,,. We have V = V* if and only if the quantum
adjacency matriz A : M, — M, is self-adjoint with respect to the Hilbert-Schmidt
inner product. The condition 1 €V is equivalent to the equality m(A®Id)m*(1)=1.

Proof. Let Py be the projection corresponding to V. Suppose that V = V* and
hence Py = >, P, ® Q; = >, Qi ® P;. The adjacency matrix is equal to Az =
> Pir(Qiz) =3, QiT(Pix). If we compute

T((Ax)y) = Y m(Py)m(Qix) = Y 7(Qiy)T(Piw),
i i
we quickly see that V' = V* is equivalent to 7((Az)y) = 7(2(Ay)), which combined
with complete positivity of A shows that it is self-adjoint, as completely positive
maps are x-preserving.

Consider now the condition 1 € V. Recall that Py = %Z" Aleij) ® ejj, 80

ij=1
m(Py) = 1 means that
1
E Z A(eij)eﬁ =1.
0.
The left-hand side is equal to m(A ® Id)m*(1). O

1.3. Correspondence between quantum relations and quantum adjacency
matrices made concrete. It will be useful to have a number of different perspec-
tives on quantum graphs. For example, it is very difficult to come up with a good
random model of a quantum adjacency matrix, but it is very simple, when we look
at the corresponding subspace of a matrix algebra. In order to benefit from the
situation, we need a more concrete way of translating from one approach to the
other. This is the aim of this subsection.
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Proposition 1.11. Let V C M, be a d-dimensional subspace with an orthonormal
basis (with respect to the usual trace) (A;)icia). Then the orthogonal projection
Py € M,, ® MSP is equal to sz JAier ® Afey. The quantum adjacency matriz

is given by Ax =n Z?:l Az Af.

Proof. The orthogonal projection onto V' is given by Pz = 2?21 A; Tr(zA}). Note
that Tryl =", , exyei, so

Px = Z Aiekle;‘elk.
ikl
It follows that for X := 3.,  Ajer ® Afen, ®(X) = P, so X = Py. If we have
our projection, we can easily compute the adjacency matrix

A:E = Z Aiele(foelk) = TLZ Aiekl(xA;‘k)kl-

ik, ikl

Note that Asep; = ), (Ai)rreri, S0 we obtain

Az =n " (A)k(xA])rert.

ik,lr

After summing over k we finally get

Az = nZAixA;‘. O
i

1.3.1. Automorphisms of quantum graphs. We will now see how to define automor-
phisms of quantum graphs in all three pictures described above.

Definition 1.12. Let V' C M,, be a quantum relation. An automorphism of V is a
x-automorphism & : M,, — M, such that ®(V) = V. Since any *-automorphism of
M, is given by a conjugation by a unitary, we will usually identify automorphisms
of quantum relations with unitaries U € M,, such that UVU* = V. ¢

Proposition 1.13. Let V' C M, be a quantum relation. Let P = Y, P; ® Q; €
M, @ MSP be the corresponding orthogonal projection and let A : M,, — M, be the
quantum adjacency matriz. Then a unitary U € M, is an automorphism of V iff
P=>,UPU*®UQ;U" iff U"A(x)U = A(U*xU). In particular, any unitary U
that gives an automorphism commutes with the degree matriz D := Al.

Proof. Let Py : M,, — M, be the orthogonal projection onto V, represented by
P € M, ® MZP. The orthogonal projection onto UVU* is given by Pyyy«z =
UPy(U*zU)U*. Tt readily follows that if P = >, P, ® Q; then Py € M, ® Mg
corresponding to Pyyy~ is equal to ZZ UPU*UQ;U*.

Consider now the quantum adjacency matrix (see the proof of Proposition 1.10)
Az =3, PiT(Q;x). The quantum adjacency matrix corresponding to Py is given
by

Ayz =Y UPRU*T(aUQU*) =Y UPUT(U*2UQ;).

The two are equal if and only if A(U*zU) = U*A(x)U. If we apply this equality to
x = 1 then we get A1 = U*A1U, that is UD = DU. O
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A tensor-category-theoretic interpretation of Proposition 1.13 would run as fol-
lows: the compact group U, acts on M,, by conjugation, and consider the subgroup
G < U, leaving V invariant. The dual of M,, as a U,-representation is isomorphic
to the complex conjugate space M,, = M,,, via the trace pairing:

M, ® M, > A® B — Tr(A*B).
Under G the dual V' C M,, is also conjugation-invariant, and upon identifying
V®V = End(V)
the identity id € End(V'), corresponding to

(1-1) ZSi®Ti€V®V

i=1

for trace-dual bases {S;} C V and {T};} C V, must also be G-invariant. In short:
conjugation by U @ U, U € G fixes (1-1) for any

e basis {S;} for V;

e with dual basis {T;} with respect to the trace pairing.

Note furthermore that since M,, = M,, via the adjoint map A— A* and V is
self-adjoint (being an operator system), we have V' = V. Finally, the degree matrix
is nothing but the image of (1-1) through the multiplication M, ® M, — M,,
which itself is U,-equivariant.

1.4. Random models of quantum graphs. In this section we will describe the
random models that we will be dealing with. For classical graphs there are two main
models of interest (both called Erdés-Rényi models): G(n,p), where 0 < p < 1 and
G(n, M), where 0 < M < ('2’) In the first one two vertices are connected by an
edge with probability p, independently over all pairs of vertices, and G(n, M) is
a uniform distribution over all graphs with exactly M edges. In the G(n,p) the

probability that the graph has exactly M edges is given by the binomial distribution

(&) —m

and all graphs with M edges have exactly the same probability. It follows that
the G(n,p) can be recovered as a weighted sum of the G(n, M) models and this is
the approach that we will take, since there is no reasonable notion of a vertex of a
quantum graph, so it does not seem feasible to define the G(n, p) model directly.
Traditionally random graphs are undirected and we will follow this tradition.
Moreover we will consider reflexive, undirected graphs, i.e. we will be dealing
with operator subsystems of the matrix algebra M,,. The dimension of such a
subsystem can be interpreted as the average degree of our quantum graph; indeed,
by Proposition 1.11 the normalized trace of the degree matrix D = Al is equal
to d, the dimension of our operator system. Actually, since we are dealing with
reflexive graphs, it is more reasonable to call the number d — 1 the average degree.
In order to find a good random model of operator subsystems of a given dimen-
sion d + 1, we can notice that that its sufficient to take a random d-dimensional
subspace of Hermitian matrices and add identity to it. Among the most famous
models of Hermitian matrices is the GUE (the Gaussian unitary ensemble), which
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we will employ. Recall that in this model the probability measure has a den-
sity with respect to the Lebesgue measure on Hermitian matrices proportional to
exp(—% Tr(A?)) (see [Taol2, §2.6]).

Definition 1.14. Fix n € N and 0 < d < n? — 1. We define the model QG(n,d)
to be a random operator system Vj := span(1, X1, ..., X4}, where X1,..., X, are
independent GUE n x n matrices. Actually, we will take X; to be the traceless
GUE matrix, i.e. the centered version of GUE which is constructed from the usual
GUE by subtracting an appropriate multiple of the identity. ¢

Remark 1.15. In the specified range of d the GUE matrices X1, ..., Xy are almost
surely linearly independent, so their span is a d-dimensional subspace of the space
M,?’ g of traceless Hermitian matrices, which has (real) dimension n? — 1. We

have therefore a map from a full measure subset of (Mg H)d to the Grassmannian
Gr(d,n? — 1), which maps the tuple (X1, ..., X4) to its span. We can consider the
probability measure on the Grassmannian by pushing forward via this map. As
the density of GUE is proportional to exp(— Tr X?2), it is invariant under all maps
on M,?) g orthogonal with respect to the Hilbert-Schmidt product, hence so is its
pushforward. It follows that the measure on the Grassmannian is invariant under
O(n? — 1), i.e. it has to be the unique Haar measure. This is the right analogue of
a uniform distribution appearing in the classical G(n, M) model. ¢

It is not difficult now to check that Corollary E is a consequence of Theorem
C. Before doing that, recall that Hamana introduced in [Ham79] the C*-envelope
of an operator system S, which is the unique C*-algebra C*(S) containing S com-
pletely order isomorphically, such that whenever S is embedded completely order
isomorphically inside a C*-algebra B then the identity on S extends to a quotient
from the C*-algebra generated by S inside of B onto C*(S). Recall also that an
automorphism of an operator system S is a linear bijection ® : S — S that is a
unital complete order isomorphism, i.e. both ® and ®~! are completely positive.

Proposition 1.16. Fizn > 3 and 2 < d < n? — 3. If the automorphism group of
the random quantum graph QG(n,d) is almost surely trivial, then the automorphism
group of the underlying operator system is almost surely trivial.

Proof. Since d > 2, the C*-algebra generated by V; is almost surely equal to M,
as two independent GUE matrices almost surely generate the full matrix algebra
(see Lemma 3.10). Since the algebra M, is simple, it follows that the C*-envelope
of Vy is equal to M,,. It follows that any unital complete order automorphism of
V4 gives rise to an automorphism of M,,, which is exactly an automorphism of Vy
viewed as a quantum graph. It follows that the automorphism of V; had to be the
identity. |

It is time to introduce the analogue of the G(n,p) model for quantum graphs.

Definition 1.17. Fixn € Nand 0 < p < 1. We define the random model QG(n, p)
in the following way: we first choose a random 0 < d < n? — 1 according to the
binomial distribution B(n? — 1,p) and then choose a random operator subsystem
of M,, according to the model QG(n,d). ¢

Here we can already show that Corollary D follows easily from Theorem C.
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Proposition 1.18. If for any d between 2 and n? —3 the automorphism group of a
quantum graph in the QG(n, d) model is almost surely trivial then the automorphism
group of a quantum graph in the QG(n,p(n)) model is asymptotically almost surely
trivial as soon as lim, ., n*p(n) = co and lim, ., n*(1 — p(n)) = oco. If p(n)
satisfies lim,, oo n2~5p(n) = 0o and lim, o, n?>~°(1 — p(n)) = oo for some ¢ > 0
then it holds with overwhelming probability.

Proof. Assume that for d between 2 and n? — 3 the automorphism group is almost
surely trivial. Note that it can be non-trivial if d happens to be equal to 0, 1, n? —2,
or n? — 1. In the model QG(n,p) number d is chosen according to the binomial
distribution N(n? —1,p) (i.e. 0 < d < n?—1), so the probability that it is equal to
one of those four numbers is equal to P, := (1 — p)”(z*1 +(n%—1)p(1 — p)”2*2 +
(n? — 1)p”2_2(1 —p) +p"° =1, Let us look at the first term (1—- p)”z_l. It can

. 1 (n®-1)p
be rewritten as ((1 - p)p)

—x

. By the inequality 1 — z < e™®, we have that

(1-— p)% < e~ !, so this whole expression is bounded above by exp(—(n? — 1)p)).
If p(n) - n? converges to infinity, then this expression converges to 0. If we denote
qn = (n?>—1)p(n), then the second term in in P, can be bounded above by ¢,e~9",
so it also converges to 0. The last two terms can be handled in the same way
provided that we have lim,, (1 — p(n))n? = oco.

If the slightly stronger assumptions lim,, o, n?~¢p(n) = oo and lim,, o, n>~¢(1—
p(n)) = oo hold, then one can take advantage of the exponential decay to show that

the automorphism group is trivial with overwhelming probability. ]

2. SMALL QUANTUM AUTOMORPHISM GROUPS

The present section is devoted to results to the effect that various structures
(graphs, quantum sets) have small quantum automorphism groups “generically”.

2.1. Enhanced quantum sets.

Definition 2.1. A finite measured quantum set is a pair X = (O(X),¢x) con-
sisting of a finite-dimensional C*-algebra O(X) and a state ¢ x on it. The size or
cardinality | X| of X is dim O(X).

We often abbreviate the term to ‘quantum set’ and write L*(X) for the Hilbert
space structure induced on O(X) by the state.

An enhanced quantum set is a finite measured quantum set X equipped with a
self-adjoint operator Ax on L?(X). An enhanced quantum set is demi-classical if
the underlying algebra O(X) is commutative.

Unless specified otherwise states ¢ x as above are assumed faithful. ¢

The quantum automorphism groups of finite dimensional C*-algebras have been
defined in [Wan98], while the quantum automorphism groups have been defined
in [Ban05]. The definition of a quantum automorphism group of an enhanced
quantum set can be naturally deduced from these two cases. We will only consider
the quantum automorphism group of demi-classical enhanced quantum sets, so we
provide a precise definition in this context.

Definition 2.2. Let [n] := {1,...,n} be a finite set, ¢ : C* — C a state and
A C" — C" a self-adjoint map with respect to the inner product induced by 1.
The quantum automorphism group of the finite set [n] is the universal C*-algebra
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C(S;5) generated by elements (u;); jc[n) Subject to relations

e the matrix U := (usj); je[n] is unitary;
e cach u;; is a projection, i.e. u;; = u;j; = u?j;
e rows and columns of the matrix U sum to the identity, i.e. Y . u;; =1
and Y. uj; = 1 for all j € [n].
The assignment u;; ZZ=1 Ui, ® ug; extends to a coassociative comultiplication
A:C(SH) — C(SH) ® C(SF), endowing C(S;F) with the structure of a compact
quantum group.

Let a : C" — C™ ® C(S;}) be the universal action of S;” on C", i.e. the
map e; = .5 ej @ uji. The quantum automorphism group of the demi-classical
enhanced quantum set (C", 1), A) is the quotient of C'(S;") by the following relations:

e o A=(A®]1d)oq;

e (p@ld)joal)=1y()L ¢

We give sufficient conditions that will ensure the quantum automorphism group
of a demi-classical enhanced quantum set is trivial. This requires some preparation.

Definition 2.3. Let (e;)7_; be a basis of a finite-dimensional vector space V. Two
vectors v,w € V' overlap with respect to (e;) (or simply overlap when the basis is
understood) if for at least one of the e;’s the coefficients of both v and w with
respect to this e; are non-zero.

An operator A € End(V) is thick (with respect to (e;)) if all of its eigenvectors
mutually overlap. ¢

In the context of a demi-classical enhanced quantum set the basis will always
be the standard one, consisting of minimal projections of O(X), and we will be
typically interested in the thickness of the adjacency matrix Ax.

Proposition 2.4. Let X = (O(X),¥x,Ax) be a demi-classical enhanced quan-
tum set whose adjacency matrix Ax has simple spectrum and is thick. Then, the
quantum automorphism group Gx is isomorphic to (Z/2)™ for some n.

Proof. Tt is enough to argue that Gx is classical, for then the fact that it is a
2-group follows:

Suppose we know that Gx is classical. Then every T € Gx operates as a
permutation on the classical set X and scales each eigenvector v of Ax (because the
spectrum is simple): Tv = A\v for some A € C. Since T permutes the components
of v the scalar A must be a root of unity, and the fact that v can be chosen to be a
real vector implies that A = +1.

It thus remains to argue that under the hypotheses Gx is indeed classical. Denote
by « the coaction of Gx. Recall (see Definition 2.2) that a0 Ax = (Ax ® Id) o a.
If v is an eigenvector of Ax, i.e. Axv = cv then we get ca(v) = (Ax @ Id)a(v). It
follows that «(v) is an eigenvector of (Ax ® Id) with eigenvalue ¢, so

(2-1) a(v) =v® gy,

because the spectrum of Ay is simple. Moreover each g, is group-like, i.e. A(g,) =
gy ® gy. It follows that O(Gx) is the group algebra of a finite group I' generated
by the g, (as v ranges over an eigenbasis for Ax), so it will be enough to show that

every two g, commute (for then I" is abelian and Gx = T will be its Pontryagin
dual).
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So far only the vector space structure of O(X) was important, but to finish the
proof we need to recall that it is also a commutative algebra. It follows from the
formula (2-1) for the coaction that a(vw) = vw ® g,g, and a(wv) = WU @ Gy
and the two are equal, as wv = vw. Therefore we get vw ® g,gw = VW ® guygy,- The
thickness hypothesis shows that vw # 0 and hence g,,g, = gy gw. This finishes the
proof. O

2.2. Plain graphs. Here we give an alternative proof of [LMR20, Theorem 3.14],
stating that as the size n goes to infinity, the probability that the random graph
G (n, %) has trivial quantum automorphism group goes to 1. We also generalize
that result slightly in that the random graphs being considered are G(n,p) rather
than G (n, %)

Theorem 2.5. Let p € (0,1). As n — oo the probability that the random graph
G(n,p) has trivial quantum automorphism group approaches 1.

Proof. We know from [TV17, Theorem 1.3] or [OVW16, Theorem 1.4] that over-
whelmingly (see Definition 1.1), the adjacency matrix A = Ax of a random graph
has simple spectrum. Furthermore, the second part of [OVW16, Theorem 1.4] also
shows that overwhelmingly, no A-eigenvectors have any vanishing coordinates.

This latter condition (all-non-zero coordinates) is stronger than thickness in the
sense of Definition 2.3, and hence we conclude from Proposition 2.4 that with
overwhelming probability for X = G(n,p), the quantum automorphism group Gx
is of the form (Z/2)? and in particular classical.

We can now finish using the well known fact that fact almost all random graphs
G(n,p) have trivial classical automorphism group (e.g. [ER63, Theorem 2] for the
case p = 1 and [KSV02, Theorem 3.1] in general). O

2.3. Regular and isospectral graphs. The generic rigidity result in Theorem 2.5
also applies to random regular graphs G(n, ).

Theorem 2.6. Fiz a positive integer r > 3. As n — oo the probability that the
random regular graph G(n,r) has trivial quantum automorphism group approaches
1.

Proof. Let x be a vertex of a finite graph. Following [Bol82] we denote by d;(z)
the number of vertices at distance ¢ from z. According to [Bol82, Theorem 6] the
probability that the vertices of a random regular graph have distinct sequences

dl(x)v dQ(x)a

approaches 1. Since two vertices x,y in the same orbit of a quantum action on the
graph will have

di(x) = di(y), Vi > 1,

the conclusion follows. O

Theorem 2.6 will allow us to extend [BCE*20, Example 4.18], obtaining an abun-
dance of pairs of non-quantum-isomorphic, isospectral graphs with trivial quantum
automorphism groups. The construction mimics that in loc. cit., based around the
procedure outlined in [GM82] for producing isospectral graphs. Recall [GM82, The-
orem 2.2]:
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Theorem 2.7. Let ' be a regular graph with 2m vertices and partition its vertex
set as V =V'UV" with

V| = V" =m.

The two graphs T, T (with 2m + 1 vertices) obtained by adding a vertex to V and
connecting it to V' (respectively V") are isospectral.

The following result proves the existence of the announced examples.

Proposition 2.8. Fix a positive integer r > 3 and consider a random regular graph
I'=G(2m,r) as m — oo, with I and I as in Theorem 2.7.

(a) As m — oo the probability that T’ and T” have trivial quantum automor-
phism groups approaches 1.

(b) The same holds for the probability that T and T are not quantum isomor-
phic.

Proof. We focus on a, as the proof of b is parallel.

For m > r I has a single vertex of degree > r. Since vertices in the same orbit
of a quantum action on a graph have equal degrees, any such action on I will
preserve both the extra vertex and the subgraph I' € I'V. But by Theorem 2.6 the
probability that the latter action on I is trivial approaches 1 as m — oo, hence the
conclusion.

To prove b, note that a quantum isomorphism between I'" and I'”’ fixes the vertex
added to I'; so the magic unitary implementing it has a block form, where the block
corresponding to the subgraph I" provides a non-trivial quantum automorphism; by
Theorem 2.6 this can happen with probability tending to 0 as m — co. O

3. GENERIC SMALL AUTOMORPHISM GROUPS

In this section we study automorphism groups of quantum graphs.

3.1. Conjugation actions on tuples. We need a number of remarks on the con-
jugation action by GL,, U, and/or their projective versions PSL,, PSU,, etc.
on spaces spanned by tuples of matrices. The results have an algebraic-geometric
flavor, revolving around the geometric invariant theory of reductive-group actions;
we collect those results in the present subsection for future reuse. We assume some
familiarity with linear algebraic groups as covered in a number of good sources:
[Hum?75, Bor91], etc.
First, we fix some conventions.

Convention 3.1. Throughout,
(3-1) X ={X;, 1<i<d}

denotes a d-tuple of n xn matrices, with d and n fixed ahead of time and understood
from context; we occasionally vary the base symbol ‘X’ as in ) denoting a tuple of
Y;, etc. We say that X is self-adjoint if X; are, i.e. X = X;.

With that in place,

(3-2) (X;) ==span{X;, 1 <i<d}

will be the span of the matrices.
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The tuple (3-1) is
e linearly independent, or
e self-adjoint, or
e traceless
if all the X are.
For linearly independent X we write

AX =X A A Xy e ANM,

for the corresponding element of the exterior power of the space of matrices. The
span (X) can then be identified with an element of the Grassmannian Gr(d, M,,)
of d-dimensional subspaces of M,, and that element is identified with the line
CAX € P(AYM,,) (regarded as an element of the projective space of AYM,,) upon
embedding

Gr(d, M,,) C P(A®M,,)
via the Pliicker embedding [Har92, Example 6.6]. ¢

The subsequent discussion will hinge crucially on the following observation.

Lemma 3.2. Let X be a linearly independent self-adjoint tuple (3-1). Then, the
orbit of AX € A*M,, under the conjugation action by G := PSL, is Zariski-closed.

Proof. The complex algebraic variety G has a real structure [Bor91, AG §11] whose
underlying real points make up precisely the maximal compact subgroup Gg :=
PSU, of G. Note moreover that conjugation by unitary operators preserves the
real vector space
M,, sq = {self-adjoint matrices}
which in turn is a real structure for M,, in the sense that
Mn = Mn,sa ®]R (C

It follows that A?M,, is a representation of G' defined over R. Since the orbit of AX
is closed (in the standard topology) under the compact group Gg, the conclusion
follows from [Bir71, Corollary 5.3]. O

In particular, we also have

Corollary 3.3. Let X be a linearly independent self-adjoint tuple (3-1). Then, the
stabilizer group Gax of AX € A*M,, under the conjugation action by G := PSL,
is reductive.

Proof. Indeed, by [Lun73, §1.2, Proposition| (attributed there to Matsushima
[Mat60]) this is a consequence of the closure of the orbit

G(AX) C AM,,,
which in turn is asserted by Lemma 3.2. (]

Theorem 3.4. Let X be a linearly independent self-adjoint tuple (3-1) and set
G := PSL,, and K := PSU,,. Then:
(a) For AY € A?M,, in a Zariski-open neighborhood of AX the isotropy group
Gy is conjugate to a subgroup of Gax.
(b) The same goes for the isotropy groups Ko with ¢ € {AY,AX} and self-
adjoint Y.
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(¢) Finally, the analogous result holds for the isotropy groups Ko, e € {(}),(X)}
and self-adjoint ) again, this time the action being that of K on the Grass-
mannian Gr(d, My,).

Proof. We prove the three claims separately.
(a): As observed in [Ric72, Remark (b) following Proposition 3.3], this follows
from
e the Zariski-closure of the orbit G(AX) (provided by Lemma 3.2) and
e Luna’s étale slice theorem [Lun73, §IIL.1].
(b): For self-adjoint Y the isotropy group Gy is invariant under the complex-
conjugate-linear involution © : z + (z*)~! and

(3-3) Ke={g€ G| O(x) =z}
This then implies
(3-4) Gry CGax = Kay € Kpx.

Now note furthermore that the inner product
(A,B) :=tr(A*B), A,Be M,

induces one on A%M,, making the latter into a Hilbert space in such a manner that
the conjugation action by G respects the #-structures: if we denote that represen-
tation by p: G — GL(AYM,,) then

p(X*) = p(X)* € GL(A'M,),

Coupled with (3-3) this means that once we identify G4 with a subgroup of
GL(AYM,,), K, is its intersection with the unitary group of U(A?M,,). G, thus has
a polar decomposition with respect to K, respectively (e.g. [Ber, the result labeled
‘Mostow’s Theorem’, p.7]) and the latter are maximal compact subgroups of the
(reductive, by Corollary 3.3) groups G,. It follows that

Kay € Kpx = Gay C Gax

by taking Zariski closures, supplementing (3-3) and finishing the proof of (b).

(c): Preserving the span (Y) € Gr(r, M,,) means preserving the line through
AY € A?M,,. The group K acts by unitary transformations on the real Hilbert
space

A]%Mn,sa C AdMn = A]%Mn,sa R (Ca

where M,, 5, denotes self-adjoint matrices, as in the proof of Lemma 3.2, and ‘A¢’
denotes exterior powers of real vector spaces over R. It follows that under the K-
action preserving the line means acting on it as +1. But then, for elements of K,
fixing () is equivalent to fixing

AY @ AY € (A"M,,)®2.

The same argument used in the proof of (b) now applies with AX®? and (A9M,,)®?
in place of AX and AYM,, respectively (and similarly for )). O

Note also the following consequence regarding principal orbits for the actions of
PSL,, and PSU, on the self-adjoint Grassmannians. Recall (e.g. [Ric72, Introduc-
tion] or [Aud91, discussion following Proposition 1.2.5]) that a principal orbit for an
action is an orbit Gz with the property that the isotropy groups G, are conjugate
to G, throughout a dense open set U of points .
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In the present context we are interested in having U dense open in the Zariski
(rather than usual) topology, hence the phrase Zariski-principal in the following
statement.

Corollary 3.5. The actions of

e GG := PSL, on linearly-independent, self-adjoint AX;

o K := PSU, on linearly-independent, self-adjoint AX;

e K on spans (X) for linearly-independent, self-adjoint X
all have Zariski-principal orbits for arbitrary d and n.

Proof. This is immediate from Theorem 3.4: in each case pick a Zariski-open non-
empty (and hence dense, by the irreducibility of the varieties involved) set where
the isotropy group has minimal dimension and the smallest number of components
in the usual topology. O

Remark 3.6. Actions of compact Lie groups on connected manifolds always have
principal orbits in the usual topology (as proved for instance in [Aud91, Proposi-
tion 1.2.5] and noted in [Ric72, Introduction]); in Corollary 3.5, however, we are
interested in the Zariski topology instead. ¢

In light of Corollary 3.5 the following piece of notation and terminology makes
sense.

Notation 3.7. For positive integers d and n we write GENK x (d, n) of GENK () (d, n)
for the isotropy group in K := PSU,, of a generic AX or, respectively, (X for self-
adjoint, traceless, linearly-independent d-tuples X C M,,. Here, ‘generic’ means
ranging over an open dense subspace of the respective variety (Grassmannian in
one case, space of tuples in the other).

This is not quite a subgroup of K but rather a conjugacy class therein; we abuse
notation slightly by speaking of GENK... as groups. We also suppress d and/or n
from the notation when convenient, as in GENK or GENK (d). ¢

Remark 3.8. The triviality of GENKxx(d,n) says that the d-tuples (X) represent-
ing quantum graphs with trivial automorphism groups form a “large” space: the
complement of that space is a less-than-full-dimensional variety, and in particu-
lar that complement has measure zero; hence the relevance of (the triviality of)
GENKpx(d,n) to Theorem 3.19. ¢

In the following statement a group-theoretic property P (e.g. being finite, trivial,
abelian, metabelian, solvable, nilpotent, etc. etc.) is

e hereditary if property P for a group I' entails the property for all subgroups
of T';

e algebraic if property P for a subgroup of a linear algebraic group entails it
for its Zariski closure.

Corollary 3.9. Let G := PSL, and K := PSU, be as in Theorem 3.4 and P
a hereditary group-theoretic property for subgroups of a complex linear algebraic
group.
(1) If the isotropy group Kax has property P for at least one linearly indepen-
dent self-adjoint tuple X as in (3-1), then this is the case for a Zariski-open
dense set of tuples X .
(2) The analogous statement holds for isotropy groups K xy of spans.
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(3) If furthermore P is algebraic then under the hypothesis of (1) its conclusion
holds for algebraic isotropy groups Gax -

Proof. (1) and (2) follow immediately from parts (b) and (¢) of Theorem 3.4, noting
that all varieties involved are irreducible and hence Zariski-density follows from
openness and non-emptiness. As for (3), it follows from the remark made in the
course of the proof of Theorem 3.4 that Kyx C Gax is maximal compact (and
hence Zariski-dense, since Gy is reductive by Corollary 3.3). ]

3.2. Small isotropy groups. We will be interested in proving results to the effect
that the isotropy unitary group PSU, (x) is small, generically in the self-adjoint
tuple X. We will make repeated, tacit use of Corollary 3.9, often reducing this to
proving triviality for a single tuple X'. A number of other simplifying assumptions
will frequently be in place:

e since 1 € M, is of course fixed under conjugation, we may as well focus on
traceless X (see Convention 3.1);
e since d-tuples of traceless n xn matrices generically have maximal dimension

min(d, n? — 1),

we assume d < n? — 1 and focus on linearly independent tuples.

e A single self-adjoint matrix will of course have a positive-dimensional com-
mutant in My, so for PSU, (xy to ever be trivial we need 2 < d < n? —1.
Additionally, Lemma 3.11 also requires (n? — 1) —d > 2 in order to have
trivial isotropy groups. In short, we need

2<d<n?-3,
so we focus on n > 3 to ensure this range is non-empty.

We would like to mention here that the case of a single self-adjoint matrix is
the only one in which the commutant will be non-trivial. To wit, two generic self-
adjoint matrices generate the full matrix algebra; this fact is well-known but we
could not locate a precise reference, so we add a proof.

Lemma 3.10. The set of pairs (A, B) of n x n Hermitian matrices such that the
x-algebra by generated by A and B is not equal to M, is contained in a proper

Zariski-closed subset of M2, and hence in particular has measure zero.

Proof. The condition that A, B € M, s, generate M, as a complex *-algebra is
equivalent to requiring that the commutators of A and B intersect only along the
scalars, i.e. that the intersection of those commutators be minimal-dimensional.

Denote by M, sso C My, s, the subset of self-adjoint matrices with simple spec-
trum. M7 ., C M7, is Zariski-dense, so we may as well work with simple-
spectrum A and B. In that case, the commutators are precisely the algebras (A)
and (B), with respective bases {A*}7; and similarly for B.

Now, the condition that

span{A’, 0 <i<n—1} and span{B’, 0<i<n—1}
intersect only along C1 is Zariski-open, hence the conclusion. O

Lemma 3.11. If X is a linearly independent, self-adjoint traceless d-tuple then
PSU, (xy = PSU, (x)1,
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where ‘17 indicates the orthogonal complement with respect to the trace inner prod-
uct
(A|B) = tr(A*B).

Proof. This is immediate: the conjugation action by U, is unitary with respect to
the trace inner product in the statement. O

It will be convenient in the sequel to record the following simple observation, for
future reference.

Lemma 3.12. Let G be a compact Lie group and V' a complex G-representation.
Fiz a subspace W C V| and denote, in general, by Ky C G the closed subgroup
leaving a subspace U C V invariant.

If Kw acts trivially on W then the same holds for W' ranging over a neighbor-
hood of W in the Grassmannian Gr := Gr(dim W, V).

Proof. We will prove the contrapositive. Considering a convergent sequence W,, —
W in Gr, and suppose each Ky, acts non-trivially on the respective W,. This
means, in particular, that some g, € Ky, has an eigenvalue A\, # 1 on W,,, and
raising g, to some power if necessary we can assume that all \,, lie outside a fixed
open neighborhood U of 1 € S!.

But then, because

e (G is compact,

e the condition that an element of G leave W’ € Gr invariant is closed in
G x Gr and

e S'\ U is closed,

we can find some subsequence of z,, converging to x € Ky with an eigenvalue
A€ S\ U. on W. This contradicts the triviality of the action of Ky on W,
finishing the proof. ]

Next, a number of inductive results.

Proposition 3.13. Fizrn > 3 and assume that for any d € {2,3,...,n? — 3} the
conjugacy class GENK xy(d,n) is trivial. Then GENK xy(d',n + 1) is trivial for
2<d <n?-2.

The same holds for abelian GENK or for the requirement that it have order < 2.

Proof. We focus on the first statement, the second one being entirely analogous.
Consider two cases:

(2 < d < n?—3) Consider a generic self-adjoint linearly-independent d-tuple
(Xi)L, of (n+1) x (n+ 1) matrices all of whose non-zero entries are concentrated
in the upper left-hand n xn corner. The non-unital subalgebra of M, ;1 it generates
is the upper-left-hand corner M,, C M, 11, so any unitary U that preserves the span
(X) under conjugation will also preserve that matrix algebra. But then it follows
that U

e decomposes as a block-diagonal matrix with blocks of size n and 1,
e and hence its upper left-hand n x n block acts by conjugation on M, C
M, 41 preserving (X) therein.
The hypothesis and the genericity of X imply that the upper left-hand n x n block
of U is scalar. This is true of every U projecting to K(x), and hence Ky, acts
trivially on (X') (i.e. fixes every vector, not just the span). By Lemma 3.12 the same
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holds of all tuples sufficiently close to X’; since generically, X C M,, ;1 generates
the algebra M,,;; (Lemma 3.10), it follows that K yy must indeed be trivial.

As for the remaining case:

(d = n? — 2) Simply repeat the argument above appending one additional diag-
onal matrix to the tuple, with non-zero (n + 1) x (n + 1) entry. O

Also note the following variant.

Lemma 3.14. Suppose that for somen > 3 and 1 < d there is a self-adjoint d-tuple
Y of (n—1) x (n—1) matrices with zero diagonal such that no non-scalar diagonal
unitary preserves their span. Then, GENK xy(d + 1,n) is trivial.

Proof. As in the proof of Proposition 3.13, regard the matrices in ) as elements
of M, via the upper-left-corner embedding M,,_; C M,. Then, expand ) to
X := YU{X} by adding a generic diagonal self-adjoint traceless operator X € M,,.

The algebra generated by X will be M, 1 x C C M, so the isotropy group
G = K (xy preserving (X) embeds in U, x S' ¢ U,, and hence leaves invariant
the decomposition C* =2 C"~! @ C obtained by separating the last coordinate. G
thus acts on the span X’ C M,,_1 of the top left (n — 1) x (n — 1) blocks of the
matrices in X.

The trivial-diagonal assumption ensures that the upper left block X’ of X is the
unique operator in (X”)

e in its conjugacy class, and

e having trace tr X',
since any such operator is of the form X’ + A for off-diagonal A and hence being
conjugate to X’ entails A = 0 by a Hilbert-Schmidt-norm comparison.

It follows that G fixes X’ and hence consists of diagonal operators. But then the
additional assumption on ) shows that G is a scalar on C*~!. All in all, this means
that G acts trivially on X’; we can now conclude as in the proof of Proposition 3.13,
via Lemma 3.12. (]

We will use Lemma 3.14 in conjunction with the following simple observation.

Lemma 3.15. Let p > 2 be a positive integer. A generic m-dimensional real
subspace W < CP with 1 < m < 2p — 1 is not invariant under any non-trivial
diagonal unitary £1 # U € U,.

Proof. Denote by e;, 1 < i < p the standard basis of C? and identify
V; i= Ce; = R?

(and thus CP = R2p). For each 1 < i < p we can find m-dimensional subspaces of
R?P that intersect V; along a line. Such spaces cannot be invariant under diagonal
unitaries whose ‘" eigenvalue is # 41. This non-invariance is generic for each
i, and hence generic W will not be invariant under any diagonal non-involutive
unitaries.

This leaves the diagonal involutions to deal with, i.e. the diagonal unitaries with
eigenvalues 1. If such a unitary U is non-scalar then it splits R?? into a direct
sum of non-zero £1 eigenspaces V; and V_, and W is U-invariant if and only if

W=WnVy)e(WnV.).

That this is generically not the case can be verified by a simple dimension count:
there are only finitely many choices for V1 (aligned with the fixed coordinate system
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we are considering), and one can check that for each specific choice of non-zero Vi
and each choice of

dimWnNVy, dmWnV_

(of which there are finitely many) the dimension of
(variety of possible W NV, ) x (variety of possible W N V_)

is smaller than that of the real Grassmannian Gr(m, 2p) parametrizing our W. 0O

The same type of dimension-counting argument used in the proof of Lemma 3.15
also proves the following variant, of use below.

Lemma 3.16. The conclusion of Lemma 3.15 holds for real planes W < CP,
dimg W = 2 and unitaries U ranging over the semidirect product D, xS, of diagonal
matrices by permutation matrices.

Proof. Lemma 3.15 shows that a unitary U € D, x S, leaving a generic W invariant
must have finite order, bounded by 2p!: indeed, if U = DP is a decomposition as
a product of a diagonal and a permutation matrix, then U? = %1 if ¢ is the least
common multiple of the cycle lengths of P. Furthermore, by Lemma 3.15 again,
it is enough to consider factorizations U = DP for non-trivial P (otherwise we are
back in the diagonal case).

Decomposing U as a product DP for diagonal D and a permutation matrix P
we will, for the sake of simplicity, assume that P is a single cycle of order p > 2.
In general it will decompose as a product of disjoint cycles, but this will suffice to
illustrate the dimension count. Moreover, taking a shorter cycle would restrict the
number of degrees of freedom even further, so the case of a cycle of order p is the
most demanding to rule out.

We have UP = +1 (as noted above), so the p eigenvalues of D provide p — 1
(real, as opposed to complex) degrees of freedom (because their product is +1).
CP = R? decomposes as a direct sum of p 2-dimensional U-eigenspaces, and for W
invariance under U means:

e coinciding with one of these eigenspaces, which makes for a 0-dimensional
variety of such W for each choice of D-eigenvalues, or

e decomposing as the direct sum of two lines, one in each of two distinct
U-eigenspaces; this makes for a 2-dimensional variety, since each line is
selected from a 2-plane and hence ranges over a real projective line.

All in all, counting the p — 1 degrees of freedom in selecting the eigenvalues of D,
the two cases give spaces of dimension p—1 and p+ 1 respectively. In summary, the
W invariant under some U = DP range over a (p + 1)-dimensional space. On the
other hand the Grassmannian parametrizing the planes W < R?? has dimension
2(2p —2) > p+1 (since p > 2), finishing the proof. a

Corollary 3.17. For 3 <n and 2 <d < (n— 1)(n — 2) the group GENK x)(d,n)
is trivial.
Proof. This follows from Lemma 3.14 (with d in place of that result’s d+ 1), noting
that by Lemma 3.15 applied to

CP = strictly upper-triangular (n — 1) x (n — 1) matrices

= off-diagonal self-adjoint (n — 1) X (n — 1) matrices
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we can find
1<d—-1<2p-1=(n-1)(n-2)-1
self-adjoint off-diagonal (n — 1) x (n — 1) matrices whose span is not preserved by

non-scalar unitaries. By Lemma 3.14, this gives us the desired range 2 < d <
(n—1)(n—2). O

Convention 3.18. Throughout the discussion below, we will abuse language
slightly by referring to elements of K'(xy as matrices (rather than matrices modulo
scalars). ¢

Theorem 3.19. For 3 <n and 2 < d < n? — 3 the group GENK (x)(d,n) is trivial.

Proof. We treat the case n > 5 here, delegating the small cases n = 3,4 to Propo-
sition 3.21. The argument is by induction on n > 5, via Proposition 3.13.

In the base case n = 5 Corollary 3.17 takes care of the range 2 < d <
(n —1)(n — 2) = 12. Since this is precisely half of the range 2..(n? — 1 = 24),
we conclude by Lemma 3.11, which allows us to bootstrap the left-hand half.

As for the induction step of passing to n + 1 from lower values, we obtain

e the range 2..n2 — 2 from Proposition 3.13;
e the range 2..2n + 1 by applying Corollary 3.17 to n + 1 (in place of n) and
noting that

nn—1)=(n+1)—-1)((n+1)—-2)

dominates our desired upper bound 2n + 1 because n > 5 (in fact n > 4
would suffice here);
e and hence the range

n—1 .. n+1)?*=3 = (n+1)*=1)—=2n+1) .. (n+1)?*—-1)—-2
by reflection, via Lemma 3.11.
This finishes the proof. |

Corollary 3.20. For3 <n and1 < d < n?—2 the group GENK (xy(d, n) is abelian.

Proof. The case 2 < d < n? — 3 is covered by Theorem 3.19, whereas a single
traceless matrix X will have simple spectrum and be inequivalent to — X, ensuring
that the subgroup of U,, preserving the span RX is diagonal in a basis diagonaliz-
ing X. O

Proposition 3.21. The conclusion of Theorem 3.19 holds for n = 3,4.

Proof. Given the symmetry d <+ n? —1—d provided by Lemma 3.11, Corollary 3.17
covers everything except for the cases

(n,d) = (3,3), (3,4) and (4,7),

which we treat here.

(n,d) = (3,3) : In general, for any n > 3, we can resolve the d = n case by
selecting a tuple X consisting of n — 1 linearly independent diagonal matrices X3
up to X,,_1 together with an n!” matrix X,, that

e commutes with no non-scalar diagonal operators, ensuring that every U €

K xy preserves the diagonal algebra and hence belongs to the semidirect
product D,, x S, of the diagonal unitaries and the permutation matrices;
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e is not unitarily equivalent to —X,,, so that a unitary that preserves the
span RX,, must commute with X,,;

e is generic enough to ensure that no non-scalar unitary commutes with it,
as in the proof of Corollary 3.17 (via Lemma 3.15);

e has above-diagonal entries of distinct moduli, ensuring that no DP € D,, x
S, for a non-trivial permutation P commutes with it.

Such a tuple X would then have trivial K xy C PSU,.
(n,d) = (3,4) or (4,7) : We treat the cases in parallel to an extent. In both
cases, we first consider tuples X constructed as follows:

e n — 1 traceless diagonal operators X;, 1 < i < n — 1 spanning (together
with 1) the diagonal algebra D,,;

e 2 linearly independent, self-adjoint traceless tuple N'D of 2n — 4 operators
X;, n < i <d, all of whose non-zero entries are non-diagonal and on the
last row/column.

If N'D is chosen generically so as to ensure the span (ND) contains no matrices
with precisely one non-zero entry on the last column, the only elements in the span
(X) whose squares belong to (1, X') are diagonal. This intrinsic characterization of
D,, C (X) implies that Ky preserves it, and hence once more

K(X) - DUn A Sn

On the other hand Ky also preserves the orthogonal complement (N'D) of D,
in (1, X), so in fact it must be contained in the semidirect product DU,, x S, _1,
where the latter is the group of n X n permutation matrices permuting only the
first n — 1 coordinates.

Next, note that the real subspace W of C"~! spanned by the last columns of
the matrices in ND (where the last columns are regarded as having n — 1 entries
upon dropping their last zero entry) has real dimension 2n —4. This means that by
Lemma 3.16, generically, that span is not preserved by any operator in DU,,_; X
S,_1 save for —I,,_1: for n = 3 we can apply Lemma 3.16 directly, whereas for n = 4
we can apply it to the 2-dimensional orthogonal complement of the 4-dimensional
W. This in turn means that the only unitary operators in DU, x S,,_1 that preserve
(N'D) are those of the form

(3-5) diag(\,---, A\, £)A), AeSh

In short, K(xy must be contained in this latter diagonal group.

Now select new tuples repeating the construction virtually verbatim, the only
difference being that the 2n — 4 matrices (for n = 3,4) in N'D now have non-zero
entries only immediately above/below the main diagonal (i.e. entries (i,7 £ 1) for
1<i<n-—1).

Essentially the same argument this time around shows that Kx) will be con-
tained in D,, x S,, and act as —1 on the off-diagonal matrices N'D, But this means
that (unless scalar) it consists of diagonal unitary matrices of the form

(3-6) A, =X, =0
(alternating signs).

This already settles the case n = 4: if GENK xy(7,4) were non-trivial then (3-5)
and (3-6), which are obtainable by limiting the generic behavior, would mean that

generically the non-trivial element of Ky has (up to scaling) both a 1 and a
2-dimensional (—1)-eigenspace: a contradiction.
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As for the remaining case (n,d) = (3,4), we can take for X’ a tuple consisting of

one diagonal matrix X; together with 5 generically-chosen matrices as in previous
ND. (X) thus consists of matrices of the form

a
b
z

Q © 8
e O

with z, y and z unique up to simultaneous scaling and (a,b) ranging over a 3-
dimensional real subspace of C2. If, say, z and y have equal signs and (z,v,2)
is otherwise generic, such a matrix will be invertible as soon as it has non-zero
diagonal. This means that once more K := K x) preserves the span RX; of the
diagonal matrix X; = diag(z,y, 2) and hence also (ND). The genericity of X;
further ensures that K consists of diagonal matrices.

But according to the discussion above, if the generic K is non-trivial then it con-
sists (modulo scalars) of involutive matrices with 1-dimensional (—1)-eigenspace (cf.
(3-5)), acting on (X’) with 2-dimensional +1-eigenspaces. It remains to observe that
in the present setup no diagonal unitary with 1-dimensional (—1)-eigenspace can
act with a 2-dimensional (—1)-eigenspace on the 3-dimensional real span consisting

of

0 0 a

0 0 b

a b o0
with (a,b) as above. This contradicts the non-triviality of the generic K, finishing
the proof. O

3.3. The degree matrix. In this subsection we take another route to the main
results. We will employ properties of the degree matrix of a quantum graph. The-
orem 3.24 is the same as Corollary 3.20 and Theorem 3.25 is a weaker version of
Theorem 3.19. Even though we do not fully recover our results, in this approach
we obtain somewhat explicit examples of tuples with trivial automorphism groups,
where we only use a little randomness to obtain diagonal matrices with certain
properties.

Proposition 3.22. Let V = span(1,Xy,...,Xy) C M, be an operator system
generated by d traceless self-adjoint matrices Xq,...X4. Let A : M,, — M, be the
corresponding quantum adjacency matriz, given by Proposition 1.11. If the degree
matriz D := Al has simple spectrum then the automorphism group of V is abelian.
Moreover, the complement of the set of tuples (X1,...,Xq) such that D has simple
spectrum is a closed subvariety, so if there exists such a d-tuple, almost surely all
d-tuples have this property.

Proof. If U is a unitary in M, such that UVU* =V, then UA(U*2U)U* = A(x),
hence U(AL)U* = A(1). So, as before, if D = A1 has simple spectrum then the
set of such unitaries is commutative.

By Proposition 1.11 we have D = n)_, A?, if (4;) is an orthonormal basis of
V' consisting of Hermitian matrices. Such a basis can be obtained from the tuple
(X1,...,Xy) via the Gram-Schmidt procedure, i.e. using only algebraic operations.
Since having simple spectrum can also be described as vanishing of a certain poly-
nomial, the set of “bad” tuples is algebraic, so it has measure zero as soon as it is
proper. (Il
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We will be working with operator systems for which the degree matrix D is
diagonal. We need Lemma 3.23 to show that one can construct operator systems
with diagonal degree matrices that have no repeated eigenvalues.

Lemma 3.23. Let 1 <d<n—2. Let A = (A1,...,\n) be an arbitrary diagonal
matriz. Then there exists a d-tuple of traceless diagonal matrices (X1,...,Xq) such
that D + A has no repeated eigenvalues.

Proof. Let U € O(n) be a Haar orthogonal matrix. Then for each j we can consider
the diagonal matrix u; := Zk ujrex, where ey, is a shorthand for eyy. For different
J’s these matrices are mutually orthogonal. Let (u;);c[,) be the centered version of
(u5)jen), i-e. we subtract from each u; a suitable multiple of the identity to make
it traceless and then apply the Gram-Schmidt procedure to obtain an orthonormal
set. Then V := span(1, ﬂl, ...,0gq) 1s an operator system whose degree matrix
is equal to D = 1 + nz u2. For convenience, we will work with the matrix

j=1%7

D:=Y" i1 u; N

We want to show that there exists a choice of U such that D+ A has no repeated
eigenvalues, i.e. all its entries are distinct. In fact it holds almost surely. In order
to prove that, we have to show for a given pair of diagonal entries that they are
different almost surely; it will follow that almost surely all entries are different.

Let us do it for entries 1 and 2. Clearly equality of these two entries is an
algebraic equation in the entries of U, so it will hold on measure zero set as soon
as we can exhibit a single example. We will start with the following vectors u; =
€161 —C2€441 —C3€4+2, Uk = €} — % Yo eforke{2,...,d}. All the wy’s for k > 2
are orthogonal to uy, so the same will be true for (ug){_, — the orthonormal family
obtained from (@y)¢_, via the Gram-Schmidy procedure. We need the coefficients
of uy to satisfy ¢; = ca + ¢3 and ¢? + ¢ + ¢3 = 1. Note that the contribution to
the entries of D + A coming from the vectors (uy)¢_, is independent of our choice
for u1, so we can include it in the matrix A, by forming a new matrix A. With this
choice the first entry of D+Ais equal to ¢ + \; and the second one is equal to )\2
We can easily choose an appropriate ¢; so that the two are not equal. The lemma
follows. |

Theorem 3.24. Fizn andde{1,...,n?—2}. For almost every d-tuple (X1, ..., X,)
of traceless self-adjoint matrices the automorphism group of the quantum graph
V :=span{l, X1,..., X4} is abelian.

Before proving this theorem, we need to introduce a certain orthonormal family
of Hermitian matrices in M,, that will allow us to build operator systems with
diagonal degree matrices. For any pair k # [ of numbers in {1,...,n} we define

fo i %(em +ey) ifk<l
k= %(ekl — elk) if k> 1.

Note that the family F := (fy;) is orthonormal and fZ = %(ekk + ey) is diagonal.

Proof of Theorem 3.24. By Proposition 3.22, for any d € {1,...,n? — 2} we just
need to provide a single tuple such that the degree matrix has no repeated eigen-
values.

If d < n— 2 then we can use the Lemma 3.23 with A = 0. If d > n — 2, then
we take a subset of the family F of cardinality d — n + 2, which is always possible,
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because F has n? — n elements. We get a corresponding degree matrix D;, which
is diagonal. By Lemma 3.23 we can choose an n — 2-tuple of traceless diagonal
matrices with the corresponding diagonal degree matrix Do such that D; + Do
has no repeated eigenvalues. But D := D; + D5 is exactly the degree matrix of
the combined operator system, which has therefore a degree matrix with simple
spectrum. This ends the proof of the theorem. |

Theorem 3.25. Letn > 6 and 4 < d < n? — 5. We can construct a d-tuple
(X1,...,X4) of traceless Hermitian matrices, such that the degree matriz is diagonal
and has simple spectrum and the automorphism group of the corresponding quantum
graph is trivial.

Proof. We will first show that there exists an appropriate family of Hermitian
matrices with zero diagonals and with a diagonal degree matrix such that there
is no non-trivial diagonal matrix that preserves the span upon conjugation. Then
we will invoke the Lemma 3.23 to upgrade our degree matrix to a one with simple
spectrum, which will show that diagonal matrices were the only possible candidates
for automorphisms.

Assume first that n 2 7. Define X1 = ZE(:nl_l)/Q] f27;721‘+1 and X2 = ZEZ/E] f2i—1,2i-
As X7 and X, are orthogonal and X7 and X3 are diagonal, the corresponding de-
gree matrix is diagonal. Let U := (uq,...,u,) be a diagonal unitary matrix. Since
the automorphism group is really the quotient of the subgroup of unitaries by
the center, i.e. the scalar matrices, we may assume that u; = 1. Recall that if
X = (wi;) is a matrix then UXU™ has entries (uju; ;). We can now check when

the span(Xy, X») is preserved upon conjugation by U. One condition is that the
2

entries (4,i+1) and (i+1,7) are equal which gives u;u; )} = wiy1u; ', e u? = u2, |,
i.e. the squares of entries are constant. As u; = 1, we conclude that u; = £1, so
we will from now on write u;u;11 instead of w;u;_ +11. From the form of X; and X5
we get that w;u; 11 = u;q2us43. In particular, only us and ug are free variables, be-
cause, for example, uy = usug, since ujus = uzug. From the equality usus = ugqus
it follows that us = 1. From wusuy = usug, we get ug = ugug = us. Moreover,
from ugusz = ugus = uguy we get that ur = us. We need to add another matrix to
conclude that us = ug = 1, which would prove that U = 1.

Our choice will be Y = fi4 + fo5 + fa7. We get ujuy = usus = uzuy. As
u1 = us = 1, we obtain us = uy4, S0 uz = 1, since ususz = uyg. On the other hand,
ugur = 1, so ug = up = 1 and we conclude that all u;’s are equal to one. So as
soon as we have the span of (X1, X5,Y) and nothing else happens at the entries
used by these matrices we will not have non-trivial diagonal matrices preserving the
subspaces upon conjugation. These matrices have in total 2n + 4 non-zero entries.
We do not want to touch the diagonal, so we have n? — 3n — 4 entries left, where
we can insert other members of the family F = (f;;); whichever we choose, the
resulting degree matrix will be diagonal. After having made this choice, we can
invoke the Lemma 3.23 to choose between 1 and n — 2 diagonal matrices that force
the degree matrix of the whole quantum graph to have a simple spectrum.

We have to use at least 4 matrices in this approach: Xi, X5, Y, and one diagonal,
which gives the lower bound d > 4. To get to n? — 5, note that it is sufficient to go
up to "22_1, by using Lemma 3.11. The only thing to note is that is that the degree
matrix of the orthogonal complement will also be diagonal. This follows from the
fact that the degree matrix of the sum of the two will be the sum of the degree
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matrices, and this sum is equal to the whole space of traceless matrices, whose
degree matrix is a multiple of identity. Now note that in our construction we left
n? — 3n — 4 unused entries and we can add to it our 3 matrices X, X5, and Y, and
up to n — 2 diagonal matrices, so we we can have a d-tuple with d = n? — 2n — 3.
This is larger than ”22_ L already for n > 3.

To deal with the case n = 6, we use slightly different matrices X7, X5, and Y.
Namely, we take X1 := fi2 + f3a + fs6, X2 := foz + fa5 + fi6, and Y := fi5 + f36.
By examining X; and X5 we get the equalities ujus = usuy = usug and ususz =
ugus = uiug. Remembering that u; = 1, we get us = us = 1 and us = uy = ug.
If we include Y, we get the additional condition ujus = usug, so ug = 1. In this
case there are 16 unused entries, so we can construct a d-tuple with d = 23, which
is larger than % (Il
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