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Deep Variational Autoencoder Classifier for
Intelligent Fault Diagnosis Adaptive to
Unseen Fault Categories

Anqi He

Abstract—With the rapid development of artificial intelligence
(A]) in recent years, fault diagnostics for industrial applications
have leaped toward partially or fully automatic provided by the
capability of analyzing massive condition monitoring data from
sensors and actuators. Generally, Al-based fault diagnostics can
achieve high accuracy when failure types appear in training dataset
and testing dataset are the same. These diagnostic methods could
be invalidated for applications dealing with unprecedented faults
because the pretrained classifier for diagnostics tends to misclassify
the novel instances into existing known classes. In order to address
these limitations of conventional diagnostic approaches, we propose
a unified diagnostics framework that can achieve novel fault detec-
tion and known fault classification tasks together. Through jointly
training a variational autoencoder and a deep neural networks
classifier, we convert the original entangled raw data into latent
variables with Gaussian probabilistic distributions in the latent
space and utilize the probabilistic latent variables to detect novel
samples against known fault classes or classify them into one of
the existing fault classes if they are not novel. The effectiveness
of our proposed joint-training framework is validated through
experimental studies on two different bearing datasets. Compared
with the state-of-the-art methods in the literature, our unified
framework is able to not only accurately detect the novel fault
classes but also achieve high classification accuracy of known fault
classes.

Index Terms—Ball bearing, deep learning (DL), deep variational
autoencoder (VAE), intelligent fault diagnostics, novelty detection.

1. INTRODUCTION

ECHNOLOGICAL innovations in machine automation,
T integration, and precision have been driving higher require-
ments for reliability and operational safety in modern manu-
facturing systems [1], [2]. The ever-increasing complexity of
machines and the processes causes various types of faults and
failures, e.g., lubrication contamination, leakage, overloading,
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misalignment, etc. These faults lead to component degradation
and malfunction and even dangerous failure of the entire ma-
chine, resulting in production loss and personnel injury [3], [4].
In order to improve the machinery reliability, itis crucial to detect
and identify any types of incipient faults so that maintenance or
control strategies actions can be performed timely.

The increasing implementation of new sensing and automa-
tion technologies has led to a tremendous growth in the volume
of massive data in modern manufacturing systems, providing
substantial opportunities to revolutionize process monitoring,
fault detection and diagnostics (FDDs). Recent advances in
machine learning (ML) based FDD methods take advantages
of massive amounts of historical data collected from equipment
and processes to provide accurate diagnosis results. These meth-
ods require extracting failure-sensitive features using statistics
signal processing techniques, such as time domain, frequency
domain, and time-frequency domain analysis on raw signals,
and then training a classifier based on ML techniques, such as
k-nearest neighbor, support vector machine (SVM), naive Bayes,
and artificial neural networks, to differentiate health condi-
tions [5]. However, ML-based methods require problem-specific
manual feature engineering using domain knowledge, which
is tedious and error-prone. Also, standard ML-based methods,
such as SVM, are shallow learning models with no more than
one nonlinear transformation, causing inefficiency and difficulty
in learning complex nonlinear relationships of high-dimensional
datasets [6], [7].

The promise of deep learning (DL) based methods for FDD
problems is to surpass the limitations of ML by automatically
transforming inputs of representations by stacking multiple sim-
ple neurons with nonlinear functions. Based on an end-to-end
learning mechanism, DL networks have shown a significant
capability of adapting to different types of data and discovering
intrinsic structures from inputs [8]. Recently, a great number
of researchers have proposed different novel DL models for
engineering fault diagnosis. For example, Lei et al. [9] developed
a stacked autoencoder (AE) to learn features from mechanical
vibration signals first and then used the soft-max regression to
classify the health conditions. Jia ef al. [10] presented a deep
neural network (DNN) model to diagnose the faults of rotating
machinery. The DNN model is first pretrained by an unsuper-
vised layer-by-layer learning from frequency spectra and then
fine-tuned with a supervised algorithm. Abdeljaber et al. [11]
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proposed a novel approach for online condition monitoring
and severity identification of ball bearings. They utilized two
compact one-dimensional (1-D) convolutional neural networks
to fuse the feature extraction and classification processes of a
damage monitoring system into a single learning body. Gan et
al. [12] proposed a new hierarchical diagnosis network auto-
matic diagnosis system for rolling-element bearings, which is
mainly composed of two layers of deep belief networks for fault
identification and severity assessment.

Most DL-based FDD methods are based on the closed-set
assumption such that the fault types from the training and testing
data share the same class characterization. In the situations
where the assumption is held, DL models have superior per-
formances of fault detection by automatic constructing discrim-
inative features from multidimensional condition monitoring
data. However, in many industrial applications, it is expensive
or impossible to identify and label all possible types of faults
in the training stage because manual labeling using domain
knowledge has two limitations: expensive and error-prone, and
inaccurate for low-frequency fault types. When new fault types
occur in testing samples, current diagnostics approaches may
misclassify samples into the existing types of faults defined
from the training data. To enhance robustness of FDD, it is
therefore desirable to first determine whether a test sample is
novel or significantly differs from the representative training
data [13]. This preliminary process before fault diagnosis is
novelty detection.

Novelty detection is the identification of testing data that differ
in some respect from the data that is available during training.
In general, a description of normality is learnt by constructing a
model with numerous samples representing positive instances
(e.g., data indicative of normal system behavior). Unprece-
dented or unknown patterns are then tested by comparing them
with the model of normality, often resulting in some form of
novelty score. The score is typically compared to a decision
threshold, and the test data are then classified to be “novelty”
if the threshold is exceeded [14]. The state-of-the-art novelty
detection approaches of fault diagnostics for engineering assets
can be roughly classified into four groups: 1) probabilistic-
based (e.g., Gaussian mixture models), 2) domain-based (e.g.,
one-class SVMs), 3) distance-based (e.g., k-nearest neighbors),
and 4) reconstruction-based (e.g., AE) [13], [15]-[17]. The
approaches 1)-3) are based on standard ML methods, which
are time-consuming in selecting and fine-tuning parameters.
Their performances are not guaranteed for online learning with
a large amount of data. In addition, for sensor data with complex
structures and high noise level, it is difficult to use these methods
to estimate probabilistic density functions or to apply distance-
based classification due to intensive computation and difficult
mathematical formulation. Differently, reconstruction-based ap-
proaches build a deep AE only based on normal samples and use
the trained deep AE to reconstruct the testing samples. Those
testing samples with large reconstruction errors are marked as
“novelty.” Such approaches present a strong learning ability to
discover complex structures among the massive data without re-
lying on much human knowledge and have emerged for novelty
detection and anomaly detection.
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Fig. 1. (a) Classical scheme of fault detection and identification. (b) Proposed
scheme of fault detection and identification.

Most deep AE-based methods for novelty detection calcu-
late the novelty scores only based on reconstruction error of
health state signals in the original space. These methods are
applicable to discriminate between the known normal data and
unknown faulty data because they share very distinguishable
characteristics in the original space. But in most of time, it
is difficult to use the reconstruction errors to differentiate the
unknown fault types from known fault types when they share
the similar characteristics in the original space. This implies
that it is necessary to utilize the information of latent space
to discriminate between known and unknown fault types. On
the other hand, Novelty detection and fault classification are
generally regarded as two independent research topics in existing
body of the literature. Novelty detection and fault classification
are commonly treated as two different problems and trained as
two separate models (e.g., novelty discriminator and known fault
classifier) in the classical FDD problems shown in Fig. 1(a).
Such two-stage approaches have two common drawbacks: first,
a false novelty detection result that is passed on to the fault
classification model leads to further misclassification errors;
and second, the overall approach is computationally expensive,
where data processing, model selection, and fine tuning of model
parameters are needed for two separate training processes. To the
best knowledge of the authors, there are no existing intelligent
fault diagnostic models that can handle both novelty detection
and fault diagnosis tasks effectively in one joint DL model.

In this article, we address the aforementioned research gaps by
developing a novel end-to-end DL-based fault diagnostic model
named as deep variational AE classifier (DVAEC) capable of
integrating novelty detection and fault classification into a single
framework with high accuracy and computational efficiency.
Specifically, we can detect unknown fault categories, whereas
the accuracy of fault classification for known categories are
maintained. The innovation of this approach is to take full advan-
tage of multitask learning, which results in improved learning
efficiency and prediction accuracy. During the training phase,
the DVAEC learns a number of underlying latent variables with
uncertainties that capture the underlying features of the input
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Fig. 2. Overall methodology framework. (a) Offline training process. (b) Online

data. These latent variables, as well as their associated uncer-
tainties, are learned through self-supervision of a variational
AE (VAE) network trained to reconstruct its own inputs. Since
the latent variables with uncertainties can be considered as an
effective representation of known classes in the training dataset,
we make use of these information from the latent space for
novelty detection. Meanwhile, the learned latent variables and
their corresponding distribution are simultaneously supervised
through a DNN for fault classification. In this way, we establish
a unified DNN model that can cotrain the models of novelty
detection and fault classification in one overarching DL archi-
tecture, as shown in Fig. 1(b). What is significantly different
with the standard DL-based fault classifiers is that DVAEC can
intelligently discriminate those new fault classes unseen in the
training samples. We use two case studies of bearing health
monitoring to validate the effectiveness of the proposed model.
The major scientific contributions of this work are as follows.
1) Establish a unified framework for simultaneous novelty
detection and fault classification in one joint DL process,
achieving significant learning efficiency in data-driven
FDD.
Provide a new end-to-end data-driven approach to detect
the unknown (unprecedented) fault classes by learning the
distribution in a latent space that characterizes the training
data without heavy manual feature extraction.

2)

—-®

testing process.

3) Verify and validate the accuracy and effectiveness of the
proposed framework using two bearing condition moni-
toring datasets [18].

We show that the proposed framework and algorithms ex-
hibit great potential for FDD applications for a wide variety of
industrial engineering systems and components.

The remainder of this article is organized as follows. In
Section II, the proposed DVAEC framework and models are
described in detail. Section IIT demonstrates the proposed meth-
ods with two benchmarking datasets of bearings, followed by
results and performance analysis. Finally, Section IV concludes
this article.

II. PROPOSED METHOD

A. Method Overview

The overall architecture of the proposed DVAEC framework is
composed of two phases: an offline training phase and an online
monitoring phase shown as Fig. 2(a) and (b), respectively. In the
offline training phase, a DNN with multibranch architecture—
DVAEC—is designed to jointly train the fault classifier and
VAE. Given the observed input data X and labels of known
faulty samples Y, the VAE network is comprised of two parts,
shown as an encoder and a decoder in Fig. 2(a). The encoder is
responsible for learning a mapping gz x (X; ¢) from input X
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directly to low-dimensional latent variables Z that maximally
explain as much of the data as possible. We assume that the
qz)x (X @) is normally distributed with mean and covariance
matrix defined by a DNN with parameters ¢. The decoder is
responsible for learning the inverse mapping px|z(Z; ) with
parameters 0, which takes the aforementioned latent variables
Z as input and reconstructs the original input. As opposed to
a standard AE model with deterministic latent variables, the
latent space of a VAE learned from the training set X can be
considered an effective representation of the distribution of input
X. We make use of this latent representation of the distribution
of input X and distance metrics in the latent space to train a
novelty discriminator, which is capable of distinguishing the
unseen fault classes from the known fault classes. During the
online monitoring phase, the DVAEC provides a reliable and
accurate fault identification of both seen and unseen (novel)
fault categories. The details of DVAEC will be described in the
following sections.

B. Variational AE

AE is one type of unsupervised DNNs capable of learning
lower dimensional representations of the input data. Given an
input signal z; from a dataset {z(") })¥ |, the encoder network f
transforms the input data into codes in a low-dimensional space
and then the decoder network gg reconstructs the codes back into
the original input space as closely as the input data by finding the
parameter sets ¢ and 6 in order to minimize the reconstruction
error L(x, x’) over the N training examples, where L(x, ) is
a loss function that measures the difference between x and '
such as || — 2'||2

Le(9,0) ) — go(fg(z))). (D

||M2

VAE is a generative model that can learn the hidden rep-
resentations of input by reconstructing the inputs. It has a
similar encoder—decoder architecture with AE [19]. The major
difference between VAE and AE is that the latent representation
z learned by a VAE network is probabilistic instead of deter-
ministic. Note that the prior over the latent representation z is
defined as the isotropic unit Gaussian pg(z) = N(z;0,I). The
encoder and the decoder of VAE are probabilistic and given by
g¢(z|), an approximate posterior, and py(x|z), likelihood of
the data « given the latent variable z, respectively. Since the true
posterior pg (z|x) is intractable, it is assumed that the intractable
posterior takes on an approximate multivariate Gaussian form
with a diagonal covariance

4¢(z|T) = N (2; pzja, 020> T) 2)

where pi,|, and 0|, are computed from @ through a neural
network with variational parameter set ¢.

The likelihood pg (| z) is also given by a multivariate Gaus-
sian whose probabilities are obtained from z

:N(:B;N'w\zao'aﬂzzl—) 3)

where piz|, and 04|, are computed from x through a neural
network with variational parameter set 6.

po(x|2)
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The goal of the VAE is to minimize the difference between
the approximated posterior ¢4 (z|x) and the true intractable
posterior pg(z|x), which can be evaluated by the Kull back—
Leibler (KL) divergence Dk (¢¢(z|x)|[pe(z|x)). Since this
KL divergence cannot be computed directly, we can minimize
it by maximizing the sum of variational lower bound on the
marginal likelihood of individual data points x;,2 =1,...,n
[20]. Therefore, the cost function of VAE can be written as

N
- Z EQ¢(z|m(i)) [logpe (m(l) |Z)}

i=1

Lyae(@, 0;x)

N
— > Drlap(zlz)llpe(2)) )
i=1
where the sum is computed over the training samples {x; }¥ ;.
The first term of the right-hand side of (4) can be regarded as a
reconstruction error forcing the model to reconstruct the inputs
and the second term acts as regularization term.

Specifically, the second term of the cost function is a KL term
that is analytical and differentiable. A more specific form of this
term can be expressed as

N

S Drw (42|27 [po(2))

i=1

N J 5 oy
=S N +log((@)) — (1)) )

i=1 j=1

l\')\»—l

where .J is the dimensionality of latent variables z and j denotes
the jth element of z.
Given the aforementioned cost function, the goal is to opti-
mize the lower bound w.r.t. both ¢ and 8, which are as follows.
1) The gradient of the cost function w.r.t. ¢: Since p and o
are the neural networks of input « with parameters ¢, the
second term of (4) can be easily differentiated w.r.t. ¢ in
the form of: > | V4 Dir. (g (2]2?)||pa(2)). However,
the first term of (4) requires estimation sampling, which
makes the gradient of this term w.r.t. ¢» problematic. Here,
this problem is solved by expressing the random variable
z as adeterministic variable z = p + o®e¢ = g(o, x; @),
with e~p(e) = N(0, I'), which is also known as “reparam-
eterization trick” [19]. Therefore, the gradient of the cost
function w.r.t. ¢ can be written as

N
Vo Lvae(d,0;@) = Y E, ) Vglogpe
=1
(@D g(a,27; ¢))
N .
— Y Ve Dxi(ge(z[@)||pe(2))-
=1
(0)

2) The gradient of the cost function w.r.t. 6

N
- Z EQ¢(z\:c(i))Vglogp9 (w(l) |2).
i=1
(7

VoLvae(@,0;x)
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With  the gradients of the cost function
Vg.0Lvae(¢,0; ), the optimization methods, such
as minibatch gradient descent, RMSprop, and ADAM,
can be applied to train VAE as an unsupervised method
to learn hidden representations of the inputs [19]. The
hidden representations z are J dimensional variables
sampled from a latent distribution g (z|x). In VAE,
the projection of the input data to the latent space (via
the encoder) captures the essential data characteristics,
allowing execution of the regression task in a much
lower dimensional space. On the other hand, the latent
distribution can potentially be used to define novelty
metrics for novelty detection.

C. Supervised Fault Classifier

In this section, we explain how the classic DL-based fault clas-
sifier works for a multiclass classification problem and discuss
its overconfidence problem.

Supposing that we have a training dataset {a:(i) N (raw
data or extracted features) with its corresponding fault label set
{yD}N |, where y» € {1,2,..., K}. The DNN-based clas-
sifier usually consists of three or more layers and the softmax
regression is often conducted in the final layer with multiclass
classification problem [21]. The goal of the classifier is to learn
the mappings between the training samples and their correspond-
ing labels. Given a test sample x, the model is able to estimate
the probability of the label taking on each of the K classes.
Thus, the output of the network is K estimated probabilities in
the following form:

p(y(i) = 1]z; ¢,w)

N o)),

p(y(i) = Klz®; 6, w)

el g9 ()

. ewT g0 (@)

= : ®)

K ng¢(m(l))
Zj:l e’

ewl:,;gqﬁ(m(i))

where w = [wi,ws,...,wk]| are the parameters of the final
softmax layer. g¢(.) is the DNN with parameter ¢ before the final
softmax layer. The cost function of softmax regression model
can be expressed as
N K wi g (@)
D= e“r9e
EC(¢aw; Z, y):_ Z Zl{y( ) k}logZK
i=1 k=1 j

J=1

e 9o (@)

9
where [(.) represents the indicator function returning 1 if the
condition is true, and 0 otherwise.

In order to train such models for multiclass classification,
we can obtain the gradient of the cost function V¢ Lo (¢ 2, y),
where for convenience, let { = {¢, w}. Then, we can minimize
the cost function over the training samples using an optimiza-
tion method, such as gradient descent. By stacking functional
layers (such as convolutional layers, recurrent neuron layers,
or multilayer perceptron) on the softmax regression layer, the
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DL-based classifiers show strong capability of representation
learning and classification. These DL-based classifiers can pro-
vide high performance in a variety of applications, so long as
the data seen at test time is similar to the training data. However,
when the testing samples are unseen in the training phase, DNN
classifiers tend to classify these novel input as one of the existing
classes and also results in overconfidence predictions on new
test examples [22], [23]. Therefore, ideally, we would like that
the classifier, in addition to its generalization ability, be able to
detect novel inputs [24]. In the next section, we will introduce the
proposed method, which can properly solve the aforementioned
issue.

D. Deep VAE Classification

We propose a new DVAEC framework, which can learn a
shared encoding representation for two tasks simultaneously:
first, capture complex distributions of classes in the training
dataset in a latent space and use the learned distribution to deter-
mine novelty score metrics to detect novel (unknown) samples;
second, learn the deep mappings between the input data and
labels to classify known faults. All these networks counteract
each other, enabling to learn a more shared and generalized latent
distribution z that jointly optimizes VAE and classifier. We will
first introduce how we train these two tasks simultaneously. We
show that DVAEC can be optimized by using backpropagation
similarly as the standard neural networks. Next, we define a new
novelty metric defined by the learned distribution from VAE in-
stead of reconstruction error from the standard AE. The novelty
metric can be used to construct the novelty threshold, which
helps to identify those testing data from unseen or unknown
classes.

1) Joint Learning Algorithm: The DVAEC should satisfy
two criteria: first, reconstruct well the training data, which can
be viewed as an ideal approximate of the distributions of the
training set; second, classify well the training data. Therefore,
DVAEC is based on a DNN architecture that has two pipelines
with a shared encoding part. The first pipeline is a deep VAE
network for training data reconstruction with parameters { ¢, 0},
whereas the second one is a fault classifier for in-distribution
classification with parameters {¢, ¢} with parameters. Given
a training dataset = {m(i)}ivzl with its corresponding label
set y = {yW}N |, where y € {1,2,..., K}. By combining
the cost functions of the VAE (4) and supervised classifier (9)
together into one, the objective of the DVAEC can be expressed
as

Liota = c1Lvae(¢,0;x) + c2Lo(p, (s, y)

where c; and ¢y are used to weight the importance of each cost
function in case that one individual component overpowers the
other during training.

All these networks counteract each other, which leads to learn
a more shared and generalized latent distribution z that jointly
optimizes the VAE and the classifier. As shown in Sections II-B
and II-C, we can easily get the gradients of each parameter. Then,
we can use stochastic gradient descent to optimize the objective
function. The parameters of the DVAEC can be updated as

(10)
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followings:
¢ = ¢ — ai(c1VeLyar(9,0;z) + a1V Le(d,(x,y))
0:0701261VQEVAE(¢,0;$) (]1)

C = C - QSCQVCEC(¢3 C; €, y)
where o, a1, and « are the learning rates.

Once the training is completed, the optimal parameters are
used to form the DVAEC to learn the distribution of the training
dataset and also perform well on those fault categories similar
to the training samples.

2) Novelty Threshold Construction in Latent Space: We treat
the DVAEC encoder network as a posterior model inference of
the parameters ¢ and the latent variables z are sampled from
this posterior model. The latent space of the DVAEC serves as an
effective representation of the distribution of training data. The
idea here is to construct a reference dataset by transforming the
training samples to a latent space while the latent distribution of
each test sample should also be inferred. Then, we use a distance
measure to find the closest sample from the reference dataset to
the test sample in the latent space. Such a distance measure in
latent space is used as a novelty score. A novel class is detected if
the novelty score exceeds the novelty threshold. In this section,
we construct a Bhattacharyya distance based novelty metric for
novelty detection.

The Bhattacharyya distance is deﬁned as Dp(p,q) =
—In(BC(p, q)), where BC(p,q) = [ \/p z)dz is the Bhat-
tacharyya coefficient of distributions p and q This approach
utilizes information about the fully learned distributions, com-
puting the amount of the overlap between them. The proposed
novelty score is defined as the Bhattacharyya distance between
the latent-space distribution of a test sample  and the most
similar latent-space distribution of a training sample x from
training set X

D(@) = min D (45 (+I7). gp(2])) (12)
where ¢¢(z|Z) = N(2z; 5, X) and gg(z]z) = N(z; 1, X), in
which f, g and 3,3 are the means and the covariances of
distributions of the testing sample and the training sample,
respectively. In this case, Dp(qe(2|®), gp(2|x)) can be ex-
pressed as

Dp( (7 — )

q94(2[T), g (2]x)) = 8(u p) s

1 det 3’
+ —1In

2 VdetZ detX

where X' = 2;2 and det is the determinant of the matrix.

In order to determine the novelty threshold, we use 15%
of training samples as a validation set and guarantee that the
validation set is a class balance dataset similar with the training
set. Then, the novelty scores of the validation set are computed
using (13) and the novelty score set D(x) is obtained. We set a
novelty threshold ~y at the dth percentile of D(x), determined by
the validation set. Thus, for any new testing data @, novelty
is detected if

13)

D(wtest) > . (14)
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Algorithm 1: Fault Diagnosis Algorithm of the DVAEC.
1. // J01nt Learning:

Inpllt {:13 i }N € Dtrcnn

2: ¢,0,¢ <— Imtlahze the parameter of the DVAEC.
3: repeat

4: Liotq; < Forward pass according to (10);

5: g < v¢,9,§£total

6: ¢,0,( < Update parameters using gradient;

7: until convergence

Output: The DVAEC parameters qg(z|x) and h¢ (y|z)
9: // Novelty Threshold Construction:
Input: ¢ and {z(V} | € D,

10: forj=1— M do

11: fori=1— Ndo

122 DY« Dilgg(2lz(;)). a6 (2lz(:)))

13: end for

14: DY) < Find the minimum value in {Dp (i)} ;.
15: end for

16: = < d0th percentile of {D(j)}jM:l

Output: Novelty threshold v

18: // Hierarchical Diagnosis Strategy:

Input: {z®) y(*)}K € D,..;, ¢, ¢ and Threshold
19: fork=1— K do
20: fori =1— N do

21 DY + Dp(ap(2lz (), 1o (zlz ()
22: end for

23: D™ « Find the minimum value in {Dp (i) }}¥,.
24:  if D*) > ~ then

25: g““) + Novel Class

26: else

27: g he(y|z); Classified as known classes
28: end if

29: end for

If the sample is identified as nonnovel, the DVAEC classifies
it as one of the pre-existing classes.
Algorithm 1 summarizes the DVAEC algorithm.

III. APPLICATION TO BEARING HEALTH STATE DIAGNOSIS

In this section, two case studies are conducted to validate the
effectiveness of the DVAEC for bearing health state diagnosis.
The test of the proposed methodology is performed using a
sequential diagnosis scheme, which implies that each testing
sample is first evaluated whether it is a novel fault class and
then, if it is labeled as known class, the specific fault class is
identified. In this case, the detection error of novelty detection
will propagate into the classification accuracy and influence the
performance of fault classification of known classes. Therefore,
to evaluate the performance of each stage, the novelty detection
and fault classification are evaluated and compared with other
methods separately.

Authorized licensed use limited to: Northeastern University. Downloaded on June 22,2022 at 20:24:03 UTC from IEEE Xplore. Restrictions apply.



HE AND JIN: DEEP VAE CLASSIFIER FOR INTELLIGENT FAULT DIAGNOSIS ADAPTIVE TO UNSEEN FAULT CATEGORIES 1587
Classifier
Encoder Latent Space
Labels
./10 B —— e j}
®u
: o=
@ sampi
ampling
2 > .Zl
Oa : Decoder
Q a 0.
: Reconstructed
Oo.g_ Input
X
. Convolutional Layer O Fully-Connected Layer . Mean O Variance . Random Samples
Fig. 3. Schematic of the DVAEC model.
A. Experimental Settings TABLEI
PARAMETERS OF THE DVAEC MODEL
In Section II, the proposed DVAEC method is in a general
form requiring no specifications for the input data. Hence, the Name Layer Output Activation __ Filter __ Stride
. . . Tnput B 96 X 96 X 4 Tdentit E -
DVAEC can be applied on a wide range of data type, such as time P Y
domain, frequency domain, or time-frequency domain signals. Encoder Convl 96 X 96 x 4 Relu 3x3 1x1
. . . i Conv2 48 % 48 x 32 Relu 3x3 2x2
In this study, the short-time Fourier transform (STFT) is used Maxpooll 24 x 24 x 32 - 2x2 1x1
: : : Conv3 24 % 24 X 64 Relu 3x3 1x1
to obt.aln a2-D tlme-freqqency rpatrlx f¥0m sensor data and the Marpool2 12 x 12 x 64 © b 1.1
raw signals refer to the signals in the time-frequency domain. Convd 12 x 12x 128  RelutFlaten 3 x3  1x1
. . . . Densel 18432 Relu - -
The main reason is that the time-frequency matrix can represent Dense2 128 Relu
the nonstationary vibration signals in both time and frequency ) ,
i .- ) . . Latent Space Dense3 dim z Identity
domain, and those characteristics may provide clear information
about the health conditions of rotating machinery and enhance Decoder Mirror of Encoder Part
the quality of inputs. Spectrograms are a visual representation Classifier Dense4 256 Relu
. . . Dense5 128 Relu
of the STFT, where the horizontal and vertical axes are time Densc6 64 Relu
Dense7 4 Softmax

and frequency, respectively, and the color scale of the image
indicates the amplitude of the frequency.

In the VAE pipeline, a network composed of convolutional
layers and fully connected layers is built. For the classifier
pipeline, dense layers and softmax layer are used. The reason
why we use the convolutional layers is that the input of the
model is the spectrogram, which can be regarded as color scale
image, and the convolutional layers are useful for extracting the
hidden features from these images. The schematic of the DVAEC
architecture is shown as Fig. 3. We perform a hyperparameter
search by varying the dimensionality of the latent space, the
depth of the architecture, and the number of hidden layers to find
the model that achieves the highest AUC score and classification
accuracy. The detailed parameters of the resulting architecture
are listed as Table 1.

All the models in this article were trained on a NVIDIA
Geforce GTX 1080Ti GPU and the Adam optimizer with the
following hyperparameters: learning rate « = 0.001, 51 = 0.9,
and [y = 0.999. The number of latent variables is J = 10 for the
rest of the analysis. The weights of ¢; and ¢, in (10) are selected

as ¢; = 1 and co = 0.5, which provide a reasonable tradeoff in
importance between the classifier and novelty detection func-
tions, wherein no individual loss component overpowers the
others during training.

B. Methods Comparison

The DVAEC is used to detect each testing sample in a sequen-
tial scheme such that if a testing sample is identified as nonnovel,
aknown class is then identified; otherwise, it is labeled as a novel
class. This implies that the performance of the first step (novelty
detection) will influence the prediction accuracy of the second
step (fault classification of known set). The progressive valida-
tion results of the proposed DVAEC model are compared with
other DL-based methods from two aspects: accuracy of novelty
detection of novel samples and accuracy of fault classification.
Two sets of performance metrics are considered as follows.
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TABLE I
STATISTICAL FORMULA OF THE EXTRACTED FEATURES FOR
COMPARATIVE METHODS
Name Formula Name Formula
Square-mean-root:  py = (& ¥ zD? Crest Factor: pe = %Sm)
Mean-absolute: p2 = % > || Shape Factor: pr =23

P2

max(|z|)
P1

p3 = /% > 2

Pa =

Root-mean-Square: Clearance Factor:

pPs =

2~

max(|z|)
P2

Kurtosis: Impulse Indicator: P9 =

M S

2~

Skewness:

ps =

wed

P

1) Novelty detection (unknown faults): We used the area
under the curve of the receiver operating characteristic
(AUC) and F1 score as the quality metric, which are the
most common accuracy metric for novelty detection in the
literature.

2) Fault classification (known faults): We use classification
accuracy as the quality metric to validate the performance
of the fault classification regarding to the known set.

To evaluate the diagnostic effectiveness of the proposed
method, we compare the novelty detection and fault classifica-
tion results of our proposed model with other standard methods
from the related literature according to the aforementioned
evaluation metrics.

1) As for the baseline of novelty detection, we con-
sider the standard novelty detection methods: One-class
SVMs [13], [15], [25] and deep AE models with determin-
istic latent variables. The reconstruction error is employed
as a measure of normality versus novelty [17].

2) Fault classification: We consider two conventional ML-
based fault classification methods: SVMs and DNNs. The
five-layer DNNs model [9] for fault classification was used
for comparison.

Standard bearing fault diagnosis methods mainly rely on some
hand-crafted feature extraction methods. Statistical analysis is
one of the effective methods to extract features because these
common standard statistical features can represent the charac-
teristics of bearings operating in different health conditions. In
this method demonstration, nine widely used feature indexes are
used for the comparative analysis, as shown in Table IT[13], [26].

C. Case 1: SEU Bearing Dataset

In this case study, we test the DVAEC model using a
bearing dataset collected from a drivetrain dynamic simulator
(DDS) [27]. The test stand for DDS consists of four main
components: motor, planetary gearbox, parallel gearbox, and
break system. The test rolling element bearing supports the shaft
for the planetary gearbox. Vibration signals are collected from
the planetary gearbox at a sampling rate of 12 000 Hz. The speed
load configuration of this experiment was set to 30 Hz-2 V. Three
fault types occurs in the different locations of the test bearing:
crack in the inner ring, crack in the outer ring, and cracks in both
inner and outer rings [28], [29].
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Fig. 4. Time-domain illustration of samples created from bearing data.
TABLE III
TRAINING AND TESTING DATA SPLIT OF BEARING HEALTH STATE SAMPLES
FOR DIFFERENT SCENARIOS IN CASE 1

scenario Testing Dataset

Training Set

Index Known Set Novel Set
1 (N) (N) (IR)
2 (N, IR) (N, IR) (OR)
3 (N, IR, OR) (N, IR, OR) (€)
4 (N, IR, OR, C) (N, IR, OR, ©) \
TABLE IV

NOVELTY DETECTION PERFORMANCE IN CASE 1

OCSVM CAE DVAEC

scenario 1
AUC 0.54 0.91 0.97
F1 0.35 0.86 0.99
scenario 2
AUC 0.49 0.81 0.83
F1 0.41 0.77 0.80
scenario 3
AUC 0.54 0.70 0.91
F1 0.43 0.65 0.87

We prepare the dataset for the model testing as the following:
First, four health conditions are obtained and labeled as normal
condition (N), inner race fault (IR), outer race fault (OR), and
combination of inner and outer ring faults (C). Second, we
segmented the vibration signals of different health conditions
into data chunks using tumbling time windowing. In this case,
we can obtain 2048 data samples with a window of 1024 points
for each health condition. In Fig. 4, we visualize four raw data
chunks randomly selected from different health states. We set
four scenarios to evaluate the capability of the proposed method
to detect and classify the testing samples, which may include
novel samples that do not belong to any of the existing known
classes. Each scenario is composed of a training set and a testing
set, where the testing set consists of samples from both known
classes and novel classes, as shown in Table III. The settings
of different scenarios are inspired by a progressing stage of the
fault detection approach in the bearing FDD case study, where
only samples of normal condition (N) are initially available, and
new classes are progressively detected and incorporated into the
original training set through DVAEC retraining.

Table IV shows the comparison between our method and other
standard methods. Their novelty detection results of first three
scenarios based on two evaluation metrics—AUC and F1—are
displayed. Generally, our methods in scenarios 1 to 3 all out-
perform standard novelty detection methods, such as OCSVM
and reconstruction-based CAE method. More specifically, the
DL-based methods—DVAEC and CAE methods—in all three
scenarios perform better than the OCSVM method. In this case
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Novelty detection performance for SEU dataset. First column: ROC curves of comparison methods in three scenarios; Second-fourth column: histogram

of the novelty scores for normal and novel samples of comparison methods in three scenarios (testing samples in novel set have considerably higher novelty scores

than those in known set).

TABLE V
FAULT CLASSIFICATION PERFORMANCE

Methods Classification Accuracy (%)
scenario 2  scenario 3  scenario 4
SVM 63.00 58.75 68.55
DNN 94.00 90.40 92.15
DVAEC 100.00 99.75 100.00

study, it seems that OCSVM cannot directly define a decision
boundary in the original space, which can be used to detect the
novel fault category outside the frontier in the testing dataset.
With the increase in the number of fault classes in the training
samples (scenarios 2 and 3), which makes the composition of the
training dataset more complex, our method can still provide a
high performance of novelty detection, whereas the other meth-
ods cannot guarantee an accurate and robust novelty detection.
This indicates that the latent distribution learned by DVAEC
can successfully learn the hidden representation of the complex
structured inputs. This latent distribution is beneficial to novelty
detection. In Fig. 5, we further demonstrate the effectiveness
of DVAEC by comparing the ROC curves and the histogram of
the novelty score for known normal or fault categories and novel
fault category. We can see that novel fault category (red part) has
considerably higher novelty scores than known fault categories
(blue part). The larger separation between the histograms of
novel set and known set represents a better novelty detection
ability based on the novelty scores. We can see that the DVAEC
outperforms the baselines in scenarios 1-3.

The fault classification results are shown in Table V. We can
see that our proposed method can produce a classification accu-
racy as almost 100% in three scenarios. To give more information
about the classification performance of our proposed method, the
confusion matrices of fault classification are shown in Fig. 6.

Compared with other standard fault classification methods,
from Table V, we see that the proposed DVAEC outperforms
standard methods and achieves higher classification accuracy
for the known sets in scenarios 2 to 4. The standard DL methods,
such as DNNSs, can also achieve similarly high accuracy as our
proposed method. This implies that DL. model shows a superior
performance over standard ML method relying on the hand-
crafted statistical features on discovering hidden characteristics
of normal and fault condition .

To visualize the feature extraction ability of our proposed
method, t-SNE [30] is used to graphically present features
extracted by DVAEC under scenario 4, including four health
states. At the same time, the raw data and statistic features by
Table II are also plotted for comparison. Our method shows
great feature extraction ability. As shown in Fig. 7(a), we can see
that the normal vibration data are clustered separately far away
from the mixture cluster of three fault categories. This implies
that the normal category is naturally easy to be discriminated
from other fault categories, whereas it is hard to make a clas-
sification among fault classes because they share similar data
pattern and characteristics. The similar phenomenon can be
observed from the visualization of statistic features in Fig. 7(b).
However, in Fig. 7(c), the features extracted by our proposed
method form clusters with distinguishable deviations with each
other among different health states.
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Fig. 7.  Feature visualization using t-SNE for scenario 4. The color intensity of data points signifies the corresponding health states, including N, IR, OR, and C.

We visualize the raw fault data and the extracted statistic features (see Table II) in (a) and (b), respectively. In (c), we plot the hidden variables sampled from the
hidden distribution using our proposed method. (a) Raw data. (b) Statistic features. (c) DVAEC.

Another major concern for online fault detection is compu-
tational efficiency. In this case study, we obtain the average
time for novelty detection and average time for known fault
classification. The average time for novelty detection is approx-
imately 0.05 s, whereas the average time for fault classification
is 0.0018 s, which are acceptable for most industry applications.

D. Case 2: FEMTO Bearing Dataset

The proposed DVAEC can also be used to identify the different
health states of a bearing during its whole life cycle. In case 2,
FEMTO bearing dataset is composed of 17 run-to-failure data
of rolling element bearings acquired from a PRONOSTIA plat-
form. The PRONOSTTA platform conducts accelerated degra-
dation tests in a few hours with a high-level radial force larger
than the bearings’ maximum dynamic load. During the tests,
the rotating speed and the load of the bearing were kept stable
under three different operating conditions. Two accelerometers
and a thermocouple were used to capture the vibration signals
and the temperatures of the bearings. The bearing useful life is
considered to end when the amplitude of the vibration signal
exceeds 20 g. It is worth noting that no assumption on the type
of failure was given (no or little knowledge about the nature and
the origin of the degradation: e.g., balls, inner or outer races,
cage).

For the purpose of this article, we adapt the FEMTO bearing
dataset based on the following rules.

1) We choose the vibration signals of one run-to-failure

bearing dataset. The sampling frequency is 25.6 kHz. The

Fig. 8
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. Vibration signals of the selected bearing.

vibration signals are sampled every 10 s and lasts 0.1 s ev-
ery time. Fig. 8 shows the run-to-failure vibration signals
ending with a roller defect of the bearing. We can observe
that vibration amplitude of the bearing has an increasing
trend over the time as a whole, which demonstrates the
nonlinear process of bearing degradation over time. The
nonlinearity between vibration signals and health status
makes it difficult to assess the bearing health condition.
The vibration amplitude increases gradually, which means
that health status is getting worse over time [31].

The health states in the whole lifetime are divided ac-
cording to the root mean square (rms) of the vibration
signals, as illustrated in Fig. 9. The degradation severity
of a bearing during its life cycle can be regarded as four
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TABLE VI
TRAINING AND TESTING DATA SPLIT OF BEARING HEALTH STATE SAMPLES
FOR DIFFERENT SCENARIOS IN CASE 2

scenario Testing Dataset

Training Set

Index Known Set Novel Set
1 (ho) (ho) (h1)
2 (ho, h1) (ho, h1) (h2)
3 (ho, h1, h2) (ho, h1, h2) (h3)
4 (ho, h1, ha, h3)  (ho, h1, ha, h3) \

fault classes denoted as hgy to hs: normal stage (hg),
initial defect (hq), fault propagation stage (h-), and failure
stage (h3) [32]. We segmented the vibration signals of
different health states into data chunks using tumbling time
windowing with 2048 data points such that we can obtain
1500 data samples for each health conditions of hg—ho
and 755 data samples for hs. Then, we use 75% of data
samples of each health state as training samples, 10% as
validation samples, and 15% as testing samples.

3) We set four scenarios to evaluate the capability of the

proposed method to detect and classify the testing samples.
Each scenario is composed of a training set and a testing
set, where the testing set consists of samples from both
known classes and novel classes, as shown in Table VI.
The settings of different scenarios are designed in the
way that new state(s) emerge in a progressive manner
during different stages of health condition assessment. For
example, in the initial stage, assuming the bearing is in its
initial stage of life cycle, only samples of normal condition
(N) are available, and new classes (discrete degradation
states) emerge gradually. During each stage, we use the
training data of the degradation trajectory in the proposal
DVAEC model for new state detection. Moving along with
the degradation process, new data are incorporated into the
training set and start the detection/classification process
for the next stage. This process evolves over the entire
bearing life cycle.

Table VII shows the comparison between our method and
other standard methods. Their novelty detection results of
first three scenarios based on two evaluation metrics—AUC
and Fl—are displayed. Generally, our methods in scenarios
1 and 2 outperform standard novelty detection methods, such
as OCSVM and reconstruction-based CAE method, whereas
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TABLE VII
NOVELTY DETECTION PERFORMANCE IN CASE 2

OCSVM CAE DVAEC

scenario 1
AUC 0.74 0.58 1.00
F1 0.70 0.36 1.00
scenario 2
AUC 0.99 0.82 1.00
F1 0.97 0.65 1.00
scenario 3
AUC 0.98 0.75 0.96
F1 0.94 0.44 0.90
TABLE VIII

FAULT CLASSIFICATION PERFORMANCE

Methods Classification Accuracy(%)
scenario 2 scenario 3  scenario 4
SVM 91.78 84.30 80.53
DNN 93.11 90.22 98.43
DVAEC 99.55 99.11 99.33

our proposed method performs slightly worse than OCSVM,
whereas still better than CAE method in scenario 3. The possible
reason why our method performs slightly worse than OCSVM
in scenario 3 is the discrepancy between failure signals and
signals from other stages is relatively apparent, which makes
the scenario 3 as the easiest novelty detection task among all
scenarios. On the other hand, OCSVM method is relying on
some manual time domain indexes, such as rms and shape factor.
These time domain indexes may help OCSVM distinguish the
different degradation patterns between failure stage and other
stages. However, these time domain indexes may not be so
effective in scenario 1, in which the discrepancy between normal
signals and initial faulty signals is not so apparent. Compared
with OCSVM and CAE, with the increase in the number of fault
classes in the training samples, which makes the composition
of the training dataset more complex, our proposed method can
always guarantee a superior and robust novelty performance.
The possible reason why OCSVM and CAE both have bad
performance in scenario 1 is the discrepancy between normal
signals and initial faulty signals is not so apparent, which makes
the scenario 1 as the most difficult novelty detection task among
all scenarios. In Fig. 10, we further demonstrate the effectiveness
of DVAEC by comparing the ROC curves and the histogram of
the novelty score for known set and novel set in testing dataset.
We can see that the larger separation between the histograms
of novel set (red part) and known set (blue part) represents a
better novelty detection ability based on the novelty scores. We
observe that the DVAEC outperforms the baselines in scenarios
1 and 2, whereas the DVAEC works slightly worse than OCSVM
but still has a great performance in scenario 3.

The fault classification results are shown in Table VIII. We can
see that our proposed method can produce a classification accu-
racy as over 99% in three scenarios. To give more information
about classification performance of our proposed method, the
confusion matrices of fault classification are shown in Fig. 11.

By comparison, from Table VIII, we see that the proposed
DVAEC outperforms standard methods and achieves higher
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classification accuracy for the known sets in scenarios 2 to 4.
The standard DL methods, such as DNNs, can also achieve
relatively high accuracy (over 90%) in three scenarios. This im-
plies that DL model shows a superior performance over standard
ML method relying on the hand-crafted statistical features for
supervised classification problem.

To visualize the feature extraction ability of our proposed
method, the t-SNE is used to graphically present features ex-
tracted by DVAEC under scenario 4, including four health states.
At the same time, the raw data and statistic features by Table II
are also plotted for comparison. Our method shows great feature
extraction ability. As shown in Fig. 12(a), we can see that most
of the failure stage (hs) data is clustered all around the outside of
the mixture cluster of other three health states. This implies that
the failure stage data are naturally easy to be discriminated from

Confusion matrices for known set fault classification of case 2 using our proposed method. (a) Scenario 2. (b) Scenario 3. (c) Scenario 4.

other fault categories, whereas it is hard to make a classification
among fault classes because they share similar data pattern and
characteristics. The similar phenomenon can be observed from
the visualization of statistic features in Fig. 12(b). However, in
Fig. 12(c), the features extracted by our proposed method form
clusters with distinguishable deviations with each other among
different health states, including normal and fault data.

We further test the model performance by applying the trained
DVAEC models to assess the health states of a different bearing.
The new bearing for testing works under the same operating
conditions with the bearing used for model training. The run-to-
failure vibration signals of the new bearing is shown in Fig. 13.
As aresult shown in Fig. 14, the health states of the new bearing
in different scenarios can be identified in real time according to
the proposed Algorithm 1 in Section II-D. The predicted labels
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the hidden distribution using our proposed method. (a) Raw data. (b) Statistic features. (c¢) DVAEC.
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Fig. 14.  Health state assessment performance of the new bearing in different

scenarios. (a) Scenario 1. (b) Scenario 2. (¢) Scenario 3. (d) Scenario 4.

(hg, h1, ho, and hz) by DVAEC are visualized over time for
different scenarios, which also imply the health state transition
during the bearing’s life cycle. Note that the novelty threshold is
set at the 90% percentile of the training set in scenario 1 and the
threshold is set at the 95% percentile in scenarios 1 and 2. From

TABLE IX
HEALTH STATE ASSESSMENT PERFORMANCE FOR NEW BEARING

scenario AUC Accuracy(%)
Index Novel Set Known Set
1 0.93
2 0.80 90.03
3 0.82 84.25
4 \ 79.30

Fig. 14(a)—(d) and Table IX, we can see that the predicted health
state labels can clearly show the degradation trend of the new
bearing and misclassified health states are mainly distributed
around the change time of the adjacent health states associated
with a certain level of classification uncertainty. We can also see
that in scenarios 3 and 4, there is no health state h3 close to the
failure time misclassified as normal health state hq. This shows
the great safety and reliability of the proposed model.

In terms of case 2, the average time for novelty detection is
approximately 0.07 s, whereas the average time for known set
fault classification is 0.0005 s, which are acceptable for most
industry applications.

E. Noise Influence

In order to explore the influence of noise on the bearing
health state diagnosis results, additional white noise is added into
testing data for robustness analysis. Each testing sample is added
with zero-mean Gaussian white noise and then tested by the pre-
vious trained network. By changing the standard deviation of the
Gaussian noise, signals with different signal-to-noise ratios can
be obtained. By adding white noise, information in the original
signals would be disrupted and features would be covered by
noise. The trained network would misjudge samples due to noise
influence. It could be expected that accuracy would drop when
noise is added. In scenario 3 of both case studies, we compare
the novelty detection and known set classification performance
of our proposed method with other methods separately.

Fig. 15 displays the AUC with respect to different standard
deviation of additional noise for novelty detection performance
in both two cases. In all scenarios, AUC scores decrease as
higher level of white noise is introduced. However, the AUC
of the DVAEC drops relatively slower than OCSVM and CAE
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Fig. 15. Robustness analysis for unknown set novelty detection in scenario 3.
(a) Case 1. (b) Case 2.
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Fig. 16.  Robustness analysis for known set fault classification in scenario 3.
(a) Case 1. (b) Case 2.

methods. For case 2, OCSVM plummets in a short time and is
least robust against noise. The result shows that the proposed
DVAEC network is robust to noise without prior knowledge.

In terms of fault classification performance, Fig. 16 displays
the classification accuracy with respect to different standard
deviation of additional noise in both case studies. All three
classification accuracy curves decrease as higher level of white
noise is introduced. Although the classification of DVAEC drops
slightly faster than SVM but slower than DNN, our proposed
method can also maintain a high classification accuracy when
the noise level increases.

IV. CONCLUSION

This article presented a novel DL-based fault diagnostics
framework (DVAEC) to address the key challenges in deal-
ing with unprecedented faults—enabling robust performance
of both new fault identification and known fault diagnostics.
The proposed framework unified novelty detection and fault
classification into a single framework through jointly training a
deep VAE model and a classifier to provide robust and accurate
FDD results when unknown fault samples emerge unexpectedly
without prior knowledge. The DVAEC model transformed fault
signals with similar characteristics entangled in their original
space into latent variables with uncertainty information in a
latent space so that the underlying structure of the inner dis-
tribution can be captured and characterized probabilistically.
These probabilistic latent space information empowered the
model to establish a distance-based novelty threshold to identify
whether the testing sample is novel and then automatically
classify nonnovel samples into the existing known labeled fault
classes. Two roller bearing related cases were carried out to val-
idate the proposed method. Specifically, the effectiveness of the
proposed method was validated by a comparison with existing
DL-based benchmarking methods. The model performance was

IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 4, DECEMBER 2021

further validated by accurately detect and identify degradation
states on a new bearing different from the one for training.
The significance of this study was to provide a generalizable
DL-based approach for health state diagnosis of mechanical
systems with limited labeled monitoring data, which has shown
a great potential for incremental fault diagnosis starting from
only health normal data.

The methods developed in this article can be further improved
from the following aspects in the future. First, it is reasonable to
preprocess the data by generating spectrogram images, and this
method is commonly used for vibration data since this type of
data is nonstationary and periodic. It is meaningful to take other
types of data into consideration and develop more generalizable
methods for fault diagnostics, second, it is interesting to further
study how to retrain the model when the new fault types are in-
crementally detected and incorporated into the original dataset.
The problem of class imbalance is worth further investigation to
improve incremental fault diagnostics.
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