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Abstract

For any fixed nonzero integer h, we show that a positive proportion of integral binary
quartic forms F do locally everywhere represent h, but do not globally represent h. We
order classes of integral binary quartic forms by the two generators of their ring of GL2(Z)-
invariants, classically denoted by I and J.
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1. Introduction

Let h ∈Z be nonzero. We will prove the existence of many integral quartic forms that do
not represent h. Specifically, we aim to show many quartic Thue equations

F(x, y)= h (1)

have no solutions in integers x and y, where F(x, y) is an irreducible binary quartic form with
coefficients in the integers.
Let

F(x, y)= a0x
4 + a1x

3y+ a2x
2y2 + a3xy

3 + a4y
4 ∈Z[x, y].

The discriminant D of F(x, y) is given by

D=DF = a60(α1 − α2)
2(α1 − α3)

2(α1 − α4)
2(α2 − α3)

2(α2 − α4)
2(α3 − α4)

2,

where α1, α2, α3 and α4 are the roots of

F(x, 1)= a0x
4 + a1x

3 + a2x
2 + a3x+ a4.

Let A= (
a b
c d

)
be a 2× 2 matrix, with a, b, c, d ∈Z. We define the integral binary quartic

form FA(x, y) by

FA(x, y) := F(ax+ by, cx+ dy).

It follows that

DFA = (detA)12DF. (2)

If A ∈GL2(Z), then we say that ±FA is equivalent to F.
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The GL2(Z)-invariants of a generic binary quartic form, which will be called invariants,
form a ring that is generated by two invariants. These two invariants are denoted by I and
J and are algebraically independent. For F(x, y)= a0x4 + a1x3y+ a2x2y2 + a3xy3 + a4y4,
these invariants are defined as follows:

I = IF = a22 − 3a1a3 + 12a0a4 (3)

and

J = JF = 2a32 − 9a1a2a3 + 27a21a4 − 72a0a2a4 + 27a0a
2
3. (4)

Every invariant is a polynomial in I and J. Indeed, the discriminant D, which is an invariant,
satisfies

27D= 4I3 − J2.

Following [4], we define the height H(F) of an integral binary quartic form F(x, y) as
follows,

H(F) := H(I, J) := max

{∣∣∣I3∣∣∣ , J2
4

}
, (5)

where I = IF and J = JF.
We note that if F(x, y)= h has no solution, and G is a proper subform of F, i.e.,

G(x, y)= F(ax+ by, cx+ dy) (6)

for some integer matrix A= (
a b
c d

)
with |det A| > 1, then clearlyG(x, y)= hwill also have no

integer solutions. We will call a binary form maximal if it is not a proper subform of another
binary form.
Our aim in this paper is to show that many (indeed, a positive proportion) of integral

binary quartic forms are not proper subforms, locally represent h at every place, but globally
do not represent h. The following is our main result.

THEOREM 1·1. Let h be any nonzero integer. When maximal integral binary quartic
forms F(x, y) ∈Z[x, y] are ordered by their height H(I, J), a positive proportion of the
GL2(Z)-classes of these forms F have the following properties:

(i) they locally everywhere represent h (i.e., F(x, y)= h has a solution in R2 and in Z2
p

for all p); and

(ii) they globally do not represent h (i.e., F(x, y)= h has no solution in Z2).

In other words, we show that a positive proportion of quartic Thue equations F(x, y)= h
fail the integral Hasse principle, when classes of integral binary quartic forms F are ordered
by the height H(I, J) defined in (5). We will construct a family of quartic forms that do not
represent a given integer h and obtain a lower bound μ > 0 for the density of such forms.
The value for μ is expressed explicitly in (39). Moreover, our method yields an explicit
construction of this positive density of forms. It is conjectured that, for any n≥ 3, a density
of 100% of integral binary forms of degree n that locally represent a fixed integer h do not
globally represent h. The positive lower boundμ in (39) is much smaller than the conjectured
density 1.
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In joint work with Manjul Bhargava [2], we proved a result similar to Theorem 1·1. In
[2] we consider integral binary forms of any given degree ordered by naÏve height (the max-
imum of absolute values of their coefficients). Theorem 1·1 is new, as we use a different
ordering of integral binary quartic forms, which is more interesting for at least two rea-
sons; here integral binary quartic forms are ordered by two quantities I and J, as opposed
to five coefficients, and I and J, unlike the coefficients, are GL2(Z)-invariant. In [2], for any
fixed integer h, we showed that a positive proportion of binary forms of degree n≥ 3 do
not represent h, when binary n-ic forms are ordered by their naive heights. Moreover, for
n= 3, we established the same conclusion when cubic forms are ordered by their absolute
discriminants. The Davenport–Heilbronn Theorem, which states that the number of equiv-
alence classes of irreducible binary cubic forms per discriminant is a constant on average,
was an essential part of our argument in [2] for cubic forms. More importantly we made
crucial use of the asymptotic counts given by the Davenport–Heilbronn Theorem for the
number of equivalent integral cubic forms with bounded absolute discriminant (see the orig-
inal work in [2,7] for application and further references). Such results are not available for
binary forms of degree larger than 3. For quartic forms, fortunately we are empowered by
beautiful results due to Bhargava and Shankar that give asymptotic formulas for the number
of GL2(Z)-equivalence classes of irreducible integral binary quartic forms having bounded
invariants. These results will be discussed in Section 3.
This paper is organised as follows. In Section 2 we discuss some upper bounds for

the number of primitive solutions of quartic Thue equations. Section 3 contains important
results, all cited from [4], about the height H(I, J). In Sections 4 and 5 we impose condi-
tions on the splitting behavior of the forms used in our construction modulo different primes
to make sure we produce a large enough number of forms (which in fact form a subset
of integral quartic forms with positive density) that do not represent h, without any local
obstruction. In Section 6, we summarise the assumptions made in Sections 4 and 5, and
apply essential results cited in Sections 2 and 3 to conclude that the quartic forms that we
construct form a subset of integral binary quartic forms with positive density.

2. Primitive solutions of thue equations

Let F(x, y) ∈Z[x, y] and m ∈Z. A pair (x0, y0) ∈Z2 is called a primitive solution to the
Thue equation F(x, y)=m if F(x0, y0)=m and gcd (x0, y0)= 1. We will use the follow-
ing result from [1] to obtain upper bounds for the number of primitive solutions of Thue
equations.

PROPOSITION 2·1. ([1, theorem 1·1.]) Let F(x, y) ∈Z[x, y] be an irreducible binary form of
degree 4 and discriminant D. Let m be an integer with

0<m≤ |D| 16−ε

(3.5)24
2
3

,

where 0< ε < 1/6. Then the equation |F(x, y)| =m has at most

36+ 4

3ε

primitive solutions. In addition to the above assumptions, if we assume that the polynomial
F(X, 1) has 2i non-real roots, with i ∈ {0, 1, 2}, then the number of primitive solutions does
not exceed
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36− 16i+ 4− i
3ε

.

If the integral binary forms F1 and F2 are equivalent, as defined in the introduction, then
there exists A ∈GL2(Z) such that

F2(x, y)= FA
1 (x, y) or F2(x, y)= −FA

1 (x, y).

Therefore, DF1 =DF2 , and for every fixed integer h, the number of primitive solutions to
F1(x, y)= ±h equals the number of primitive solutions to F2(x, y)= ±h.
The invariants IF and JF of an integral quartic form F that are defined in (3) and (4) have

weights 4 and 6, respectively. This means

IFA = (detA)4IF, (7)

and

JFA = (detA)6JF. (8)

Consequently, by definition of the heightH in (5), we have

H(FA)= (detA)12H(F), (9)

and

H(− FA)= (detA)12H(F).

3. On the Bhargava–Shankar heightH(I, J)

In [4] Bhargava and Shankar introduce the height H(F) (see (5) for definition) for any
integral binary quartic form F. In this section we present some of the asymptotical results in
[4], which will be used in our proofs. Indeed these asymptotic formulations are the reason
that we are able to order quartic forms with respect to their I and J invariants.
One may ask which integer pairs (I, J) can actually occur as the invariants of an integral

binary quartic form. The following result of Bhargava and Shankar provides a complete
answer to this question.

THEOREM 3·1. ([4, theorem 1·7.]) A pair (I, J) ∈Z×Z occurs as the invariants of
an integral binary quartic form if and only if it satisfies one of the following congruence
conditions:

(a) I ≡ 0 (mod 3) and J ≡ 0 (mod 27),

(b) I ≡ 1 (mod 9) and J ≡ ±2 (mod 27),

(c) I ≡ 4 (mod 9) and J ≡ ±16 (mod 27),

(d) I ≡ 7 (mod 9) and J ≡ ±7 (mod 27).

Let VR denote the vector space of binary quartic forms over the real numbers R. The
group GL2(R) naturally acts on VR. The action of GL2(Z) on VR preserves the lattice VZ

consisting of the integral elements of VR. The elements of VZ are the forms that we are
interested in. Let V (i)

Z denote the set of elements in VZ having nonzero discriminant and i
pairs of complex conjugate roots and 4− 2i real roots.
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For any GL2(Z)-invariant set S⊆ VZ, let N(S;X) denote the number of GL2(Z)-
equivalence classes of irreducible elements f ∈ S satisfyingH(f )< X.
For any set S in VZ that is definable by congruence conditions, following [4], we denote by

μp(S) the p-adic density of the p-adic closure of S in VZp , where we normalize the additive
measure μp on VZp so that μp(VZp)= 1. The following is a combination of [4, theorems
2·11 and 2.21].

THEOREM 3·2. (Bhargava–Shankar) Suppose S is a subset of VZ defined by congru-
ence conditions modulo finitely many prime powers, or even a suitable infinite set of prime
powers. Then we have

N(S ∩ V (i)
Z ;X)∼N(V (i)

Z ;X)
∏
p

μp(S). (10)

The statement of Theorem 3·2 for finite number of congruence conditions follows directly
from [4, theorem 2·11]. In [4, subsection 2·7], some congruence conditions are specified that
are suitable for inclusion of infinitely many primes in the statement of Theorem 3·2 (see [4,
theorem 2·21]).
A function φ : VZ → [0, 1] is said to be defined by congruence conditions if, for all primes

p, there exist functions φp : VZp → [0, 1] satisfying the following conditions:

(i) for all F ∈ VZ, the product
∏

p φp(F) converges to φ(F);

(ii) for each prime p, the function φp is locally constant outside some closed set Sp ⊂ VZp

of measure zero. Such a function φ is called acceptable if, for sufficiently large primes
p, we have φp(F)= 1 whenever p2 �DF.

For our purpose, particularly in order to impose congruence conditions modulo the
infinitely many primes that are discussed in Subsection 5·2, we define the acceptable func-
tion φ : VZ → {0, 1} to be the characteristic function of a certain subset of integral binary
quartic forms. More specifically, for p< 49, we define φp to be the constant function 1.
For p> 49, we define φp : VZp → {0, 1} to be the characteristic function of the set of integral
binary quartic forms that are not factored as cpMp(x, y)2 modulo p, with cp ∈ Fp andMp(x, y)
any quadratic form over Fp. Then

φ(F)=
∏
p

φp(F) (11)

is the characteristic function of the set of integral binary quartic forms that are not factored as
cpMp(x, y)2 over Fp for any p> 49. We denote by λ(p) the p-adic density

∫
F∈VZp φp(F)dF.

The value of λ(p) will be computed in (36). It turns out that in Theorem 1·1, the positive
proportion of integral binary quartic forms that do not represent h is bounded below by

μ = κ(h)
∏
p

λ(p),

where p ranges over all primes and κ(h) is a constant that only depends on h and can be
explicitly determined from (39) in Section 6.
Later in our proofs, in order to construct many inequivalent quartic forms, it will be impor-

tant to work with quartic forms that have no non-trivial stabiliser in GL2(Z). We note that
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the stabiliser in GL2(Z) of an element in VR always contains the identity matrix and its
negative, and has size at least 2. We will appeal to another important result due to Bhargava
and Shankar, which bounds the number of GL2(Z)-equivalence classes of integral binary
quartic forms having large stabilisers inside GL2(Z).

PROPOSITION 3·3. ([4, lemma 2·4.]) The number of GL2(Z)-orbits of integral binary quar-
tic forms F ∈ VZ such that DF �= 0 and H(F)< X whose stabiliser in GL2(Q) has size
greater than 2 is O(X3/4+ε).

4. Quartic forms splitting modulo a prime

Definition We define the subset V ′
Z of integral binary quartic forms VZ to be those forms

F that have trivial stabiliser (of size 2).

By Proposition 3·3, V ′
Z is a dense subset of equivalence classes of quartic forms and

selecting our forms from V ′
Z will not alter the p-adic densities that we will present later.

From now on we will work only with classes of forms in V ′
Z.

Definition Assume that F(x, y) is an irreducible quartic form. We say that F(x, y) splits
completely modulo a prime number p, if either

F(x, y)≡m0(x− b1y)(x− b2y)(x− b3y)(x− b4y) (mod p), (12)

or

F(x, y)≡m0y(x− b2y)(x− b3y)(x− b4y) (mod p), (13)

where m0 �≡ 0 (mod p), and b1, b2, b3, b4 are distinct integers modulo p, and further

b2, b3, b4 �≡ 0 (mod p). (14)

In case (12), we call b1, b2, b3, and b4 the simple roots of the binary form F(x, y) modulo p.
In case (13), we call ∞, b2, b3, and b4 the simple roots of the binary form F(x, y) modulo p.

Let p≥ 5 be a prime. The p-adic density of binary quartic forms that split completely
modulo p is given by

μp =
(p− 1)

(
p(p−1)(p−2)(p−3)

4! + (p−1)(p−2)(p−3)
3!

)
p5

(15)

= (p− 1)2(p+ 4)(p− 2)(p− 3)

4! p5 ,

where in the first identity in (15), the summand p(p− 1)(p− 2)(p− 3)/4! in the numerator
counts the corresponding forms in (12) and the summand (p− 1)(p− 2)(p− 3)/3! counts the
corresponding forms in (13). Clearly the factor p− 1 in the numerator counts the number
of possibilities for m0 modulo p and the denominator p5 counts all quartic forms with all
choices for their five coefficients modulo p.
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Now assume F(x, y) is an irreducible integral quartic form that splits completely modulo
p. For j ∈ {1, 2, 3, 4}, we define

Fbj(x, y) := F(px+ bjy, y), (16)

and additionally in case (13),

F∞(x, y) := F(py, x). (17)

We claim that the four forms Fb1(x, y) (or F∞(x, y)), Fb2 (x, y), Fb3 (x, y) and Fb4(x, y)
are pairwise inequivalent. Indeed, any transformation B ∈GL2(Q) taking, say Fbi(x, y) to

Fbj(x, y) must be of the form B= ( p bi
0 1

)−1
A
( p bj
0 1

)
, where A ∈GL2(Q) stabilises F(x,y). Since

we assumed F ∈ V ′
Z, the 2× 2 matrix A must be the identity matrix or its negative, and so

B= ±( p bi
0 1

)−1( p bj
0 1

)
. But B /∈GL2(Z), as p � (bi − bj). Therefore, for i �= j, the quartic forms

Fbi(x, y) and Fbj(x, y) are not GL2(Z)-equivalent.
Similarly in case (13), any transformation B ∈GL2(Q) taking F∞(x, y) to Fbj(x, y) must

be of the form B= ( 0 p
1 0

)−1
A
( p bj
0 1

)
, where A ∈GL2(Q) stabilises F(x,y). This change-of-

variable matrix does not belong to GL2(Z), unless bj ≡ 0 (mod p). Therefore, F∞(x, y),
Fb2(x, y), Fb3 (x, y), and Fb4(x, y) are pairwise inequivalent, as long as none of b2, b3 and
b4 are a multiple of p (this motivated the extra assumption (14) in our definition). Starting
with a form F that belongs to V ′

Z and splits completely modulo p, we can construct 4 integral
quartic forms that are pairwise inequivalent.
Let F(x, y)= a0x4 + a1x3y+ a2x2y2 + a3xy3 + a4y4 ∈Z[x, y], with content 1 (i.e., the

integers a0, a1, a2, a3, a4 have no common prime divisor). If F(x, y) satisfies (13) then

F̃∞(x, y) := F∞(x, y)

p
∈Z[x, y], (18)

where F∞(x, y) is defined in (17). Suppose that

F(b, 1)≡ 0 (mod p), with b ∈Z. (19)

By (16),

Fb(x, y)= F(px+ by, y)= e0x
4 + e1x

3y+ e2x
2y2 + e3xy

3 + e4y
4,

with

e4−j = pj
4−j∑
i=0

ai b
4−i−j

(
4− i
j

)
, (20)

for j= 0, 1, 2, 3, 4. If j≥ 1, clearly e4−j is divisible by p. Since e4 = F(b, 1), by (19), e4 is
also divisible by p. Therefore,

F̃b(x, y) := Fb(x, y)

p
∈Z[x, y]. (21)

Since e3 = pf ′(b), where f ’(X) denotes the derivative of polynomial f (X)= F(X, 1), if b is a
simple root modulo p then f ′(b) �≡ 0 (mod p) and

F̃b(x, y)= y3L(x, y) (mod p), (22)

where L(x, y)= l1x+ l2y is a linear form modulo p, with l1 �≡ 0 (mod p).
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We also note that H(Fb), defined in (5), as well as the invariants of the form Fb, can be
expressed in terms of invariants of the form F, as Fb is obtained under the action of a 2× 2
matrix of determinant ±p on F. By (7), (8) and (9), we have

DFb = p12DF,

IFb = p4IF,

JFb = p6JF,

H (Fb) = H (
IFb , JFb

) = p12H(F).

After multiplication of the form Fb(x, y) by p−1, we therefore have

DF̃b
= p6DF,

IF̃b = p2IF,

JF̃b = p3JF,

H (
F̃b

) = H
(
IF̃b , JF̃b

)
= p6H(F). (23)

Now let us consider the quartic Thue equation

F(x, y)=m,

where m= p1p2p3h, and p1, p2, and p3 are three distinct primes greater than 4, and
gcd (h, pk)= 1, for k ∈ {1, 2, 3}. We will further assume that the quartic form F(x, y) splits
completely modulo p1, p2, and p3. In Lemma 4·3, we will construct 64 integral binary quar-
tic forms Gj(x, y), for 1≤ j≤ 43, and will make a one-to-one correspondence between the
set of primitive solutions of F(x, y)=m and the union of the sets of primitive solutions of
Gj(x, y)= h, for 1≤ j≤ 43. First we need two auxiliary lemmas.

LEMMA 4·1. Let F(x, y) ∈Z[x, y] be a binary quartic form that splits completely modulo
p and m= pm1, with p �m1. The primitive solutions of the Thue equation F(x, y)=m are
in one-to-one correspondence with the union of the sets of primitive solutions to four Thue
equations

F̃i(x, y)=m1,

where F̃i(x, y) are defined in (18) and (21), and i= 1, 2, 3, 4.

Proof. Assume that (x0, y0) ∈Z2 is a solution to F(x, y)=m= pm1. If

F(x, y)≡m0(x− b1y)(x− b2y)(x− b3y)(x− b4y) (mod p),

then since p|F(x0, y0), we have
p|(x0 − biy0)

for some i ∈ {1, 2, 3, 4}. The value of i is uniquely determined by the solution (x0, y0), as bj’s
are distinct modulo p. Therefore,

x0 = p1X0 + biy0, (24)
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for some X0 ∈Z, and (X0, y0) is a solution to

F̃i(x, y)= 1

p
F(px+ biy, y)=m1 = m

p
. (25)

Conversely, assume for a fixed i ∈ {1, 2, 3, 4} that (X0, y0) ∈Z2 is a solution to

F̃i(x, y)= 1

p
F(px+ biy, y)=m1 = m

p
.

First we observe that p � y0. Because otherwise p divides pX0 + biy0 and p4 |m/p, which is
a contradiction. Now by construction of the form F̃i(x, y), we clearly have (x0, y0), with

x0 = pX0 + biy0,

satisfies the equation F(x, y)=m. Further, if (X0, y0) is a primitive solution of F̃i(x, y)=m/p,
since p � y0, we have gcd (x0, y0)= 1.
Assume that

F(x, y)≡m0y(x− b2y)(x− b3y)(x− b4y) (mod p).

The pair (x0, y0) ∈Z2 with p � y0 is a primitive solution of

F(x, y)= pm1,

if and only if p | (x0 − b2y0)(x0 − b3y0)(x0 − b4y0). In this case, for a unique i ∈ {2, 3, 4}, we
have (24), and (X0, y0) is a primitive solution to the Thue equation (25). Similarly, the pair
(x1, y1) ∈Z2 with p | y1 is a primitive solution of

F(x, y)= pm1,

if and only if (Y1, x1), with Y1 = y1/p, is a primitive solution to

F̃∞(x, y)= m

p
.

LEMMA 4·2. If F(x, y) splits completely modulo p1 and p2, then F̃b(x, y) will also split
completely modulo p2, for any simple root b (possibly ∞) of F(x, y) modulo p1.

Proof. If

F(x, y)≡m0(x− b1y)(x− b2y)(x− b3y)(x− b4y) (mod p1)

and

F(x, y)≡m′
0(x− c1y)(x− c2y)(x− c3y)(x− c4y) (mod p2), (26)

then for any b ∈ {b1, b2, b3, b4}, we have
F̃b(x, y)≡m′′

0(x− c′
1y)(x− c′

2y)(x− c′
3y)(x− c′

4y) (mod p2),

where

c′
j = p1cj + b.
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The integers c′
1, c′

2, c′
3, c′

4 are indeed distinct modulo p2, as c1, c2, c3, c4 are so and p1 is
invertible modulo p2. We conclude that the quartic form F̃b(x, y) splits completely modulo
p2, as well.
If

F(x, y)≡m0y(x− b2y)(x− b3y)(x− b4y) (mod p1)

and (26) holds, then

F̃∞(x, y)≡m′′
0(x− c′

1y)(x− c′
2y)(x− c′

3y)(x− c′
4y) (mod p2),

with c′
i = c−1

i modulo p2, where 0 and ∞ are considered to be the inverse of each other
modulo p2. Namely, if c1 = 0 modulo p2, we get

F̃∞(x, y)≡m′′
0y(x− c′

2y)(x− c′
3y)(x− c′

4y) (mod p2).

If

F(x, y)≡m0y(x− b2y)(x− b3y)(x− b4y) (mod p1)

and

F(x, y)≡m′
0y(x− c2y)(x− c3y)(x− c4y) (mod p2),

then

F̃∞(x, y)≡m′′
0x(x− c′

2y)(x− c′
3y)(x− c′

4y) (mod p2),

with c′
i = c−1

i modulo p2. Therefore, if F(x, y) splits completely modulo p1 and p2, then
F̃b(x, y) will also split completely modulo p2, for any simple root b of F(x, y) modulo p1.

LEMMA 4·3. Let h be an integer, and p1, p2, and p3 be three distinct primes greater than
4 that do not divide h. Let F(x, y) ∈Z[x, y] be a binary quartic form that splits completely
modulo primes p1, p2, and p3. Then there are 64 binary quartic forms Gi(x, y) ∈Z[x, y],
with 1≤ i≤ 64, such that every primitive solution (xl, yl) of the equation F(x, y)= h p1p2p3
corresponds uniquely to a triple (j, xl,j, yl,j), with

j ∈ {1, 2, . . . , 64}, xl,j, yl,j ∈Z, gcd (xl,j, yl,j)= 1,

and

Gj(xl,j, yl,j)= h.

Furthermore,

H (
Gj

) = (p1p2p3)
6 H(F),

for j= 1, . . . , 64.

Proof. Let m= p1p2p3h. By Lemma 4·1, we may reduce the Thue equation F(x, y)=m
modulo p1 to obtain 4 quartic Thue equations

F̃i(x, y)= m

p1
, (27)
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with i= 1, 2, 3, 4, such that every primitive solution of F(x, y)= h p1p2p3 =m corresponds
uniquely to a primitive solution of exactly one of the equations in (27).
By Lemma 4·2, every binary quartic form F̃i(x, y) in (27) splits completely modulo p2.

Applying Lemma 4·1 modulo p2 to each equation in (27), we construct 4 binary quartic
forms. Therefore, we obtain 42 Thue equations

F̃i,k(x, y)= m

p1p2
, (28)

with i, k = 1, 2, 3, 4, such that every primitive solution F(x, y)= h p1p2p3 =m corresponds
uniquely to a primitive solution of exactly one of the equations in (28). By (23),

H (
Fi,k

) = (p1p2)
6 H(F). (29)

By Lemma 4·2, each form F̃i,k(x, y) splits modulo p3. We may apply Lemma 4·1 once
again to each equation in (28). This way we obtain 43 equations

Gj(x, y)= m

p1p2p3
= h. (30)

The construction of these equations ensures a one-to-one correspondence between the prim-
itive solutions of the equation F(x, y)=m and the union of the sets of the primitive solutions
of Thue equations in (30).
By (23) and (29),

H (
Gj

) = (p1p2p3)
6 H(F), (31)

for j= 1, . . . , 64.
We note that if F(x, y) is irreducible over Q, its associated forms Gj(x, y), which are con-

structed in the proof of Lemma 4·3, will also be irreducible overQ as all of the matrix actions
are rational. Furthermore, the forms Gj(x, y) are not constructed as proper subforms of the
binary quartic form F(x, y). Indeed, they are maximal over Zp for all p /∈ {p1, p2, p3} (being
equivalent, up to a unit constant, to F(x,y) over Zp in that case), while for p ∈ {p1, p2, p3},
we have p �DF, implying p6||DGj , and so Gj(x, y) cannot be a subform over Zp of any form
by equation (2) (see the definition of a subform in (6)).
We remark that the reduction of Thue equations F(x, y)=m modulo prime divisors of m

is a classical approach, and some sophisticated applications of it to bound the number of
solutions of Thue equations can be found in [6,10].

5. Avoiding local obstructions

In the previous section, we constructed 43 binary quartic forms Gj(x, y) and established
Lemma 4·3, which corresponds each primitive solution of F(x, y)= hp1p2p3 to a primitive
solution of one of the equations Gj(x, y)= h, for 1≤ j≤ 43. Using Proposition 2·1, we will
obtain a small upper bound for the number of integral solutions to the equation F(x, y)=m=
p1p2p3h, which will lead us to conclude that some of the newly constructed Thue equations
Gj(x, y)= h cannot have any solutions.
In this section we will work with a proper subset of the set of all quartic forms to construct

forms such that the associated Thue equations have no local obstructions to solubility. We
will impose some extra congruence conditions in our choice of forms F(x, y), resulting in
construction of 43 forms Gi(x, y) that locally represent h. For each prime p, we will make
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some congruence assumptions modulo p and present p-adic densities for the subset of quartic
forms that satisfy our assumptions to demonstrate that we will be left with a subset of VZ

with positive density.
Before we divide up our discussion modulo different primes, we note that by (6), if a form

is non-maximal, then either it is not primitive, or after an SL2(Z)-transformation it is of the
form a0x4 + a1x3y+ a2x2y2 + a3xy3 + a4y4, where pi | ai, i= 0, 1, 2, 3, 4, for some prime p.
In particular, integral binary quartic forms that are non-maximal must factor modulo some
prime p as a constant times the forth power of a linear form. It turns out that all integral
binary quartic forms that are discussed in this section are indeed maximal.

5.1 Quartic forms modulo 2.

To ensure that a quartic Thue equation F(x, y)= h has a solution in Z2, it is sufficient to
assume that

F(x, y)≡ L1(x, y)L2(x, y)
3 (mod 24),

where L1(x, y) and L2(x, y) are linearly independent linear forms modulo 2. The system of
two linear equations

L1(x, y)≡ h (mod 24)

L2(x, y)≡ 1 (mod 24),

has a solution and therefore, by Hensel’s Lemma, F(x, y)= h is soluble in Z2.
The 2-adic density of quartic forms F(x, y) such that F(x, y)≡ L1(x, y)L2(x, y)3 modulo

24 is

6

25
= 3

16
, (32)

where the linear forms L1 and L2 can be chosen from the three linear forms x, y, or x+ y.
It is indeed necessary to consider integral quartic forms modulo 16, as a 2-adic unit u

belongs to Q4
2 if and only if u≡ 1 modulo 16Z2. More specifically, assume that (x0 : y0 : z0)

is a Z2-point on the projective curve C : hz4 = F(x, y) and u= z40, with z0 a unit in Z2.
Therefore, z0 = 1+ 2t for some t ∈Z2 and

z40 = (1+ 2t)4 ≡ 1+ 8 (t(3t + 1)) ≡ 1 (mod 16).

5.2 Quartic forms modulo large primes.

Let us consider the curve C : hz4 = F(x, y) of genus g= 3 over the finite field Fq of order
q. By the Leep-Yeomans generalization of Hasse-Weil bound in [9], the number of points N
on the curve C satisfies the inequality

|N − (q+ 1)| ≤ 2g
√
q. (33)

Let p be a prime p> (2g+ 1)2 = 49, p �∈ {p1, p2, p3}, p � h. Since p+ 1≥ 2g
√
p+ 1, the

lower bound in (33) is nontrivial, implying that there must be an Fp-rational point on the
curve hz4 = F(x, y).
If there exists a ∈Z such that

F(x, y)≡ (x− ay)A(x, y) (mod p), (34)
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with A(x, y) an integral cubic binary form for which

A(a, 1) �≡ 0 (mod p), (35)

then by Hensel’s lemma, the smooth Fp-point (x0 : y0 : z0)= (a : 1 : 0) will lift to a Zp-point
on the curve hz4 = F(x, y). Similarly, if

F(x, y)≡ yA(x, y) (mod p),

with A(x, y) an integral cubic binary form for which

A(1, 0) �≡ 0 (mod p),

the smooth Fp-point (x0 : y0 : z0)= (1 : 0 : 0) will lift to a Zp-point on the curve hz4 = F(x, y).
A quartic form over Fp that has a triple root must have a simple root, as well. So we

will assume that F(x,y) does not factor as cM(x, y)2 modulo p for any quadratic binary form
M(x,y) and constant c over Fp. By definition, these forms are maximal over Zp. It follows
from this assumption on F(x,y) that the curves hz4 = F(x, y) are irreducible over Fp and there
is at least one smooth Fp-rational point on hz4 = F(x, y), which lifts to a Zp-point.
We conclude that the integral quartic forms Gj(x, y), constructed as described in Section

4 from such a form F(x, y), all represent h in Zp for primes p> (2g+ 1)2 as well.
The p-adic density of binary quartic forms that are primitive and not constant multiples of

the second powers of quadratic binary forms modulo p is

1− (p− 1)(p+ 1)p

2p5
− (p− 1)(p+ 1)

p5
, (36)

where the summand −(p− 1)(p+ 1)p/2p5 eliminates forms of the shape cM2(x, y)= c(x−
b1y)2(x− b2y)2 or cM2(x, y)= c(x− b1y)2y2 (mod p), and the summand−(p− 1)(p+ 1)/p5

eliminates forms of the shape cL(x, y)4 (mod p), with L(x, y) a linear form modulo p.

5.3 Quartic forms modulo special odd primes.

For p | h we will assume that

F(x, y)≡ L1(x, y)L3(x, y)
3 (mod p),

where L1(x, y) and L2(x, y) are two linearly independent linear forms modulo p. To find Zp-
points on the curve C : hz4 = F(x, y), we consider the equation F(x, y)= 0 (mod p). Since
L1(x, y) and L2(x, y) are linearly independent modulo p, the system of linear equations

L1(x, y)≡ 0 (mod p)

and

L2(x, y)≡ 0 (mod p)

has exactly one solution. Since L1(x, y)= 0 has at least three points over Fp, the equation
F(x, y)= 0 (mod p) has at least two solutions over Fp that provide smooth Fp-points on
the curve C : hz4 = F(x, y) (i.e., all points other than that intersection point of the two lines
defined by L1(x, y) and L2(x, y)). By Hensel’s Lemma, these smooth points will lift to Zp-
points. Thus the equations F(x, y)= h and Gj(x, y)= h will be locally soluble modulo p.
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Similarly, for every odd prime p �∈ {p1, p2, p3}, with p< 49 and p � h (these are the primes
not considered in Subsection 5·2), we will assume that

F(x, y)≡ L1(x, y)L2(x, y)
3 (mod p),

where L1(x, y) and L2(x, y) are linear forms that are linearly independent modulo p. This
condition implies that F(x, y)≡ h (mod p) has solutions in integers, for L1(x, y) and L2(x, y)
are linearly independent and therefore we can find x0, y0 ∈Z satisfying the following system
of linear equations:

L1(x0, y0)≡ h (mod p)

and

L2(x0, y0)≡ 1 (mod p).

The smooth Fp-point (x0 : y0 : 1) lifts to a Zp-point on the curve C : hz4 = F(x, y).
The p-adic density of primitive binary quartic forms of the shape

L1(x, y)L2(x, y)
3 (mod p), (37)

where L1(x, y) and L2(x, y) are linearly independent linear forms modulo p and is

(p+ 1)p(p− 1)

p5
. (38)

The above density is calculated by considering the unique factorization of the form Fmodulo
p as

m0(x− b1y)(x− b2y)
3,

with m0 non-zero, and b1 and b2 distinct roots (possibly ∞) modulo p. Such forms are
maximal over Zp

6. Completing the proof

For i= 1, 2, 3, let pi be the ith prime greater than 4 such that pi � h and set

m= h p1p2p3,

and

P = {p1, p2, p3}.
For example, if h= 1, we will choose p1 = 5, p2 = 7, and p3 = 11. Let F(x, y) be a maximal
primitive irreducible integral binary quartic form which has a trivial stabiliser in GL2(Q),
with

|DF| > (3.5)24 48
(

3∏
i=1

pi

)12

.

We note that the above assumption on the size of the discriminant of quartic forms exclude
only finitely many GL2(Z)-equivalence classes of quartic forms (see [5,8]).
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In order to ensure that h is represented by F in R, we assume that the leading coefficient
of F is positive if h is positive and negative otherwise. Assume further that F(x, y) splits
completely modulo the primes p1, p2, p3.

Assume that for every prime p �∈ {p1, p2, p3} =P , with p< 49, we have

F(x, y)≡ L1(x, y)L2(x, y)
3 (mod p),

where L1(x, y) and L2(x, y) are linear forms that are linearly independent modulo p.
Finally, assume, for each prime p> 49, that F(x,y) does not factor as cM(x, y)2 modulo p

for any quadratic binary form M(x,y) and constant c over Fp.
By Proposition 2·1, and taking ε = 1/12, there are at most

36− 16i+ 4− i
1
4

= 52− 20i

primitive solutions to the equation

F(x, y)=m= h p1p2p3,

where 2 i is the number of non-real roots of the polynomial F(X, 1).
By Lemma 4·3, each primitive solution (x0, y0) of F(x, y)=m corresponds uniquely to a

solution of Gi(x, y)= h, where 1≤ i≤ 43 is also uniquely determined by (x0, y0). Since

43 − 52+ 20i= 12+ 20i≥ 12

we conclude that at least 12 of the 64 equations Gi(x, y)= h have no solutions in integers
x, y.
By (31), and Theorems 3·1 and 3·2, we have the following lower bound μ for the density

of integral quartic forms that represent h locally, but not globally,

μ = 12

(p1p2p3)5
δ2

∏
p∈P

σ (p)
∏

p≥49, p�∈P , p�h

λ(p)
∏

p|h or p<49

γp, (39)

where, via (15), (32), (36), (38),

δ2 = 3

16
,

σ (p)= (p− 1)2(p+ 4)(p− 2)(p− 3)

4! p5 ,

λ(p)= 1− (p− 1)(p+ 1)p

2p5
− (p− 1)(p+ 1)

p5
(40)

and

γ (p)= (p+ 1)p(p− 1)

p5
.
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In (39) all products are over rational primes. For all but finitely many primes p, the density
λ(p) in (40) contributes to the product in (39). Since

∏
p

(
1− (p− 1)(p+ 1)2

2p5

)

is a convergent Euler product, the lower bound μ is a real number satisfying 0< μ < 1.
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