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Abstract

Study Objectives Examine the ability of a physiologically based mathematical model of human circadian rhythms to predict
circadian phase, as measured by salivary dim light melatonin onset (DLMO), in children compared to other proxy measurements of
circadian phase (bedtime, sleep midpoint, and wake time).

Methods As part of an ongoing clinical trial, a sample of 29 elementary school children (mean age: 7.4 + .97 years) completed 7 days of wrist
actigraphy before a lab visit to assess DLMO. Hourly salivary melatonin samples were collected under dim light conditions (<5 1x). Data

from actigraphy were used to generate predictions of circadian phase using both a physiologically based circadian limit cycle oscillator
mathematical model (Hannay model), and published regression equations that utilize average sleep onset, midpoint, and offset to predict
DLMO. Agreement of proxy predictions with measured DLMO were assessed and compared.

Results DLMO predictions using the Hannay model outperformed DLMO predictions based on children’s sleep/wake parameters with a Lin’s
Concordance Correlation Coefficient (LinCCC) of 0.79 compared to 0.41-0.59 for sleep/wake parameters. The mean absolute error was 31 min
for the Hannay model compared to 35-38 min for the sleep/wake variables.

Conclusion Our findings suggest that sleep/wake behaviors were weak proxies of DLMO phase in children, but mathematical models using
data collected from wearable data can be used to improve the accuracy of those predictions. Additional research is needed to better adapt
these adult models for use in children.

Clinical Trial The i Heart Rhythm Project: Healthy Sleep and Behavioral Rhythms for Obesity Prevention https://clinicaltrials.gov/ct2/show/NCT04445740.

Statement of Significance

Sleep/wake patterns have shown validity as proxies for dim light melatonin onset (DLMO) phase among adolescents aged 9-17. The current
study extended these findings to elementary school children ages 5-8 years old to examine agreement between measured DLMO phase and
DLMO phase estimated with regression equations using children’s objectively measured sleep onset, midpoint, and offset. Estimates of DLMO
using sleep/wake behaviors were compared to estimates obtained using a physiological limit cycle oscillator model of circadian rhythms.
Findings suggest physiologically informed models of circadian entrainment can facilitate more accurate predictions of children’s circadian
phase using data collected from wearable devices. Sleep/wake timing proved to be weak proxies of DLMO phase in 5-8-year-old children.
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Introduction

There is growing awareness of the role of the circadian system
in the development of obesity and other physical and mental
health conditions [1]. Specifically, desynchronization of the cen-
tral circadian clock located in the suprachiasmatic nucleus and
peripheral clocks disrupts the circadian regulation of metab-
olism, contributing to weight gain [2] and multiple pathologies
including cardiovascular disease [3,4], metabolic disease [5,6],
cancer [6], and psychiatric disorders [7,8]. Furthermore, the effi-
cacy of medication regimes and even vaccines have been shown
to be affected by an individual’s circadian timing [9-11]. As a re-
sult, the accurate assessment of circadian rhythm parameters
such as circadian phase has become increasingly important for
researchers and clinicians.

Circadian rhythms are endogenous rhythms with a cycle of
about 24 h which are synchronized with environmental cues al-
lowing organisms (including humans) to easily adapt to their
environment (e.g. fluctuations in food availability, temperature
changes, presence of predatory animals) [12]. For example, the
human body is primed to enter a fasting state during the over-
night sleep in which the body transitions to the use of fat re-
serves and maintains optimal glucose levels even in the absence
of carbohydrate input from food [13, 14]. Having accurate assess-
ments of a person’s circadian phase enables us to understand
the contribution of circadian rhythms in the pathophysiology
of disease, which in turn enhances clinical care through the op-
timal administration of therapeutics [11, 15, 16].

The gold standard assessment of circadian phase is the
use of plasma or salivary samples under dim light conditions
(dim light melatonin onset, DLMO). This approach requires re-
peated samples (usually over a period of at least 6 h) to assess
the time at which an individual’s melatonin secretion increases
above a certain threshold [17]. Compared to other markers of
endogenous circadian rhythms, such as core body temperature,
melatonin is relatively robust [17]. However, the procedure not
only requires an in-lab collection of saliva or plasma samples:
it also usually requires patients to stay up past their habitual
bedtime, resulting in acute sleep restriction. Additionally, these
assessments can be cost-prohibitive (not covered by insurance)
and thus impose a significant burden on research participants
and patients. As such, sleep/wake cycles are often used as
proxies for children’s circadian phase [18, 19] because they af-
fect an individual’s exposure to the light-dark cycle and thus
are seen as fundamental to establishing children’s circadian
rhythms. However, physiological differences such as light sen-
sitivity contribute to substantial inter-individual variability in
phase angle of entrainment even when schedules and light-
dark patterns are held constant, making sleep/wake parameters
such as bedtime, sleep midpoint, and wake time potentially
poor indicators of circadian phase [20, 21]. Sleep/wake param-
eters are also heavily dictated by other external factors, such as
school schedules, homework routines, and parental rules, which
may mask children’s circadian phase and are often associated
with error in the prediction of circadian phase [19, 22]. As a re-
sult, there is a need to develop more robust and less invasive
ways to assess circadian phase in children.

Advances in wearable technology and mathematical
modeling of human circadian entrainment offer potential oppor-
tunities to improve the estimation of children’s circadian phase
to facilitate the study of circadian phase in larger populations
[23]. Light and rest/activity data collected from wrist activity can

be used to generate estimations of circadian phase using math-
ematical models of circadian entrainment [24-26]. These models
have been evaluated in shift workers who experience extreme
circadian disruption [27, 28]. In a head-to-head comparison of
various models of circadian rhythms, the Hannay model stands
out for being a circadian model derived from physiology as op-
posed to one adapted from the van der Pol oscillator to match
circadian phenomena [26]. It estimates DLMO via a correction of
core body temperature minimum as the primary model output
[29]. It has been shown to provide a more accurate estimate of
DLMO phase using ambient light exposure and activity collected
from wearables than DLMO predictions estimated based on
sleep/wake parameters in adults [29]. However, due to physio-
logical differences in children’s circadian physiology such as
their sensitivity to evening light [30], it is unclear to what extent
a model developed based on adult physiology and responsive-
ness to light will be able to accurately predict children’s circa-
dian phase. The purpose of the current study was to compare
the ability of the Hannay model to predict children’s DLMO
phase during the school year with other proxies of circadian
phase (e.g. bedtime, sleep midpoint, and wake time).

Methods
Study design

The data included in these analyses were collected as part of a
baseline assessment of an ongoing clinical trial (NCT04445740)
aimed at examining the feasibility of an obesity prevention
intervention. Data were collected between April and mid-June
2021 during the school year in Houston, TX.

Participants

A sample of 5-8-year-old children was recruited from a vol-
unteer database, flyers distributed online through elementary
schools to parents, and via Facebook advertisements. Children
had to be between the ages of 5 and 8 years old and enrolled
in kindergarten through second grade. Because children were
participating in a study focused on the prevention of obesity,
inclusion was limited to children with a BMI percentile above
the 50th percentile. Exclusion criteria included having a chronic
medical condition affecting sleep, eating behaviors, weight
status, or behavioral rhythms (e.g. obstructive sleep apnea, at-
tention deficit hyperactivity disorder, autism) and having par-
ticipated in an obesity prevention or treatment program within
the last 6 months. Due to the SARs-COV-2 pandemic, parents
completed an online screening form. Parents were provided with
a YouTube video that instructed them on how to measure their
child’s height and weight at home. A follow-up screening visit
was conducted via Zoom to provide parents and children with
informed consent and assent and to confirm eligibility. Parental
consent forms were signed electronically. The Institutional
Review Board at Baylor College of Medicine approved the study
protocol (H-47369).

Procedures

Actigraphs were mailed to the child’s home. A link to an online
instructional video demonstrated proper wear and how to avoid
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covering the accelerometer with clothing (https://www.youtube.
com/watch?v=809rN9J63j4). Children wore Actigraphs (GT3X-BT,
Pensacola, FL) on the wrist of their non-dominant hand to assess
their sleep, activity, and ambient light exposure for 7 days and 8
nights during the school year. Children slept according to a “self-
selected” schedule, though in this age group bedtimes were likely
heavily influenced by parents and the school year schedule. The
Actigraph GT3X-BT is a tri-axial microelectromechanical sys-
tems accelerometer. The monitor digitized acceleration data
using a 12-bit analog to a digital converter with a sampling rate
of 30 Hz. Data were downloaded using the Actigraph’s digital
pass filter with a bandwidth of 25Hz-2.5 Hz, designed to detect
normal human behavior. Wear time data were also collected by
the GT3X-BT monitor. The photocell contained in the Actigraph
GT3X-BT (capable of measuring 0-5000 1x) measured ambient
light exposure. Lux data were binned in 60-s epochs. Parents
documented their child’s sleep patterns daily in an electronic
survey that was emailed to parents every morning. Parents were
also provided with a paper copy for note-taking purposes.

At the end of the week, DLMO was assessed in the lab. On
the day of the lab visit, participants were asked to avoid intake
of caffeine, chocolate, nonsteroidal anti-inflammatory drugs
(NSAIDs), and CBD products. Saliva (~1 mL) samples were col-
lected using untreated Salivettes (Starstedt, Germany) every
hour beginning 5 h before and ending 1 h following typical
bedtime in dim light (<5 1x). Before the samples, children were
seated for 10 min to minimize postural effects on melatonin
concentration. If participants ate or drank before the sample,
they gently brushed their teeth with a soft-bristled toothbrush
and water. Saliva samples were centrifuged and frozen until
analyzed for melatonin measurement using radioimmunoassay
(RIA) test kits (NovoLytiX GmbH, Switzerland) at SolidPhase, Inc.
in Portland, ME. The lower limit of detection of the assay was
0.2 pg/mL.

Circadian phase and sleep/wake measures

DLMO phase was determined using linear interpolation across
the time points before and after melatonin concentration in-
creased to and remained above 4 pg/mL [31, 32].

The Sadeh algorithm was used to score epochs as sleep or
wake [33, 34]. According to the established protocols, each sleep
episode reported in the parent diary was inspected in the ac-
tivity data starting 15 min before and 15 min after the reported
bedtime and wake time, respectively [35-37]. If epochs of low ac-
tivity existed outside of the scoring interval or if nonwear time
occurred during the interval, a consensus was reached by the
research team. Nights were considered valid if the participant
provided 20 min of wear time before sleep onset. Nonwear time
in the hour before bedtime had to be less than 60 min unless
confirmed by the wear log, or unless ambient light data were
available to confirm bedtime. Sleep onset was defined as the
first three consecutive epochs scored as sleep. Sleep offset was
defined as the last five consecutive minutes of sleep occurring
before 15 min after the reported wake-up. Sleep midpoint was
defined as the midpoint between sleep onset and offset.

Circadian phase prediction

Previous studies have suggested that activity data can be used
with mathematical models for the prediction of circadian
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phase [27, 29]. Light data collected by wrist-worn devices may
not be representative of the light received by the eye due to
placement on the wrist and not close to the eye [38], the poten-
tial of being covered by clothing, or to limitations of the device
themselves. Due to the limited data regarding the accuracy of
light measurements with wrist-worn GT3X-BT devices [39],
a visual inspection of plots of activity and light data across
subjects was conducted (see Supplementary file). Additionally,
the fraction of 6-minute bins (interval used for passing the
data into the model) coded as awake in which detected am-
bient light levels were <1.0 Ix and activity levels were > 0 steps
was calculated. In our actigraphy data, 54% of the intervals had
lux values that were likely underestimated or missing (e.g. ob-
structed by clothing) during wake time. For comparison, we ap-
plied the same procedures to publicly available actigraphy and
ambient light data collected from the Hispanic Community
Health Study/Study of Latinos (in the Suefo ancillary study;
n = 2252; 18-74 years old). Using the same operationalization
of missing data collected under similar conditions (Philips
Actiwatch worn for 1-week [40-42]), the percentage of inter-
vals that were underestimated or missing was 22%. Due to the
substantial amounts of missing light data during periods of
daytime activity, we conducted additional testing of the light
monitor (see Supplementary file). As a result of the significant
percentage of intervals with missing/underestimated light
data and additional testing of the light sensor, we chose to use
the activity data as a proxy for light exposure. All available data
were used for each subject.

Model simulations of the Hannay model were conducted
using Runge-Kutta 45 numerical integration written in Python.
Code to run these models on Actiwatch data is provided at
https://github.com/khannay/Circadian-DLMO-Prediction.
Briefly, the Actigraph time series data were binned into
6-minute intervals. Activity measurements were summed
within each 6-minute bin, and the total lux exposure was es-
timated as 10.0 times these activity levels in each bin. These
data were linearly interpolated and used as the light input to
the Hannay model. Model initial conditions were chosen to
match the expected state for an entrained subject with 16 h
of light from 0800 to 0000 and an eight-hour dark period. For
all subjects in the study, the choice of initial condition did not
have any significant effect on the prediction accuracy. Phase
estimates for the DLMO were calculated as the time the model
phase crossed the threshold 57/12 on the day the experimental
measurement was taken.

Statistical analyses

Descriptive analyses were conducted using analysis of variance
to assess for differences between males and females across
children’s sleep/wake and circadian parameters. To assess for
agreement between estimates of DLMO, DLMO was approxi-
mated using regression equations for estimating DLMO phase
based on sleep times developed in a sample of adolescents [19].
The phase angle for mid-sleep was calculated by taking the mid-
point of the phase angle for sleep onset and offset. The mean
absolute error and percentage of participants with a predicted
DLMO within 1 h of measured DLMO were calculated, a standard
for the accuracy of mathematical models [29]. The range of es-
timated DLMO was compared to the range of measured DLMOs
to determine the percentage of true DLMOs captured within the
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range of the predicted DLMO. Lin’s Concordance Correlation
Coefficient (LinCCC) was used to assess agreement between pre-
dicted DLMO (novel assessment) and in-lab DLMO (gold standard
measurement). LinCCC is a rigorous assessment because it com-
pares deviation from perfect agreement (i.e. line-of-slope-one)
[43] as opposed to a regression line that allows for bias (i.e. line-
of-best-fit). In accordance with Cohen’s guidelines on strength
of agreement, weak, moderate, and strong agreement was de-
termined with a LinCCC 0.0-0.59 (weak), 0.6-0.79 (moderate),
0.8-1.0 (strong). LInCCC was computed using a publicly avail-
able SPSS macro https://doi.org/10.1371/journal.pone.0239931.
s002 and compared to the linear association of variables cal-
culated using bivariate regression. The Bland-Altman method
was used to evaluate bias between the methods and to estimate
an agreement interval within which 95% of the differences fall
[44]. Sensitivity analyses were conducted to determine whether
the accuracy of Hannay model predictions differed according
to children’s age, sex, or race/non-Hispanic ethnicity. Analyses
were conducted using SPSS software version 28 (2021, IBM Corp.,
Armonk, NY) and Prism version 9.2.0 (2021, GraphPad Software,
LLC, San Diego, CA).

Results
Descriptive analyses

A total of 33 children were recruited in year one of the clin-
ical trial which began in 2021. Four children were excluded due
to indeterminable timing of DLMO (n = 2) and Actigraph tech-
nical errors (n = 2), resulting in 29 children being included in
the current analyses (14 females) with a mean age of 7.4 years
(SD =.97, range: 5.4-8.6). The sample was representative of the
Houston area demographics (17% Non-Hispanic Black, 28%
Non-Hispanic White, 3.5% Non-Hispanic American Indian,
3.5% Pacific Islander, 10% Hispanic Black, 38% Hispanic White
or Native American). According to parent report, 83% of chil-
dren attended in-person school while 17% participated virtu-
ally during spring 2021. Children’s sleep/wake and circadian
parameters are presented in Tables 1 and 2. There were no
significant differences in the sleep/wake and circadian param-
eters by sex.

Table 1. Descriptives of children’s sleep/wake behaviors

Examination of agreement between DLMO phase
and its proxies

DLMO estimates based on sleep onset ranged between 7:46 pm
and 9:18 pm and captured 59% of the true values of measured
DLMO (Table 3). The average mean absolute error was 38 min
with 86% of predictions falling within + 1 hour of the observed
DLMO. The LinCCC was 41 indicating weak agreement (lowest
agreement for all the DLMO proxies) (Figure 1A). The Bland-
Altman plot revealed an average bias of 0.17 + 0.9 h with a wide
range of 95% limits of agreement from -1.5 to 1.9 (Figure 2A). The
plot of the difference vs. the average of the measures reveals a
positive trend with consistent spread across the regression line,
suggesting an inability to identify DLMO at the extremes: early
DLMOs are not estimated as early enough, while late DLMOs are
not estimated as late enough.

DLMO estimates based on sleep midpoint ranged from 7:32
pm to 10:01 pm and captured 83% of the true values of meas-
ured DLMO. The average mean absolute error was 35 min, with
90% of predictions falling within + 1 h of the observed DLMO.
The LinCCC was 59, indicating weak-moderate agreement, but
the best agreement of the sleep variables (Figure 1B). The Bland-
Altman plot for mid-sleep revealed an average bias of 0.07 + 0.8
and a range of 95% agreement from -1.5 to 1.6 (Figure 2B). The
plot of the difference vs. the average of the measures reveals
a positive trend with a consistent spread from the regression
line, again suggesting poor descriptive ability at the extreme
DLMO values.

DLMO estimates based on sleep offset ranged from 7:47 pm
to 9:58 pm and captured 63% of the true values of measured
DLMO. The average mean absolute error was 38 min, with 69%
of predictions falling within + 1 h of the observed DLMO. The
LinCCC was 0.52 indicating weak agreement (Figure 1C). The
Bland-Altman plot revealed a bias level of 0.03 + 1.1 (the lowest
of all the DLMO proxies) and a range of 95% agreement from -1.6
to 1.6 (Figure 2C). The plot of the difference vs the average of the
measures again reveals a bias.

DLMO estimates based on the Hannay model ranged from
7:18 pm to 10:36 pm and captured 93% of the true values of meas-
ured DLMO. The average mean absolute error was 31 min (the
lowest of all the DLMO proxies) with 93% of predictions falling
within + 1 h of the observed DLMO. Predictions from the Hannay

Mean SD? Minimum Maximum

Sleep onset (24-h time)
Sex

Male 21:53 46 20:27 23:07
Female 22:14 53 21:04 23:55
Total 22:03 50 20:27 23:55
Sleep midpoint (24-h time)
Sex

Male 2:23 40 1:06 3:39
Female 2:48 48 1:49 4:39
Total 2:35 45 1:06 4:39
Sleep offset (24-h time)
Sex

Male 6:53 41 5:45 8:13
Female 7:23 49 6:32 9:22
Total 7:08 46 5:45 9:22

Minutes.
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Table 2. Descriptives of children’s predicted and measured circadian parameters

Mean SD? Minimum Maximum
DLMO phase (24-h time)
Sex
Male 20:20 50 19:08 22:09
Female 20:59 76 19:33 23:31
Total 20:39 65 19:08 23:31
Hannay model predicted DLMO (24-h time)
Sex
Male 20:29 39 19:18 21:48
Female 20:43 61 19:18 22:36
Total 20:36 51 19:18 22:36
DLMO phase to sleep onset (mins)
Sex
Male 93 37 30 139
Female 74 57 -71 149
Total 84 48 -71 149
DLMO phase to sleep midpoint (mins)
Sex
Male 363 38 295 412
Female 349 49 237 416
Total 356 43 237 416
DLMO phase to sleep offset (mins)
Sex
Male 633 44 536 690
Female 624 48 525 696
Total 629 45 525 696
Minutes.
Table 3. Comparison of DLMO proxy predictions across models
Bland Altman
Range of L 95% Limits of |
Predicted DLMO Mean % of DLMOs % within Agreement Limits of
—  Absolute Falling within 1h of Measured Agreement
DLMO Proxy From To Error (min) Range of Proxy DLMO LinCccC* Bias (SD) From To Distance
Onset! 19:46 21:18 38 59 86 0.41 0.17 (0.9) -1.5 1.9 34
Offset! 19:47  21:58 38 69 83 0.52 0.03 (0.8) -1.6 16 32
Midpoint? 19:32 22:01 35 83 90 0.59 0.07 (0.8) -1.5 1.6 31
Hannay Model 19:18 22:36 31 93 93 0.79 0.05 (0.6) -1.2 1.3 2.5

*Presented in ascending order of Lin’s CCC. Hannay model Lin’s lower one-sided 95% CL = 0.65.
!DLMO calculated using formulas developed to predict DLMO phase based on sleep wake variables among Adolescents (Crowley et al., 2006).

model produced the highest LinCCC (p, = 0.79; lower one-sided
95% CL = 0.652, Figure 1D), suggesting moderately strong agree-
ment with measured DLMO [43] as opposed to the models using
sleep/wake proxies that produced weaker agreement (onset p,
=0.41, offset p_ = 0.52, and midpoint p, = 0.59). According to the
Bland-Altman analysis, the Hannay model had a similar average
bias (0.05 + 0.6), but the smallest range of 95% agreement (-1.2
to 1.3, Figure 2D). The plot of the difference vs. the average of the
measures reveals a positive trend, though one which is mark-
edly weaker than the other proxies.

Sensitivity analysis

Errors in prediction of DLMO were not explained by child age,
sex, race/ethnicity, or virtual vs. in-person schooling; however,
there was a significant difference in the mean absolute error
of DLMO predicted by sleep onset and midpoint depending on
the number of scorable nights (F(2, 26) = 8.63, p = .001, n? = 0.40;
95% CI: 0.9 to 0.6 and F(2, 26) = 4.26, p = .025, 2 = 0.24; 95% CIL:
0.0-0.5). Post hoc analysis revealed that DLMO predictions using

sleep onset and midpoint were poorer when using four nights of
actigraphy (mean for sleep onset 2.0 and offset 1.4) compared to
six (mean for sleep onset 0.3 and offset 0.4), and seven (mean for
sleep onset 0.5 and offset 0.5) nights of actigraphy.

Examination of agreement with the line of best fit

To facilitate comparison with previous studies conducted
among youth [19], we examined the bivariate linear associ-
ation between DLMO phase and DLMO proxies. The percentage
of the variance in DLMO phase explained by sleep onset, mid-
point, offset and the Hannay model was 47%, 56%, 52%, and 67%,
respectively.

Discussion

Sleep/wake patterns have shown validity as proxies for
DLMO phase among adolescents aged [9-17, 19]; how-
ever, an overreliance on sleep/wake parameters may mask
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Figure 1. Comparison of DLMO Predictions using sleep timing and the Hannay Model.

inter-individual differences in light sensitivity and the en-
dogenous pacemaker [20,21]. The regression equations de-
veloped by Crowley et al. were originally developed to predict
adolescents’ DLMO phase using self-reported sleep times. The
current study extended these findings to elementary school chil-
dren ages 5-8 years old to examine agreement between meas-
ured DLMO phase and DLMO phase estimated using the Crowley
regression equations. In the current study, children’s sleep onset,
midpoint, and offset were assessed by wrist actigraphy instead
of self-reported sleep. In addition, the current study leveraged
advances in wearable technology and mathematical modeling
of human circadian entrainment to examine the ability of a
physiologically based circadian limit cycle oscillator model (i.e.
Hannay model) to improve upon traditional sleep/wake param-
eters in the prediction of DLMO phase [29].

Similar to the results obtained with adolescents, the re-
gression equations using children’s sleep onset, midpoint, and
offset estimated 86%, 90%, and 83% within +1 h of measured
DLMO. While the regression coefficients for DLMO predicted
using sleep/wake behaviors were stronger in the child sample
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compared to the adolescent sample, the same general pattern
was observed with sleep midpoint explaining the greatest vari-
ance (56%) in measured DLMO. The Hannay model improved
predictions, estimating 93% within +1 h of measured DLMO and
explained 67% of the variance in DLMO phase.

One of the limitations of examining agreement using regres-
sion coefficients is that regression examines the deviation of
data points from the line of best fit rather than the deviation from
perfect agreement with the gold standard [29]. Calculating the
LinCCC is one way to address this limitation [43]. When exam-
ining deviation from perfect agreement, the DLMO predictions
obtained using sleep onset, offset, and midpoint demonstrated
weak agreement with true DLMO (LinCCCs: 0.41, 0.52, and 0.59),
while the DLMO predictions by the Hannay model demonstrated
moderately strong agreement (LinCCC = 0.79)[43]. Indeed, the
LinCCCs for the other sleep/wake proxies fell below the lower
bound of the one-sided 95% confidence interval for the Hannay
model (0.65), suggesting that the differences in magnitude are
reliable. The results for the Hannay model are similar to those
obtained for other DLMO predictions made by mathematical
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Figure 2. Bland Altman plots of agreement between DLMO phase and its proxies.

models across different adult samples [27, 29]. The similarity in
agreement across populations is surprising given the fact that
the Hannay model was entirely fit to adult data. Indeed, one po-
tential explanation for the lack of higher agreement among a
child population is that this model was developed based on adult
physiology and phase response curves [26, 30, 45]. Specifically,
there is evidence that children may differ in important ways
from adults. For example, the effect of evening light exposure
among elementary school-age children has been shown to be
twice that of adults in terms of the magnitude of their mela-
tonin suppression, possibly due to having larger pupil sizes and
clearer lenses relative to adults [30]. However, the impact of this
increased sensitivity on the circadian timing of young children
is unknown. Other factors that may affect the accuracy of adult
models for children include potential developmental changes in
circadian period and homeostatic drive to sleep. For example,
there is evidence that adolescents experience changes in their
homeostatic drive that facilitate a circadian phase delay in ado-
lescents [46-48]. The extent to which development affects the
circadian and homeostatic processes among elementary school
children is understudied. A better understanding of circadian
entrainment and response to light across the circadian clock
may help to further improve DLMO predictions among children.

The Bland-Altman plots revealed a similar level of bias
across the DLMO proxies and illustrated that all proxies strug-
gled to accurately predict the DLMO phase of children with later
DLMOs. This is likely because parents are socialized to avoid later
bedtimes in young children. However, the Hannay model had a
tighter range of agreement suggesting higher agreement. One
reason that the Hannay model may produce more robust predic-
tions is that it takes activity and light as inputs into the circadian
system as opposed to using sleep/wake timing as a proxy of the
system. While activity and light are both subject to external fac-
tors, they are still integrated into the human circadian system
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to influence the physiological outputs (e.g. DLMO and core body
temperature minimum). In contrast, while sleep/wake timing is
an output of the circadian system, it is complicated by multiple
factors that further modulate the occurrence of these events
such as physiological differences in light sensitivity which can
be accounted for by mathematical models [20, 21]. As such, it is
not surprising that there is more noise when using sleep/wake
timing as proxies for circadian phase. Furthermore, the error as-
sociated with sleep/wake timing as a proxy for circadian phase
is not uniform as parents are more likely to enforce a bedtime
before DLMO, especially for children with later chronotypes.
Strengths of the study include the use of objectively assessed
sleep and gold standard assessment of circadian phase collected
within spring of the same year, limiting potential impact of vari-
ation in the solar day on the findings. Limitations of the current
study include this being a secondary analysis of data being col-
lected as part of an ongoing clinical trial. As such, this study has
a limited sample size (n = 29), though the statistics used to assess
concordance are robust to deal with sample sizes as small as 10
[43]. Regardless, the small sample size makes it challenging to
examine differences in sleep and circadian parameters by sex,
race/ethnicity, and age and to explore factors associated with error.
In the current study, there were no differences in sleep and cir-
cadian phase found across demographics, though others have
observed sex differences in these variables among adolescents
[19]. Additionally, the Hannay model was intended to be used
with light as the input to the model; however, there is evidence
that activity data can yield more accurate predictions when used
as the input, possibly because activity is not only an input to the
circadian system but also due to the limitations of using light
measured by wrist-worn devices [27, 29]. As a result, the activity
data were used as a proxy for light in the Hannay model. Another
source of potential error is in the method used to estimate DLMO
from saliva samples. Because linear interpolation was used to
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estimate the time at which melatonin rose above 4 pg/mL, it as-
sumes a steady rise in melatonin between samples. Furthermore,
hourly saliva samples were used in the current study instead of
30-minute sampling which may introduce error in the estimation
of “true DLMO.” An additional limitation is that while mathemat-
ical models hold promise to improve predictions of DLMO phase,
they can be nontrivial to set up and run (though they operate dir-
ectly on actigraphy data and require no manual sleep scoring from
actigraphy and sleep diaries). On the other hand, the use of sleep/
wake regression equations requires scoring of actigraphy data
which is time-intensive. If the only goal of the actigraphy data is to
estimate circadian phase, these results suggest that efforts should
be focused on the preparation of the data and code for running the
mathematical model rather than the scoring of sleep/wake timing.

Conclusions

Overall, these results suggest that physiologically informed
models of circadian entrainment can facilitate more ac-
curate predictions of children’s circadian phase using data
collected from wearable devices than sleep/wake behaviors.
Physiologically informed models can be used to identify and
account for inter-individual physiological differences in factors
such as light sensitivity and intrinsic period thereby improving
prediction of circadian phase [23]. Accurate predictions of circa-
dian parameters derived from wearable devices offer promise
for future studies seeking to assess circadian parameters in
children and significantly reduce participant burden associated
with more invasive, burdensome, and time-intensive methods
of assessing circadian parameters.

Supplementary Material

Supplementary material is available at SLEEP online.

Funding

This is the first manuscript to be submitted for publication
from this dataset and no related papers are currently under
review. Support for this study was provided by the Eunice
Kennedy Shriver National Institute of Child Health and Human
Development of the National Institutes of Health (ROOHD091396).
This work is also a publication of the United States Department
of Agriculture (USDA/ARS) Children’s Nutrition Research Center,
Department of Pediatrics, Baylor College of Medicine, Houston,
TX, and has been funded in part with federal funds from the
USDA/ARS under Cooperative Agreement No. 58-3092-5-001.
PC is funded by the National Heart Lung and Blood Institute
(K23HL138166). KMH work was partially supported by National
Science Foundation Grant DMS-1853506.

Acknowledgments

We would like to thank all the dedicated participants and their
families; the Department of Pediatric Nutrition and the staff of the
Children’s Nutrition Research Center, particularly the Metabolic
Research Unit team for their support of this research; Stephanie
J. Crowley for her mentoring and comments on the study. The
funding sources played no role in study design, collection, ana-
lysis, or interpretation of data, the writing of the manuscript, or

the decision to submit for publication. Jennette P. Moreno was at
Baylor College of Medicine where the work was performed.

Disclosure Statement

Financial Disclosures: Olivia Walch is the CEO of Arcascope, a
company that makes circadian rhythms software. She has done
consulting for Unilever, MetroNaps, and Gideon Health. Kevin
Hannay is the Chief Technology Officer of Arcascope. Models
used in this paper have been released open-source. Funding for
PC includes an NIH Small Business Technology Transfer award
(R41HL163783) in conjunction with Arcascope.
Non-Financial Disclosures: None.

Author Contributions

Concept, design, and interpretation by Moreno, Hannay, Walch,
and Cheng. Analysis by Moreno and Hannay. Funding obtained
by Moreno. Supervision of data collection and study manage-
ment: Moreno, Bacha, Dadabhoy. Data collection by Dadabhoy,
Christian, El-Mubasher, Grant, and Park. Actigraphy scoring
and extraction of sleep parameters: Moreno, Christian, Puyau.
Application of the Hannay Model by Hannay. Drafting of the
manuscript: Moreno. Critical intellectual input and revision of
the manuscript: Hannay, Walch, Cheng, El-Mubasher, and Bacha.
All authors approved the final version of the manuscript.

Data Availability

The data underlying this article will be shared upon reasonable
request to the corresponding author.

References

1. LaermansJ, et al. Chronobesity: role of the circadian system
in the obesity epidemic. Obes Rev. 2016;17(2):108-125.
doi:10.1111/0br.12351.

2. Huang W, et al. Circadian rhythms, sleep, and metabolism. ]
Clin Invest. 2011;121(6):2133-2141. d0i:10.1172/]JC146043.

3. Shaw E, et al. Circadian rhythm and cardiovascular dis-
ease. Curr Atheroscler Rep. 2009;11(4):289-295. doi:10.1007/
$11883-009-0044-4.

4. WongPM,etal.SocialJetlag,chronotype,and cardiometabolic
risk. J Clin Endocrinol Metab. 2015;100(12):4612-4620.
doi:10.1210/jc.2015-2923.

5. Shimizu I, et al. role for circadian clock in metabolic disease.
Hypertens Res. 2016;39(7):483-491. d0i:10.1038/hr.2016.12.

6. BishehsariF,etal. Circadian rhythms and the gut microbiota:
from the metabolic syndrome to cancer. Nat Rev Endocrinol.
2020;16(12):731-739. doi:10.1038/s41574-020-00427-4.

7. Talih F et al. Delayed sleep phase syndrome and bipolar dis-
order: pathogenesis and available common biomarkers. Sleep
Med Rev. 2018;41:133-140. d0i:10.1016/j.sm1v.2018.02.002.

8. McGowan NV, et al. Circadian rest-activity patterns in bi-
polar disorder and borderline personality disorder. Transl
Psychiatry. 2019;9(1):195. d0i:10.1038/s41398-019-0526-2.

9. Benedict C, et al. Could a good night’s sleep improve, COVID-
19 vaccine efficacy? Lancet Respir Med. 2021;9(5):447-448.
doi:10.1016/52213-2600(21)00126-0.

10. Ruiz FS, et al. Night shift work and immune response to
the meningococcal conjugate vaccine in healthy workers:

220z dunp gz uo Jasn uebiydiy Jo Ausianiun Aq 620/159/19098S2/9/G/01014e/daa|s/wod dnoolwapede//:sdiy woly papeojumoq


https://doi.org/10.1111/obr.12351
https://doi.org/10.1172/JCI46043
https://doi.org/10.1007/s11883-009-0044-4
https://doi.org/10.1007/s11883-009-0044-4
https://doi.org/10.1210/jc.2015-2923
https://doi.org/10.1038/hr.2016.12
https://doi.org/10.1038/s41574-020-00427-4
https://doi.org/10.1016/j.smrv.2018.02.002
https://doi.org/10.1038/s41398-019-0526-2
https://doi.org/10.1016/S2213-2600(21)00126-0

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

a proof of concept study. Sleep Med. 2020;75:263-275.
doi:10.1016/j.sleep.2020.05.032.

Ohdo S, et al. Chronopharmacological strategies focused
on chrono-drug discovery. Pharmacol Ther. 2019;202:72-90.
doi:10.1016/j.pharmthera.2019.05.018.

Vitaterna MH, et al. Overview of circadian rhythms. Alcohol
Res Health. 2001;25(2):85-93.

Zitting KM, et al. Human resting energy expenditure varies
with circadian phase. Curr Biol. 2018;28(22):3685-3690.e3.
doi:10.1016/j.cub.2018.10.005.

Laposky AD, et al. Sleep and circadian rhythms: key com-
ponents in the regulation of energy metabolism. FEBS Lett.
2008;582(1):142-151. doi:10.1016/j.febslet.2007.06.079.
Roenneberg T, et al. The circadian clock and human
health. Curr Biol. 2016;26(10):R432-R443. doi:10.1016/j.
cub.2016.04.011.

Saleem U, et al. Chronopharmacology: appraising the
influence of biorhythms on the efficacy and safety of
antihypertensive drugs. Crit Rev Eukaryot Gene Expr.
2019;29(6):499-509. doi:10.1615/CritRevEukaryotGeneE
xpr.2019028841.

Pandi-Perumal SR, etal. Dimlight melatonin onset (DLMO):
a tool for the analysis of circadian phase in human sleep
and chronobiological disorders. Prog Neuropsychopharmacol
Biol Psychiatry. 2007;31(1):1-11. doi:10.1016/j.pnpbp.2006.
06.020.

Reiter AM, et al. Finding DLMO: estimating dim light
melatonin onset from sleep markers derived from ques-
tionnaires, diaries, and actigraphy. Chronobiol Int. 2020;37(9-
10):1412-1424. doi:10.1080/07420528.2020.1809443.

Crowley S, et al. Estimating dim light melatonin onset
(DLMO) phase in adolescents using summer or school-
year sleep/wake schedules. Sleep 2006;29(12):1632-1641.
doi:10.1093/sleep/29.12.1632.

Stone JE, et al. The role of light sensitivity and intrinsic
circadian period in predicting individual circadian
timing. J Biol Rhythms. 2020;35(6):628-640. do0i:10.1177/
0748730420962598.

Phillips AJK, et al. High sensitivity and interindividual vari-
ability in the response of the human circadian system to
evening light. Proc Natl Acad Sci USA. 2019;116(24):12019-
12024. doi:10.1073/pnas.1901824116.

Burgess H]J, et al. The dim light melatonin onset following
fixed and free sleep schedules. J Sleep Res. 2005;14(3):229-
237.doi:10.1111/j.1365-2869.2005.00470.x.

Hannay KM, et al. Integrating wearable data into circadian
models. Curr Opin Syst Biol. 2020;22:32-38. d0i:10.1016/j.
€0isb.2020.08.001.

Woelders T, et al. Daily light exposure patterns reveal phase
and period of the human circadian clock. J Biol Rhythms.
2017;32(3):274-286. d0i:10.1177/0748730417696787.

Phillips AJK, et al. Irregular sleep/wake patterns are asso-
ciated with poorer academic performance and delayed
circadian and sleep/wake timing. Sci Rep. 2017;7(1):3216.
d0i:10.1038/541598-017-03171-4.

Hannay KM, et al. Macroscopic models for human cir-
cadian rhythms. ] Biol Rhythms. 2019;34(6):658-671.
doi:10.1177/0748730419878298.

Cheng P, et al. Predicting circadian misalignment with
wearable technology: validation of wrist-worn actigraphy
and photometry in night shift workers. Sleep 2021;44(2):1-8.
doi:10.1093/sleep/zsaal80.

Stone JE, et al. Application of a limit-cycle oscillator model
for prediction of circadian phase in rotating night shift
workers. Sci Rep. 2019;9:111032.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Morenoetal. | 9

Huang Y, et al. Predicting circadian phase across popula-
tions: a comparison of mathematical models and wearable
devices. Sleep 2021;44(10):1-11. 10.1093/sleep/zsab126.
Higuchi S, et al. Influence of light at night on melatonin sup-
pression in children. J Clin Endocrinol Metab. 2014;99(9):3298-
3303. doi:10.1210/jc.2014-1629.

Lewy AJ, et al. The endogenous melatonin profile as a marker
for circadian phase position. J Biol Rhythms. 1999;14(3):227-
236. d0i:10.1177/074873099129000641.

Deacon SJ, et al. Phase-shifts in melatonin,
6-sulphatoxymelatonin and alertness rhythms after treat-
ment with moderately bright light at night. Clin Endocrinol.
1994;40(3):413-420.

Sadeh A, et al. Activity-based sleep-wake identifica-
tion: an empirical test of methodological issues. Sleep
1994;17(3):201-207. doi:10.1093/sleep/17.3.201.

Meltzer LJ, et al. Use of actigraphy for assessment in pedi-
atric sleep research. Sleep Med Rev. 2012;16(5):463-475.
doi:10.1016/j.smrv.2011.10.002.

Acebo C, et al. Estimating sleep patterns with activity moni-
toring in children and adolescents: how many nights are
necessary for reliable measures? Sleep 1999;22(1):95-103.
doi:10.1093/sleep/22.1.95.

Ancoli-Israel S, et al. The role of actigraphy in the study
of sleep and circadian rhythms. Sleep 2003;26(3):342-392.
doi:10.1093/sleep/26.3.342.

Meltzer 1], et al. Comparison of actigraphy immobility rules
with polysomnographic sleep onset latency in children and
adolescents. Sleep Breath. 2015;19(4):1415-1423. d0i:10.1007/
$11325-015-1138-6.

Danzig R, et al. The wrist is not the brain: estimation of
sleep by clinical and consumer wearable actigraphy de-
vices is impacted by multiple patient- and device-specific
factors. ] Sleep Res. 2020;29(1):12926. doi:10.1111/jsr.12926.
Flynn ]I, et al. Detecting indoor and outdoor environ-
ments using the ActiGraph GT3X+ light sensor in chil-
dren. Med Sci Sports Exerc. 2014;46(1):201-206. doi:10.1249/
MSS.0b013e3182a388c0.

Patel SR, et al. Reproducibility of a standardized actigraphy
scoring algorithm for sleep in a US Hispanic/Latino Popula-
tion. Sleep 2015;38(9):1497-1503. doi:10.5665/sleep.4998.
LaVange LM, et al. Sample design and cohort selec-
tion in the Hispanic Community Health Study/Study of
Latinos. Ann Epidemiol. 2010;20(8):642-649. d0i:10.1016/j.
annepidem.2010.05.006.

Sorlie PD, et al. Design and implementation of the Hispanic
Community Health Study/Study of Latinos. Ann Epidemiol.
2010;20(8):629-641. doi:10.1016/j.annepidem.2010.03.015.
Lin LI. A concordance correlation coefficient to evaluate re-
producibility. Biometrics 1989;45(1):255-268.

Giavarina D. Understanding Bland Altman analysis. Biochem
Med 2015;25(2):141-151. d0i:10.11613/bm.2015.015.
Hartstein LE, et al. High sensitivity of melatonin suppression
response to evening light in preschool-aged children. J Pineal
Res. 2022;72(2):e12780. doi:10.1111/jpi.12780.

Crowley SJ, et al. A longitudinal assessment of sleep
timing, circadian phase, and phase angle of entrainment
across human adolescence. PLoS One. 2014;9(11):e112199.
doi:10.1371/journal.pone.0112199.

Crowley SJ, et al. An update on adolescent sleep: new
evidence informing the perfect storm model. J Adolesc.
2018;67:55-65. doi:10.1016/j.adolescence.2018.06.001.
Crowley S, et al. Free-running circadian period in adoles-
cents and adults. ] Sleep Res. 2018;27(5):€12678. doi:10.1111/
jsr.12678.

220z dunp gz uo Jasn uebiydiy Jo Ausianiun Aq 620/159/19098S2/9/G/01014e/daa|s/wod dnoolwapede//:sdiy woly papeojumoq


https://doi.org/10.1016/j.sleep.2020.05.032
https://doi.org/10.1016/j.pharmthera.2019.05.018
https://doi.org/10.1016/j.cub.2018.10.005
https://doi.org/10.1016/j.febslet.2007.06.079
https://doi.org/10.1016/j.cub.2016.04.011
https://doi.org/10.1016/j.cub.2016.04.011
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2019028841
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2019028841
https://doi.org/10.1016/j.pnpbp.2006.06.020
https://doi.org/10.1016/j.pnpbp.2006.06.020
https://doi.org/10.1080/07420528.2020.1809443
https://doi.org/10.1093/sleep/29.12.1632
https://doi.org/10.1177/0748730420962598
https://doi.org/10.1177/0748730420962598
https://doi.org/10.1073/pnas.1901824116
https://doi.org/10.1111/j.1365-2869.2005.00470.x
https://doi.org/10.1016/j.coisb.2020.08.001
https://doi.org/10.1016/j.coisb.2020.08.001
https://doi.org/10.1177/0748730417696787
https://doi.org/10.1038/s41598-017-03171-4
https://doi.org/10.1177/0748730419878298
https://doi.org/10.1093/sleep/zsaa180
https://doi.org/10.1093/sleep/zsab126
https://doi.org/10.1210/jc.2014-1629
https://doi.org/10.1177/074873099129000641
https://doi.org/10.1093/sleep/17.3.201
https://doi.org/10.1016/j.smrv.2011.10.002
https://doi.org/10.1093/sleep/22.1.95
https://doi.org/10.1093/sleep/26.3.342
https://doi.org/10.1007/s11325-015-1138-6
https://doi.org/10.1007/s11325-015-1138-6
https://doi.org/10.1111/jsr.12926
https://doi.org/10.1249/MSS.0b013e3182a388c0
https://doi.org/10.1249/MSS.0b013e3182a388c0
https://doi.org/10.5665/sleep.4998
https://doi.org/10.1016/j.annepidem.2010.05.006
https://doi.org/10.1016/j.annepidem.2010.05.006
https://doi.org/10.1016/j.annepidem.2010.03.015
https://doi.org/10.11613/bm.2015.015
https://doi.org/10.1111/jpi.12780
https://doi.org/10.1371/journal.pone.0112199
https://doi.org/10.1016/j.adolescence.2018.06.001
https://doi.org/10.1111/jsr.12678
https://doi.org/10.1111/jsr.12678

