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Abstract
Study Objectives  Examine the ability of a physiologically based mathematical model of human circadian rhythms to predict 

circadian phase, as measured by salivary dim light melatonin onset (DLMO), in children compared to other proxy measurements of 

circadian phase (bedtime, sleep midpoint, and wake time).

Methods  As part of an ongoing clinical trial, a sample of 29 elementary school children (mean age: 7.4 ± .97 years) completed 7 days of wrist 

actigraphy before a lab visit to assess DLMO. Hourly salivary melatonin samples were collected under dim light conditions (<5 lx). Data 

from actigraphy were used to generate predictions of circadian phase using both a physiologically based circadian limit cycle oscillator 

mathematical model (Hannay model), and published regression equations that utilize average sleep onset, midpoint, and offset to predict 

DLMO. Agreement of proxy predictions with measured DLMO were assessed and compared.

Results  DLMO predictions using the Hannay model outperformed DLMO predictions based on children’s sleep/wake parameters with a Lin’s 

Concordance Correlation Coefficient (LinCCC) of 0.79 compared to 0.41–0.59 for sleep/wake parameters. The mean absolute error was 31 min 

for the Hannay model compared to 35–38 min for the sleep/wake variables.

Conclusion  Our findings suggest that sleep/wake behaviors were weak proxies of DLMO phase in children, but mathematical models using 

data collected from wearable data can be used to improve the accuracy of those predictions. Additional research is needed to better adapt 

these adult models for use in children.

Clinical Trial The i Heart Rhythm Project: Healthy Sleep and Behavioral Rhythms for Obesity Prevention https://clinicaltrials.gov/ct2/show/NCT04445740.
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Statement of Significance

Sleep/wake patterns have shown validity as proxies for dim light melatonin onset (DLMO) phase among adolescents aged 9–17. The current 

study extended these findings to elementary school children ages 5–8 years old to examine agreement between measured DLMO phase and 

DLMO phase estimated with regression equations using children’s objectively measured sleep onset, midpoint, and offset. Estimates of DLMO 

using sleep/wake behaviors were compared to estimates obtained using a physiological limit cycle oscillator model of circadian rhythms. 

Findings suggest physiologically informed models of circadian entrainment can facilitate more accurate predictions of children’s circadian 

phase using data collected from wearable devices. Sleep/wake timing proved to be weak proxies of DLMO phase in 5–8-year-old children.
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Introduction

There is growing awareness of the role of the circadian system 
in the development of obesity and other physical and mental 
health conditions [1]. Specifically, desynchronization of the cen-
tral circadian clock located in the suprachiasmatic nucleus and 
peripheral clocks disrupts the circadian regulation of metab-
olism, contributing to weight gain [2] and multiple pathologies 
including cardiovascular disease [3,4], metabolic disease [5,6], 
cancer [6], and psychiatric disorders [7,8]. Furthermore, the effi-
cacy of medication regimes and even vaccines have been shown 
to be affected by an individual’s circadian timing [9–11]. As a re-
sult, the accurate assessment of circadian rhythm parameters 
such as circadian phase has become increasingly important for 
researchers and clinicians.

Circadian rhythms are endogenous rhythms with a cycle of 
about 24 h which are synchronized with environmental cues al-
lowing organisms (including humans) to easily adapt to their 
environment (e.g. fluctuations in food availability, temperature 
changes, presence of predatory animals) [12]. For example, the 
human body is primed to enter a fasting state during the over-
night sleep in which the body transitions to the use of fat re-
serves and maintains optimal glucose levels even in the absence 
of carbohydrate input from food [13, 14]. Having accurate assess-
ments of a person’s circadian phase enables us to understand 
the contribution of circadian rhythms in the pathophysiology 
of disease, which in turn enhances clinical care through the op-
timal administration of therapeutics [11, 15, 16].

The gold standard assessment of circadian phase is the 
use of plasma or salivary samples under dim light conditions 
(dim light melatonin onset, DLMO). This approach requires re-
peated samples (usually over a period of at least 6 h) to assess 
the time at which an individual’s melatonin secretion increases 
above a certain threshold [17]. Compared to other markers of 
endogenous circadian rhythms, such as core body temperature, 
melatonin is relatively robust [17]. However, the procedure not 
only requires an in-lab collection of saliva or plasma samples: 
it also usually requires patients to stay up past their habitual 
bedtime, resulting in acute sleep restriction. Additionally, these 
assessments can be cost-prohibitive (not covered by insurance) 
and thus impose a significant burden on research participants 
and patients. As such, sleep/wake cycles are often used as 
proxies for children’s circadian phase [18, 19] because they af-
fect an individual’s exposure to the light–dark cycle and thus 
are seen as fundamental to establishing children’s circadian 
rhythms. However, physiological differences such as light sen-
sitivity contribute to substantial inter-individual variability in 
phase angle of entrainment even when schedules and light–
dark patterns are held constant, making sleep/wake parameters 
such as bedtime, sleep midpoint, and wake time potentially 
poor indicators of circadian phase [20, 21]. Sleep/wake param-
eters are also heavily dictated by other external factors, such as 
school schedules, homework routines, and parental rules, which 
may mask children’s circadian phase and are often associated 
with error in the prediction of circadian phase [19, 22]. As a re-
sult, there is a need to develop more robust and less invasive 
ways to assess circadian phase in children.

Advances in wearable technology and mathematical 
modeling of human circadian entrainment offer potential oppor-
tunities to improve the estimation of children’s circadian phase 
to facilitate the study of circadian phase in larger populations 
[23]. Light and rest/activity data collected from wrist activity can 

be used to generate estimations of circadian phase using math-
ematical models of circadian entrainment [24–26]. These models 
have been evaluated in shift workers who experience extreme 
circadian disruption [27, 28]. In a head-to-head comparison of 
various models of circadian rhythms, the Hannay model stands 
out for being a circadian model derived from physiology as op-
posed to one adapted from the van der Pol oscillator to match 
circadian phenomena [26]. It estimates DLMO via a correction of 
core body temperature minimum as the primary model output 
[29]. It has been shown to provide a more accurate estimate of 
DLMO phase using ambient light exposure and activity collected 
from wearables than DLMO predictions estimated based on 
sleep/wake parameters in adults [29]. However, due to physio-
logical differences in children’s circadian physiology such as 
their sensitivity to evening light [30], it is unclear to what extent 
a model developed based on adult physiology and responsive-
ness to light will be able to accurately predict children’s circa-
dian phase. The purpose of the current study was to compare 
the ability of the Hannay model to predict children’s DLMO 
phase during the school year with other proxies of circadian 
phase (e.g. bedtime, sleep midpoint, and wake time).

Methods

Study design

The data included in these analyses were collected as part of a 
baseline assessment of an ongoing clinical trial (NCT04445740) 
aimed at examining the feasibility of an obesity prevention 
intervention. Data were collected between April and mid-June 
2021 during the school year in Houston, TX.

Participants
A sample of 5–8-year-old children was recruited from a vol-
unteer database, flyers distributed online through elementary 
schools to parents, and via Facebook advertisements. Children 
had to be between the ages of 5 and 8 years old and enrolled 
in kindergarten through second grade. Because children were 
participating in a study focused on the prevention of obesity, 
inclusion was limited to children with a BMI percentile above 
the 50th percentile. Exclusion criteria included having a chronic 
medical condition affecting sleep, eating behaviors, weight 
status, or behavioral rhythms (e.g. obstructive sleep apnea, at-
tention deficit hyperactivity disorder, autism) and having par-
ticipated in an obesity prevention or treatment program within 
the last 6  months. Due to the SARs-COV-2 pandemic, parents 
completed an online screening form. Parents were provided with 
a YouTube video that instructed them on how to measure their 
child’s height and weight at home. A follow-up screening visit 
was conducted via Zoom to provide parents and children with 
informed consent and assent and to confirm eligibility. Parental 
consent forms were signed electronically. The Institutional 
Review Board at Baylor College of Medicine approved the study 
protocol (H-47369).

Procedures
Actigraphs were mailed to the child’s home. A link to an online 
instructional video demonstrated proper wear and how to avoid 
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covering the accelerometer with clothing (https://www.youtube.
com/watch?v=8o9rN9J63j4). Children wore Actigraphs (GT3X-BT, 
Pensacola, FL) on the wrist of their non-dominant hand to assess 
their sleep, activity, and ambient light exposure for 7 days and 8 
nights during the school year. Children slept according to a “self-
selected” schedule, though in this age group bedtimes were likely 
heavily influenced by parents and the school year schedule. The 
Actigraph GT3X-BT is a tri-axial microelectromechanical sys-
tems accelerometer. The monitor digitized acceleration data 
using a 12-bit analog to a digital converter with a sampling rate 
of 30 Hz. Data were downloaded using the Actigraph’s digital 
pass filter with a bandwidth of 25Hz–2.5 Hz, designed to detect 
normal human behavior. Wear time data were also collected by 
the GT3X-BT monitor. The photocell contained in the Actigraph 
GT3X-BT (capable of measuring 0–5000 lx) measured ambient 
light exposure. Lux data were binned in 60-s epochs. Parents 
documented their child’s sleep patterns daily in an electronic 
survey that was emailed to parents every morning. Parents were 
also provided with a paper copy for note-taking purposes.

At the end of the week, DLMO was assessed in the lab. On 
the day of the lab visit, participants were asked to avoid intake 
of caffeine, chocolate, nonsteroidal anti-inflammatory drugs 
(NSAIDs), and CBD products. Saliva (~1 mL) samples were col-
lected using untreated Salivettes (Starstedt, Germany) every 
hour beginning 5  h before and ending 1  h following typical 
bedtime in dim light (<5 lx). Before the samples, children were 
seated for 10  min to minimize postural effects on melatonin 
concentration. If participants ate or drank before the sample, 
they gently brushed their teeth with a soft-bristled toothbrush 
and water. Saliva samples were centrifuged and frozen until 
analyzed for melatonin measurement using radioimmunoassay 
(RIA) test kits (NovoLytiX GmbH, Switzerland) at SolidPhase, Inc. 
in Portland, ME. The lower limit of detection of the assay was 
0.2 pg/mL.

Circadian phase and sleep/wake measures
DLMO phase was determined using linear interpolation across 
the time points before and after melatonin concentration in-
creased to and remained above 4 pg/mL [31, 32].

The Sadeh algorithm was used to score epochs as sleep or 
wake [33, 34]. According to the established protocols, each sleep 
episode reported in the parent diary was inspected in the ac-
tivity data starting 15 min before and 15 min after the reported 
bedtime and wake time, respectively [35–37]. If epochs of low ac-
tivity existed outside of the scoring interval or if nonwear time 
occurred during the interval, a consensus was reached by the 
research team. Nights were considered valid if the participant 
provided 20 min of wear time before sleep onset. Nonwear time 
in the hour before bedtime had to be less than 60 min unless 
confirmed by the wear log, or unless ambient light data were 
available to confirm bedtime. Sleep onset was defined as the 
first three consecutive epochs scored as sleep. Sleep offset was 
defined as the last five consecutive minutes of sleep occurring 
before 15 min after the reported wake-up. Sleep midpoint was 
defined as the midpoint between sleep onset and offset.

Circadian phase prediction
Previous studies have suggested that activity data can be used 
with mathematical models for the prediction of circadian 

phase [27, 29]. Light data collected by wrist-worn devices may 
not be representative of the light received by the eye due to 
placement on the wrist and not close to the eye [38], the poten-
tial of being covered by clothing, or to limitations of the device 
themselves. Due to the limited data regarding the accuracy of 
light measurements with wrist-worn GT3X-BT devices [39], 
a visual inspection of plots of activity and light data across 
subjects was conducted (see Supplementary file). Additionally, 
the fraction of 6-minute bins (interval used for passing the 
data into the model) coded as awake in which detected am-
bient light levels were <1.0 lx and activity levels were > 0 steps 
was calculated. In our actigraphy data, 54% of the intervals had 
lux values that were likely underestimated or missing (e.g. ob-
structed by clothing) during wake time. For comparison, we ap-
plied the same procedures to publicly available actigraphy and 
ambient light data collected from the Hispanic Community 
Health Study/Study of Latinos (in the Sueño ancillary study; 
n = 2252; 18–74 years old). Using the same operationalization 
of missing data collected under similar conditions (Philips 
Actiwatch worn for 1-week [40–42]), the percentage of inter-
vals that were underestimated or missing was 22%. Due to the 
substantial amounts of missing light data during periods of 
daytime activity, we conducted additional testing of the light 
monitor (see Supplementary file). As a result of the significant 
percentage of intervals with missing/underestimated light 
data and additional testing of the light sensor, we chose to use 
the activity data as a proxy for light exposure. All available data 
were used for each subject.

Model simulations of the Hannay model were conducted 
using Runge–Kutta 45 numerical integration written in Python. 
Code to run these models on Actiwatch data is provided at 
https://github.com/khannay/Circadian-DLMO-Prediction. 
Briefly, the Actigraph time series data were binned into 
6-minute intervals. Activity measurements were summed 
within each 6-minute bin, and the total lux exposure was es-
timated as 10.0 times these activity levels in each bin. These 
data were linearly interpolated and used as the light input to 
the Hannay model. Model initial conditions were chosen to 
match the expected state for an entrained subject with 16  h 
of light from 0800 to 0000 and an eight-hour dark period. For 
all subjects in the study, the choice of initial condition did not 
have any significant effect on the prediction accuracy. Phase 
estimates for the DLMO were calculated as the time the model 
phase crossed the threshold 5π/12 on the day the experimental 
measurement was taken.

Statistical analyses
Descriptive analyses were conducted using analysis of variance 
to assess for differences between males and females across 
children’s sleep/wake and circadian parameters. To assess for 
agreement between estimates of DLMO, DLMO was approxi-
mated using regression equations for estimating DLMO phase 
based on sleep times developed in a sample of adolescents [19]. 
The phase angle for mid-sleep was calculated by taking the mid-
point of the phase angle for sleep onset and offset. The mean 
absolute error and percentage of participants with a predicted 
DLMO within 1 h of measured DLMO were calculated, a standard 
for the accuracy of mathematical models [29]. The range of es-
timated DLMO was compared to the range of measured DLMOs 
to determine the percentage of true DLMOs captured within the 
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range of the predicted DLMO. Lin’s Concordance Correlation 
Coefficient (LinCCC) was used to assess agreement between pre-
dicted DLMO (novel assessment) and in-lab DLMO (gold standard 
measurement). LinCCC is a rigorous assessment because it com-
pares deviation from perfect agreement (i.e. line-of-slope-one) 
[43] as opposed to a regression line that allows for bias (i.e. line-
of-best-fit). In accordance with Cohen’s guidelines on strength 
of agreement, weak, moderate, and strong agreement was de-
termined with a LinCCC 0.0–0.59 (weak), 0.6–0.79 (moderate), 
0.8–1.0 (strong). LinCCC was computed using a publicly avail-
able SPSS macro https://doi.org/10.1371/journal.pone.0239931.
s002 and compared to the linear association of variables cal-
culated using bivariate regression. The Bland–Altman method 
was used to evaluate bias between the methods and to estimate 
an agreement interval within which 95% of the differences fall 
[44]. Sensitivity analyses were conducted to determine whether 
the accuracy of Hannay model predictions differed according 
to children’s age, sex, or race/non-Hispanic ethnicity. Analyses 
were conducted using SPSS software version 28 (2021, IBM Corp., 
Armonk, NY) and Prism version 9.2.0 (2021, GraphPad Software, 
LLC, San Diego, CA).

Results

Descriptive analyses

A total of 33 children were recruited in year one of the clin-
ical trial which began in 2021. Four children were excluded due 
to indeterminable timing of DLMO (n = 2) and Actigraph tech-
nical errors (n = 2), resulting in 29 children being included in 
the current analyses (14 females) with a mean age of 7.4 years 
(SD =.97, range: 5.4–8.6). The sample was representative of the 
Houston area demographics (17% Non-Hispanic Black, 28% 
Non-Hispanic White, 3.5% Non-Hispanic American Indian, 
3.5% Pacific Islander, 10% Hispanic Black, 38% Hispanic White 
or Native American). According to parent report, 83% of chil-
dren attended in-person school while 17% participated virtu-
ally during spring 2021. Children’s sleep/wake and circadian 
parameters are presented in Tables 1 and 2. There were no 
significant differences in the sleep/wake and circadian param-
eters by sex.

Examination of agreement between DLMO phase 
and its proxies

DLMO estimates based on sleep onset ranged between 7:46 pm 
and 9:18 pm and captured 59% of the true values of measured 
DLMO (Table 3). The average mean absolute error was 38  min 
with 86% of predictions falling within ± 1 hour of the observed 
DLMO. The LinCCC was 41 indicating weak agreement (lowest 
agreement for all the DLMO proxies) (Figure 1A). The Bland–
Altman plot revealed an average bias of 0.17 ± 0.9 h with a wide 
range of 95% limits of agreement from −1.5 to 1.9 (Figure 2A). The 
plot of the difference vs. the average of the measures reveals a 
positive trend with consistent spread across the regression line, 
suggesting an inability to identify DLMO at the extremes: early 
DLMOs are not estimated as early enough, while late DLMOs are 
not estimated as late enough.

DLMO estimates based on sleep midpoint ranged from 7:32 
pm to 10:01 pm and captured 83% of the true values of meas-
ured DLMO. The average mean absolute error was 35 min, with 
90% of predictions falling within ± 1 h of the observed DLMO. 
The LinCCC was 59, indicating weak–moderate agreement, but 
the best agreement of the sleep variables (Figure 1B). The Bland–
Altman plot for mid-sleep revealed an average bias of 0.07 ± 0.8 
and a range of 95% agreement from −1.5 to 1.6 (Figure 2B). The 
plot of the difference vs. the average of the measures reveals 
a positive trend with a consistent spread from the regression 
line, again suggesting poor descriptive ability at the extreme 
DLMO values.

DLMO estimates based on sleep offset ranged from 7:47 pm 
to 9:58 pm and captured 63% of the true values of measured 
DLMO. The average mean absolute error was 38 min, with 69% 
of predictions falling within ± 1 h of the observed DLMO. The 
LinCCC was 0.52 indicating weak agreement (Figure 1C). The 
Bland–Altman plot revealed a bias level of 0.03 ± 1.1 (the lowest 
of all the DLMO proxies) and a range of 95% agreement from −1.6 
to 1.6 (Figure 2C). The plot of the difference vs the average of the 
measures again reveals a bias.

DLMO estimates based on the Hannay model ranged from 
7:18 pm to 10:36 pm and captured 93% of the true values of meas-
ured DLMO. The average mean absolute error was 31 min (the 
lowest of all the DLMO proxies) with 93% of predictions falling 
within ± 1 h of the observed DLMO. Predictions from the Hannay 

Table 1.  Descriptives of children’s sleep/wake behaviors

 Mean SD1 Minimum Maximum 

Sleep onset (24-h time)
Sex    
  Male 21:53 46 20:27 23:07
  Female 22:14 53 21:04 23:55
  Total 22:03 50 20:27 23:55
Sleep midpoint (24-h time)
Sex    
  Male 2:23 40 1:06 3:39
  Female 2:48 48 1:49 4:39
  Total 2:35 45 1:06 4:39
Sleep offset (24-h time)
Sex    
  Male 6:53 41 5:45 8:13
  Female 7:23 49 6:32 9:22
  Total 7:08 46 5:45 9:22

1Minutes.
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model produced the highest LinCCC (ρc = 0.79; lower one-sided 
95% CL = 0.652, Figure 1D), suggesting moderately strong agree-
ment with measured DLMO [43] as opposed to the models using 
sleep/wake proxies that produced weaker agreement (onset ρc 
=0.41, offset ρc = 0.52, and midpoint ρc = 0.59). According to the 
Bland–Altman analysis, the Hannay model had a similar average 
bias (0.05 ± 0.6), but the smallest range of 95% agreement (−1.2 
to 1.3, Figure 2D). The plot of the difference vs. the average of the 
measures reveals a positive trend, though one which is mark-
edly weaker than the other proxies.

Sensitivity analysis

Errors in prediction of DLMO were not explained by child age, 
sex, race/ethnicity, or virtual vs. in-person schooling; however, 
there was a significant difference in the mean absolute error 
of DLMO predicted by sleep onset and midpoint depending on 
the number of scorable nights (F(2, 26) = 8.63, p = .001, η² = 0.40; 
95% CI: 0.9 to 0.6 and F(2, 26) = 4.26, p = .025, η² = 0.24; 95% CI: 
0.0–0.5). Post hoc analysis revealed that DLMO predictions using 

sleep onset and midpoint were poorer when using four nights of 
actigraphy (mean for sleep onset 2.0 and offset 1.4) compared to 
six (mean for sleep onset 0.3 and offset 0.4), and seven (mean for 
sleep onset 0.5 and offset 0.5) nights of actigraphy.

Examination of agreement with the line of best fit

To facilitate comparison with previous studies conducted 
among youth [19], we examined the bivariate linear associ-
ation between DLMO phase and DLMO proxies. The percentage 
of the variance in DLMO phase explained by sleep onset, mid-
point, offset and the Hannay model was 47%, 56%, 52%, and 67%, 
respectively.

Discussion
Sleep/wake patterns have shown validity as proxies for 
DLMO phase among adolescents aged [9–17, 19]; how-
ever, an overreliance on sleep/wake parameters may mask 

Table 2.  Descriptives of children’s predicted and measured circadian parameters

 Mean SD1 Minimum Maximum 

DLMO phase (24-h time)
Sex     
  Male 20:20 50 19:08 22:09
  Female 20:59 76 19:33 23:31
  Total 20:39 65 19:08 23:31
Hannay model predicted DLMO (24-h time)
Sex     
  Male 20:29 39 19:18 21:48
  Female 20:43 61 19:18 22:36
  Total 20:36 51 19:18 22:36
DLMO phase to sleep onset (mins)
Sex     
  Male 93 37 30 139
  Female 74 57 -71 149
  Total 84 48 -71 149
DLMO phase to sleep midpoint (mins)
Sex     
  Male 363 38 295 412
  Female 349 49 237 416
  Total 356 43 237 416
DLMO phase to sleep offset (mins)
Sex     
  Male 633 44 536 690
  Female 624 48 525 696
  Total 629 45 525 696

1Minutes.

Table 3.  Comparison of DLMO proxy predictions across models

DLMO Proxy 

Range of  
Predicted DLMO Mean  

Absolute  
Error (min) 

% of DLMOs  
Falling within  
Range of Proxy 

% within  
1h of Measured 
DLMO LinCCC* Bias (SD) 

Bland Altman  
95% Limits of 
Agreement Limits of 

Agreement 
Distance From To From To 

Onset1 19:46 21:18 38 59 86 0.41 0.17 (0.9) -1.5 1.9 3.4
Offset1 19:47 21:58 38 69 83 0.52 0.03 (0.8) -1.6 1.6 3.2
Midpoint1 19:32 22:01 35 83 90 0.59 0.07 (0.8) -1.5 1.6 3.1
Hannay Model 19:18 22:36 31 93 93 0.79 0.05 (0.6) -1.2 1.3 2.5

*Presented in ascending order of Lin’s CCC. Hannay model Lin’s lower one-sided 95% CL = 0.65.
1DLMO calculated using formulas developed to predict DLMO phase based on sleep wake variables among Adolescents (Crowley et al., 2006).
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inter-individual differences in light sensitivity and the en-
dogenous pacemaker [20,21]. The regression equations de-
veloped by Crowley et al. were originally developed to predict 
adolescents’ DLMO phase using self-reported sleep times. The 
current study extended these findings to elementary school chil-
dren ages 5–8 years old to examine agreement between meas-
ured DLMO phase and DLMO phase estimated using the Crowley 
regression equations. In the current study, children’s sleep onset, 
midpoint, and offset were assessed by wrist actigraphy instead 
of self-reported sleep. In addition, the current study leveraged 
advances in wearable technology and mathematical modeling 
of human circadian entrainment to examine the ability of a 
physiologically based circadian limit cycle oscillator model (i.e. 
Hannay model) to improve upon traditional sleep/wake param-
eters in the prediction of DLMO phase [29].

Similar to the results obtained with adolescents, the re-
gression equations using children’s sleep onset, midpoint, and 
offset estimated 86%, 90%, and 83% within ±1  h of measured 
DLMO. While the regression coefficients for DLMO predicted 
using sleep/wake behaviors were stronger in the child sample 

compared to the adolescent sample, the same general pattern 
was observed with sleep midpoint explaining the greatest vari-
ance (56%) in measured DLMO. The Hannay model improved 
predictions, estimating 93% within ±1 h of measured DLMO and 
explained 67% of the variance in DLMO phase.

One of the limitations of examining agreement using regres-
sion coefficients is that regression examines the deviation of 
data points from the line of best fit rather than the deviation from 
perfect agreement with the gold standard [29]. Calculating the 
LinCCC is one way to address this limitation [43]. When exam-
ining deviation from perfect agreement, the DLMO predictions 
obtained using sleep onset, offset, and midpoint demonstrated 
weak agreement with true DLMO (LinCCCs: 0.41, 0.52, and 0.59), 
while the DLMO predictions by the Hannay model demonstrated 
moderately strong agreement (LinCCC  =  0.79)[43]. Indeed, the 
LinCCCs for the other sleep/wake proxies fell below the lower 
bound of the one-sided 95% confidence interval for the Hannay 
model (0.65), suggesting that the differences in magnitude are 
reliable. The results for the Hannay model are similar to those 
obtained for other DLMO predictions made by mathematical 

Figure 1.  Comparison of DLMO Predictions using sleep timing and the Hannay Model.
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models across different adult samples [27, 29]. The similarity in 
agreement across populations is surprising given the fact that 
the Hannay model was entirely fit to adult data. Indeed, one po-
tential explanation for the lack of higher agreement among a 
child population is that this model was developed based on adult 
physiology and phase response curves [26, 30, 45]. Specifically, 
there is evidence that children may differ in important ways 
from adults. For example, the effect of evening light exposure 
among elementary school-age children has been shown to be 
twice that of adults in terms of the magnitude of their mela-
tonin suppression, possibly due to having larger pupil sizes and 
clearer lenses relative to adults [30]. However, the impact of this 
increased sensitivity on the circadian timing of young children 
is unknown. Other factors that may affect the accuracy of adult 
models for children include potential developmental changes in 
circadian period and homeostatic drive to sleep. For example, 
there is evidence that adolescents experience changes in their 
homeostatic drive that facilitate a circadian phase delay in ado-
lescents [46–48]. The extent to which development affects the 
circadian and homeostatic processes among elementary school 
children is understudied. A  better understanding of circadian 
entrainment and response to light across the circadian clock 
may help to further improve DLMO predictions among children.

The Bland–Altman plots revealed a similar level of bias 
across the DLMO proxies and illustrated that all proxies strug-
gled to accurately predict the DLMO phase of children with later 
DLMOs. This is likely because parents are socialized to avoid later 
bedtimes in young children. However, the Hannay model had a 
tighter range of agreement suggesting higher agreement. One 
reason that the Hannay model may produce more robust predic-
tions is that it takes activity and light as inputs into the circadian 
system as opposed to using sleep/wake timing as a proxy of the 
system. While activity and light are both subject to external fac-
tors, they are still integrated into the human circadian system 

to influence the physiological outputs (e.g. DLMO and core body 
temperature minimum). In contrast, while sleep/wake timing is 
an output of the circadian system, it is complicated by multiple 
factors that further modulate the occurrence of these events 
such as physiological differences in light sensitivity which can 
be accounted for by mathematical models [20, 21]. As such, it is 
not surprising that there is more noise when using sleep/wake 
timing as proxies for circadian phase. Furthermore, the error as-
sociated with sleep/wake timing as a proxy for circadian phase 
is not uniform as parents are more likely to enforce a bedtime 
before DLMO, especially for children with later chronotypes.

Strengths of the study include the use of objectively assessed 
sleep and gold standard assessment of circadian phase collected 
within spring of the same year, limiting potential impact of vari-
ation in the solar day on the findings. Limitations of the current 
study include this being a secondary analysis of data being col-
lected as part of an ongoing clinical trial. As such, this study has 
a limited sample size (n = 29), though the statistics used to assess 
concordance are robust to deal with sample sizes as small as 10 
[43]. Regardless, the small sample size makes it challenging to 
examine differences in sleep and circadian parameters by sex, 
race/ethnicity, and age and to explore factors associated with error. 
In the current study, there were no differences in sleep and cir-
cadian phase found across demographics, though others have 
observed sex differences in these variables among adolescents 
[19]. Additionally, the Hannay model was intended to be used 
with light as the input to the model; however, there is evidence 
that activity data can yield more accurate predictions when used 
as the input, possibly because activity is not only an input to the 
circadian system but also due to the limitations of using light 
measured by wrist-worn devices [27, 29]. As a result, the activity 
data were used as a proxy for light in the Hannay model. Another 
source of potential error is in the method used to estimate DLMO 
from saliva samples. Because linear interpolation was used to 

Figure 2.  Bland Altman plots of agreement between DLMO phase and its proxies.
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estimate the time at which melatonin rose above 4 pg/mL, it as-
sumes a steady rise in melatonin between samples. Furthermore, 
hourly saliva samples were used in the current study instead of 
30-minute sampling which may introduce error in the estimation 
of “true DLMO.” An additional limitation is that while mathemat-
ical models hold promise to improve predictions of DLMO phase, 
they can be nontrivial to set up and run (though they operate dir-
ectly on actigraphy data and require no manual sleep scoring from 
actigraphy and sleep diaries). On the other hand, the use of sleep/
wake regression equations requires scoring of actigraphy data 
which is time-intensive. If the only goal of the actigraphy data is to 
estimate circadian phase, these results suggest that efforts should 
be focused on the preparation of the data and code for running the 
mathematical model rather than the scoring of sleep/wake timing.

Conclusions
Overall, these results suggest that physiologically informed 
models of circadian entrainment can facilitate more ac-
curate predictions of children’s circadian phase using data 
collected from wearable devices than sleep/wake behaviors. 
Physiologically informed models can be used to identify and 
account for inter-individual physiological differences in factors 
such as light sensitivity and intrinsic period thereby improving 
prediction of circadian phase [23]. Accurate predictions of circa-
dian parameters derived from wearable devices offer promise 
for future studies seeking to assess circadian parameters in 
children and significantly reduce participant burden associated 
with more invasive, burdensome, and time-intensive methods 
of assessing circadian parameters.
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