

Differential electron yield imaging with STXM

William A. Hubbard^{1,2}, Jared J. Lodico^{1,2}, Xin Yi Ling^{1,2}, Brian Zutter^{1,2}, Young-Sang Yu³, David Shapiro³, B. C. Regan^{1,2}

¹*Department of Physics and Astronomy, University of California, Los Angeles, CA 90095, U.S.A.*

²*California NanoSystems Institute, University of California, Los Angeles, CA 90095, U.S.A.*

³*Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, U.S.A.*

Abstract

Total electron yield (TEY) imaging is an established scanning transmission X-ray microscopy (STXM) technique that gives varying contrast based on a sample's geometry, elemental composition, and electrical conductivity. However, the TEY-STXM signal is determined solely by the electrons that the beam ejects from the sample. A related technique, X-ray beam-induced current (XBIC) imaging, is sensitive to electrons and holes independently, but requires electric fields in the sample. Here we report that multi-electrode devices can be wired to produce differential electron yield (DEY) contrast, which is also independently sensitive to electrons and holes, but does not require an electric field. Depending on whether the region illuminated by the focused STXM beam is better connected to one electrode or another, the DEY-STXM contrast changes sign. DEY-STXM images thus provide a vivid map of a device's connectivity landscape, which can be key to understanding device function and failure. To demonstrate an application in the area of failure analysis, we image a 100 nm, lithographically-defined aluminum nanowire that has failed after being stressed with a large current density.

Keywords: STXM, TEY, XBIC, scanning transmission X-ray microscopy, electron yield, failure analysis

¹ 1. Introduction

In scanning transmission X-ray microscopy (STXM), a focused X-ray beam is rastered across a thin sample, and the measured transmission is associated with the beam position to form an image. With soft (100–2,200 eV) X-rays, STXM offers distinct advantages over other spectromicroscopy techniques. Its sub-50 nm[1, 2, 3] spatial resolution is better than the $\sim 1 \mu\text{m}$ resolution of Raman imaging, and its beam-induced radiation damage is less than that of electron energy loss spectroscopy (EELS) in a transmission electron microscope (TEM) [4, 5]. STXM has found broad application in the biological [3, 6, 7] and physical [8, 9, 10] sciences, and has been used to study device physics in solar cells [11, 12], spin-torque memory[13], resistive memory[14], and the Li-ion battery cathode material Li_xFePO_4 [15].

STXM characterizes physical structure: it deter-

mines a sample's morphology and can even spectroscopically quantify a sample's chemical composition. However, in some cases the information returned is still too crude to identify gross characteristics of the sample that are of paramount importance. For instance, in an electronic device two conductors might be separated by a few nanometers of insulator. Conventional STXM might identify copper on one side and aluminum on the other, but, with its limited spatial resolution, conventional STXM is ill-suited to determine whether the two conductors are electrically connected. Because of the intimate relation between connectivity and function in electronic devices, determining the presence (or absence) and properties of such a connection might be the primary motivation for imaging the sample in the first place.

A conventional STXM system detects the transmitted X-rays with, for example, a photodiode on the beam-exit side of the sample. To expand its ca-

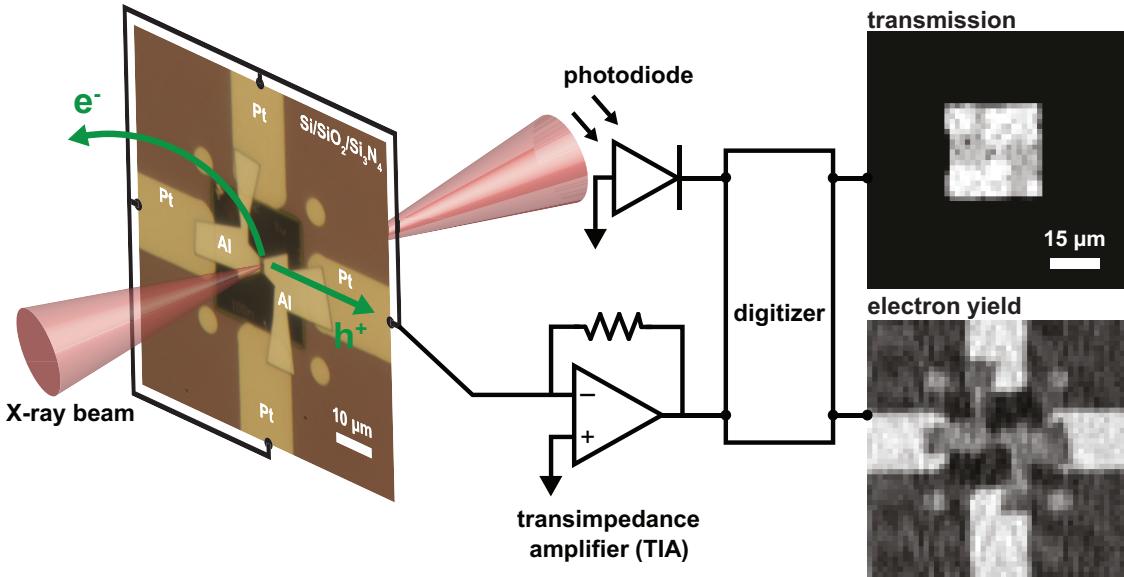


Figure 1: **Experiment overview.** The sample (optical image on left) consists of a $200\text{ }\mu\text{m}$ -thick silicon chip supporting a 20 nm -thick silicon nitride membrane. Platinum leads over the silicon contact an aluminum pattern that tapers to an unresolved wire in the membrane's center. Here all of the Pt leads are shorted together to produce a TEY image. As the X-ray beam (red) scans the sample, the signal from the photodiode and the transimpedance amplifier (i.e. TIA, or current meter) are digitized simultaneously to form the images on the right. The photodiode signal generates the standard STXM image (top right). The TIA measures the current produced in the sample by the X-ray beam (bottom right). When the beam ejects electrons from the sample, the resulting hole current is positive and is displayed with bright contrast.

40 pabilities, STXM imaging techniques that instead
 41 rely on electron detection have been developed.
 42 Among the most prominent are total electron yield
 43 (TEY) and X-ray beam-induced current (XBIC)
 44 imaging. TEY is performed either by capturing
 45 electrons emitted from the sample in a remote elec-
 46 tron detector [16, 1], or by measuring the resulting
 47 holes with a current meter attached to the sample
 48 [17, 1]. TEY measures beam-ejected electrons of all
 49 energies, including primary¹, secondary, and Auger
 50 electrons[18]. XBIC, on the other hand, requires
 51 a current meter attached to the sample. It mea-
 52 sures the current generated when the X-ray beam
 53 produces electron-hole pairs that are subsequently
 54 separated by local electric fields inside the sample
 55 [11, 12, 19, 20]. Generally XBIC signals, where
 56 present, are larger than TEY signals, because more
 57 electron-hole pairs than ejected electrons are pro-
 58 duced per primary X-ray.

¹In the X-ray microscopy community a primary electron is one scattered in a collision with beam X-ray, while in the electron microscopy community a primary electron is a beam electron, and a secondary electron is one scattered by a primary. In this article we use the conventions of the X-ray community.

59 XBIC has an electron microscopy counterpart,
 60 (standard) electron beam-induced current (EBIC)
 61 imaging, where the electron-hole pairs are instead
 62 produced by a scanned electron beam [21, 22]. A
 63 related electron microscopy technique, secondary
 64 electron emission EBIC (SEEBIC) imaging [23, 24,
 65 25], is closely analogous to TEY, and to the subject
 66 of this paper.

67 If the sample is wired for current collection, both
 68 TEY and XBIC imaging can be performed using the
 69 same apparatus, but with slightly different electri-
 70 cal connections. TEY requires only a single con-
 71 nection between the sample and the current meter
 72 (generally a transimpedance amplifier, or TIA)[19],
 73 while XBIC requires that the sample have an addi-
 74 tional connection to a low impedance to allow for
 75 charge neutralization.

76 Using a sample wired with multiple electrical con-
 77 nections, as is characteristic of XBIC and not TEY,
 78 we perform STXM mapping of electron yield. How-
 79 ever, the resulting contrast has its root in the ejec-
 80 tion of electrons from the sample (and not in the
 81 creation of electron-hole pairs), as is characteristic
 82 of TEY and not XBIC. Here we report that using
 83 multiple electrodes allows differential electron yield

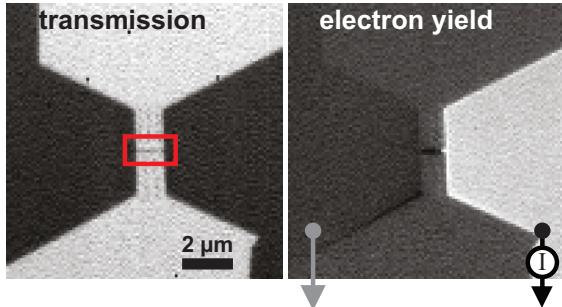


Figure 2: **STXM and DEY imaging of the Al nanowire device.** These images of the device of Fig. 1 are acquired with the left electrode grounded and the right electrode attached to the TIA (indicated schematically here with an “I” circumscribed by a circle). The field of view in these images corresponds to the x-ray transparent center of the Fig. 1 images, where the photodiode signal is bright. The standard STXM image (left) shows both Al leads with the same contrast, while the DEY image (right) indicates that only the Al lead on the right is electrically connected to the TIA. The red box indicates the region shown in Fig. 3.

(DEY) imaging, which gives contrast that changes sign between neighboring electrodes on the sample. For instance, when the X-ray beam is incident on an electrode connected to the current meter, the measured current is generally positive, since the ejected electrons leave a hole current behind. But when the beam moves to a neighboring, grounded electrode, the beam-induced hole current is shunted to ground and is therefore not measured. Meanwhile, some of the primary and secondary electrons ultimately return to the first electrode, where they are measured as a negative current (analogous to Fig. 2 of reference [23]). This negative current represents electrons that, in the absence of the current meter, would *not* have left the sample, thus by definition it is distinct from the TEY current. The resulting DEY contrast, unlike standard STXM, TEY, or XBIC contrast, can vividly reveal whether neighboring electrodes are connected.

Our implementation of DEY imaging employs a TEM sample holder, which has some particular advantages for *in situ* STXM imaging of electronic devices. The production of STXM-compatible, electrically connected samples shares many challenges with the production of samples for *in situ* TEM experiments. Accordingly, several X-ray beamlines have incorporated TEM stage/load-lock mechanisms in X-ray imaging systems, allowing for STXM experiments to be performed with TEM sample holders[26, 15, 27]. We adopt this ap-

proach [27], which gives access to the numerous off-the-shelf *in situ* capabilities afforded by specialized TEM holders, including imaging in liquid and gas, heating, cooling, biasing, and physical manipulation. The TEM stage and load-lock combination also makes for faster sample exchange (minutes instead of hours) and easier correlative TEM imaging (which can be performed without even removing the sample from the TEM sample holder).

2. Experimental

X-ray imaging is performed at Lawrence Berkeley National Lab’s Advanced Light Source (ALS) on beamline 7.0.1.2 (COSMIC) [27]. The COSMIC beamline offers a 250–2500 eV X-ray energy range and a 50 nm spot size, and is equipped with a FEI CompuStage load-lock system, which accepts TEM sample holders. Except where indicated otherwise, STXM images are acquired with an incident beam energy of 1565 eV. To form STXM and electron yield images, the signals from a post-sample photodiode and a FEMTO DLPCA-200 TIA, respectively, are digitized simultaneously as the beam is rastered pixel-by-pixel across the sample. To acquire diffraction patterns for ptychography, the photodiode can be retracted to expose a CCD detector [28]. Data are reconstructed using standard methods available in the SHARP ptychography package [29]. Scanning TEM (STEM) imaging is performed in an FEI Titan 80–300 STEM at 80 kV. For both STXM and STEM the sample is mechanically supported and electrically contacted with a Hummingbird Scientific biasing TEM sample holder.

Our demonstration sample (Fig. 1 optical image) is a silicon chip patterned via optical lithography with four Ti/Pt (5/25 nm) electrodes that lead to a 20 nm-thick silicon nitride membrane[23]. On the membrane a 1-μm-long, 100-nm-wide, and 100-nm-thick Al wire is patterned via electron beam lithography. Tapered pads connect the wire to the Ti/Pt electrodes in a 4-wire configuration. Before being loaded in the STXM chamber, the wire is biased in vacuum until failure and then stored in the ambient atmosphere for several days. All images labeled “transmission” show the raw, unprocessed photodiode signal. All images labeled “electron yield” show the TIA signal, which has been Fourier filtered to remove AC line noise. TIA current values are given relative to the signal on the bare silicon nitride membrane, where very little electron yield is

164 expected. The optical density referenced in Figs. 5–
 165 6 is $-\ln \frac{I}{I_0}$, where I_0 is the photodiode signal on the
 166 bare silicon nitride membrane.

167 3. Results and Discussion

168 STXM imaging of the silicon nitride membrane
 169 window reveals the Al electrodes, which transmit
 170 fewer photons than the bare membrane and thus ap-
 171 pear slightly darker (Fig. 1 top right). But STXM
 172 imaging of the silicon support frame provides no in-
 173 formation, as the thick silicon blocks the incident
 174 X-rays. The (total) electron yield image, on the
 175 other hand, reveals device features in the entire field
 176 of view, even where the sample is opaque (Fig. 1
 177 bottom right). The Al pads are visible, as in the
 178 STXM image, but so are the Pt electrodes to which
 179 the Al is connected. The Pt has a larger electron
 180 yield than the Al and therefore appears brighter.
 181 Four Pt islands at the corners of the membrane are
 182 also visible, despite the apparent lack of an electri-
 183 cal connection. Holes produced in these islands can
 184 evidently travel the several-micrometer distance to
 185 the Pt electrodes [23]. Contrast is slightly darker
 186 over the membrane, an insulator that generates few
 187 primary electrons in the beam.

188 Electron yield mapping can be extremely help-
 189 ful in samples that are mostly opaque. With only
 190 the transmission-based contrast of standard STXM,
 191 locating a thin region is generally accomplished
 192 by trial-and-error, and is analogous to wandering
 193 around in the dark. Electron yield imaging turns
 194 the lights on: sample features far from the trans-
 195 parent area can be used as landmarks to locate the
 196 region of interest systematically and quickly.

197 The device of Fig. 1 features an unresolved Al
 198 wire that previously connected the two larger pads.
 199 Because the device has been subjected to a bias cur-
 200 rent sufficiently large to cause heating and eventual
 201 failure, the wire is broken and represents a very
 202 large electrical impedance. We image the nanowire
 203 of Fig. 1 again, this time with a smaller field of view
 204 (Fig. 2), but here we change the electrical connec-
 205 tions for DEY imaging: the right Al electrode re-
 206 mains connected to the TIA but the left electrode
 207 is now grounded. (The biasing sample holder gives
 208 independent access to each of the four Ti/Pt elec-
 209 trodes, so this change can be made without break-
 210 ing vacuum.)

211 In this configuration, when the X-ray beam ejects
 212 electrons from the right electrode, the TIA mea-
 213 sures a positive (hole) current. When the X-

Figure 3: **Ptychography and DEY imaging of the Al nanowire device.** Retracting the photodiode and scanning over the region outlined in red in Fig. 2 produces, after reconstruction, a ptychography image (top) that reveals the break in the Al nanowire. The simultaneously acquired electron yield image (bottom) has the inferior resolution, relative to ptychography, of standard STXM, but it nonetheless reveals a surprising feature: electrical connectivity spans the ‘break’ in the Al wire that is seen in ptychographic image.

214 ray beam ejects electrons from the left electrode,
 215 the hole current flows to ground directly and is
 216 not measured by the TIA. However, a fraction of
 217 the electrons emitted from the left electrode are
 218 recaptured[23] by the right electrode and are mea-
 219 sured as a negative (electron) current. Thus, the re-
 220 sulting image (Fig. 2 right) shows each electrode as
 221 bright or dark respectively, depending on whether
 222 or not the electrode is directly connected to the
 223 TIA. Like TEY, DEY imaging maps whether or
 224 not a region is conducting: the Al on both sides
 225 of the break more readily emits primary electrons
 226 than the insulating Si_3N_4 support membrane. But
 227 DEY imaging also indicates the connectivity land-
 228 scape, particularly the ‘watershed’ boundary of the
 229 region electrically connected to the TIA [23]. Such

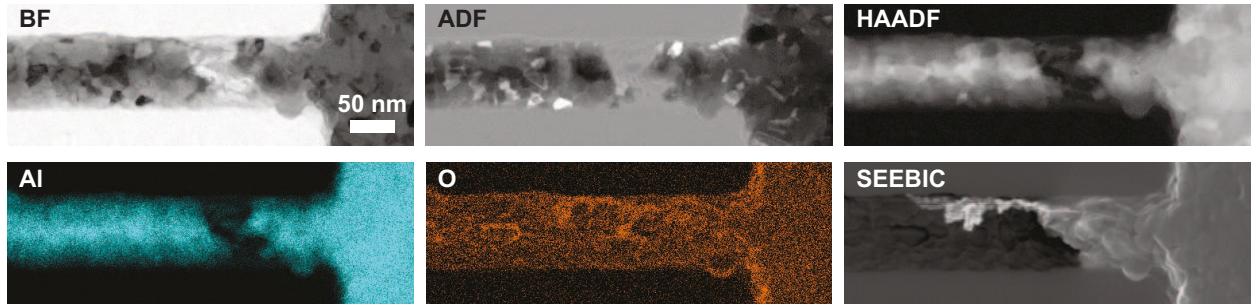


Figure 4: **STEM imaging of the Al nanowire device.** The Al wire of Figs. 1–3 is imaged with standard STEM (BF, ADF, and HAADF), STEM EDS elemental mapping (Al and O), and STEM SEEBIC. The BF and SEEBIC images are the electron microscopy analogues of the previously-shown STXM (Fig. 2) and DEY images (Figs. 2–3) respectively. The STEM images show similar contrast but significantly better spatial resolution relative to their analogous X-ray images.

230 differential contrast is not accessible with TEY.

231 Note that the dark contrast generated by electron
232 recapture (e.g. the left electrode of Fig. 2 right) in-
233 dicates that DEY imaging, on electrodes showing
234 bright contrast (e.g. the right electrode of Fig. 2
235 right), always has a better signal-to-noise ratio than
236 TEY imaging. The recaptured electron current has
237 the opposite sign as the hole current. To the ex-
238 tent that these currents are equal and are collected
239 by the same TIA, they cancel. Viewed from this
240 perspective, TEY is a worst case scenario, in that
241 the recapturing electrode spans the whole sample.
242 It thus collects a correspondingly large recapture
243 current, and generates a correspondingly small net
244 current (i.e. signal). One can even imagine patho-
245 logical geometries where a nearby, off-sample sur-
246 face, such as an aperture [17], could produce enough
247 primary and secondary electrons — which contain
248 no information about the sample itself — to over-
249whelm the original hole current. Imaging a small
250 electrode that alone is connected to the TIA gives
251 the best case scenario, for here the recapture cur-
252 rent is minimized and the measured hole current is
253 undiminished.

254 Scans of the same device (Fig. 3) with even
255 smaller fields of view (i.e. higher magnification) re-
256 solve both the physical and the electronic break in
257 the Al wire. Here we retract the photodiode to cap-
258 ture the diffraction pattern generated at each X-ray
259 beam position (i.e. pixel) for ptychography. With-
260 out the photodiode the standard STXM image is no
261 longer available. Ptychographically reconstructing
262 the captured diffraction patterns produces an im-
263 age that reveals a break in the Al on the right side
264 of the wire (Fig. 3 top). The break appears clean,

265 with an ~ 50 nm length missing from the wire. The
266 DEY image (Fig. 3 bottom), however, shows a more
267 complicated structure around the break. The large
268 Al lead on the right is bright, as expected based
269 on the larger field of view (i.e. lower magnification)
270 image of the same device (Fig. 2 right). But surpris-
271 ingly, portions of the wire to the left of the ‘break’
272 (as identified by the ptychographic image) are also
273 bright, indicating that they too are connected to
274 the Al lead on the right.

275 During ptychographic imaging, the photodiode is
276 retracted and thus its signal is not available. How-
277 ever, electron yield data can still be acquired si-
278 multaneously with the diffraction patterns used to
279 produce the ptychographic image. And unlike the
280 ptychographic data, the electron yield data is im-
281 mediately viewable in a real-space format without
282 any analysis (e.g. reconstruction or summing). The
283 real-time feedback provided by electron yield im-
284 aging, like the ability to image opaque regions of a
285 sample, is an experimental convenience that can
286 save valuable time on the beamline.

287 The use of the TEM sample holder for X-ray
288 imaging makes correlative microscopy especially
289 straightforward. STEM (Fig. 4) imaging of the
290 same device in the same sample holder confirms,
291 with much improved spatial resolution, the device
292 properties ascertained with X-ray imaging. Bright-
293 field (BF), annular dark-field (ADF), and high-
294 angle ADF (HAADF) STEM images (Fig. 4, top
295 row) each show loss of material at the failure point,
296 and energy-dispersive X-ray spectroscopy (EDS) el-
297 emental mapping (Fig. 4, bottom left and center)
298 confirms that Al has disappeared in the gap. SEE-
299 BIC imaging (Fig. 4, bottom right) shows the same

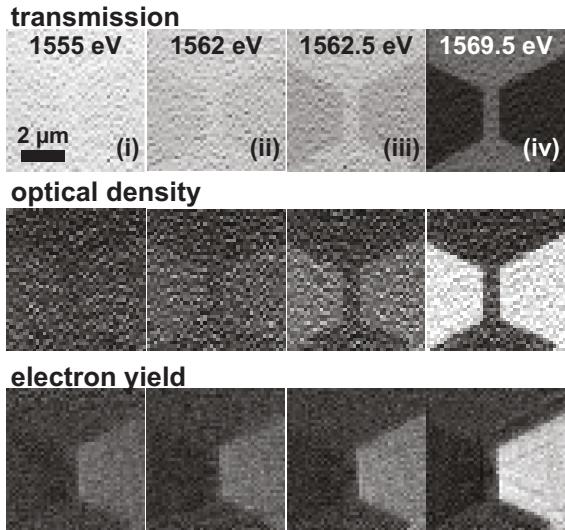


Figure 5: **STXM and electron yield images at four representative X-ray beam energies.** The beam energy for each column of representative images (see Fig. 6) is indicated. The electrodes are almost invisible in the raw photodiode (upper row) and calculated optical density (middle row) images below 1562 eV, while they are easily seen in the electron yield images (bottom row) over the entire energy range scanned (1555–1575 eV). The electron yield images are acquired with the circuit as indicated in Figs. 2–3. The contrast scale is held fixed for each row of images.

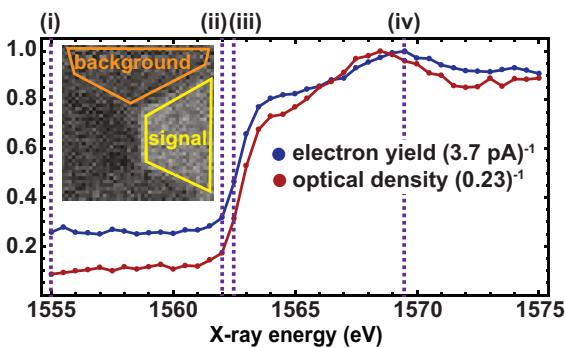


Figure 6: **Electron yield and optical density of an Al electrode as a function of incident beam energy.** Signal on the right electrode (inset, yellow) is plotted for the electron yield (blue curve) and optical density (red curve). Electron yield is measured relative to the background reference region (inset, orange). Both plots are normalized by dividing by the maximum value measured for each, which is indicated in the plot legend. Dashed lines indicate images shown in Fig. 5.

300 non-obvious electrical connectivity seen with DEY
 301 imaging, again with improved spatial resolution:
 302 the right electrode is electrically connected to ma-
 303 terial well to the left of the gap that appears in the
 304 standard imaging channels. Both the DEY and the
 305 SEEBIC [23] images are mapping the connectivity
 306 landscape as revealed by beam-induced ejection of
 307 electrons from the sample. Evidently the contrast
 308 is relatively insensitive to the type of probe beam
 309 (X-ray or electron) and is thus predominantly de-
 310 termined by the sample's conductivity distribution.
 311 While here electron microscopy has clearly superi-
 312 or spatial resolution, X-ray microscopy has spectro-
 313 scopic advantages that will be discussed shortly.

314 Metallic aluminum in quantities below the detec-
 315 tion limits here is likely responsible for this con-
 316 nectivity extension. Some correlation between the
 317 connectivity extension seen with DEY and SEEBIC
 318 imaging is seen in the oxygen EDS map, but noth-
 319 ing that would suggest the existence of the exten-
 320 sion without the DEY (or SEEBIC) data. In many
 321 practical situations, DEY imaging's ability to de-
 322 tect the electrical connectivity created by dopants
 323 or other trace impurities in quantities below the
 324 standard detection methods' thresholds might be
 325 key to understanding device behavior.

326 In X-ray microscopy, unlike electron microscopy,
 327 the beam energy can be tuned across an absorption
 328 threshold of an element in the sample. (This ca-
 329 pability has been exploited in previous XBIC work
 330 [20].) The differential contrast in the electron yield
 331 persists under such spectroscopic imaging. We scan
 332 the beam energy over 41 values encompassing the
 333 aluminum K-edge (1555 eV to 1575 eV in 0.5 eV
 334 steps). Below 1562 eV, the Al electrodes are diffi-
 335 cult to detect in the STXM images, while they are
 336 obvious in the electron yield images (Fig. 5). Both
 337 signals become more intense (Fig. 6) as the energy
 338 exceeds the Al K-edge threshold at \sim 1563 eV. The
 339 Al electron yield, which is already significant below
 340 the K-edge, increases by about 400% immediately
 341 above the K-edge.

342 Spectroscopic tuning of an X-ray beam may give
 343 DEY imaging an important advantage over SEE-
 344 BIC imaging for the study of chemically heteroge-
 345 neous samples. Figure 6 shows clear evidence of X-
 346 ray absorption fine structure (XAFS) in the DEY
 347 signal, as has been seen previously in the TEY sig-
 348 nal [16, 1]. With the ability to spectroscopically
 349 to vary the electron yield according to elemental
 350 identity, molecular bonding, local disorder, and ef-
 351 fective atomic charge, DEY imaging has the poten-

352 tial to directly relate the local chemistry to electri- 398
353 cal transport properties, and thus give new insight 399
354 into electrochemical systems ranging from batteries 400
355 to doped semiconductors. 401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

356 4. Conclusion

357 We have demonstrated STXM electron yield 398
358 imaging of a simple device mounted in a TEM bi- 399
359 asing holder. With a TEM load-lock installed, per- 400
360 forming electron yield measurements requires no 401
361 modification of the STXM chamber or the data 402
362 acquisition electronics; all electrical connections to 403
363 the device are made through the holder, and the 404
364 electron yield signal is digitized in parallel with the 405
365 existing photodiode signal. Measuring current from 406
366 the entire device provides the standard TEY mea- 407
367 surement, while grounding portions of the circuit 408
368 gives DEY images that map connectivity within 409
369 the device. In a broken Al nanowire, the differ- 410
370 ential contrast provided by DEY imaging precisely 411
371 locates the failure point and reveals a non-obvious 412
372 electrical connection spanning the physical gap in 413
373 the wire. As a complement to standard STXM and 414
374 ptychographic imaging, the DEY technique has a 415
375 number of practical advantages, including real-time 416
376 and opaque-region imaging. For functional studies 417
377 of micro- and nano-scale electronic devices, DEY 418
378 imaging makes a particularly powerful addition to 419
379 the suite of available correlative imaging modes. 420

380 5. Acknowledgments

381 This work was supported by National Science 398
382 Foundation (NSF) Science and Technology Center 399
383 (STC) award DMR-1548924 (STROBE), by NSF 400
384 awards DMR-1611036 and DMR-2004897, and by 401
385 the UCLA PSEIF. Work at the ALS was supported 402
386 by the Office of Science, Office of Basic Energy Sci- 403
387 ences, of the US Department of Energy under con- 404
388 tract number DE-AC02-05CH11231. The authors 405
389 acknowledge the use of instruments at the Elec- 406
390 tron Imaging Center for NanoMachines supported 407
391 by NIH 1S10RR23057 and the CNSI at UCLA. The 408
392 authors also thank M. Murnane and J. Miao for 409
393 encouragement and assistance in arranging the exper- 410
394 iments. 411

395 6. References

396 [1] S. Behyan, B. Haines, C. Karanukaran, J. Wang, 397 M. Obst, T. Tyliszczak, S. G. Urquhart, Surface Detec- 398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462

tion in a STXM Microscope, AIP Conference Proceedings 1365 (1) (2011) 184–187. doi:10.1063/1.3625335.

[2] J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner, A. Maaßdorf, M. Ritala, C. David, Advanced thin film technology for ultrahigh resolution X-ray microscopy, Ultramicroscopy 109 (11) (2009) 1360–1364. doi:10.1016/j.ultramic.2009.07.005.
URL <http://www.sciencedirect.com/science/article/pii/S0304399109001661>

[3] M. Obst, G. Schmid, 3d chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences, Methods in Molecular Biology (Clifton, N.J.) 1117 (2014) 757–781. doi:10.1007/978-1-62703-776-1_34.

[4] E. G. Rightor, A. P. Hitchcock, H. Ade, R. D. Leapman, S. G. Urquhart, A. P. Smith, G. Mitchell, D. Fischer, H. J. Shin, T. Warwick, Spectromicroscopy of Poly(ethylene terephthalate): Comparison of Spectra and Radiation Damage Rates in X-ray Absorption and Electron Energy Loss, The Journal of Physical Chemistry B 101 (11) (1997) 1950–1960, publisher: American Chemical Society. doi:10.1021/jp9622748.
URL <https://doi.org/10.1021/jp9622748>

[5] A. F. G. Leontowich, A. P. Hitchcock, R. F. Egerton, Radiation damage yields across the carbon 1s excitation edge, Journal of Electron Spectroscopy and Related Phenomena 206 (2016) 58–64. doi:10.1016/j.elspec.2015.11.010.
URL <http://www.sciencedirect.com/science/article/pii/S0368204815002844>

[6] J. Kirz, C. Jacobsen, M. Howells, Soft X-ray microscopes and their biological applications, Quarterly Reviews of Biophysics 28 (1) (1995) 33–130. doi:10.1017/S0033583500003139.
URL <https://www.cambridge.org/core/journals/quarterly-reviews-of-biophysics/article/soft-x-ray-microscopes-and-their-biological-applications/23BB8B16B05396A85B4773993620222A>

[7] K. Shinohara, T. Ohigashi, S. Toné, M. Kado, A. Ito, Quantitative analysis of mammalian chromosome by scanning transmission soft X-ray microscopy, Ultramicroscopy 194 (2018) 1–6. doi:10.1016/j.ultramic.2018.07.001.
URL <http://www.sciencedirect.com/science/article/pii/S0304399117304126>

[8] K. Litzius, I. Lemesh, B. Krüger, P. Bassirian, L. Caretta, K. Richter, F. Büttner, K. Sato, O. A. Tretyakov, J. Förster, R. M. Reeve, M. Weigand, I. Bykova, H. Stoll, G. Schütz, G. S. D. Beach, M. Kläui, Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy, Nature Physics 13 (2) (2017) 170–175, number: 2 Publisher: Nature Publishing Group. doi:10.1038/nphys4000.
URL <https://www.nature.com/articles/nphys4000>

[9] X. Ye, J. E. Schmidt, R.-P. Wang, I. K. v. Ravenhorst, R. Oord, T. Chen, F. d. Groot, F. Meirer, B. M. Weckhuysen, Deactivation of Cu-Exchanged Automotive-Emission NH3-SCR Catalysts Elucidated with Nanoscale Resolution Using Scanning Transmission X-ray Microscopy, Angewandte Chemie 132 (36) (2020) 15740–15747, _eprint: <https://onlinelibrary.wiley.com/doi/pdf/10.1002/ange.201916554>. doi:<https://doi.org/10.1002/ange.201916554>.

463 URL <https://onlinelibrary.wiley.com/doi/abs/10.1002/ange.201916554> 528
 464 529

465 [10] W. Li, Z. Wang, F. Zhao, M. Li, X. Gao, Y. Zhao, J. Wang, J. Zhou, Y. Hu, Q. Xiao, X. Cui, M. J. Eslamibidgoli, M. H. Eikerling, R. Li, F. Brandys, R. Dividalpitiya, T.-K. Sham, X. Sun, Phosphorene Degradation: Visualization and Quantification of Nanoscale Phase Evolution by Scanning Transmission X-ray Microscopy, *Chemistry of Materials* 32 (3) (2020) 1272–1280, publisher: American Chemical Society. doi:10.1021/acs.chemmater.9b04811. URL <https://doi.org/10.1021/acs.chemmater.9b04811> 538
 466 539
 467 540

468 [11] O. F. Vyvenko, T. Buonassisi, A. A. Istratov, H. Hieslmair, A. C. Thompson, R. Schindler, E. R. Weber, X-ray beam induced current—a synchrotron radiation based technique for the in situ analysis of recombination properties and chemical nature of metal clusters in silicon, *Journal of Applied Physics* 91 (6) (2002) 3614–3617. doi:10.1063/1.1450026. URL <https://aip.scitation.org/doi/10.1063/1.1450026> 547
 469 548
 470 549

471 [12] B. Watts, D. Queen, A. L. D. Kilcoyne, T. Tyliszczak, F. Hellman, H. Ade, Soft X-ray beam induced current technique, *Journal of Physics: Conference Series* 186 (2009) 012023. doi:10.1088/1742-6596/186/1/012023. URL <http://stacks.iop.org/1742-6596/186/i=1/a=012023?key=crossref> 555
 472 556

473 [13] D. P. Bernstein, B. Bräuer, R. Kukreja, J. Stöhr, T. Hauet, J. Cucchiara, S. Mangin, J. A. Katine, T. Tyliszczak, K. W. Chou, Y. Acremann, Nonuniform switching of the perpendicular magnetization in a spin-torque-driven magnetic nanopillar, *Physical Review B* 83 (18) (2011) 180410. doi:10.1103/PhysRevB.83.180410. URL <https://link.aps.org/doi/10.1103/PhysRevB.83.180410> 563
 474 564
 475 565

476 [14] A. Koehl, H. Wasmund, A. Herpers, P. Guttmann, S. Werner, K. Henzler, H. Du, J. Mayer, R. Waser, R. Dittmann, Evidence for multifilamentary valence changes in resistive switching SrTiO₃ devices detected by transmission X-ray microscopy, *APL Materials* 1 (4) (2013) 042102. doi:10.1063/1.4822438. URL <https://aip.scitation.org/doi/10.1063/1.4822438> 571
 477 572
 478 573

479 [15] J. Lim, Y. Li, D. H. Alsem, H. So, S. C. Lee, P. Bai, D. A. Cogswell, X. Liu, N. Jin, Y.-s. Yu, N. J. Salmon, D. A. Shapiro, M. Z. Bazant, T. Tyliszczak, W. C. Chueh, Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles, *Science* 353 (6299) (2016) 566–571. doi:10.1126/science.aaf4914. URL <https://science.sciencemag.org/content/353/6299/566> 579
 480 580

481 [16] A. Erbil, G. S. Cargill III, R. Frahm, R. F. Boehme, Total-electron-yield current measurements for near-surface extended x-ray-absorption fine structure, *Physical Review B* 37 (5) (1988) 2450–2464. doi:10.1103/PhysRevB.37.2450. URL <https://link.aps.org/doi/10.1103/PhysRevB.37.2450> 587
 482 588
 483 589

484 [17] G. B. Kim, H. J. Song, H. J. Shin, C. K. Hong, X-ray absorption spectroscopy in total electron yield mode of scanning photoelectron microscopy, *Journal of Electron Spectroscopy and Related Phenomena* 148 (3) (2005) 137–141. doi:10.1016/j.elspec.2005.04.005.

485 [18] B. H. Frazer, B. Gilbert, B. R. Sonderegger, G. De Stasio, The probing depth of total electron yield in the sub-keV range: TEY-XAS and X-PEEM, *Surface Science* 537 (1-3) (2003) 161–167. doi:10.1016/S0039-6028(03)00613-7. URL <http://linkinghub.elsevier.com/retrieve/pii/S0039602803006137>

486 [19] M. Stuckelberger, B. West, T. Nietzold, B. Lai, J. M. Maser, V. Rose, M. I. Bertoni, Engineering solar cells based on correlative X-ray microscopy, *Journal of Materials Research* 32 (10) (2017) 1825–1854. doi:10.1557/jmr.2017.108. URL <https://www.cambridge.org/core/product/identifier/S088429141700108X/type/journal-article>

487 [20] L. Chayanun, V. Dagtyè, A. Troian, D. Salomon, M. Borgström, J. Wallentin, Spectrally resolved x-ray beam induced current in a single InGaP nanowire, *Nanotechnology* 29 (45) (2018) 454001. doi:10.1088/1361-6528/aadc76.

488 [21] T. E. Everhart, O. C. Wells, R. K. Matta, A novel method of semiconductor device measurements, *Proceedings of the IEEE* 52 (12) (1964) 1642–1647. doi:10.1109/PROC.1964.3460.

489 [22] H. J. Leamy, Charge collection scanning electron microscopy, *Journal of Applied Physics* 53 (6) (1982) R51–R80. doi:10.1063/1.331667. URL <https://aip.scitation.org/doi/abs/10.1063/1.331667>

490 [23] W. A. Hubbard, M. Mecklenburg, H. L. Chan, B. C. Regan, STEM Imaging with Beam-Induced Hole and Secondary Electron Currents, *Physical Review Applied* 10 (4) (2018) 044066. doi:10.1103/PhysRevApplied.10.044066. URL <https://link.aps.org/doi/10.1103/PhysRevApplied.10.044066>

491 [24] M. Mecklenburg, W. A. Hubbard, J. J. Lodico, B. C. Regan, Electron beam-induced current imaging with two-angstrom resolution, *Ultramicroscopy* 207 (2019) 112852. doi:10.1016/j.ultramic.2019.112852. URL <http://www.sciencedirect.com/science/article/pii/S0304399119302311>

492 [25] W. A. Hubbard, Z. Lingley, J. Theiss, S. Sitzman, T. Ayvazian, M. Brodie, B. Foran, Scanning transmission electron microscope mapping of electronic transport in polycrystalline BaTiO₃ ceramic capacitors, *Applied Physics Letters* 115 (13) (2019) 133502. doi:10.1063/1.5117055. URL <https://aip.scitation.org/doi/10.1063/1.5117055>

493 [26] J. Maser, C. Jacobsen, J. Kirz, A. Osanna, S. Spector, S. Wang, J. Warnking, Development of a Cryo Scanning Transmission X-Ray Microscope at the NSLS, in: J. Thieme, G. Schmahl, D. Rudolph, E. Uebach (Eds.), *X-Ray Microscopy and Spectromicroscopy: Status Report from the Fifth International Conference*, Würzburg, August 19–23, 1996, Springer, Berlin, Heidelberg, 1998, pp. 35–44. doi:10.1007/978-3-642-72106-9_4. URL https://doi.org/10.1007/978-3-642-72106-9_4

494 [27] D. A. Shapiro, R. Celestre, B. Enders, J. Joseph, H. Krishnan, M. A. Marcus, K. Nowrouzi, H. Pad-

593 more, J. Park, A. Warwick, Y.-S. Yu, The COSMIC
594 Imaging Beamline at the Advanced Light Source: a
595 new facility for spectro-microscopy of nano-materials,
596 Microscopy and Microanalysis 24 (S2) (2018) 8–11.
597 doi:10.1017/S1431927618012485.

598 [28] P. Denes, D. Doering, H. A. Padmore, J.-P. Walder,
599 J. Weizerick, A fast, direct x-ray detection charge-
600 coupled device, Review of Scientific Instruments 80 (8)
601 (2009) 083302. doi:10.1063/1.3187222.
602 URL <http://aip.scitation.org/doi/10.1063/1.3187222>

603 [29] S. Marchesini, H. Krishnan, B. J. Daumer, D. A.
604 Shapiro, T. Perciano, J. A. Sethian, F. R. N. C. Maia,
605 SHARP: a distributed GPU-based ptychographic
606 solver, Journal of Applied Crystallography 49 (4) (2016)
607 1245–1252, number: 4 Publisher: International Union
608 of Crystallography. doi:10.1107/S1600576716008074.
609 URL <http://scripts.iucr.org/cgi-bin/paper?jo5020>
610
611