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Abstract

Total electron yield (TEY) imaging is an established scanning transmission X-ray microscopy (STXM)
technique that gives varying contrast based on a sample’s geometry, elemental composition, and electrical
conductivity. However, the TEY-STXM signal is determined solely by the electrons that the beam ejects
from the sample. A related technique, X-ray beam-induced current (XBIC) imaging, is sensitive to electrons
and holes independently, but requires electric fields in the sample. Here we report that multi-electrode
devices can be wired to produce differential electron yield (DEY) contrast, which is also independently
sensitive to electrons and holes, but does not require an electric field. Depending on whether the region
illuminated by the focused STXM beam is better connected to one electrode or another, the DEY-STXM
contrast changes sign. DEY-STXM images thus provide a vivid map of a device’s connectivity landscape,
which can be key to understanding device function and failure. To demonstrate an application in the area of
failure analysis, we image a 100 nm, lithographically-defined aluminum nanowire that has failed after being
stressed with a large current density.

Keywords: STXM, TEY, XBIC, scanning transmission X-ray microscopy, electron yield,
failure analysis

1. Introduction 2 mines a sample’s morphology and can even spec-
a1 troscopically quantify a sample’s chemical compo-

In scanning transmission X-ray microscopy 2 sition. However, in some cases the information re-
(STXM), a focused X-ray beam is rastered across 2 turned is still too crude to identify gross charac-
a thin sample, and the measured transmission is 2 teristics of the sample that are of paramount im-
associated with the beam position to form an im- 2 Pportance. For instance, in an electronic device two
age. With soft (100-2,200 eV) X-rays, STXM offers 2 conductors might be separated by a few nanome-
distinct advantages over other spectromicroscopy 2 ters of insulator. Conventional STXM might iden-
techniques. Its sub-50 nm[1, 2, 3] spatial resolu- 2 tify copper on one side and aluminum on the other,

tion is better than the ~ 1pum resolution of Ra- 2 but, with its limited spatial resolution, conven-
man imaging, and its beam-induced radiation dam-  tional STXM is ill-suited to determine whether the

age is less that that of electron energy loss spec- 3 two conductors are electrically connected. Because
troscopy (EELS) in a transmission electron micro- % of the intimate relation between connectivity and
scope (TEM) [4, 5]. STXM has found broad ap- @ function in electronic devices, determining the pres-
plication in the biological [3, 6, 7] and physical % ence (or absence) and properties of such a connec-
8, 9, 10] sciences, and has been used to study tion might be the primary motivation for imaging
device physics in solar cells [11, 12], spin-torque 3 the sample in the first place.
memory[13], resistive memory[14] , and the Li-ion 3 A conventional STXM system detects the trans-
battery cathode material Li,FePO4[15]. s mitted X-rays with, for example, a photodiode on
STXM characterizes physical structure: it deter- 3 the beam-exit side of the sample. To expand its ca-
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Experiment overview. The sample (optical image on left) consists of a 200 um-thick silicon chip supporting a

20 nm-thick silicon nitride membrane. Platinum leads over the silicon contact an aluminum pattern that tapers to an unresolved
wire in the membrane’s center. Here all of the Pt leads are shorted together to produce a TEY image. As the X-ray beam (red)
scans the sample, the signal from the photodiode and the transimpedance amplifier (i.e. TIA, or current meter) are digitized
simultaneously to form the images on the right. The photodiode signal generates the standard STXM image (top right). The
TIA measures the current produced in the sample by the X-ray beam (bottom right). When the beam ejects electrons from
the sample, the resulting hole current is positive and is displayed with bright contrast.

pabilities, STXM imaging techniques that instead
rely on electron detection have been developed.
Among the most prominent are total electron yield
(TEY) and X-ray beam-induced current (XBIC)
imaging. TEY is performed either by capturing
electrons emitted from the sample in a remote elec-
tron detector [16, 1], or by measuring the resulting
holes with a current meter attached to the sample
[17,1]. TEY measures beam-ejected electrons of all
energies, including primary!, secondary, and Auger
electrons[18]. XBIC, on the other hand, requires
a current meter attached to the sample. It mea-
sures the current generated when the X-ray beam
produces electron-hole pairs that are subsequently
separated by local electric fields inside the sample
[11, 12, 19, 20]. Generally XBIC signals, where
present, are larger than TEY signals, because more
electron-hole pairs than ejected electrons are pro-
duced per primary X-ray.

n the X-ray microscopy community a primary electron
is one scattered in a collision with beam X-ray, while in the
electron microscopy community a primary electron is a beam
electron, and a secondary electron is one scattered by a pri-
mary. In this article we use the conventions of the X-ray
community.
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XBIC has an electron microscopy counterpart,
(standard) electron beam-induced current (EBIC)
imaging, where the electron-hole pairs are instead
produced by a scanned electron beam [21, 22]. A
related electron microscopy technique, secondary
electron emission EBIC (SEEBIC) imaging [23, 24,
25], is closely analogous to TEY, and to the subject
of this paper.

If the sample is wired for current collection, both
TEY and XBIC imaging can be performed using the
same apparatus, but with slightly different electri-
cal connections. TEY requires only a single con-
nection between the sample and the current meter
(generally a transimpedance amplifier, or TTA)[19],
while XBIC requires that the sample have an addi-
tional connection to a low impedance to allow for
charge neutralization.

Using a sample wired with multiple electrical con-
nections, as is characteristic of XBIC and not TEY,
we perform STXM mapping of electron yield. How-
ever, the resulting contrast has its root in the ejec-
tion of electrons from the sample (and not in the
creation of electron-hole pairs), as is characteristic
of TEY and not XBIC. Here we report that using
multiple electrodes allows differential electron yield
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Figure 2: STXM and DEY imaging of the Al
nanowire device. These images of the device of Fig. 1
are acquired with the left electrode grounded and the right
electrode attached to the TIA (indicated schematically here
with an “I” circumscribed by a circle). The field of view
in these images corresponds to the x-ray transparent center
of the Fig. 1 images, where the photodiode signal is bright.
The standard STXM image (left) shows both Al leads with
the same contrast, while the DEY image (right) indicates
that only the Al lead on the right is electrically connected to
the TIA. The red box indicates the region shown in Fig. 3.

(DEY) imaging, which gives contrast that changes
sign between neighboring electrodes on the sample.
For instance, when the X-ray beam is incident on an
electrode connected to the current meter, the mea-
sured current is generally positive, since the ejected
electrons leave a hole current behind. But when
the beam moves to a neighboring, grounded elec-
trode, the beam-induced hole current is shunted to
ground and is therefore not measured. Meanwhile,
some of the primary and secondary electrons ulti-
mately return to the first electrode, where they are
measured as a negative current (analogous to Fig. 2
of reference [23]). This negative current represents
electrons that, in the absence of the current meter,
would not have left the sample, thus by definition
it is distinct from the TEY current. The result-
ing DEY contrast, unlike standard STXM, TEY,
or XBIC contrast, can vividly reveal whether neigh-
boring electrodes are connected.

Our implementation of DEY imaging employs a
TEM sample holder, which has some particular ad-
vantages for in situ STXM imaging of electronic de-
vices. The production of STXM-compatible, elec-
trically connected samples shares many challenges
with the production of samples for in situ TEM
experiments.  Accordingly, several X-ray beam-
lines have incorporated TEM stage/load-lock mech-
anisms in X-ray imaging systems, allowing for
STXM experiments to be performed with TEM
sample holders[26, 15, 27]. We adopt this ap-
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proach [27], which gives access to the numerous off-
the-shelf in situ capabilities afforded by specialized
TEM holders, including imaging in liquid and gas,
heating, cooling, biasing, and physical manipula-
tion. The TEM stage and load-lock combination
also makes for faster sample exchange (minutes in-
stead of hours) and easier correlative TEM imaging
(which can be performed without even removing the
sample from the TEM sample holder).

2. Experimental

X-ray imaging is performed at Lawrence Berke-
ley National Lab’s Advanced Light Source (ALS)
on beamline 7.0.1.2 (COSMIC) [27]. The COS-
MIC beamline offers a 250-2500 eV X-ray energy
range and a 50 nm spot size, and is equipped with
a FEI CompuStage load-lock system, which accepts
TEM sample holders. Except where indicated oth-
erwise, STXM images are acquired with an incident
beam energy of 1565 eV. To form STXM and elec-
tron yield images, the signals from a post-sample
photodiode and a FEMTO DLPCA-200 TIA, re-
spectively, are digitized simultaneously as the beam
is rastered pixel-by-pixel across the sample. To
acquire diffraction patterns for ptychography, the
photodiode can be retracted to expose a CCD de-
tector [28]. Data are reconstructed using stan-
dard methods available in the SHARP ptychogra-
phy package [29]. Scanning TEM (STEM) imag-
ing is performed in an FEI Titan 80-300 STEM at
80 kV. For both STXM and STEM the sample is
mechanically supported and electrically contacted
with a Hummingbird Scientific biasing TEM sam-
ple holder.

Our demonstration sample (Fig. 1 optical image)
is a silicon chip patterned via optical lithography
with four Ti/Pt (5/25 nm) electrodes that lead to
a 20 nm-thick silicon nitride membrane[23]. On the
membrane a 1-pm-long, 100-nm-wide, and 100-nm-
thick Al wire is patterned via electron beam lithog-
raphy. Tapered pads connect the wire to the Ti/Pt
electrodes in a 4-wire configuration. Before being
loaded in the STXM chamber, the wire is biased in
vacuum until failure and then stored in the ambi-
ent atmosphere for several days. All images labeled
“transmission” show the raw, unprocessed photo-
diode signal. All images labeled “electron yield”
show the TTA signal, which has been Fourier fil-
tered to remove AC line noise. TTA current values
are given relative to the signal on the bare silicon
nitride membrane, where very little electron yield is
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expected. The optical density referenced in Figs. 5—
6is —1In %, where I is the photodiode signal on the
bare silicon nitride membrane.

3. Results and Discussion

STXM imaging of the silicon nitride membrane
window reveals the Al electrodes, which transmit
fewer photons than the bare membrane and thus ap-
pear slightly darker (Fig. 1 top right). But STXM
imaging of the silicon support frame provides no in-
formation, as the thick silicon blocks the incident
X-rays. The (total) electron yield image, on the
other hand, reveals device features in the entire field
of view, even where the sample is opaque (Fig. 1
bottom right). The Al pads are visible, as in the
STXM image, but so are the Pt electrodes to which
the Al is connected. The Pt has a larger electron
yield than the Al and therefore appears brighter.
Four Pt islands at the corners of the membrane are
also visible, despite the apparent lack of an electri-
cal connection. Holes produced in these islands can
evidently travel the several-micrometer distance to
the Pt electrodes [23]. Contrast is slightly darker
over the membrane, an insulator that generates few
primary electrons in the beam.

Electron yield mapping can be extremely help-
ful in samples that are mostly opaque. With only
the transmission-based contrast of standard STXM,
locating a thin region is generally accomplished
by trial-and-error, and is analogous to wandering
around in the dark. Electron yield imaging turns
the lights on: sample features far from the trans-
parent area can be used as landmarks to locate the
region of interest systematically and quickly.

The device of Fig. 1 features an unresolved Al
wire that previously connected the two larger pads.
Because the device has been subjected to a bias cur-
rent sufficiently large to cause heating and eventual
failure, the wire is broken and represents a very
large electrical impedance. We image the nanowire
of Fig. 1 again, this time with a smaller field of view
(Fig. 2), but here we change the electrical connec-
tions for DEY imaging: the right Al electrode re-
mains connected to the TIA but the left electrode
is now grounded. (The biasing sample holder gives
independent access to each of the four Ti/Pt elec-
trodes, so this change can be made without break-
ing vacuum.)

In this configuration, when the X-ray beam ejects
electrons from the right electrode, the TIA mea-
sures a positive (hole) current. When the X-
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Figure 3: Ptychography and DEY imaging of the Al
nanowire device. Retracting the photodiode and scanning
over the region outlined in red in Fig. 2 produces, after re-
construction, a ptychography image (top) that reveals the
break in the Al nanowire. The simultaneously acquired elec-
tron yield image (bottom) has the inferior resolution, relative
to ptychography, of standard STXM, but it nonetheless re-
veals a surprising feature: electrical connectivity spans the
‘break’ in the Al wire that is seen in ptychographic image.

ray beam ejects electrons from the left electrode,
the hole current flows to ground directly and is
not measured by the TIA. However, a fraction of
the electrons emitted from the left electrode are
recaptured[23] by the right electrode and are mea-
sured as a negative (electron) current. Thus, the re-
sulting image (Fig. 2 right) shows each electrode as
bright or dark respectively, depending on whether
or not the electrode is directly connected to the
TIA. Like TEY, DEY imaging maps whether or
not a region is conducting: the Al on both sides
of the break more readily emits primary electrons
than the insulating SizN4 support membrane. But
DEY imaging also indicates the connectivity land-
scape, particularly the ‘watershed’ boundary of the
region electrically connected to the TIA [23]. Such
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SEEBIC
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STEM imaging of the Al nanowire device. The Al wire of Figs. 1-3 is imaged with standard STEM (BF,

ADF, and HAADF), STEM EDS elemental mapping (Al and O), and STEM SEEBIC. The BF and SEEBIC images are the
electron microscopy analogues of the previously-shown STXM (Fig. 2) and DEY images (Figs. 2-3) respectively. The STEM
images show similar contrast but significantly better spatial resolution relative to their analogous X-ray images.

differential contrast is not accessible with TEY.

Note that the dark contrast generated by electron
recapture (e.g. the left electrode of Fig. 2 right) in-
dicates that DEY imaging, on electrodes showing
bright contrast (e.g. the right electrode of Fig. 2
right), always has a better signal-to-noise ratio than
TEY imaging. The recaptured electron current has
the opposite sign as the hole current. To the ex-
tent that these currents are equal and are collected
by the same TIA, they cancel. Viewed from this
perspective, TEY is a worst case scenario, in that
the recapturing electrode spans the whole sample.
It thus collects a correspondingly large recapture
current, and generates a correspondingly small net
current (i.e. signal). One can even imagine patho-
logical geometries where a nearby, off-sample sur-
face, such as an aperture [17], could produce enough
primary and secondary electrons — which contain
no information about the sample itself — to over-
whelm the original hole current. Imaging a small
electrode that alone is connected to the TTA gives
the best case scenario, for here the recapture cur-
rent is minimized and the measured hole current is
undiminished.

Scans of the same device (Fig. 3) with even
smaller fields of view (i.e. higher magnification) re-
solve both the physical and the electronic break in
the Al wire. Here we retract the photodiode to cap-
ture the diffraction pattern generated at each X-ray
beam position (i.e. pixel) for ptychography. With-
out the photodiode the standard STXM image is no
longer available. Ptychographically reconstructing
the captured diffraction patterns produces an im-
age that reveals a break in the Al on the right side
of the wire (Fig. 3 top). The break appears clean,
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with an ~ 50 nm length missing from the wire. The
DEY image (Fig. 3 bottom), however, shows a more
complicated structure around the break. The large
Al lead on the right is bright, as expected based
on the larger field of view (i.e. lower magnification)
image of the same device (Fig. 2 right). But surpris-
ingly, portions of the wire to the left of the ‘break’
(as identified by the ptychographic image) are also
bright, indicating that they too are connected to
the Al lead on the right.

During ptychographic imaging, the photodiode is
retracted and thus its signal is not available. How-
ever, electron yield data can still be acquired si-
multaneously with the diffraction patterns used to
produce the ptychographic image. And unlike the
ptychographic data, the electron yield data is im-
mediately viewable in a real-space format without
any analysis (e.g. reconstruction or summing). The
real-time feedback provided by electron yield imag-
ing, like the ability to image opaque regions of a
sample, is an experimental convenience that can
save valuable time on the beamline.

The use of the TEM sample holder for X-ray
imaging makes correlative microscopy especially
straightforward. STEM (Fig. 4) imaging of the
same device in the same sample holder confirms,
with much improved spatial resolution, the device
properties ascertained with X-ray imaging. Bright-
field (BF), annular dark-field (ADF), and high-
angle ADF (HAADF) STEM images (Fig. 4, top
row) each show loss of material at the failure point,
and energy-dispersive X-ray spectroscopy (EDS) el-
emental mapping (Fig. 4, bottom left and center)
confirms that Al has disappeared in the gap. SEE-
BIC imaging (Fig. 4, bottom right) shows the same
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Figure 5: STXM and electron yield images at four
representative X-ray beam energies. The beam energy
for each column of representative images (see Fig. 6) is in-
dicated. The electrodes are almost invisible in the raw pho-
todiode (upper row) and calculated optical density (middle
row) images below 1562 eV, while they are easily seen in the
electron yield images (bottom row) over the entire energy
range scanned (1555-1575 eV). The electron yield images
are acquired with the circuit as indicated in Figs. 2-3. The
contrast scale is held fixed for each row of images.
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Figure 6: Electron yield and optical density of an

Al electrode as a function of incident beam energy.
Signal on the right electrode (inset, yellow) is plotted for the
electron yield (blue curve) and optical density (red curve).
Electron yield is measured relative to the background refer-
ence region (inset, orange). Both plots are normalized by
dividing by the maximum value measured for each, which is
indicated in the plot legend. Dashed lines indicate images
shown in Fig. 5.
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non-obvious electrical connectivity seen with DEY
imaging, again with improved spatial resolution:
the right electrode is electrically connected to ma-
terial well to the left of the gap that appears in the
standard imaging channels. Both the DEY and the
SEEBIC [23] images are mapping the connectivity
landscape as revealed by beam-induced ejection of
electrons from the sample. Evidently the contrast
is relatively insensitive to the type of probe beam
(X-ray or electron) and is thus predominantly de-
termined by the sample’s conductivity distribution.
While here electron microscopy has clearly superior
spatial resolution, X-ray microscopy has spectro-
scopic advantages that will be discussed shortly.

Metallic aluminum in quantities below the detec-
tion limits here is likely responsible for this con-
nectivity extension. Some correlation between the
connectivity extension seen with DEY and SEEBIC
imaging is seen in the oxygen EDS map, but noth-
ing that would suggest the existence of the exten-
sion without the DEY (or SEEBIC) data. In many
practical situations, DEY imaging’s ability to de-
tect the electrical connectivity created by dopants
or other trace impurities in quantities below the
standard detection methods’ thresholds might be
key to understanding device behavior.

In X-ray microscopy, unlike electron microscopy,
the beam energy can be tuned across an absorption
threshold of an element in the sample. (This ca-
pability has been exploited in previous XBIC work
[20].) The differential contrast in the electron yield
persists under such spectroscopic imaging. We scan
the beam energy over 41 values encompassing the
aluminum K-edge (1555 ¢V to 1575 €V in 0.5 eV
steps). Below 1562 eV, the Al electrodes are diffi-
cult to detect in the STXM images, while they are
obvious in the electron yield images (Fig. 5). Both
signals become more intense (Fig. 6) as the energy
exceeds the Al K-edge threshold at ~1563 eV. The
Al electron yield, which is already significant below
the K-edge, increases by about 400% immediately
above the K-edge.

Spectroscopic tuning of an X-ray beam may give
DEY imaging an important advantage over SEE-
BIC imaging for the study of chemically heteroge-
neous samples. Figure 6 shows clear evidence of X-
ray absorption fine structure (XAFS) in the DEY
signal, as has been seen previously in the TEY sig-
nal [16, 1]. With the ability to spectroscopically
to vary the electron yield according to elemental
identity, molecular bonding, local disorder, and ef-
fective atomic charge, DEY imaging has the poten-
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tial to directly relate the local chemistry to electri-
cal transport properties, and thus give new insight
into electrochemical systems ranging from batteries
to doped semiconductors.

4. Conclusion

We have demonstrated STXM electron yield
imaging of a simple device mounted in a TEM bi-
asing holder. With a TEM load-lock installed, per-
forming electron yield measurements requires no
modification of the STXM chamber or the data
acquisition electronics; all electrical connections to
the device are made through the holder, and the
electron yield signal is digitized in parallel with the
existing photodiode signal. Measuring current from
the entire device provides the standard TEY mea-
surement, while grounding portions of the circuit
gives DEY images that map connectivity within
the device. In a broken Al nanowire, the differ-
ential contrast provided by DEY imaging precisely
locates the failure point and reveals a non-obvious
electrical connection spanning the physical gap in
the wire. As a complement to standard STXM and
ptychographic imaging, the DEY technique has a
number of practical advantages, including real-time
and opaque-region imaging. For functional studies
of micro- and nano-scale electronic devices, DEY
imaging makes a particularly powerful addition to
the suite of available correlative imaging modes.
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