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Abstract

Many statistical methodologies for high-dimensional data assume the population
is normal. Although a few multivariate normality tests have been proposed, to the
best of our knowledge, none of them can properly control the type I error when the di-
mension is larger than the number of observations. In this work, we propose a novel
nonparametric test that utilizes the nearest neighbor information. The proposed
method guarantees the asymptotic type I error control under the high-dimensional
setting. Simulation studies verify the empirical size performance of the proposed test
when the dimension grows with the sample size and at the same time exhibit a supe-
rior power performance of the new test compared with alternative methods. We also
illustrate our approach through two popularly used data sets in high-dimensional clas-
sification and clustering literatures where deviation from the normality assumption
may lead to invalid conclusions.
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1 Introduction

The population normality assumption is widely adopted in many classical statistical anal-

ysis (e.g., linear and quadratic discriminant analysis in classification, normal error linear

regression models, and the Hotelling T 2-test), as well as many recently developed method-

ologies, such as network inference through Gaussian graphical models (Ma et al., 2007;

Yuan and Lin, 2007; Friedman et al., 2008; Rothman et al., 2008; Fan et al., 2009; Yuan,

2010; Liu, 2013; Xia et al., 2015), high-dimensional linear discriminant analysis (Bickel

et al., 2004; Fan and Fan, 2008; Cai and Liu, 2011; Mai et al., 2012), post-selection infer-

ence for regression models (Berk et al., 2013; Lee et al., 2016; Taylor and Tibshirani, 2018),

and change-point analysis for high-dimensional data (Xie and Siegmund, 2013; Chan and

Walther, 2015; Wang and Samworth, 2018; Liu et al., 2019). When the data is univari-

ate, there are many classical tools to check the normality assumption, such as the normal

quantile-quantile plot and the Shapiro-Wilk test (Shapiro and Wilk, 1965). However, many

of the modern applications involve multivariate or even high-dimensional data and it con-

stantly calls for multivariate normality testing methods with good theoretical performance.

In this article, we aim to address the following testing problem in the high-dimensional

setting with a proper control of type I error. Given a set of observations X1, X2, . . . , Xn
iid∼

F , where F is a distribution in Rd, one wishes to test

H0 : F is a multivariate Gaussian distribution,

versus the alternative hypothesis

Ha : F is not a multivariate Gaussian distribution.

In the literature, there have been a good number of methods proposed to test the

normality of multivariate data. For example, Mardia (1970) considered two statistics to

measure the multivariate skewness and kurtosis separately, and constructed two tests for

the normality of the data by using each of these two statistics; Bonferroni correction can be

applied to unify these two tests. More recently, Doornik and Hansen (2008) proposed a way

to combine the two test statistics effectively. In another line, Royston (1983) generalized

the Shapiro-Wilk test to the multivariate setting by applying the Shapiro-Wilk test to each
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of the coordinates and then combining the test statistics from all coordinates, while Fat-

torini (1986) tried to find the projection direction where the data is most non-normal and

then applied the Shapiro-Wilk test to the projected data. Later, Zhou and Shao (2014)

combined these two approaches by considering the statistics from both random projec-

tions as well as the original coordinates. In a related work, Villasenor Alva and Estrada

(2009) proposed a multivariate Shapiro–Wilk’s test based on the transformed test statistics

standardized by the sample mean and covariance matrix. In addition, there is a series of

work that test normality through the characteristic function (Baringhaus and Henze, 1988;

Henze and Zirkler, 1990; Henze and Wagner, 1997). Besides those methods, there is also

another work that extends the Friedman-Rafsky test (Friedman and Rafsky, 1979), a non-

parametric two-sample test, to a multivariate normality test (Smith and Jain, 1988). Those

aforementioned methods provide useful tools for testing multivariate normality assumption

for the conventional low-dimensional data.

We illustrate in Table 1 the empirical size for some of the representative existing tests:

“Skewness” (the test based on the measure of multivariate skewness in Mardia (1970)),

“Kurtosis” (the test based on the measure of multivariate kurtosis in Mardia (1970)),

“Bonferroni” (the method combining the tests based on multivariate skewness and kurtosis

through the Bonferroni correction), “Ep” (an effective way of combining the multivariate

skewness and kurtosis in Doornik and Hansen (2008)), “Royston” (generalized Shapiro-

Wilk test in Royston (1983)), “HZ” (the test based on the characteristic function proposed

in Henze and Zirkler (1990)), “mvSW” (the multivariate Shapiro–Wilk’s test proposed in

Villasenor Alva and Estrada (2009)), and “eFR” (extended Friedman-Rafsky test in Smith

and Jain (1988)). In particular, the multivariate Shapiro–Wilk’s test requires smaller di-

mension than the sample size, and the extended Friedman-Rafsky test requires an estimate

of the variance of the distribution while there is a lack of discussions on such estimations in

their paper. In the table, we use “mvSW0” and “eFR0” to respectively represent the test

proposed in Villasenor Alva and Estrada (2009) and the extended Friedman-Rafsky test

that are based on the sample covariance matrix, and use “mvSW” and “eFR” to respec-

tively represent the tests that are based on a newly developed covariance matrix estimation

method, the adaptive thresholding approach proposed in Cai and Liu (2011). We observe
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from the table that, except for the improved tests “mvSW”, and “eFR”, all other existing

methods are either not applicable to the cases when the dimension is larger than the sample

size, i.e., d > n, or cannot control the type I error well when the dimension is high.

Table 1: Empirical size (estimated from 1,000 trials) of the tests at 0.05 significance level.

Data are generated from the standard multivariate Gaussian distribution with n = 100.

The numbers in the table that are larger than 0.1 are bolded (cannot control the size well).

The test Ep is not applicable when d > n and the test “mvSW0” is not applicable when

d ≥ n.

d 5 10 20 50 80 90 100 200

Skewness 0.035 0.039 0.014 0 0 0 0.114 0.384

Kurtosis 0.041 0.071 0.254 0.999 1 1 0.950 0.998

Bonferroni 0.029 0.040 0.158 0.994 0.943 1 1 0.997

Ep 0.053 0.059 0.046 0.044 0.047 0.040 0.141 –

Royston 0.073 0.092 0.080 0.137 0.129 0.164 0.168 0.245

HZ 0.048 0.051 0.051 0 1 1 1 1

mvSW0 0.056 0.057 0.038 0.052 0.042 0.045 – –

mvSWa 0.051 0.057 0.042 0.052 0.043 0.046 0.045 0.051

eFR0 0.056 0.041 0.048 0.081 0.153 0.145 0.161 0.088

eFRb 0.045 0.046 0.048 0.041 0.038 0.038 0.044 0.042

a The improved multivariate Shapiro–Wilk’s test applying to the transformed statistics standardized by

the adaptive thresholding covariance estimators in Cai and Liu (2011).

b The improved extended Friedman-Rafsky test based on the adaptive thresholding covariance estimators.

The extended Friedman-Rafsky test is based on an edge-count two-sample test proposed

in Friedman and Rafsky (1979). Due to the curse of dimensionality, it was shown in a recent

work, Chen and Friedman (2017), that the edge-count two-sample test would suffer from
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low or even trivial power under some commonly appeared high-dimensional alternatives

with typical sample sizes (ranging from hundreds to millions). The same problem also

exists in the extended Friedman-Rafsky test for testing normality in the high-dimensional

setting. Furthermore, the extended Friedman-Rafsky test can no longer properly control

the type I error when the dimension is much larger than the sample size, and similarly for

the improved multivariate Shapiro–Wilk’s test. We refer the details to the size and power

comparisons in Section 3.

In this paper, we take into consideration the findings in Chen and Friedman (2017) and

propose a novel nonparametric multivariate normality testing procedure based on nearest

neighbor information. Through extensive simulation studies, we observe that the new test

has good performance on the type I error control, even when the dimension of the data is

larger than the number of observations. It also exhibits much higher power than “mvSW”

and “eFR” under the high-dimensional setting. Moreover, we provide theoretical results

in controlling the type I error for the new test when the dimension grows with the sample

size. As far as we know, there is a paucity of systematic and theory-guaranteed hypothesis

testing solutions developed for such type of problems in the high-dimensional setting, and

our proposal offers a timely response. We also apply our test respectively to two data sets,

a popularly used lung cancer data set in the linear discriminant analysis literatures (Fan

and Fan, 2008; Cai and Liu, 2011) where normality is a key assumption, and a colon cancer

data set that was used in high-dimensional clustering literature (Jin and Wang, 2016) where

the data are assumed to follow the normal assumption. The testing results provide useful

prerequisites for such analyses that are based on the normality assumption.

The rest of the paper is organized as follows. In Section 2, we propose a new non-

parametric procedure to test the normality of the high-dimensional data and introduce the

theoretical properties of the new approach. The performance of the proposed method is

examined through simulation studies in Section 3 and the method is applied to two data

sets in Section 4. Section 5 discusses a related statistic, possible extensions of the current

proposal, and some sensitivity analyses. The main theorem is proved in Section 6 with

technical lemmas collected and proved in Section 7.
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2 Method and Theory

We propose in this section a novel nonparametric algorithm to test the normality of the

high-dimensional data. We start with the intuition of the proposed method, and then study

the error control of the new approach based on the asymptotic equivalence of two events

for searching the nearest neighbors under the null hypothesis.

2.1 Intuition

A key fact of the Gaussian distribution is that it is completely determined by its mean

and variance. Suppose that the mean (µ) and covariance matrix (Σ) of the distribution

F are known, then testing whether F is a multivariate Gaussian distribution is the same

as testing whether F = G, where G = Nd(µ,Σ). For this purpose, one may consider

goodness-of-fit tests, such as Bartoszyński et al. (1997) and the approach proposed in Liu

et al. (2016) for high-dimensional data. We could also generate a new set of observations

Y1, Y2, . . . , Yn
iid∼ G, and apply the two-sample tests, such as Jurečková and Kalina (2012)

and Marozzi (2015) and the graph-based two-sample tests (Friedman and Rafsky, 1979;

Chen and Friedman, 2017; Chen et al., 2018), to examine F = G for arbitrary dimensions.

However, in practice, the parameters µ and Σ are unknown in general. To compro-

mise, we use the mean (µx) and covariance matrix (Σx) estimated from the set of observa-

tions {X1, X2, . . . , Xn} as substitutes. We could again generate a new set of observations

Y1, Y2, . . . , Yn
iid∼ Gx = Nd(µx,Σx), but unfortunately, now the original testing problem is

no longer equivalent to testing whether F = Gx.

To address this issue, we use the same combination of µx and Σx to generate an-

other set of independent observations X∗1 , X
∗
2 , . . . , X

∗
n
iid∼ Gx = Nd(µx,Σx). Then we es-

timate the mean and covariance matrix of these new observations and denote them by

µx∗ and Σx∗ , respectively. Based on them, we further generate a new set of independent

observations from the normal distribution with mean µx∗ and covariance matrix Σx∗ , i.e.,

Y ∗1 , Y
∗

2 , . . . , Y
∗
n
iid∼ Nd(µx∗ ,Σx∗). Intuitively, if the null hypothesis H0 is true, i.e., the origi-

nal distribution F is multivariate Gaussian, then the relationship between {X1, X2, . . . , Xn}

and {Y1, Y2, . . . , Yn} would be similar to that of {X∗1 , X∗2 , . . . , X∗n} and {Y ∗1 , Y ∗2 , . . . , Y ∗n }.
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Henceforth, we shall test whether these two relationships are similar enough to decide

whether F is close enough to a Gaussian distribution.

In Smith and Jain (1988), the Friedman-Rafsky’s two-sample test was used for this

purpose. Unfortunately, as will be shown later in Section 3, this test was unable to properly

control the type I error when the dimension is growing with the number of observations.

In order to guarantee the error control in the high-dimensional setting, we use the

nearest neighbor information in this article. To be specific, we pool {X1, X2, . . . , Xn}

and {Y1, Y2, . . . , Yn} together, and for each observation, we find its nearest neighbor,

which is defined under the Euclidean distance in the current paper. Similarly, we pool

{X∗1 , X∗2 , . . . , X∗n} and {Y ∗1 , Y ∗2 , . . . , Y ∗n } together, and again find the nearest neighbor for

each observation.

Nearest neighbor information has been employed in hypothesis testing that can be

applied to high-dimensional data (Schilling, 1986; Henze et al., 1988; Chen and Zhang,

2015; Chen, 2019). However, in these work, nearest neighbors were used for two-sample

testing, while in contrast, we only have one sample at the beginning of the current setup

and then generate a second sample that depends on the original one. Hence, we need to

develop a completely different set of technical tools to investigate the theoretical properties

of the current construction. Let Y Y be the event that an observation in {Y1, Y2, . . . , Yn}

finds its nearest neighbor in {Y1, Y2, . . . , Yn}, and let Y ∗Y ∗ be the event that an observation

in {Y ∗1 , Y ∗2 , . . . , Y ∗n } finds its nearest neighbor in {Y ∗1 , Y ∗2 , . . . , Y ∗n }. We will show below in

Theorem 1 that the events Y ∗Y ∗ and Y Y are asymptotic equivalent under some suitable

conditions. As a result, we can estimate the empirical distribution of the test statistic

based on Y Y through the distribution of the statistic associated with Y ∗Y ∗. Consequently,

the type I error of the proposed approach can be properly controlled at some pre-specified

significance level.

2.2 Theorem on asymptotic equivalence

Before studying the main result on the asymptotic equivalence between two events of

searching nearest neighbors, we first introduce some notation. Denote by λmin(Σ) and
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λmax(Σ) the smallest and largest eigenvalues of Σ. For two sequences of real numbers

{an} and {bn}, denote by an = O(bn) if there exist constants C > c > 0 such that

c|bn| ≤ |an| ≤ C|bn| for all sufficiently large n. We also remark here that, when d = 1

or d = 2, the aforementioned univariate and conventional multivariate methods in the

introduction can be easily applied to test the normality assumption, and we shall focus in

our work on the cases when the dimension d is larger than 2.

We next introduce two assumptions.

(A1) The eigenvalues of Σ satisfy C1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ C2 for some constants

C1, C2 > 0.

(A2) There exists an estimator of µ such that ‖µx − µ‖2 ≤ OP(1), and an estimator of

Σ such that ‖Σx − Σ‖2 = oP(n−
1
d
− (2+a) log d+κ

2 logn ) with κ = 1 − 1
d

log |Σ| − log 2 and

a =


0 if d log d ≤ log n

logn
ξd,nd log d

if d log d > log n and d = o(log n)

1/εd otherwise,

where 1 � ξd,n = o(log n/d)

and 1� εd = o(log d).

Under the above two conditions, Theorem 1 studies the asymptotic equivalence between

the events Y Y and Y ∗Y ∗ under the null hypothesis, which in turn guarantees the type I

error control of the proposed method.

Theorem 1. Assume (A1) and (A2). Then it follows that, under H0, as n→∞,

P(Y Y )− P(Y ∗Y ∗)→ 0.

The proof of the theorem is provided in Section 6.

Remark 1. Assumption (A1) is mild and is widely used in the high-dimensional literature

(Bickel et al., 2008; Rothman et al., 2008; Yuan, 2010; Cai et al., 2014). Assumption

(A2) implies the relationship between the dimension d and the sample size n. Specifically,

‖µx − µ‖2 ≤ OP(1) can be easily satisfied when d = O(nγ), γ ≤ 1. For the condition

‖Σx−Σ‖2 = oP(n−
1
d
− (2+a) log d+κ

2 logn ), when d ≥ 3 and d = O(nγ), γ < 1/2, it can be satisfied by

many estimators under some regularity conditions. For example, if we apply the adaptive
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thresholding estimator in Cai and Liu (2011), and assume that Σ is s0 sparse in the sense

that there are at most s0 nonzero entries in each row of Σ, then we have ‖Σx − Σ‖2 =

OP(s0

√
log d/n). So the condition holds if s0 = o(n

1
2
−ξ− 1

d ) for some ξ > (1 + a
2
)γ, where a

is either equal or tending to zero as defined in detail in (A2). When d = O(nγ), γ ≥ 1/2,

simulation results show that the conclusion holds well when d > n, d = O(n). There is

potential to relax the condition on ‖Σx − Σ‖2 in the theorem. In the current proof, we

made big relaxations from Equation (1) to (2) and from Equation (3) to (4) (see Section

6). More careful examinations could lead to tighter conditions. This requires non-trivial

efforts and we save it for future work.

Remark 2. The theory based on nearest neighbor information in the high-dimensional

setting has so far received little attention in the literature. We provide in this paper a novel

proof for the asymptotic equivalence on two events of searching the nearest neighbors and

it is among the first methods that utilizes such nonparametric information and in the mean

while guarantees the asymptotic type I error control.

2.3 Algorithm and theoretical error control

Based on Theorem 1, we could adopt the following algorithm to test the multivariate

normality of the data. To be specific, because of the asymptotic equivalence between

the events Y Y and Y ∗Y ∗, we repeatedly generate the data from the multivariate normal

distribution with estimated mean and covariance matrix, and use the empirical distribution

of the test statistics based on Y ∗Y ∗ to approximate the empirical distribution of the test

statistic based on Y Y under the null hypothesis.

Denote by r(Y Y ) the percent of Y ’s that find their nearest neighbors in {Y1, . . . , Yn},

and r(Y ∗Y ∗) is defined similarly for Y ∗’s. Let m(r(Y ∗Y ∗)) be the average of the r(Y ∗Y ∗)’s

from Step 3 of the algorithm. We then propose a nonparametric normality test based on

nearest neighbor information as the following.
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Algorithm 1

1: Generate Y1, . . . , Yn
iid∼ Nd(µx,Σx), calculate r(Y Y ).

2: Generate X∗1 , . . . , X
∗
n
iid∼ Nd(µx,Σx), estimate its mean µx∗ and covariance matrix Σx∗ .

Generate Y ∗1 , . . . , Y
∗
n
iid∼ Nd(µx∗ ,Σx∗), calculate r(Y ∗Y ∗).

3: Repeat Step 2 for B times to get an estimate of the empirical distribution of r(Y Y )

under H0.

4: Compute the two-sided sampling p-value, p(Y Y ), i.e., the percentage of |r(Y ∗Y ∗) −

m(r(Y ∗Y ∗))| (out of B) that are larger than or equal to |r(Y Y )−m(r(Y ∗Y ∗))|, where

| · | is the absolute value.

5: For a given significance level 0 < α < 1, define Ψα = I{p(Y Y ) ≤ α}. Reject the null

hypothesis whenever Ψα = 1.

Note that Algorithm 1 is a simplified version of a more sophisticated algorithm that

generates n independent sets of {Y1, . . . , Yn} and {Y ∗1 , . . . , Y ∗n } in Steps 1 and 2, with

r(Y Y ) and r(Y ∗Y ∗) respectively representing the percent of Y1’s and Y ∗1 ’s that find their

nearest neighbors in their corresponding sets. The resulting test Ψ∗α of such an algorithm

guarantees the type I error control based on Theorem 1, i.e., P(Type I error) = PH0(Ψ∗α =

1) → α, as n,B → ∞. However, this algorithm is computationally much more expensive

and it has asymptotically the same size performance as Algorithm 1, and hence we mainly

focus on Algorithm 1 in the current article.

In the implementation, we use the sample mean to obtain µx and µx∗ and use the

adaptive thresholding method in Cai and Liu (2011) to compute Σx and Σx∗ . For the

selection of B, the empirical distribution can be more precisely estimated when B is larger.

We choose B = 500 in the implementation and it provides well error control as shown in

Section 3. It is worthwhile to note that, for faster and easier implementation of the method,

the p-value p(Y Y ) we obtain in Algorithm 1 is random, and we hence call it “sampling

p-value”. To improve the power performance of the method, we can further increase the

number of such sampling procedure, and the details are discussed in Section 5.3.
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3 Simulation Studies

We analyze in this section the numerical performance of the newly developed algorithm. As

we studied in the introduction, the existing methods “Skewness”, “Kurtosis”, “Bonferroni”,

“Ep”, “Royston” and “mvSW0” all suffer from serious size distortion or are not applicable

when the dimension is relatively large. We thus consider in this section the size and

power comparisons of our approach with the method “eFR”, in which the covariances are

estimated by the adaptive thresholding method in Cai and Liu (2011), the multivariate

Shapiro–Wilk’s test (mvSW) proposed in Villasenor Alva and Estrada (2009) applying to

the transformed statistics standardized by the adaptive thresholding covariance estimators,

as well as the Fisher’s test (Fisher) by combining the p-values for each dimension of the

aforementioned adaptive thresholding covariance standardized Shapiro–Wilk’s test. As

suggested by Cai and Liu (2011), we use the fivefold cross validation to choose the tuning

parameter. Once we obtain an estimator Σ̂∗, we let Σ̂ = (Σ̂∗ + δI)/(1 + δ) with δ =

max{−λmin(Σ∗), 0}+0.05 to guarantee the positive definiteness of the estimated covariance

matrix.

The following matrix models are used to generate the data. Note that Model 3 considers

the nearly singular scenario where the condition number is around 80 in typical simulation

runs when d = 100.

• Model 1: Σ(1) = I.

• Model 2: Σ(2) = (σ
(2)
ij ) where σ

(2)
ij = 0.5|i−j| for 1 ≤ i, j ≤ p.

• Model 3: Σ∗(3) = (σ
∗(3)
ij ) where σ

∗(3)
ii = 1, σ

∗(3)
ij = Unif(1) ∗ Bernoulli(1, 0.02) for i < j

and σ
∗(3)
ji = σ

∗(3)
ij . Σ(3) = (Σ∗(3) + δI)/(1 + δ) with δ = max{−λmin(Σ∗(3)), 0} + 0.05

to ensure positive definiteness.

The sample sizes are taken to be n = 100 and 150, while the dimension d varies over the

values 20, 100 and 300. For each model, data are generated from multivariate distribution

with mean zero and covariance matrix Σ. Under the null hypothesis, the distribution is set

to be multivariate normal, while under the alternative hypothesis, the distribution is set

to be one of the following distributions.
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• Distribution 1: Multivariate t distribution with degrees of freedom ν = d/2.

• Distribution 2: Mixture Gaussian distribution 0.5Nd(0, (1−a)Σ)+0.5Nd(0, (1+a)Σ)

with a = 1.8√
d
.

We set the size of the tests to be 0.05 under all settings, and choose B = 500 in the

algorithm. We run 1,000 replications to summarize the empirical size and power. The

empirical size results are reported in Table 2 and the power results of Distributions 1 and

2 are reported in Tables 3 and 4.

Table 2: Empirical size (in percents) of the proposed algorithm (NEW), extended Friedman-

Rafsky test (eFR), multivariate Shapiro–Wilk’s test (mvSW) and the Fisher’s test (Fisher).

n 100 150

d 20 100 300 20 100 300

Model 1

NEW 4.3 4.3 5.1 3.9 4.8 5.6

eFR 4.3 4.8 4.3 4.8 5.4 3.7

mvSW 6.4 4.6 5.1 4.0 4.8 5.3

Fisher 6.0 4.3 4.4 3.7 4.7 5.1

Model 2

NEW 5.9 4.3 6.4 5.9 5.8 4.9

eFR 4.3 5.1 4.8 3.9 7.0 6.9

mvSW 5.6 6.2 10.7 5.4 6.9 6.2

Fisher 5.3 6.6 10.4 4.4 7.0 5.6

Model 3

NEW 5.9 5.2 6.3 4.8 5.3 4.9

eFR 5.4 4.8 19.7 4.8 4.0 15.2

mvSW 4.7 5.8 5.9 3.4 4.3 7.3

Fisher 5.2 5.3 5.3 3.8 4.4 6.1

From Table 2, we observe that the new test can control the size reasonably well under

all settings, while the extended Friedman-Rafsky test has some serious size distortion for
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Model 3 when the dimension is larger than the sample size. In addition, both of the

multivariate Shapiro–Wilk’s test and the Fisher’s test have some size inflation for Model 2

when d = 300 and n = 100.

Table 3: Empirical power (in percents) of the proposed algorithm (NEW), extended

Friedman-Rafsky test (eFR), multivariate Shapiro–Wilk’s test (mvSW) and the Fisher’s

test (Fisher) for multivariate t distribution.

Multivariate t-distribution

n 100 150

d 20 100 300 20 100 300

Model 1

NEW 58.5 91.3 93.0 79.9 98.5 99.2

eFR 6.7 3.7 6.4 10.2 3.9 4.7

mvSW 86.3 21.2 9.0 96.5 29.0 12.3

Fisher 86.2 20.8 8.7 96.7 30.1 12.1

Model 2

NEW 20.2 71.3 86.0 32.2 86.4 94.2

eFR 11.8 5.4 5.2 15.0 4.6 6.0

mvSW 75.4 26.6 21.3 92.3 30.9 17.1

Fisher 75.8 27.2 20.9 92.6 31.2 16.0

Model 3

NEW 56.5 87.9 94.9 74.1 97.9 98.2

eFR 6.7 4.8 18.4 11.0 3.5 11.2

mvSW 84.9 28.8 10.6 96.6 30.3 16.8

Fisher 85.6 28.5 10.8 96.5 31.0 17.3

For power comparison, we first studied the annoying heavy tail scenario – multivariate t-

distribution. It can be seen from Table 3 that, the new test can capture the signal very well,

while the extended Friedman-Rafsky test suffers from much lower power. In the meanwhile,

both of the multivariate Shapiro–Wilk’s test and the Fisher’s test have competitive power

performance under the low-dimensional settings, but have fast decaying power performance
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Table 4: Empirical power (in percents) of the proposed algorithm (NEW), extended

Friedman-Rafsky test (eFR), multivariate Shapiro–Wilk’s test (mvSW) and the Fisher’s

test (Fisher) for mixture Gaussian distribution.

Mixture Gaussian distribution

n 100 150

d 20 100 300 20 100 300

Model 1

NEW 45.8 81.7 81.6 66.3 95.8 94.8

eFR 6.6 3.9 5.3 7.4 3.7 5.7

mvSW 55.9 12.5 8.0 68.7 17.1 10.5

Fisher 56.0 12.7 8.0 69.8 16.8 10.3

Model 2

NEW 15.3 61.9 71.9 26.7 67.2 81.9

eFR 6.3 5.6 4.9 10.4 6.4 6.5

mvSW 46.3 17.7 19.2 63.3 19.7 12.7

Fisher 47.3 18.3 19.2 63.8 19.8 12.3

Model 3

NEW 45.0 75.4 86.9 64.0 90.8 94.7

eFR 6.5 4.5 21.7 7.5 3.8 14.9

mvSW 53.2 19.0 10.5 70.1 18.9 13.9

Fisher 55.0 19.3 9.8 70.5 18.5 13.2
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(much lower than the proposed method) as d increases. We also studied the scenario that

the distribution is a mixture of two multivariate Gaussian distributions and we observed

similar phenomena in Table 4 that the new test has much higher power than the extended

Friedman-Rafsky test under all settings and has better performance than “mvSW” and

“Fisher” for d = 100 and 300.

The empirical size and power performance of all four methods are also illustrated in

the empirical cumulative distribution function (ecdf) plots as shown in Figures 1 and 2,

for Model 1 and d = n = 100. We observe similar patterns for the other models. In

summary, for all scenarios studied above, our newly proposed algorithm provides superior

performance in both empirical size as well as empirical power comparing with the existing

methods.

Figure 1: Empirical size cdf plots of the four methods for Model 1, d = n = 100.
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Figure 2: Empirical power cdf plots of the four methods for Model 1, Distribution 1,

d = n = 100.
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4 Application

Classification is an important statistical problem that has been extensively studied both

in the traditional low-dimensional setting and the recently developed high-dimensional

setting. In particular, Fisher’s linear discriminant analysis has been shown to perform well

and enjoy certain optimality as the sample size tends to infinity while the dimension is

fixed (Anderson, 2003), and it has also been widely studied in the high-dimensional setting

when the sample covariance matrix is no longer invertible, see, e.g., Bickel et al. (2004),

Fan and Fan (2008), Cai and Liu (2011) and Mai et al. (2012). In all of those studies,

normality of the data is a key assumption in order to obtain the linear discriminant rule

and investigate the subsequent analysis of misclassification rate. We study in this section

a lung cancer data set, which was analyzed by Gordon et al. (2002) and is available at R

documentation data(lung) with package propOverlap. This data set was popularly used

in the classification literature (Fan and Fan, 2008; Cai and Liu, 2011) where normality is

a key assumption. In addition, we explore a data set that was analyzed in Jin and Wang

(2016) by their method IF-PCA for clustering, where data normality is assumed.

4.1 Lung cancer data

The lung cancer data set has 181 tissue samples, including 31 malignant pleural mesothe-

lioma (MPM) and 150 adenocarcinoma (ADCA), and each sample is described by 12533

genes. This data set has been analyzed in Fan and Fan (2008) by their methods FAIR and

NSC, and in Cai and Liu (2011) by their LPD rule, for distinguishing MPM from ADCA,

which is important and challenging from both clinical and pathological perspectives. How-

ever, before applying their proposed methods, none of them have checked the normality of

the data, which is a fundamental assumption in the formulation of linear discriminants. If

the normality fails to hold, then the misclassification rates can be affected and their results

may no longer be valid.

In this section, we use our newly developed method to check the normality of the 150

ADCA samples in this lung cancer data set. Note that, multivariate normality assumption

for the 12533 genes of the ADCA samples will be rejected if any subset for this large
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number of genes deviate from the normality. Thus, we randomly select a group of 200

genes, and applied our new method to test the multivariate normality assumption. By

applying Algorithm 1 with B = 500, we obtain that, the sampling p-value is equal to 0,

which gives sufficient evidence that the samples from this data set have severe deviation

from the multivariate normal distribution. We further repeat this procedure for 100 times.

In each time, we randomly select a group of 200 genes and apply Algorithm 1 (B = 500)

to the selected genes. It turns out that the sampling p-values are all 0 for these 100 times.

Thus, it is not reasonable to assume the normality and directly apply the recent developed

high-dimensional linear discriminant procedures to classify MPM and ADCA, as studied

in Fan and Fan (2008) and Cai and Liu (2011). So our procedure serves as an important

initial step for checking the normality assumption before applying any statistical analysis

methods which assume such conditions.

4.2 Colon cancer data

Next, we study in this section a gene expression data set on tumor and normal colon

tissues that was analyzed and cleaned by Dettling (2004). This data set can be found

at https://blog.nus.edu.sg/staww/softwarecode/. It has 40 tumor and 22 normal

colon tissue samples, and each sample is described by 2000 genes. This data set has

been analyzed in Jin and Wang (2016) by their method IF-PCA for clustering, where

they imposed normality assumption on the data, though they found the violation to such

assumption in their analysis as the empirical null distribution of a test statistic they used

was far from the theoretical null distribution derived from the normal assumption.

In this section, we use our newly developed method to check the normality of the 40

tumor samples in this colon cancer data set. We compare the proposed method with eFR,

the multivariate Shapiro–Wilk’s test and the Fishers test in this analysis. By applying

Algorithm 1 with B = 500, we obtain that, the sampling p-value is equal to 0, which gives

a sufficient evidence that the samples from this data set have severe deviation from the

multivariate normal distribution. This double confirms the deviation from the normality

assumption noticed by the authors in Jin and Wang (2016). On the other hand, both
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the multivariate Shapiro–Wilk’s test and the Fishers test successfully reject the null while

the eFR method reports a sampling p-value of 1 and fails to detect the violation to the

normality assumption.

5 Discussion

We proposed in this paper a nonparametric normality test based on the nearest neighbor

information. It enjoys proper error control and is shown to have significant power improve-

ment over the alternative approaches. We discuss in this section a related test statistic and

some extensions and explorations of the current method.

5.1 Test statistic based on XX

Our proposed test statistic involves the event Y Y , i.e., the event that an observation in

{Y1, Y2, . . . , Yn} finds its nearest neighbor in {Y1, Y2, . . . , Yn}. A straightforward alternative

method could be based on the test statistics which involves the event XX, i.e., the event

that an observation in {X1, X2, . . . , Xn} finds its nearest neighbor in {X1, X2, . . . , Xn}, and

a question is whether the XX-equivalent statistic could be incorporated to further enhance

the power. Unfortunately, the XX version is not as robust as the Y Y version and does not

have good performance in controlling the type I error. Table 5 lists the empirical size of the

XX version of the test under the same settings as in Table 2. We observe that this statistic

has serious size distortion for Model 3 when the dimension is high. This also explains the

bad performance of eFR in controlling type I error under Model 3 because eFR partially

uses the XX information.

5.2 Extension to other distributions in the exponential family

The idea of constructing this normality test could be extended to other distributions in the

exponential family. As long as one has reasonably good estimators for the parameters of

the distribution, a similar procedure as described in Section 2 can be applied. In particular,

one could replace the multivariate normal distribution in Algorithm 1 by the distribution
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Table 5: Empirical size (in percents) of the XX version test, α = 0.05.

n 100 150

d 20 100 300 20 100 300

Model 1 4.6 3.5 5.1 4.3 3.3 4.5

Model 2 5.3 5.7 8.6 5.5 4.0 9.2

Model 3 4.4 5.1 32.2 4.0 4.5 16.2

of interest, and replace the mean and covariance estimators by the estimators of the cor-

responding parameters. The conditions for the asymptotic equivalence between the events

Y Y and Y ∗Y ∗ would need more careful investigations and warrant future research.

5.3 A power enhanced algorithm

To further improve the power performance of the method, especially when the sample size

is limited, we can increase the number of sampling procedure in Algorithm 1 as detailed in

the following algorithm.
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Algorithm 2

1: For i = 1 : L, generate Yi,1, . . . , Yi,n
iid∼ Nd(µx,Σx), calculate ri(Y Y ). Let r̄(Y Y ) be the

average of ri(Y Y )’s.

2: Generate X∗1 , . . . , X
∗
n
iid∼ Nd(µx,Σx), estimate its mean µx∗ and covariance matrix Σx∗ .

For i = 1 : L, generate Y ∗i,1, . . . , Y
∗
i,n

iid∼ Nd(µx∗ ,Σx∗), calculate ri(Y
∗Y ∗). Let r̄(Y ∗Y ∗)

be the average of ri(Y
∗Y ∗)’s.

3: Repeat Step 2 for B times to get an estimate of the empirical distribution of r̄(Y Y )

under H0.

4: Compute the two-sided sampling p-value, p(Y Y ), i.e., the percentage of |r̄(Y ∗Y ∗) −

m(r̄(Y ∗Y ∗))| (out of B) that are larger than or equal to |r̄(Y Y )−m(r̄(Y ∗Y ∗))|, where

m(r̄(Y ∗Y ∗)) is the average of r̄(Y ∗Y ∗)’s in Step 3.

5: For a given significance level 0 < α < 1, define Ψα = I{p(Y Y ) ≤ α}. Reject the null

hypothesis whenever Ψα = 1.

Note that, when L = 1, Algorithm 2 is reduced to Algorithm 1 in Section 2.3. In the

following Figure 3, we show the boxplots of the sampling p-values for Distribution 1 and

Model 3 when L = 1, 2, . . . , 10, for d = n = 100, with 100 replications. Similar patterns are

observed for the other models. It can be seen that, as L increases, the power performance

of the method can be significantly improved and will get stable when L is around 5. Also

note that, the computation cost is growing as L increases. Hence we mainly recommend

Algorithm 1 in the paper as it already shows reasonable well performance both in terms of

empirical size and power as illustrated in Section 3.

5.4 Non-significant results and scale sensitivity

When the testing results are nonsignificant, it means that the distribution is very close to

the multivariate normal, whereas the unbiased property of the proposed test warrants future

research. In this section, we perform additional simulation studies to explore the power

performance of the proposed method as the distributions are approaching to normality.

Specifically, we consider the following three sets of distributions: multivariate chi-square

distributions, multivariate t distributions and multivariate Gaussian distribution with a
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Figure 3: Boxplots of the sampling p-values for Distribution 1 and Model 3 in Section 3, for

d = m = 100, with 100 replications.

certain proportion of the dimensions replaced by t distribution.

• Multivariate chi-square distribution with degrees of freedom ν = 3, 5, 10 and 20 (the

larger ν is, the closer the distribution is to the multivariate normal distribution).

• Multivariate t distribution with degrees of freedom ν = d/4, d/2, d and 2d (the larger

ν is, the closer the distribution is to the multivariate normal distribution).

• Multivariate Gaussian distribution Nd(0,Σ) with a certain proportion of the dimen-

sions, ranging from 0.5 to 0.1, replaced by Multivariate t distribution with degrees of

freedom ν = d/4 (the smaller the proportion is, the closer the distribution is to the

multivariate normal distribution).

The power performance of the methods are summarized in Tables 6 and 7. It can been seen

from the tables that, when the alternatives are getting closer to the multivariate normal,

the testing results become more and more non-significant.

In addition, we explore the scale sensitivity of the proposed test by considering different

covariance models with varying condition numbers as follows.
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Table 6: Empirical power (in percents) of the proposed algorithm (NEW) and extended

Friedman-Rafsky test (eFR) for Model 3, α = 0.05, d = 100 and n = 100.

Distribution chi-square t

DOF 3 5 10 20 d/4 d/2 2d 4d

NEW 45.1 25.2 10.6 6.5 99.7 87.9 17.3 6.3

eFR 9.4 6.8 6.5 5.1 2.3 4.8 4.0 3.3

Table 7: Empirical power (in percents) with varying proportion of non-Gaussian dimen-

sions, ranging from 0.5 to 0.1, for Model 1, α = 0.05, d = 100 and n = 100.

non-Gaussian proportion 0.5 0.4 0.3 0.2 0.1

NEW 48.1 25.9 12.9 7.0 4.2

eFR 3.7 5.2 4.8 5.0 4.1
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• Model 1A: Σ = I.

• Model 1B: Σ = diag(σ1,1, . . . , σd,d), where σi,i = Unif(1, 5) for i = 1, . . . , d.

• Model 1C: Σ = diag(σ1,1, . . . , σd,d), where σi,i = Unif(1, 20) for i = 1, . . . , d.

We see from Table 8 that, the empirical size and power performance (Distribution 1) of

these three models are very similar to each other, which shows that the proposed method

is not sensitive to the scale of the data.

Table 8: Empirical size and power (in percents) of the proposed algorithm (NEW) and

extended Friedman-Rafsky test (eFR) for varying condition numbers, n = 100.

Size Power

d 20 100 300 20 100 300

Model 1A
NEW 4.3 4.3 5.1 58.5 91.3 93.0

eFR 4.3 4.8 4.3 6.7 3.7 6.4

Model 1B
NEW 3.2 4.7 5.0 55.9 91.2 91.7

eFR 4.0 3.6 5.6 7.6 3.9 4.4

Model 1C
NEW 5.1 5.1 5.3 49.8 87.0 92.0

eFR 4.7 5.3 4.7 7.1 3.6 4.7

6 Proof of Theorem 1

Let Σ = UΛUT and Σx = UxΛxU
T
x be respectively the eigen-decomposition of Σ and Σx.

Define Σ1/2 = UΛ1/2UT and Σ
1/2
x = UxΛ

1/2
x UT

x . Then under the conditions of Theorem 1,

by Lemma 1, we have ‖Σ1/2
x − Σ1/2‖2 = oP(n−

1
d
− (2+a) log d+κ

2 logn ).

Let f(·) be the density of Nd(µ,Σ), and f ∗(·) be the density of Nd(µx,Σx). Then we
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have,

P(Y Y ) =

∫
P(Y Y |{Xi = xi}i=1,...,n)

n∏
i=1

f(xi)dxi,

P(Y ∗Y ∗) =

∫
P(Y ∗Y ∗|{X∗i = x∗i }i=1,...,n)

n∏
i=1

f ∗(x∗i )dx
∗
i .

By the construction of {Y1, . . . , Yn} and {Y ∗1 , . . . , Y ∗n }, we have

P(Y Y |{Xi = x∗i }i=1,...,n) = P(Y ∗Y ∗|{X∗i = x∗i }i=1,...,n).

Hence,

P(Y ∗Y ∗) =

∫
P(Y Y |{Xi = x∗i }i=1,...,n)

n∏
i=1

f ∗(x∗i )dx
∗
i .

By a change of measure, we have

P(Y ∗Y ∗) =

∫
P(Y Y |{Xi = Σ1/2

x Σ−1/2(xi − µ) + µx}i=1,...,n)
n∏
i=1

f(xi)dxi.

It is not hard to see that if we shift the xi’s all by a fixed value, the probability of Y Y is

unchanged. Hence,

P(Y ∗Y ∗) =

∫
P(Y Y |{Xi = Σ1/2

x Σ−1/2xi}i=1,...,n)
n∏
i=1

f(xi)dxi.

Let wi = Σ
1/2
x Σ−1/2xi. Then,

|P(Y Y )− P(Y ∗Y ∗)|

=

∣∣∣∣∣
∫

(P(Y Y |{Xi = xi}i=1,...,n)− P(Y Y |{Xi = wi}i=1,...,n))
n∏
i=1

f(xi)dxi

∣∣∣∣∣ (1)

≤
∫
|P(Y Y |{Xi = xi}i=1,...,n)− P(Y Y |{Xi = wi}i=1,...,n)|

n∏
i=1

f(xi)dxi. (2)

Let µ1 and Σ1 be the estimated mean and variance based on {xi}i=1,...,n, and µ2 and Σ2

be the estimated mean and variance based on {wi}i=1,...,n. Let g1(·) and g2(·) be the den-

sity function of Nd(µ1,Σ1) and Nd(µ2,Σ2), respectively. Let Y1, Y2, . . . , Yn
iid∼ Nd(µ1,Σ1),

Ỹ1, Ỹ2, . . . , Ỹn
iid∼ Nd(µ2,Σ2), NYi be the observation in {{Yj}j 6=i, {xj}j=1,...,n} that is clos-

est to Yi, NỸi
be the observation in {{Ỹj}j 6=i, {wj}j=1,...,n} that is closest to Ỹi, {Y } =

24



{Yi}i=1,...,n, and {Ỹ } = {Ỹi}i=1,...,n. Then,

P(Y Y |{Xi = xi}i=1,...,n)− P(Y Y |{Xi = wi}i=1,...,n)

= P(NY1 ∈ {Y })− P(NỸ1
∈ {Ỹ })

=

∫
P(NY1 ∈ {Y }|Y1 = y)g1(y)dy −

∫
P(NỸ1

∈ {Ỹ }|Ỹ1 = ỹ)g2(ỹ)dỹ.

By change of measure, we have that∫
P(NỸ1

∈ {Ỹ }|Ỹ1 = ỹ)g2(ỹ)dỹ

=

∫
P(NỸ1

∈ {Ỹ }|Ỹ1 = Σ
1/2
2 Σ

−1/2
1 (y − µ1) + µ2)g1(y)dy.

Let yw = Σ
1/2
2 Σ

−1/2
1 (y − µ1) + µ2, then

|P(Y Y |{Xi = xi}i=1,...,n)− P(Y Y |{Xi = wi}i=1,...,n)|

=

∣∣∣∣∫ (P(NY1 ∈ {Y }|Y1 = y)− P(NỸ1
∈ {Ỹ }|Ỹ1 = yw))g1(y)dy

∣∣∣∣ (3)

≤
∫
|P(NY1 ∈ {Y }|Y1 = y)− P(NỸ1

∈ {Ỹ }|Ỹ1 = yw))|g1(y)dy. (4)

Let ri = ‖wi − xi‖2. Define α∗ = −1
d
− (1+a) log d+κ

2 logn
. By Lemma 2 (see Section 7), we

have that ri = oP(nα
∗
), ∀i. Also, given that wi = Σ

1/2
x Σ−1/2xi, it is easy to have estimates

such that µ2 = Σ
1/2
x Σ−1/2µ1. Then we have

‖yw − y‖2 = ‖Σ1/2
2 Σ

−1/2
1 (y − µ1) + µ2 − y‖2

= ‖(Σ1/2
2 − Σ

1/2
1 )Σ

−1/2
1 y + (Σ1/2

x Σ−1/2 − Σ
1/2
2 Σ

−1/2
1 )µ1‖2

≤ ‖(Σ1/2
2 − Σ

1/2
1 )Σ

−1/2
1 y‖2 + ‖(Σ1/2

x Σ−1/2 − Σ
1/2
2 Σ

−1/2
1 )µ1‖2 (5)

Denote by α̃ = −1
d
− (2+a) log d+κ

2 logn
. Recall that ‖Σ1/2

x − Σ1/2‖2 = oP(nα̃). Note that, the

covariance matrix of {xi, i = 1, . . . , n} is Σ and the covariance matrix of {wi, i = 1, . . . , n}

is Σx. Then using the same estimation method of the covariance matrix as estimating Σ

by Σx, we can estimate Σx by an estimator Σ2 and estimate Σ by Σ1, such that

‖Σ2 − Σx‖2 = oP(nα̃), and ‖Σ1 − Σ‖2 = oP(nα̃).

Note that ‖Σx − Σ‖2 = oP(nα̃), we have that ‖Σ2 − Σ1‖2 = oP(nα̃). Then by the proofs of

Lemma 1 and the conditions of Theorem 1, we have that ‖Σ1/2
2 − Σ

1/2
1 ‖2 = oP(nα̃).
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Thus we have

‖(Σ1/2
2 − Σ

1/2
1 )Σ

−1/2
1 y‖2 ≤ ‖Σ1/2

2 − Σ
1/2
1 ‖2‖Σ−1/2

1 y‖2

= oP(nα̃)OP(
√
d) = oP(nα

∗
).

By similar arguments, we have

‖(Σ1/2
x Σ−1/2 − Σ

1/2
2 Σ

−1/2
1 )µ1‖2

= ‖((Σ1/2
x − Σ1/2)Σ−1/2 − (Σ

1/2
2 − Σ

1/2
1 )Σ

−1/2
1 )µ1‖2

≤ ‖((Σ1/2
x − Σ1/2)Σ−1/2µ1‖2 + ‖(Σ1/2

2 − Σ
1/2
1 )Σ

−1/2
1 )µ1‖2

= oP(nα
∗
). (6)

Thus we have that ‖yw − y‖2 = oP(nα
∗
).

Let

jx = arg min
j∈{1,2,...,n}

{‖y − xj‖2},

jw = arg min
j∈{1,2,...,n}

{‖yw − wj‖2}.

and Dmin,x = ‖y − xjx‖2, Dmin,w = ‖yw − wjw‖2.

Suppose Dmin,x = OP(nα). Notice that nα
∗

= n−
1
dd−(1+a)/2e−κ/2 ≤ O(d−1/2). When

α < α∗, based on Lemma 3, the probability that Dmin,x = c0n
α for some constant c0 > 0 is

of order n× oP(nα
∗dd−d/2eκd/2) = oP(d−d) = oP(1).

We thus focus on α ≥ α∗. By definitions of Dmin,x and Dmin,w, and the facts that

‖xi−wi‖2 = oP(nα
∗
), ∀i, and ‖y− yw‖2 = oP(nα

∗
), we have that Dmin,w = Dmin,x + oP(nα

∗
).

Let px be the probability that Yk ∼ Nd(µ1,Σ1) falls in the Dmin,x-ball of y, and pw be the

probability that Ỹk ∼ Nd(µ2,Σ2) falls in the Dmin,w-ball of yw.

Let α0 = −1
d

+ (1−a) log d−κ
2 logn

> α∗. We consider two scenarios: (1) α∗ ≤ α < α0, and (2)

α ≥ α0.

(1) α∗ ≤ α < α0:

(a) When d log d ≤ log n, we have nα0 = d
1
2
− logn
d log d

− κ
2 log d ≤ O(d−

1
2 ). Since µ1 and Σ1

satisfy the condition for Lemma 4, we have

px = oP(ndα0d−d/2eκ1d/2) = oP(n−1
√
|Σ|/|Σ1|) = oP(n−1),
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where κ1 = 1− log |Σ1|
d
− log 2.

Notice that µ2 and Σ2 also satisfy the condition for Lemma 4, so

pw = oP(ndα0d−d/2eκ2d/2) = oP(n−1
√
|Σ|/|Σ2|) = oP(n−1),

where κ2 = 1− log |Σ2|
d
− log 2.

(b) When d log d > log n and d = o(log n), we have nα0 ≤ O(
√
d), by Lemma 4, log px

is

− 1
2
d log d+ d logDmin,x + 1

2
d(κ1 +OP(1))

= − log n− d
2
(a log d+OP(1)).

Here, a = logn
ξd,nd log d

with 1 � ξd,n = o(log n/d) a positive constant. We have

log px is − log n − 1
2ξd,n

log n + OP(d) � − log n. So px = oP(n−1). Similarly,

pw = oP(n−1).

(c) When d is of order log n or higher, a = 1/εd with 1 � εd = o(log d), then

d
2
(a log d + OP(1)) � d ≥ O(log n), and px is also of order oP(n−1). Similarly,

pw = oP(n−1).

Under (a), (b) and (c), we all have px, pw = oP(n−1). Then,

|P(NY1 ∈ {Y }|Y1 = y)− P(NỸ1
∈ {Ỹ }|Y1 = yw)| = |oP(1)− oP(1)| = oP(1).

(2) α ≥ α0:

First we consider α0 ≤ α ≤ log d
2 logn

. By the proof of Lemma 4 and the facts that Dmin,w =

Dmin,x+oP(nα
∗
), e(κ1−κ)d/2 =

√
|Σ|/|Σ1| = 1+oP(1), e(κ2−κ)d/2 =

√
|Σ|/|Σ2| = 1+oP(1),

and ‖Σ−1
2 − Σ−1

1 ‖2 = oP(nα̃). Then pw is

px

(
1 + oP(nα

∗
)

OP(nα)

)d
e
oP

(
n
− 1
d
− (2+a) log d+κ

2 logn (
√
d nα+n2α)

)
eoP(nα

∗√
d) + oP(n−1)

= px
(
1 + oP(nα

∗−α0)
)d
e
oP

(
n
− 1
d
−a log d+κ

2 logn

)
eoP(1) + oP(n−1)

= px(1 + o(d−1))d(1 + oP(1))2 + oP(n−1) = px(1 + oP(1)) + oP(n−1).
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Hence, pw is of the same order as px when α ≥ α0.

Notice that, for Y1, Y2
iid∼ Nd(µ1,Σ1), E(‖Y1−Y2‖2) = O(

√
d). Thus, when Dmin,x = c

√
d

for a sufficiently large constant c, px is of order OP(1). Similarly, when Dmin,w = c
√
d

for a sufficiently large constant c, pw is of order OP(1). Thus, for α > log d
2 logn

, we have

Dmin,x, Dmin,w � OP(
√
d) and px, pw = OP(1) are also of the same order.

(a) When px, pw are of order oP(n−1), |P(NY1 ∈ {Y }|Y1 = y) − P(NỸ1
∈ {Ỹ }|Y1 =

yw)| = oP(1).

(b) When px, pw are of order higher than OP(n−1), the probability that no other

Yk′ ∼ Nd(µ1,Σ1) falls in the Dmin,x-ball of y goes to 0 as n → ∞, and the

probability that no other Ỹk′ ∼ Nd(µ2,Σ2) falls in the Dmin,w-ball of yw also goes

to 0 as n→∞. So

|P(NY1 ∈ {Y }|Y1 = y)− P(NỸ1
∈ {Ỹ }|Y1 = yw)| = oP(1).

(c) When px = pw = OP(n−1). Let δ = |Dmin,x−Dmin,w|+‖y−yw‖2. Then δ = oP(nα
∗
),

and δd
Dmin,x

= oP(n
α∗d
nα0

) = oP(1).

Here, we define two more probabilities. Let px,2 be the probability that Yk ∼

Nd(µ1,Σ1) falls in the (Dmin,x + δ)-ball of y, and pw,2 be the probability that

Ỹk ∼ Nd(µ2,Σ2) falls in the (Dmin,x + δ)-ball of y. It is clear that both the Dmin,x-

ball of y and the Dmin,w-ball of yw are contained in the (Dmin,x + δ)-ball of y.

Because
√
d

Dmin,x
≥ OP

( √
d

n−
1
d d

1−a
2 e−

κ
2

)
= OP(n

1
dd

a
2 e

κ
2 ) ≥ OP(1) and δ ≤ oP(d−1/2),

by the proof of Lemma 4, we have that px,2 is

px

(
1 + δ

Dmin,x

)d
eOP(δ

√
d) +OP(δdd−d/2eκ1d/2)

= px e
d OP

(
δ

Dmin,x

)
eOP(δ

√
d) + oP( δd

Dmin,x
n−1)

= px

(
1 +OP

(
δd

Dmin,x

))
= px(1 + oP(1)),

Similarly, pw,2 = pw(1 + OP( δd
Dmin,x

)) = pw(1 + oP(1)). Then px,2 and pw,2 are also

of order OP(n−1).

Based on the proof of Lemma 3, px,2 and pw,2 differ by a factor of

1 +OP(dnα̃) = 1 + OP(d−
a
2
− logn
d log d

−O( 1
log d

)) = 1 + oP(1).
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Notice that px,2− px = px(px,2/px− 1) = OP(n−1)OP( δd
Dmin,x

) = OP(n−1δd/Dmin,x).

Similarly, pw,2 − pw = OP(n−1δd/Dmin,x).

Let ξmin = min{δd/Dmin,x, d
−a− logn

d log d
−O( 1

log d
)}, we have that |px−pw| = OP(n−1ξmin).

Let px = c0n
−1. Then pw = c0n

−1 + c1n
−1ξmin + oP(n−1ξmin) for a constant c1.

Then,

|P(NY1 ∈ {Y }|Y1 = y)− P(NỸ1
∈ {Ỹ }|Ỹ1 = yw)|

= |(1− (1− px)n−1)− (1− (1− pw)n−1)|

= |(1− pw)n−1 − (1− px)n−1|

= |(1− c0n
−1)n−1 − (1− c0n

−1 − c1n
−1ξmin − oP(n−1ξmin))n−1|

= |(n− 1)(1− c0n
−1)n−2c1n

−1ξmin + oP(1)|

= oP(1).

Thus, under all possibilities of scenarios (1) and (2), we have |P(NY1 ∈ {Y }|Y1 =

y)− P(NỸ1
∈ {Ỹ }|Ỹ1 = yw)| = oP(1). Hence,

|P (Y Y )− P (Y ∗Y ∗)|

≤
∫
x1,...,xn

∫
y

|P(NY1 ∈ {Y }|Y1 = y)− P(NỸ1
∈ {Ỹ }|Ỹ1 = yw))|

× g1(y)dy
n∏
i=1

f(xi)dxi

= o(1),

and the conclusion of the theorem follows.

7 Technical Lemmas

Lemma 1. For independent observations X1, . . . , Xn
iid∼ Nd(µ,Σ), assume that λmin(Σ) ≥

C for some constant C > 0. If ‖Σx − Σ‖2 = oP(rn,d) with rn,d = O(1), then we have

‖Σ1/2
x − Σ1/2‖2 = oP(rn,d).

Proof. Denote by v ∈ Rd an eigenvector of Σ
1/2
x − Σ1/2 of unit length, we have

|(Σ1/2
x v − Σ1/2v)T (Σ1/2

x v + Σ1/2v)| = |vT (Σx − Σ)v| ≤ ‖Σx − Σ‖2 = oP(rn,d).

29



Suppose that (Σ
1/2
x − Σ1/2)v = λv, then we have that

|λvT (Σ1/2
x + Σ1/2)v| = oP(rn,d).

By the condition that λmin(Σ) ≥ C and that ‖Σx − Σ‖2 = oP(rn,d), we have

vTΣ1/2
x v = vTΣ1/2v + vT (Σ1/2

x − Σ1/2)v ≥ C − o(1)

with probability going to 1. Hence, for some constant C0 > 0, we have, with probability

tending to 1,

vT (Σ1/2
x + Σ1/2)v ≥ C0.

It yields that λ = oP(rn,d). Since v could be any eigenvector of Σ
1/2
x − Σ1/2, we have

‖Σ1/2
x − Σ1/2‖2 = oP(rn,d).

Lemma 2. Suppose x ∼ Nd(0,Σ). Then under the conditions of Theorem 1, we have

‖Σ1/2
x Σ−1/2x− x‖2 = oP(n−

1
d
− (1+a) log d+κ

2 logn ). (7)

Proof.

‖Σ1/2
x Σ−1/2x− x‖2 = ‖Σ1/2

x Σ−1/2x− Σ1/2Σ−1/2x‖2

= ‖(Σ1/2
x − Σ1/2)Σ−1/2x‖2.

Let z = Σ−1/2x, we have

‖Σ1/2
x Σ−1/2x− x‖2 ≤ ‖Σ1/2

x − Σ1/2‖2‖z‖2.

Notice that the covariance matrix of z is an identity matrix, ‖z‖2
2/d converges to a con-

stant almost surely as d→∞. By the condition that ‖Σ1/2
x −Σ1/2‖2 = oP(n−

1
d
− (2+a) log d+κ

2 logn ),

we have that

‖Σ1/2
x Σ−1/2x− x‖2 ≤ oP(n−

1
d
− (2+a) log d+κ

2 logn )‖z‖2 = oP(n−
1
d
− (1+a) log d+κ

2 logn ).
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Lemma 3. Let X1 ∼ Nd(µ,Σ), Y independent of X1’s and Y ∼ Nd(µx,Σx), where µ, Σ,

µx, and Σx satisfy the conditions in Theorem 1.

1. When d is fixed, for r = o(1), the probability Y falls in the r-ball centered at X1 is of

order OP(rd).

2. When d increases with n, for r = O(dβ), β ≤ 1
2
, the logarithm of the probability

Y falls in the r-ball centered at X1 is −1
2
d log d + d log r + 1

2
d(κ + OP(1)). More

specifically, when β ≤ −0.5, the probability Y falls in the r-ball centered at X1 is of

order OP(rdd−d/2eκd/2).

Proof. Under a special case that µx = 0, Σx = I and X1 ≡ 0, the probability is∫ r

0

dπd/2

Γ(d/2 + 1)
td−1 1

(2π)d/2
e−

1
2
t2dt =

d

2d/2Γ(d/2 + 1)

∫ r

0

td−1e−
1
2
t2dt,

which is of order 2−d/2e−d/2 log(d/2)+d/2
∫ r

0
td−1e−

1
2
t2dt = d1−d/2ed/2

∫ r
0
td−1e−

1
2
t2dt.

For generic µx,Σx and X1 ∼ Nd(µ,Σ), notice that

fµx,Σx(Y )

fµx,Σx(X1)
=

e−
1
2

(Y−µx)TΣ−1
x (Y−µx)

e−
1
2

(X1−µx)TΣ−1
x (X1−µx)

= e(X1−Y )TΣ−1
x (X1−µx)− 1

2
(X1−Y )TΣ−1

x (X1−Y ).

When ‖Y −X1‖2 = t, based on the conditions in Theorem 1, there exists a positive function

c1(t) and a positive constant c2 such that
fµx,Σx (Y )

fµx,Σx (X1)
= OP(ec1(t)t

√
d−c2t2). Then, probability

Y falls in the r-ball of Xi is of order

d1−d/2ed/2
∫ r

0

td−1e−
1
2
t2
∫
|Σx|−

1
2 e−

1
2

(x−µx)TΣ−1
x (x−µx)

× (2π)−
d
2 |Σ|−

1
2 e−

1
2

(x−µ)TΣ−1(x−µ)ec1(t)t
√
d−c2t2dxdt.

Under the conditions of Theorem 1, we have∫
|Σx|−

1
2 e−

1
2

(x−µx)TΣ−1
x (x−µx)(2π)−

d
2 |Σ|−

1
2 e−

1
2

(x−µ)TΣ−1(x−µ)dx

= O
(
|Σ|−

1
2 |Σx|−

1
2 |Σ−1 + Σ−1

x |−
1
2

)
= O(2−d/2|Σ|−

1
2 ).
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Thus, the probability Y falls in the r-ball of Xi is of order

d1−d/2eκd/2
∫ r

0

td−1ec1(t)t
√
d−(c2+0.5)t2dt (8)

We first consider the cases when d increases with n. Suppose t = c0d
β, for some fixed

β and 0 < c0 ≤ C for some constant C > 0. Then the integrand is

e(d−1)(β log d+log c0)+c1(t)c0dβ+0.5−(c2+0.5)c20d
2β

.

We consider the following two scenarios.

(1) If β < 0 or 0 < β ≤ 1
2
, then d log d dominates the other terms. Furthermore, we have

that

d log d

c0dβ+0.5
=

1

c0

d0.5−β log d ≥ O(log d),

d log d

c2
0d

2β
=

1

c2
0

d1−2β log d ≥ O(log d).

(2) If β = 0, we further consider the following two cases. Let ε1 = log d√
d

,

(a) if c0 ≥ 1 + ε1, then d log c0 dominates the other terms, and we have that

d log c0

c0d0.5
≥ O(log d), and

d log c0

c2
0

≥ O(log d
√
d)� O(log d).

(b) if c0 ≤ 1− ε1, again d log c0 dominates the other terms, and we have that∣∣∣d log c0

c0d0.5

∣∣∣ ≥ O(log d), and
∣∣∣d log c0

c2
0

∣∣∣ ≥ O(log d
√
d)� O(log d).

First of all, when β ≤ −0.5, from scenario (1), we have

d log d

c0dβ+0.5
≥ O(d log d), and

d log d

c2
0d

2β
≥ O(d2 log d).

Then,

d1−d/2eκd/2
∫ r

0

td−1ec1(t)t
√
d−(c2+0.5)t2dt

= d1−d/2eκd/2
∫ r

0

e(d−1) log t(1+O( 1
d log d

))dt

= d−d/2eκd/2rdrO( 1
log d

) = O(d−d/2rdeκd/2).
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When −0.5 < β ≤ 0.5, based on scenarios (1) and (2), we have

d1−d/2eκd/2
∫ r

0

td−1ec1(t)t
√
d−(c2+0.5)t2dt

= d1−d/2eκd/2
∫ r

0

e(d−1) log t(1+O(1/ log d))dt (9)

= d−d/2eκd/2rdrO(d/ log d) = d−d/2rde
1
2
d(κ+O( log r

log d
))

= d−d/2rde
1
2
d(κ+O(1)).

For (9), the part of the integral from 1 − ε1 to 1 + ε1 is not an issue: Notice that∫ 1+ε1
1−ε1 dt

d−1dt = (1 + ε1)d − (1 − ε1)d = ed log(1+ε1) − ed log(1−ε1) = edO(ε1) = eO(
√
d log d), and∫ 1+ε1

1−ε1 de
c∗t
√
ddt =

√
d
c∗
ec
∗√d(e1+ε1 − e1−ε1) = O(ε1

√
dec

∗√d) = O(log dec
∗√d) = eO(

√
d) with

c∗ = sup1−ε1≤t≤1+ε1 c1(t) a positive constant. Then, the difference between the two inte-

grals is at most eO(
√
d log d), which is much smaller than eO(d) and thus does not affect the

above result.

When d is fixed, the proofs are much simpler, and it is not hard to see that, when

r = o(1), the probability is of order rd.

Lemma 4. Let Y1, Y2
iid∼ Nd(µ0,Σ0), where ‖µ0‖∞ is bounded by a positive constant, and

‖Σ−1
0 − Σ−1‖2 = o(1).

1. When d is fixed, for r = o(1), the probability Y2 falls in the r-ball centered at Y1 is of

order OP(rd).

2. When d increases with n, for r = O(dβ), β ≤ 1
2
, the logarithm of the probability

Y2 falls in the r-ball centered at Y1 is −1
2
d log d + d log r + 1

2
d(κ0 + OP(1)), where

κ0 = 1 − log |Σ0|
d
− log 2. More specifically, when β ≤ −0.5, the probability Y2 falls in

the r-ball centered at Y1 is of order OP(rdd−d/2eκ0d/2).
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Proof. Based on the proof of Lemma 3, the probability Y2 falls in the r-ball of Y1 is of order

d1−d/2ed/2
∫ r

0

td−1e−
1
2
t2
∫
|Σ0|−

1
2 e−

1
2

(x−µ0)TΣ−1
0 (x−µ0)(2π)−

d
2 |Σ0|−

1
2

× e−
1
2

(x−µ0)TΣ−1
0 (x−µ0)ec1(t)t

√
d(1+o(1))−c2t2(1+o(1))dxdt

= d1−d/2ed/22−d/2|Σ0|−
1
2

∫ r

0

td−1ec1(t)t
√
d(1+o(1))−(c2+0.5)t2(1+o(1))dt

= d1−d/2eκ0d/2

∫ r

0

td−1ec1(t)t
√
d(1+o(1))−(c2+0.5)t2(1+o(1))dt,

with c1(t) and c2 the same as those in the proof of Lemma 3. Then, with the same arguments

as in the proof of Lemma 3, the results of this lemma follow.
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