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Abstract

Many statistical methodologies for high-dimensional data assume the population
is normal. Although a few multivariate normality tests have been proposed, to the
best of our knowledge, none of them can properly control the type I error when the di-
mension is larger than the number of observations. In this work, we propose a novel
nonparametric test that utilizes the nearest neighbor information. The proposed
method guarantees the asymptotic type I error control under the high-dimensional
setting. Simulation studies verify the empirical size performance of the proposed test
when the dimension grows with the sample size and at the same time exhibit a supe-
rior power performance of the new test compared with alternative methods. We also
illustrate our approach through two popularly used data sets in high-dimensional clas-
sification and clustering literatures where deviation from the normality assumption
may lead to invalid conclusions.
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1 Introduction

The population normality assumption is widely adopted in many classical statistical anal-
ysis (e.g., linear and quadratic discriminant analysis in classification, normal error linear
regression models, and the Hotelling T?-test), as well as many recently developed method-
ologies, such as network inference through Gaussian graphical models (Ma et al., 2007;
Yuan and Lin, 2007; Friedman et al., 2008; Rothman et al., 2008; Fan et al., 2009; Yuan,
2010; Liu, 2013; Xia et al., 2015), high-dimensional linear discriminant analysis (Bickel
et al., 2004; Fan and Fan, 2008; Cai and Liu, 2011; Mai et al., 2012), post-selection infer-
ence for regression models (Berk et al., 2013; Lee et al., 2016; Taylor and Tibshirani, 2018),
and change-point analysis for high-dimensional data (Xie and Siegmund, 2013; Chan and
Walther, 2015; Wang and Samworth, 2018; Liu et al., 2019). When the data is univari-
ate, there are many classical tools to check the normality assumption, such as the normal
quantile-quantile plot and the Shapiro-Wilk test (Shapiro and Wilk, 1965). However, many
of the modern applications involve multivariate or even high-dimensional data and it con-
stantly calls for multivariate normality testing methods with good theoretical performance.

In this article, we aim to address the following testing problem in the high-dimensional
setting with a proper control of type I error. Given a set of observations Xi, Xs,..., X, w

F, where F is a distribution in R¢, one wishes to test
Hy : F is a multivariate Gaussian distribution,
versus the alternative hypothesis
H, : F is not a multivariate Gaussian distribution.

In the literature, there have been a good number of methods proposed to test the
normality of multivariate data. For example, Mardia (1970) considered two statistics to
measure the multivariate skewness and kurtosis separately, and constructed two tests for
the normality of the data by using each of these two statistics; Bonferroni correction can be
applied to unify these two tests. More recently, Doornik and Hansen (2008) proposed a way
to combine the two test statistics effectively. In another line, Royston (1983) generalized

the Shapiro-Wilk test to the multivariate setting by applying the Shapiro-Wilk test to each



of the coordinates and then combining the test statistics from all coordinates, while Fat-
torini (1986) tried to find the projection direction where the data is most non-normal and
then applied the Shapiro-Wilk test to the projected data. Later, Zhou and Shao (2014)
combined these two approaches by considering the statistics from both random projec-
tions as well as the original coordinates. In a related work, Villasenor Alva and Estrada
(2009) proposed a multivariate Shapiro-Wilk’s test based on the transformed test statistics
standardized by the sample mean and covariance matrix. In addition, there is a series of
work that test normality through the characteristic function (Baringhaus and Henze, 1988;
Henze and Zirkler, 1990; Henze and Wagner, 1997). Besides those methods, there is also
another work that extends the Friedman-Rafsky test (Friedman and Rafsky, 1979), a non-
parametric two-sample test, to a multivariate normality test (Smith and Jain, 1988). Those
aforementioned methods provide useful tools for testing multivariate normality assumption
for the conventional low-dimensional data.

We illustrate in Table 1 the empirical size for some of the representative existing tests:
“Skewness” (the test based on the measure of multivariate skewness in Mardia (1970)),
“Kurtosis” (the test based on the measure of multivariate kurtosis in Mardia (1970)),
“Bonferroni” (the method combining the tests based on multivariate skewness and kurtosis
through the Bonferroni correction), “Ep” (an effective way of combining the multivariate
skewness and kurtosis in Doornik and Hansen (2008)), “Royston” (generalized Shapiro-
Wilk test in Royston (1983)), “HZ” (the test based on the characteristic function proposed
in Henze and Zirkler (1990)), “mvSW” (the multivariate Shapiro-Wilk’s test proposed in
Villasenor Alva and Estrada (2009)), and “eFR” (extended Friedman-Rafsky test in Smith
and Jain (1988)). In particular, the multivariate Shapiro-Wilk’s test requires smaller di-
mension than the sample size, and the extended Friedman-Rafsky test requires an estimate
of the variance of the distribution while there is a lack of discussions on such estimations in
their paper. In the table, we use “mvSW;,” and “eFRy” to respectively represent the test
proposed in Villasenor Alva and Estrada (2009) and the extended Friedman-Rafsky test
that are based on the sample covariance matrix, and use “mvSW” and “eFR” to respec-
tively represent the tests that are based on a newly developed covariance matrix estimation

method, the adaptive thresholding approach proposed in Cai and Liu (2011). We observe



from the table that, except for the improved tests “mvSW?”, and “eFR”, all other existing
methods are either not applicable to the cases when the dimension is larger than the sample

size, i.e., d > n, or cannot control the type I error well when the dimension is high.

Table 1: Empirical size (estimated from 1,000 trials) of the tests at 0.05 significance level.
Data are generated from the standard multivariate Gaussian distribution with n = 100.
The numbers in the table that are larger than 0.1 are bolded (cannot control the size well).
The test Ep is not applicable when d > n and the test “mvSW;” is not applicable when

d>n.

d ) 10 20 50 80 90 100 200
Skewness  0.035 0.039 0.014 0 0 0 0.114 0.384
Kurtosis  0.041 0.071 0.254 0.999 1 1 0.950 0.998

Bonferroni 0.029 0.040 0.158 0.994 0.943 1 1 0.997

Ep 0.053 0.059 0.046 0.044 0.047 0.040 0.141 -

Royston  0.073 0.092 0.080 0.137 0.129 0.164 0.168 0.245

HZ 0.048 0.051 0.051 0 1 1 1 1

mvSW,  0.056 0.057 0.038 0.052 0.042 0.045 - -

mvsWe  0.051 0.057 0.042 0.052 0.043 0.046 0.045 0.051

eFRy 0.056 0.041 0.048 0.081 0.153 0.145 0.161 0.088

eFR? 0.045 0.046 0.048 0.041 0.038 0.038 0.044 0.042

@ The improved multivariate Shapiro-Wilk’s test applying to the transformed statistics standardized by
the adaptive thresholding covariance estimators in Cai and Liu (2011).

b The improved extended Friedman-Rafsky test based on the adaptive thresholding covariance estimators.

The extended Friedman-Rafsky test is based on an edge-count two-sample test proposed
in Friedman and Rafsky (1979). Due to the curse of dimensionality, it was shown in a recent

work, Chen and Friedman (2017), that the edge-count two-sample test would suffer from



low or even trivial power under some commonly appeared high-dimensional alternatives
with typical sample sizes (ranging from hundreds to millions). The same problem also
exists in the extended Friedman-Rafsky test for testing normality in the high-dimensional
setting. Furthermore, the extended Friedman-Rafsky test can no longer properly control
the type I error when the dimension is much larger than the sample size, and similarly for
the improved multivariate Shapiro-Wilk’s test. We refer the details to the size and power
comparisons in Section 3.

In this paper, we take into consideration the findings in Chen and Friedman (2017) and
propose a novel nonparametric multivariate normality testing procedure based on nearest
neighbor information. Through extensive simulation studies, we observe that the new test
has good performance on the type I error control, even when the dimension of the data is
larger than the number of observations. It also exhibits much higher power than “mvSW?”
and “eFR” under the high-dimensional setting. Moreover, we provide theoretical results
in controlling the type I error for the new test when the dimension grows with the sample
size. As far as we know, there is a paucity of systematic and theory-guaranteed hypothesis
testing solutions developed for such type of problems in the high-dimensional setting, and
our proposal offers a timely response. We also apply our test respectively to two data sets,
a popularly used lung cancer data set in the linear discriminant analysis literatures (Fan
and Fan, 2008; Cai and Liu, 2011) where normality is a key assumption, and a colon cancer
data set that was used in high-dimensional clustering literature (Jin and Wang, 2016) where
the data are assumed to follow the normal assumption. The testing results provide useful
prerequisites for such analyses that are based on the normality assumption.

The rest of the paper is organized as follows. In Section 2, we propose a new non-
parametric procedure to test the normality of the high-dimensional data and introduce the
theoretical properties of the new approach. The performance of the proposed method is
examined through simulation studies in Section 3 and the method is applied to two data
sets in Section 4. Section 5 discusses a related statistic, possible extensions of the current
proposal, and some sensitivity analyses. The main theorem is proved in Section 6 with

technical lemmas collected and proved in Section 7.



2 Method and Theory

We propose in this section a novel nonparametric algorithm to test the normality of the
high-dimensional data. We start with the intuition of the proposed method, and then study
the error control of the new approach based on the asymptotic equivalence of two events

for searching the nearest neighbors under the null hypothesis.

2.1 Intuition

A key fact of the Gaussian distribution is that it is completely determined by its mean
and variance. Suppose that the mean (x) and covariance matrix (X) of the distribution
F' are known, then testing whether F'is a multivariate Gaussian distribution is the same
as testing whether ' = G, where G = Ny(p,>). For this purpose, one may consider
goodness-of-fit tests, such as Bartoszynski et al. (1997) and the approach proposed in Liu
et al. (2016) for high-dimensional data. We could also generate a new set of observations
Y1,Y,,...,Y, £ G, and apply the two-sample tests, such as Jureckova and Kalina (2012)
and Marozzi (2015) and the graph-based two-sample tests (Friedman and Rafsky, 1979;
Chen and Friedman, 2017; Chen et al., 2018), to examine F' = G for arbitrary dimensions.

However, in practice, the parameters p and ¥ are unknown in general. To compro-
mise, we use the mean (u,) and covariance matrix (X,) estimated from the set of observa-
tions { X1, Xo,..., X,,} as substitutes. We could again generate a new set of observations
Y1,Y5,...)Y, w Gr = Na(pe, X;), but unfortunately, now the original testing problem is
no longer equivalent to testing whether F' = G,.

To address this issue, we use the same combination of u, and >, to generate an-
other set of independent observations X7, X5,..., X & Gr = Ny(ite,X,). Then we es-
timate the mean and covariance matrix of these new observations and denote them by
Hz+ and X+, respectively. Based on them, we further generate a new set of independent
observations from the normal distribution with mean p,« and covariance matrix >, i.e.,
Y Yy, Y % Na(pig, X ). Intuitively, if the null hypothesis Hy is true, i.e., the origi-
nal distribution F' is multivariate Gaussian, then the relationship between { X3, Xo, ..., X}

and {Y7,Y5,...,Y,} would be similar to that of {X7, X5, ..., X} and {Y",Y;", ... . Y}



Henceforth, we shall test whether these two relationships are similar enough to decide
whether F' is close enough to a Gaussian distribution.

In Smith and Jain (1988), the Friedman-Rafsky’s two-sample test was used for this
purpose. Unfortunately, as will be shown later in Section 3, this test was unable to properly
control the type I error when the dimension is growing with the number of observations.

In order to guarantee the error control in the high-dimensional setting, we use the
nearest neighbor information in this article. To be specific, we pool {X;, Xs,..., X}
and {Y7,Ys,...,Y,} together, and for each observation, we find its nearest neighbor,
which is defined under the Euclidean distance in the current paper. Similarly, we pool
{X7,X5,..., X} and {Y]",YS, ..., Y.*} together, and again find the nearest neighbor for
each observation.

Nearest neighbor information has been employed in hypothesis testing that can be
applied to high-dimensional data (Schilling, 1986; Henze et al., 1988; Chen and Zhang,
2015; Chen, 2019). However, in these work, nearest neighbors were used for two-sample
testing, while in contrast, we only have one sample at the beginning of the current setup
and then generate a second sample that depends on the original one. Hence, we need to
develop a completely different set of technical tools to investigate the theoretical properties
of the current construction. Let Y'Y be the event that an observation in {Y7,Y5,... Y, }
finds its nearest neighbor in {Y7,Y5, ..., Y, }, and let Y*Y™* be the event that an observation
in {Y}, Y5, ..., Y} finds its nearest neighbor in {Y}*,Y5", ..., Y }. We will show below in
Theorem 1 that the events Y*Y* and Y'Y are asymptotic equivalent under some suitable
conditions. As a result, we can estimate the empirical distribution of the test statistic
based on Y'Y through the distribution of the statistic associated with Y*Y*. Consequently,
the type I error of the proposed approach can be properly controlled at some pre-specified

significance level.

2.2 Theorem on asymptotic equivalence

Before studying the main result on the asymptotic equivalence between two events of

searching nearest neighbors, we first introduce some notation. Denote by Ayin(X) and



Amax(2) the smallest and largest eigenvalues of . For two sequences of real numbers
{a,} and {b,}, denote by a, = O(b,) if there exist constants C' > ¢ > 0 such that
clbn| < |a,| < C|by| for all sufficiently large n. We also remark here that, when d = 1
or d = 2, the aforementioned univariate and conventional multivariate methods in the
introduction can be easily applied to test the normality assumption, and we shall focus in
our work on the cases when the dimension d is larger than 2.

We next introduce two assumptions.

(A1) The eigenvalues of ¥ satisfy C7 < Apin(X) < Apax(2) < Cy for some constants
Cl, Cy > 0.

(A2) There exists an estimator of u such that ||, — ulla < Op(1), and an estimator of

1 (2+a)logd+k

¥ such that ||, — X[l = op(n™ @~ 2ken ) with k = 1 — Llog|%| — log2 and
0 if dlogd <logn

logn
&qndlogd

1/eq otherwise,
and 1 < ¢; = o(log d).

if dlogd > logn and d = o(logn) where 1 < &g, = o(logn/d)

Under the above two conditions, Theorem 1 studies the asymptotic equivalence between
the events Y'Y and Y*Y™ under the null hypothesis, which in turn guarantees the type I

error control of the proposed method.

Theorem 1. Assume (A1) and (A2). Then it follows that, under Hy, as n — oo,
P(YY) — P(Y*Y*) = 0.
The proof of the theorem is provided in Section 6.

Remark 1. Assumption (A1) is mild and is widely used in the high-dimensional literature

(Bickel et al., 2008; Rothman et al., 2008; Yuan, 2010; Cai et al., 2014). Assumption

(A2) implies the relationship between the dimension d and the sample size n. Specifically,

|t — pll2 < Op(1) can be easily satisfied when d = O(n"),y < 1. For the condition
1 (2+a)logdtn

|1X: — X2 =o0p(n~ @ 20en ) whend >3 and d = O(n"),y < 1/2, it can be satisfied by

many estimators under some reqularity conditions. For example, if we apply the adaptive
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thresholding estimator in Cai and Liu (2011), and assume that 3 is so sparse in the sense
that there are at most sy nonzero entries in each row of ¥, then we have |3, — |2 =
Op(s0/logd/n). So the condition holds if sy = o(n2=¢"1) for some &€ > (1 + $)7, where a
is either equal or tending to zero as defined in detail in (A2). When d = O(n7),y > 1/2,
simulation results show that the conclusion holds well when d > n,d = O(n). There is
potential to relax the condition on ||X, — Xl|lo in the theorem. In the current proof, we
made big relazations from Equation (1) to (2) and from Equation (3) to (4) (see Section
6). More careful examinations could lead to tighter conditions. This requires non-trivial

efforts and we save it for future work.

Remark 2. The theory based on nearest neighbor information in the high-dimensional
setting has so far received little attention in the literature. We provide in this paper a novel
proof for the asymptotic equivalence on two events of searching the nearest neighbors and
it is among the first methods that utilizes such nonparametric information and in the mean

while guarantees the asymptotic type I error control.

2.3 Algorithm and theoretical error control

Based on Theorem 1, we could adopt the following algorithm to test the multivariate
normality of the data. To be specific, because of the asymptotic equivalence between
the events Y'Y and Y*Y™, we repeatedly generate the data from the multivariate normal
distribution with estimated mean and covariance matrix, and use the empirical distribution
of the test statistics based on Y*Y* to approximate the empirical distribution of the test
statistic based on Y'Y under the null hypothesis.

Denote by 7(YY') the percent of Y’s that find their nearest neighbors in {Y;,...,Y,},
and 7(Y*Y™) is defined similarly for Y*’s. Let m(r(Y*Y ™)) be the average of the r(Y*Y™*)’s
from Step 3 of the algorithm. We then propose a nonparametric normality test based on

nearest neighbor information as the following.



Algorithm 1
1: Generate Y7,...,Y, Z;ivd./\/’d(ux, ¥,), calculate r(YY).

2: Generate X7,..., X} w Na(piz, X2), estimate its mean p,+ and covariance matrix Y« .
Generate Y7*, ..., Y irivd/\/d(%*7 Y.+ ), calculate r(Y*Y™).

3: Repeat Step 2 for B times to get an estimate of the empirical distribution of (YY)
under H,.

4: Compute the two-sided sampling p-value, p(YY'), i.e., the percentage of |r(Y*Y™*) —
m(r(Y*Y™))| (out of B) that are larger than or equal to |[r(YY) —m(r(Y*Y™*))|, where
| - | is the absolute value.

5: For a given significance level 0 < a < 1, define ¥, = I{p(YY) < a}. Reject the null
hypothesis whenever ¥, = 1.

Note that Algorithm 1 is a simplified version of a more sophisticated algorithm that
generates n independent sets of {Y7,...,Y,} and {Y}",..., Y} in Steps 1 and 2, with
r(YY) and r(Y*Y™) respectively representing the percent of Y;’s and Y;*’s that find their
nearest neighbors in their corresponding sets. The resulting test U} of such an algorithm
guarantees the type I error control based on Theorem 1, i.e., P(Type I error) = Py, (V! =
1) — «, as n, B — oo. However, this algorithm is computationally much more expensive
and it has asymptotically the same size performance as Algorithm 1, and hence we mainly
focus on Algorithm 1 in the current article.

In the implementation, we use the sample mean to obtain u, and p,~ and use the
adaptive thresholding method in Cai and Liu (2011) to compute ¥, and 3,.. For the
selection of B, the empirical distribution can be more precisely estimated when B is larger.
We choose B = 500 in the implementation and it provides well error control as shown in
Section 3. It is worthwhile to note that, for faster and easier implementation of the method,
the p-value p(YY') we obtain in Algorithm 1 is random, and we hence call it “sampling
p-value”. To improve the power performance of the method, we can further increase the

number of such sampling procedure, and the details are discussed in Section 5.3.
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3 Simulation Studies

We analyze in this section the numerical performance of the newly developed algorithm. As
we studied in the introduction, the existing methods “Skewness”, “Kurtosis”, “Bonferroni”,
“Ep”, “Royston” and “mvSW,” all suffer from serious size distortion or are not applicable
when the dimension is relatively large. We thus consider in this section the size and
power comparisons of our approach with the method “eFR”, in which the covariances are
estimated by the adaptive thresholding method in Cai and Liu (2011), the multivariate
Shapiro-Wilk’s test (mvSW) proposed in Villasenor Alva and Estrada (2009) applying to
the transformed statistics standardized by the adaptive thresholding covariance estimators,
as well as the Fisher’s test (Fisher) by combining the p-values for each dimension of the
aforementioned adaptive thresholding covariance standardized Shapiro—-Wilk’s test. As
suggested by Cai and Liu (2011), we use the fivefold cross validation to choose the tuning
parameter. Once we obtain an estimator %*, we let 3 = (2% + 6I)/(1 + 6) with § =
max{—Apnin(X*), 0} +0.05 to guarantee the positive definiteness of the estimated covariance
matrix.

The following matrix models are used to generate the data. Note that Model 3 considers
the nearly singular scenario where the condition number is around 80 in typical simulation

runs when d = 100.
e Model 1: ¥ =T,
e Model 2: (2 = (Ug)) where O'g) = 0.5 for 1 <4, < p.

e Model 3: ¥*0) = (U:J-(3)) where 0;-(3) =1, 02(3) = Unif(1) * Bernoulli(1,0.02) for i < j

and 03 = o7V, 2B = (2 4 61) /(1 + ) with § = max{—Ap(Z*®), 0} + 0.05

J

to ensure positive definiteness.

The sample sizes are taken to be n = 100 and 150, while the dimension d varies over the
values 20, 100 and 300. For each model, data are generated from multivariate distribution
with mean zero and covariance matrix >. Under the null hypothesis, the distribution is set
to be multivariate normal, while under the alternative hypothesis, the distribution is set

to be one of the following distributions.
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e Distribution 1: Multivariate ¢ distribution with degrees of freedom v = d/2.

e Distribution 2: Mixture Gaussian distribution 0.5N(0, (1—a)X)+0.5N4(0, (1+a)X)

18
Vi’

We set the size of the tests to be 0.05 under all settings, and choose B = 500 in the

with a =

algorithm. We run 1,000 replications to summarize the empirical size and power. The
empirical size results are reported in Table 2 and the power results of Distributions 1 and

2 are reported in Tables 3 and 4.

Table 2: Empirical size (in percents) of the proposed algorithm (NEW), extended Friedman-
Rafsky test (eFR), multivariate Shapiro-Wilk’s test (mvSW) and the Fisher’s test (Fisher).

n 100 150

d 20 100 300 20 100 300

NEW 43 43 51 39 48 5.6
eFR 43 48 43 48 54 3.7

Model 1
mvSW 64 46 5.1 40 48 5.3
Fisher 6.0 43 44 3.7 4.7 5.1
NEW 59 43 64 59 58 49
eFR 43 51 48 39 7.0 6.9
Model 2
mvSW 56 6.2 107 54 6.9 6.2
Fisher 53 6.6 104 44 70 5.6
NEW 59 52 63 48 53 49
eFR 54 4.8 19.7 48 4.0 152
Model 3

mvSW 4.7 58 59 34 43 73
Fisher 52 53 53 38 44 6.1

From Table 2, we observe that the new test can control the size reasonably well under

all settings, while the extended Friedman-Rafsky test has some serious size distortion for
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Model 3 when the dimension is larger than the sample size.

multivariate Shapiro-Wilk’s test and the Fisher’s test have some size inflation for Model 2

when d = 300 and n = 100.

Table 3: Empirical power (in percents) of the proposed algorithm (NEW), extended
Friedman-Rafsky test (eFR), multivariate Shapiro-Wilk’s test (mvSW) and the Fisher’s

test (Fisher) for multivariate ¢ distribution.

Multivariate ¢-distribution

In addition, both of the

n 100 150
d 20 100 300 20 100 300
NEW 585 91.3 93.0 79.9 985 99.2
eFR 6.7 37 64 102 39 4.7
Model 1
mvSW 86.3 21.2 9.0 96.5 29.0 12.3
Fisher &86.2 20.8 87 96.7 30.1 12.1
NEW 20.2 71.3 86.0 322 864 94.2
eFR  11.8 54 52 150 4.6 6.0
Model 2
mvSW 754 26.6 21.3 923 309 17.1
Fisher 75.8 272 209 926 31.2 16.0
NEW 56.5 879 949 74.1 979 982
eFR 6.7 48 184 11.0 35 11.2
Model 3
mvSW 849 28.8 10.6 96.6 30.3 16.8
Fisher &85.6 28.5 10.8 96.5 31.0 17.3

For power comparison, we first studied the annoying heavy tail scenario — multivariate t-
distribution. It can be seen from Table 3 that, the new test can capture the signal very well,
while the extended Friedman-Rafsky test suffers from much lower power. In the meanwhile,
both of the multivariate Shapiro—-Wilk’s test and the Fisher’s test have competitive power

performance under the low-dimensional settings, but have fast decaying power performance
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Table 4: Empirical power (in percents) of the proposed algorithm (NEW), extended
Friedman-Rafsky test (eFR), multivariate Shapiro-Wilk’s test (mvSW) and the Fisher’s

test (Fisher) for mixture Gaussian distribution.

Mixture Gaussian distribution

n 100 150

d 20 100 300 20 100 300

NEW 458 81.7 81.6 66.3 958 94.8

eFR 66 39 53 74 37 5.7
mvSW 559 125 8.0 687 17.1 10.5
Fisher 56.0 12.7 8.0 69.8 16.8 10.3

Model 1

NEW 153 619 71.9 26.7 67.2 81.9
eFR 63 56 49 104 64 6.5
mvSW  46.3 177 19.2 63.3 19.7 12.7
Fisher 47.3 18.3 19.2 63.8 19.8 123

Model 2

NEW 450 754 86.9 64.0 90.8 94.7

eFR 65 45 21.7 75 38 149
mvsW 532 19.0 10.5 70.1 189 13.9
Fisher 55.0 19.3 9.8 70.5 185 13.2

Model 3
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(much lower than the proposed method) as d increases. We also studied the scenario that
the distribution is a mixture of two multivariate Gaussian distributions and we observed
similar phenomena in Table 4 that the new test has much higher power than the extended
Friedman-Rafsky test under all settings and has better performance than “mvSW” and
“Fisher” for d = 100 and 300.

The empirical size and power performance of all four methods are also illustrated in
the empirical cumulative distribution function (ecdf) plots as shown in Figures 1 and 2,
for Model 1 and d = n = 100. We observe similar patterns for the other models. In
summary, for all scenarios studied above, our newly proposed algorithm provides superior
performance in both empirical size as well as empirical power comparing with the existing

methods.

Figure 1: Empirical size cdf plots of the four methods for Model 1, d = n = 100.
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Figure 2: Empirical power cdf plots of the four methods for Model 1, Distribution 1,
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4 Application

Classification is an important statistical problem that has been extensively studied both
in the traditional low-dimensional setting and the recently developed high-dimensional
setting. In particular, Fisher’s linear discriminant analysis has been shown to perform well
and enjoy certain optimality as the sample size tends to infinity while the dimension is
fixed (Anderson, 2003), and it has also been widely studied in the high-dimensional setting
when the sample covariance matrix is no longer invertible, see, e.g., Bickel et al. (2004),
Fan and Fan (2008), Cai and Liu (2011) and Mai et al. (2012). In all of those studies,
normality of the data is a key assumption in order to obtain the linear discriminant rule
and investigate the subsequent analysis of misclassification rate. We study in this section
a lung cancer data set, which was analyzed by Gordon et al. (2002) and is available at R
documentation data(lung) with package propOverlap. This data set was popularly used
in the classification literature (Fan and Fan, 2008; Cai and Liu, 2011) where normality is
a key assumption. In addition, we explore a data set that was analyzed in Jin and Wang

(2016) by their method IF-PCA for clustering, where data normality is assumed.

4.1 Lung cancer data

The lung cancer data set has 181 tissue samples, including 31 malignant pleural mesothe-
lioma (MPM) and 150 adenocarcinoma (ADCA), and each sample is described by 12533
genes. This data set has been analyzed in Fan and Fan (2008) by their methods FAIR and
NSC, and in Cai and Liu (2011) by their LPD rule, for distinguishing MPM from ADCA,
which is important and challenging from both clinical and pathological perspectives. How-
ever, before applying their proposed methods, none of them have checked the normality of
the data, which is a fundamental assumption in the formulation of linear discriminants. If
the normality fails to hold, then the misclassification rates can be affected and their results
may no longer be valid.

In this section, we use our newly developed method to check the normality of the 150
ADCA samples in this lung cancer data set. Note that, multivariate normality assumption

for the 12533 genes of the ADCA samples will be rejected if any subset for this large
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number of genes deviate from the normality. Thus, we randomly select a group of 200
genes, and applied our new method to test the multivariate normality assumption. By
applying Algorithm 1 with B = 500, we obtain that, the sampling p-value is equal to 0,
which gives sufficient evidence that the samples from this data set have severe deviation
from the multivariate normal distribution. We further repeat this procedure for 100 times.
In each time, we randomly select a group of 200 genes and apply Algorithm 1 (B = 500)
to the selected genes. It turns out that the sampling p-values are all 0 for these 100 times.
Thus, it is not reasonable to assume the normality and directly apply the recent developed
high-dimensional linear discriminant procedures to classify MPM and ADCA, as studied
in Fan and Fan (2008) and Cai and Liu (2011). So our procedure serves as an important
initial step for checking the normality assumption before applying any statistical analysis

methods which assume such conditions.

4.2 Colon cancer data

Next, we study in this section a gene expression data set on tumor and normal colon
tissues that was analyzed and cleaned by Dettling (2004). This data set can be found
at https://blog.nus.edu.sg/staww/softwarecode/. It has 40 tumor and 22 normal
colon tissue samples, and each sample is described by 2000 genes. This data set has
been analyzed in Jin and Wang (2016) by their method IF-PCA for clustering, where
they imposed normality assumption on the data, though they found the violation to such
assumption in their analysis as the empirical null distribution of a test statistic they used
was far from the theoretical null distribution derived from the normal assumption.

In this section, we use our newly developed method to check the normality of the 40
tumor samples in this colon cancer data set. We compare the proposed method with eFR,
the multivariate Shapiro-Wilk’s test and the Fishers test in this analysis. By applying
Algorithm 1 with B = 500, we obtain that, the sampling p-value is equal to 0, which gives
a sufficient evidence that the samples from this data set have severe deviation from the
multivariate normal distribution. This double confirms the deviation from the normality

assumption noticed by the authors in Jin and Wang (2016). On the other hand, both
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the multivariate Shapiro-Wilk’s test and the Fishers test successfully reject the null while
the eFR method reports a sampling p-value of 1 and fails to detect the violation to the

normality assumption.

5 Discussion

We proposed in this paper a nonparametric normality test based on the nearest neighbor
information. It enjoys proper error control and is shown to have significant power improve-
ment over the alternative approaches. We discuss in this section a related test statistic and

some extensions and explorations of the current method.

5.1 Test statistic based on XX

Our proposed test statistic involves the event Y'Y, i.e., the event that an observation in
{Y1,Ys,...,Y,} finds its nearest neighbor in {Y},Ys,..., Y, }. A straightforward alternative
method could be based on the test statistics which involves the event X X, i.e., the event
that an observation in { X7, X5, ..., X, } finds its nearest neighbor in { X7, X5,..., X,,}, and
a question is whether the X X-equivalent statistic could be incorporated to further enhance
the power. Unfortunately, the X X version is not as robust as the Y'Y version and does not
have good performance in controlling the type I error. Table 5 lists the empirical size of the
X X version of the test under the same settings as in Table 2. We observe that this statistic
has serious size distortion for Model 3 when the dimension is high. This also explains the
bad performance of eFR in controlling type I error under Model 3 because eFR partially

uses the X X information.

5.2 Extension to other distributions in the exponential family

The idea of constructing this normality test could be extended to other distributions in the
exponential family. As long as one has reasonably good estimators for the parameters of
the distribution, a similar procedure as described in Section 2 can be applied. In particular,

one could replace the multivariate normal distribution in Algorithm 1 by the distribution
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Table 5: Empirical size (in percents) of the X X version test, o = 0.05.

n 100 150

d 20 100 300 20 100 300
Model 1 4.6 3.5 5.1 43 33 4.5
Model 2 53 57 86 55 4.0 92
Model 3 44 5.1 322 4.0 45 162

of interest, and replace the mean and covariance estimators by the estimators of the cor-
responding parameters. The conditions for the asymptotic equivalence between the events

YY and Y*Y* would need more careful investigations and warrant future research.

5.3 A power enhanced algorithm

To further improve the power performance of the method, especially when the sample size

is limited, we can increase the number of sampling procedure in Algorithm 1 as detailed in

the following algorithm.
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Algorithm 2
1: Fori=1:L, generate Y;1,...,Yin w Na(pz, X2), calculate r;(YY). Let 7#(YY') be the

average of r;(YY)’s.

2: Generate X7,..., X! w Na(pz, Xz), estimate its mean p,+ and covariance matrix ¥ .
For i = 1: L, generate Y;',..., Y}, o Na(ptr, X ), caleulate r;(Y*Y™*). Let 7#(Y*Y™)
be the average of r;(Y*Y™*)’s.

3: Repeat Step 2 for B times to get an estimate of the empirical distribution of 7(YY)
under Hy.

4: Compute the two-sided sampling p-value, p(Y'Y'), i.e., the percentage of |F(Y*Y™*) —
m(7(Y*Y™))| (out of B) that are larger than or equal to [F(YY) —m(7(Y*Y™))|, where
m(7(Y*Y™)) is the average of 7(Y*Y™*)’s in Step 3.

5: For a given significance level 0 < a < 1, define ¥, = I{p(YY) < a}. Reject the null
hypothesis whenever ¥, = 1.

Note that, when L = 1, Algorithm 2 is reduced to Algorithm 1 in Section 2.3. In the
following Figure 3, we show the boxplots of the sampling p-values for Distribution 1 and
Model 3 when L = 1,2,...,10, for d = n = 100, with 100 replications. Similar patterns are
observed for the other models. It can be seen that, as L increases, the power performance
of the method can be significantly improved and will get stable when L is around 5. Also
note that, the computation cost is growing as L increases. Hence we mainly recommend
Algorithm 1 in the paper as it already shows reasonable well performance both in terms of

empirical size and power as illustrated in Section 3.

5.4 Non-significant results and scale sensitivity

When the testing results are nonsignificant, it means that the distribution is very close to
the multivariate normal, whereas the unbiased property of the proposed test warrants future
research. In this section, we perform additional simulation studies to explore the power
performance of the proposed method as the distributions are approaching to normality.
Specifically, we consider the following three sets of distributions: multivariate chi-square

distributions, multivariate ¢ distributions and multivariate Gaussian distribution with a
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Figure 3: Boxplots of the sampling p-values for Distribution 1 and Model 3 in Section 3, for
d =m = 100, with 100 replications.
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certain proportion of the dimensions replaced by t distribution.

e Multivariate chi-square distribution with degrees of freedom v = 3, 5,10 and 20 (the

larger v is, the closer the distribution is to the multivariate normal distribution).

e Multivariate ¢ distribution with degrees of freedom v = d/4,d/2,d and 2d (the larger

v is, the closer the distribution is to the multivariate normal distribution).

e Multivariate Gaussian distribution Ny(0,Y) with a certain proportion of the dimen-
sions, ranging from 0.5 to 0.1, replaced by Multivariate ¢ distribution with degrees of
freedom v = d/4 (the smaller the proportion is, the closer the distribution is to the

multivariate normal distribution).

The power performance of the methods are summarized in Tables 6 and 7. It can been seen
from the tables that, when the alternatives are getting closer to the multivariate normal,
the testing results become more and more non-significant.

In addition, we explore the scale sensitivity of the proposed test by considering different

covariance models with varying condition numbers as follows.
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Table 6: Empirical power (in percents) of the proposed algorithm (NEW) and extended
Friedman-Rafsky test (eFR) for Model 3, a = 0.05, d = 100 and n = 100.

Distribution chi-square t

DOF 3 5 10 20 d/4 d/2 2d 4d

NEW 45.1 252 10.6 6.5 99.7 879 173 6.3
eFR 94 68 65 51 23 48 40 33

Table 7: Empirical power (in percents) with varying proportion of non-Gaussian dimen-

sions, ranging from 0.5 to 0.1, for Model 1, a = 0.05, d = 100 and n = 100.

non-Gaussian proportion 0.5 04 0.3 0.2 0.1

NEW 48.1 259 129 7.0 4.2
eFR 3.7 52 48 5.0 4.1
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e Model 1A: X = 1.
e Model 1B: ¥ = diag(oy1,...,044), Where 0;; = Unif(1,5) fori = 1,...,d.
e Model 1C: ¥ = diag(oy 1, ...,044), where o;; = Unif(1,20) fori = 1,...,d.

We see from Table 8 that, the empirical size and power performance (Distribution 1) of
these three models are very similar to each other, which shows that the proposed method

1s not sensitive to the scale of the data.

Table 8: Empirical size and power (in percents) of the proposed algorithm (NEW) and
extended Friedman-Rafsky test (eFR) for varying condition numbers, n = 100.

Size Power
d 20 100 300 20 100 300
NEW 43 43 5.1 585 91.3 93.0
Model 1A
eFR 43 48 43 6.7 37 64
NEW 32 47 50 559 912 91.7
Model 1B
eFR 40 36 56 76 39 44
NEW 51 5.1 5.3 498 87.0 92.0
Model 1C

eFR 47 53 47 71 3.6 4.7

6 Proof of Theorem 1

Let ¥ = UAUT and ¥, = U,A, U be respectively the eigen-decomposition of ¥ and X,.
Define $1/2 = UAV2UT and $¥? = U,Ay*UT. Then under the conditions of Theorem 1,
_ (2+a)logd+r

by Lemma 1, we have ||Eglc/2 — 12|, = op(n_é 2log n

Let f(-) be the density of Ny(u,X), and f*(-) be the density of Ny(ps,3,). Then we
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have,

n

P(YY) = / POY X = aihin) [ ] F i

P(Y*Y™) :/P(Y*Y*\{X; = 2} Yim1n) [ [ £ (2))da}.

i=1

By the construction of {Y;,...,Y,} and {Y{,...,Y*}, we have

.....

n) = P(Y*Y*HX; = $f}i:1 ..... n)

Hence,
n

P(Y*Y*):/P(YY|{Xi:wf}i1 ..... o) [ £ () da;.

i=1
By a change of measure, we have

n

PY'Y™) = / POYYHX; = S5 — ) + prabicr,n) [ | f (@) daci,

i=1
It is not hard to see that if we shift the x;’s all by a fixed value, the probability of YY is

unchanged. Hence,

n

P(Y*Y*):/P(YY|{Xi:z;/2z-1/2xi}i:1 ,,,,, o) [ (@) da;.

=1

Let w; = %2/?51/22,. Then,
IPYY) = P(Y"Y™)]

< / POYILX: = tihics..) — POYIX = widicr ) [ fe) @

77777

.....

-----

77777
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{Yi}tict,.m» and {Y'} = {¥i}iz1, . Then,

-----

PYYHX:=zitiz1,.0n) — POYY{Xi = wi}izi, )
=P(Ny, € {Y}) = P(IVy, € {YV})

— [P € (VI =)oy — [ PNy, € (V)T = D@}
By change of measure, we have that
[P € PHT: = )ga(i)ds
— [PV, € (V)¥: = S50 — ) + )y
Let y, = 21/221 1/2(y — 1) + pa, then

IPYY{Xi = 2i}ima

77777

) - P<YY|{Xi = wi}i:l,...,n)|

= | [P € 01 =) - POV, € (TIT = ) )
< /\P(Nyl e {Y}IV1 =y) — P(Ny, € {Y}HY1 = y))lg1(y)dy. (4)
Let r; = ||w; — x;]]2. Define o = —% — % By Lemma 2 (see Section 7), we

have that r; = op(n®"),Vi. Also, given that w; = Y120 it s easy to have estimates

such that pp = 2&/?SY2,. Then we have

1/2¢—1/2
low = sl = 12550 = ) + 2 =yl
= (2" = S Py + (S22 = 28 s
< I =SS Pyl + ISP = S Pl (5)
Denote by & = -1 — mgﬁ#. Recall that ||$3/% — $1/2||; = op(n%). Note that, the
covariance matrix of {z;,7 =1,...,n} is ¥ and the covariance matrix of {w;,i =1,...,n}

is ;. Then using the same estimation method of the covariance matrix as estimating >

by ¥, we can estimate X, by an estimator X, and estimate X by X, such that
125 — Zlls = op(n?), and [, — £, = op(n?).

Note that |2, — |2 = op(n®), we have that ||Xs — 1|2 = op(n®). Then by the proofs of

Lemma 1 and the conditions of Theorem 1, we have that ||El/2 - 21/2||2 = op(n%).

25



Thus we have

1/2 2 —1/2 2 2 —1/2
1257 = 725 Pylls < 1257 = 212 )12 2y 2
= op(n®)Op(Vd) = 0p(n®").

By similar arguments, we have

(=282 — 55250 |

= [(Z¥? = sV n72 — (552 - 2802

< (Y2 = 2202y + [1(25 = 2125

= op(n*"). (6)

Thus we have that ||y, — y||2 = op(n®").
Let

Jo = arg {?121?.,” Uy = 52},

o= arg_min (o = o}

and Diinz = |y — 24, l2; Duingw = [y — wj,[|2-

Suppose Dyinz = Op(n®). Notice that n® = n=ad-(+a)/2c=r/2 < O(d='/?). When
a < o, based on Lemma 3, the probability that Dy, . = con® for some constant ¢y > 0 is
of order n x op(n® 4d=%2e"/2) = op(d~?) = op(1).

We thus focus on a@ > a*. By definitions of Dyn, and Dy, and the facts that
lz; —wi|la = op(n®"), Vi, and ||y — ywl|l2 = op(n®"), we have that Duinw = Dumine + 0p(n®).
Let p, be the probability that Y; ~ Ny(u1, 1) falls in the Dy, .-ball of y, and p,, be the

probability that Y; ~ Ny(a, 32) falls in the Dy o-ball of 1.

(1—a)logd—~k

51 > a*. We consider two scenarios: (1) o < o < ap, and (2)
ogn

Let Qo = —é‘i‘
a > Q.

(1) o <a<ap:

logn

(a) When dlogd < logn, we have n® = 47 Tosa Thogd < O(d~2). Since p; and ¥,

satisfy the condition for Lemma 4, we have

o0 g=4/2¢10/2) — op (0~ \/TE]/IEA]) = op(n ),
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log |31
d

where k1 =1 — — log 2.

Notice that ps and Yo also satisfy the condition for Lemma 4, so

pu = 0p(n?*0d="2e"4?) = op(n~' /|| /[Xa]) = 0p(n "),

where kKo = 1 —

—logfz‘ —log 2.

(b) When dlogd > logn and d = o(logn), we have n® < O(v/d), by Lemma 4, log p,
is
— sdlogd + dlog Dy s + 3d(k1 4+ Op(1))
= —logn — (alogd + Op(1)).
logn

€q,ndlogd
logp, is —logn — ﬁlogn + Op(d) < —logn. So p, = op(n™'). Similarly,

Here, a = with 1 < &4, = o(logn/d) a positive constant. We have

pw = o0p(n7").
(¢) When d is of order logn or higher, a = 1/¢4 with 1 < ¢; = o(logd), then
4(alogd + Op(1)) > d > O(logn), and p, is also of order op(n~'). Similarly,

Pw = op(n7 ).

Under (a), (b) and (c), we all have p,, p, = op(n™!). Then,
P(Ny; € {Y}Y1 =) = P(Ny, € {Y}Y1 = )| = lop(1) — 0p(1)] = 0p(1).

(2) a> ap:

First we consider ag < a0 < ;ffgdn. By the proof of Lemma 4 and the facts that Dy, =

Dmin,x_'_OP(na*), elki—r)d/2 _ /‘E‘/yzl‘ — 1+0P(1)’ elrz—r)d/2 _ /|E’/’22’ _ 1+0P(1),

and |51 — 272 = op(n®). Then p, is

1 (24a)logd+k

e G )

1 (1 )" e -

1_alogd+k

d 2logn

=p, (1+ 0p(n°‘*’°‘°))d e (n_ )eOP(l) +op(n™t)

= pa(1+0(d™")(1 + 0p(1))* + 0p(n™") = pu(1 + 0p(1)) + 0p(n").
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Hence, p,, is of the same order as p, when o > ay.

Notice that, for Y7, Y5 Z'ri\fl/\/'d(;zl, %), E(|Vi—Yall2) = O(V/d). Thus, when Dy . = cVd

for a sufficiently large constant ¢, p, is of order Op(1). Similarly, when Dy, ., = cvd

for a sufficiently large constant ¢, p,, is of order Op(1). Thus, for o >

logd

STogn WE have

Divin.zy Diminw > Op(\/ﬁ) and p,, p» = Op(1) are also of the same order.

(a)

(b)

When p,,p, are of order op(n™'), |P(Ny, € {Y}[Y1 = y) — P(Ny, € {Y}y; =
Yu)| = op(1).

When p,,p, are of order higher than Op(n~!), the probability that no other
Yir ~ Ng(p,X1) falls in the Dy ,-ball of y goes to 0 as n — oo, and the
probability that no other Vi ~ N2, Xo) falls in the Dyyin-ball of v, also goes

to 0 as n — 00. So
IP(Ny, € {Y}|[Y1 = y) — P(Ny, € {Y}|Y1 = y,)| = 0p(1).

When p, = p, = Op(n™1). Let 6 = | Dyine— Drninw| +||y—%wll2- Then § = op(n®"),
and 5% = op("5d) = 0p(1).

Here, WE; define two more probabilities. Let p, o be the probability that Y ~
Na(p1,2q) falls in the (D, + 0)-ball of y, and p,2 be the probability that
Yy ~ Na(pa, Xo) falls in the (Dyin . + 9)-ball of y. It is clear that both the Dy, .-
ball of y and the Dy, ,-ball of y, are contained in the (D, + 6)-ball of y.
Because % > Op <%) = Op(nadses) > Op(1) and § < op(d—/2),

by the proof of Lemma 4, we have that p, 5 is

d
Pa (1 + DL) eOP(OVd) Op (5%d~/2em1/2)

min,x

é

_ 0, 6d Op(iDmin,x)eop(aﬁ) + OP(D(Sd n—l)

min,z

= (1400 (52) ) = a1+ 0p(1)),

Similarly, py,2 = pw(1 + OP(Dji

of order Op(n™1).

)) = pw(1 4+ 0p(1)). Then p, 2 and p, o are also

x

Based on the proof of Lemma 3, p, 2 and p,, 2 differ by a factor of

a logn

14 Op(dn®) = 1 + Op(d 2~ Tsd Closa)) = 1 + op(1).
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Notice that p, o — pr = pe(Po2/pz —1) = OP(nfl)OP(ij”) = Op(n'9d/Drin,z)-
Similarly, py.2 — Pw = Op(n™10d/Dyin.z)- |

Let Emin = min{8d/ Dy o, d " #sa 52)} we have that [p,—pu| = Op(n ™ Emin).
Let p, = con™'. Then p, = con™' 4+ 10 &min + 0p(n'&nin) for a constant c;.

Then,

P(Ny, € {Y}Y1 = y) = P(Ny, € {Y}Y1 =y,)|

1-— con_l)"_l — (1 — C(]n_l - Cln_lé-min - 0P<n_1€min>)n_l|

= Op(l).
Thus, under all possibilities of scenarios (1) and (2), we have |P(Ny, € {Y}Y; =
y) — P(NY1 € {17}|}~/1 = yy)| = op(1). Hence,
[PYY) — P(Y™Y™)]

SLIMLMMﬁHHMZM—W%ﬁﬁmﬁsz

,,,,,

x g1(y)dy H f(xi)dz;

= o(1),

and the conclusion of the theorem follows.

7 Technical Lemmas

Lemma 1. For independent observations Xy, ..., X, i Na(p, ), assume that Apin(X) >

C for some constant C' > 0. If |2, — X|l2 = op(rna) with 1,4 = O(1), then we have
1227 = 12, = op(rna).

Proof. Denote by v € R? an eigenvector of $&/% — $1/2 of unit length, we have

|(Eglc/2v — Zl/zv)T(E;/Qv + 21/21))| = |UT(Ex — )| < ||X; — X2 = 0p(rna)-
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Suppose that (251/2 — %2)y = \v, then we have that
|)\UT(2315/2 + 21/2)v| = 0p(Tna)-
By the condition that A\ (X) > C and that || X, — X||2 = 0p(rp.4), we have
UTEi/zv =TS22y + UT(E}/2 — 21/2)1} > C —o(1)

with probability going to 1. Hence, for some constant Cy > 0, we have, with probability
tending to 1,
(B2 4 2V > O

It yields that A = op(7y,.4). Since v could be any eigenvector of I Y] 2 we have

=22 — 52|y = op(ry.a).

m
Lemma 2. Suppose x ~ Ny(0,%). Then under the conditions of Theorem 1, we have
ISY25 120 — = op(n™ 4™ HE), (7)

Proof.

Y25 — g, = SRV - S,
= (S - s g,

Let z = ¥~ %22, we have
1287 2 — . <52 = BV 5] 2 |2

Notice that the covariance matrix of z is an identity matrix, ||z]|3/d converges to a con-
_1_(2t+a)logd+k
stant almost surely as d — co. By the condition that ||SY? — $V2||y = op(n™d ™ 2lsn ),

we have that

IS5 — a < op(n™ 4~ ERE ) 2l]y = op(n 4 HRE
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Lemma 3. Let X; ~ Ny(p,X), Y independent of X1’s and Y ~ Ny(pz, X)), where u, ¥,

W, and Y, satisfy the conditions in Theorem 1.

1. When d is fized, for r = o(1), the probability Y falls in the r-ball centered at X, is of
order Op(r?).

2. When d increases with n, for r = O(d’), g < %, the logarithm of the probability
Y falls in the r-ball centered at Xy is —idlogd + dlogr + 3d(k + Op(1)). More
specifically, when B < —0.5, the probability Y falls in the r-ball centered at X is of

order Op(rid=4%erd/2).
Proof. Under a special case that u, = 0, ¥, = I and X; = 0, the probability is

Todn? 1 1,2 d r 1,2
4= 2t = ti e 2t qt
/0 T@d/2+1) (2n)az” 924/20(d/2 + 1) /0 cn

which is of order 2-%/2¢~d/2logld/2)+d/2 [ ti-le=2t gt = ql=4/2¢d/2 IN ti=le=3 gt

For generic ji,, 2, and X; ~ Ny(u, ), notice that

fu ) (Y) 6_%(Y_Hm)TZ;1(Y_“$)
(

fﬂzyzz (Xl) 6_%

When ||Y — X ||2 = ¢, based on the conditions in Theorem 1, there exists a positive function

c1(t) and a positive constant ¢, such that L2200 — Op (ea1®tVd=c2t) Then probability
f#myzz (Xl)

Y falls in the r-ball of X; is of order

)
Jl—d/2d/2 / P / (55, e b 5T )
0

x (2m) 4| e He TS o g OWAeatt g gy

Under the conditions of Theorem 1, we have
/|gz|éeé(wuz)TEgl(ruz)(Zﬂ)§|g|262(wu)TE‘l(wu)dx

= O (IS ¥zl Hm 7 + 5778 = o2z ),
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Thus, the probability Y falls in the r-ball of X is of order
ql—4/2prd/2 /T tdflecl(t)t\/gf(cz+0.5)t2dt (8)
0

We first consider the cases when d increases with n. Suppose t = cod?, for some fixed

B and 0 < ¢y < C for some constant C' > 0. Then the integrand is

e(dfl) (Blog d+log co)+e1 (t)codP 05 — (e +0.5)c2d??

We consider the following two scenarios.

(HIfs<0or0<fp < %, then dlogd dominates the other terms. Furthermore, we have
that

dlogd 1 45 4
dlogd 1 , 4
(2) If B =0, we further consider the following two cases. Let ¢; = l‘j%d,

(a) if ¢cg > 1+ €, then dlog ¢y dominates the other terms, and we have that

1 lo
dlog o > O(logd), and dlog co

> O(1 1
s 2 O(log dV/d) > O(log d).

(b) if ¢g <1 — €, again dlog ¢y dominates the other terms, and we have that

d log Co

‘dlogco

>
- 5| = Ollog d), and | =

‘ > O(log dv/d) > O(log d).

First of all, when 8 < —0.5, from scenario (1), we have

dlogd
codB+05

dlogd

> O(dlogd), and EREE

> O(d2log d).

Then,
/2 precd/2 /T pd—1 .01 (t)tVd—(ca+0.5)t? dt
0
:dl—d/2end/2/ e(aH)1ogt(1+0(ﬁgd))d]f
0

_ d—d/QGHd/%dT,O(@) _ O<d—d/2rd€nd/2).
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When —0.5 < 8 < 0.5, based on scenarios (1) and (2), we have

dl—d/Zend/Q /T td_lecl (H)tVd—(c2+0.5)t? dt
0

_ dl—d/26/<d/2 /7" e(d—l) logt(l—l-O(l/logd))dt (9)
0

_ -4/2rd/2,.d,.0(d] logd) _ g-d/2,.d,5d(s+O(ED))

_ d—d/QTdeéd(n-i-O(l))‘

For (9), the part of the integral from 1 — ¢; to 1 4 ¢; is not an issue: Notice that
flljeell dtdldt = (14 6)% — (1 — ) = edlos(+a) _ edlog(l—e1) _ ,dO(a1) _ 60(\/&10gd)’ and
fllj:ll dec™Vidp = \C/—*aec*\/a(e““l — ") = O(e1Vde* V) = O(logde®™V4) = OV with
C* = SUP;_ <i<14q C1(t) a positive constant. Then, the difference between the two inte-
grals is at most O (Vilog 4 which is much smaller than e?@ and thus does not affect the
above result.

When d is fixed, the proofs are much simpler, and it is not hard to see that, when

r = o(1), the probability is of order r<. O

Lemma 4. Let Y;,Y, % Na(po,X0), where ||uolleo is bounded by a positive constant, and
156" = =7 2 = o(1).

1. When d is fized, for r = o(1), the probability Yy falls in the r-ball centered at Y7 is of
order Op(r?).

2. When d increases with n, for r = O(d?), p < %, the logarithm of the probability
Yy falls in the r-ball centered at Y is —idlogd + dlogr + 1d(ko + Op(1)), where
ko =1— @ —log 2. More specifically, when 3 < —0.5, the probability Y falls in

the r-ball centered at Y, is of order Op(rdd=/2ex0d/2).
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Proof. Based on the proof of Lemma 3, the probability Y; falls in the r-ball of Y] is of order

d' =42l / R / |55 | " F e 30T e—ho) (970) =5 |33 | 3
0
o= 3@—10)TS5 2 —po) yer OtVA(1+o(1)—eat? (1+0(1)) 1 it

_ dl—d/26d/22—d/2‘20‘—% /r pd=1gc (t)t\/E(1+o(1))—(cQ+0.5)t2(1+o(1))dt
0

_ J\-d/2 rod/2 /T 4= o1 (OVA(1+0(1))— (c2+0.5)t2(1+0(1)) gy
0

with ¢1(t) and ¢y the same as those in the proof of Lemma 3. Then, with the same arguments

as in the proof of Lemma 3, the results of this lemma follow.
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