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SUMMARY

A nonparametric framework for changepoint detection, based on scan statistics utilizing graphs
that represent similarities among observations, is gaining attention owing to its flexibility and
good performance for high-dimensional and non-Euclidean data sequences. However, this graph-
based framework faces challenges when there are repeated observations in the sequence, which
is often the case for discrete data such as network data. In this article we extend the graph-based
framework to solve this problem by averaging or taking the union of all possible optimal graphs
resulting from repeated observations. We consider both the single-changepoint alternative and
the changed-interval alternative, and derive analytical formulas to control the Type I error for
the new methods, making them readily applicable to large datasets. The extended methods are
illustrated on an application in detecting changes in a sequence of dynamic networks over time.
All proposed methods are implemented in an R package gSeg available on CRAN.

Some key words: Categorical data; Discrete data; High-dimensional data; Non-Euclidean data; Nonparametric
framework; Scan statistic; Tail probability.

1. INTRODUCTION

1.1. Background

Changepoint analysis plays a significant role in many applications where a sequence of obser-
vations is collected. In general, the problem concerns testing whether a change has occurred, or
whether several changes might have occurred, and identifying the locations of any such changes.
In this paper, we consider the offline changepoint detection problem, where a sequence of indepen-
dent observations {y;};=1,... » 1s completely observed at the time when data analysis is conducted.
Here, n is the length of the sequence and i is the time index or other meaningful index depending
on the specific application. We consider testing the null hypothesis

Hy:yi~Fy (i=1,...,n) 1)
against the single-changepoint alternative

Fi, i>rt,
Hy: 31 < v < nsuchthaty; ~ ! .
Fy, otherwise,
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2 H. SONG AND H. CHEN

or the changed-interval alternative

Fi, i=7n+1,...,10,

Hy : 31 < 11 < 1 < nsuch that y; ~ .
Fy, otherwise,

2)

where F( and F are two different distributions.

This problem has been extensively studied for univariate data; see Chen & Gupta (2011) for
a survey. However, in many modern applications, y; is high-dimensional or even non-Euclidean.
For high-dimensional data, most methods are based on parametric models; see, for example,
Zhang et al. (2010), Wang et al. (2018) and Wang & Samworth (2018). To apply these methods,
the data sequence needs to follow specific parametric models. In the nonparametric domain,
Harchaoui et al. (2009) employed kernel methods, Lung-Yut-Fong et al. (2012) utilized marginal
rankings, and Matteson & James (2014) made use of distances between observations. These
methods can be applied to a wider range of problems than parametric methods. However, it is
in general difficult to conduct theoretical analysis on nonparametric methods, and none of the
aforementioned nonparametric methods provides analytical formulas for false discovery control,
making them difficult to apply to large datasets.

1.2. Graph-based changepoint methods

Recently, Chen & Zhang (2015) and Chu & Chen (2019) developed a graph-based framework
to detect changepoints for high-dimensional and non-Euclidean data sequences. This framework
is based on a similarity graph G, such as a minimum spanning tree, MST, i.e., a spanning tree
connecting all observations such that the sum of distances of the edges in the tree is minimized,
constructed on the sample space. Based on G, test statistics rely on three basic quantities, Ry, (¢),
R1,6(t) and Ry (t), where for each ¢, Ry (¢) is the number of edges connecting observations
before and after #, Ry (¢) is the number of edges connecting observations prior to ¢, and Ry ¢ (7)
is the number of edges connecting observations after . Then, four scan statistics were studied:
the original edge-count scan statistic Z(¢), the weighted edge-count scan statistic Z,,(¢), the
generalized edge-count scan statistic S(¢) and the max-type edge-count scan statistic M (¢), which
can be applied to various alternatives. For detailed comparisons, see Chu & Chen (2019).

While the methods proposed by Chen & Zhang (2015) and Chu & Chen (2019) work well for
continuous data, they encounter problems when the data contain repeated observations, which is
often the case for discrete data, such as network data. The reason is that these methods depend
on the similarity graph constructed on observations. When there are repeated observations, the
similarity graph is in general not uniquely defined, which leads to trouble in applying the methods.
For example, Chen & Zhang (2015) analysed a phone-call network dataset with the aim of testing
whether there are any changes in the dynamics of the networks over time. In this dataset, a few
networks in the sequence are exactly the same, and Chen & Zhang (2015) used the MST as the
similarity graph. More specifically, in the dataset there are a total of 330 networks {y1, . .., 1330}
in the sequence, and among them are 290 distinct networks. For example, y1, y¢ and yj¢ are
exactly the same; all repeated observations are listed in the Supplementary Material. Because of
these repeated observations, there are numerous ways of assigning edges in the MST. Hence, the
MST is not uniquely defined and existing graph-based methods are not reliable, since they are
formulated from the unique similarity graph on pooled observations.

Table 1 lists the test statistics and their corresponding p-values for the four testing procedures
proposed in Chen & Zhang (2015) and Chu & Chen (2019) on three randomly chosen MSTs.
We see that the p-value depends heavily on the choice of MST: it could be very small for one
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Table 1. The p-values and corresponding test statistics (in parentheses) for the four

testing procedures proposed in Chen & Zhang (2015) and Chu & Chen (2019): an orig-

inal edge-count scan statistic maX,,<:<n, Zo(t), a generalized edge-count scan statistic

maxX,,<i<n; S(t), a weighted edge-count scan statistic maX,,<;<n, Zw(t), and a max-type

edge-count scan statistic maX,,<;<n, M (t); here ng is set to [0.05n] = 17 and n) to 330 —ny,
where [x] denotes the smallest integer greater than or equal to x

MST 1 MST 2 MST 3
MaX, <r<n, Zo(t) 0.09 (2.32) 0.91 (0.92) 0.51 (1.57)
MaX < <n; S() 0.04 (13.61) 0.08 (12.31) 0.01 (16.36)
MaX,ig <r<ny Zoo(£) 0.44 (2.11) 0.02 (3.49) 0.88 (1.54)
MaX, <r<n M(0) 0.09 (3.05) 0.02 (3.49) 0.05 (3.27)

Table 2. Notation at time t

Index of distinct values 1 2 cee K Total
Group 1 nyi(t) nia(t) nik () t

Group 2 na1(2) ny (1) e nok (1) n—t
Total m my . mg n

MST, but very large for another MST, leading to completely different conclusions on whether
the sequence is homogeneous or not. Moreover, since the number of possible MSTs is huge, it is
impractical to obtain a summary by directly computing the test statistics on all possible MSTs.

1.3. Contribution of this work

We extend the methods of Chen & Zhang (2013) and Zhang & Chen (2019) to the changepoint
detection setting, and propose new graph-based testing procedures that can deal with repeated
observations effectively. This work fills the gap in the graph-based framework in dealing with
discrete data. We show that the new tests are asymptotically distribution-free under the null
hypothesis of no change, and find that the limiting distributions for two approaches in Chen
& Zhang (2013) are the same, even for continuous data. We also derive analytical formulas to
approximate permutation p-values for those modified test statistics, making them readily appli-
cable to real datasets. To improve the analytical p-value approximations for finite sample sizes,
skewness correction is also performed. We show that the proposed tests work well in detecting
changes when the data contain repeated observations. We illustrate the new testing procedures
through analysis of a phone-call network dataset. The proposed methods are implemented in an
R (R Development Core Team, 2021) package gSeg available on CRAN.

2. NOTATION AND RELATED EXISTING WORK

We represent data with repeated observations using a contingency table for each ¢, as shown
in Table 2. Suppose that there are a total of n observations and K distinct values, which we
also refer to as categories in the following. Each ¢ divides the sequence into two groups, before
or at time ¢ (Group 1) and after time ¢ (Group 2). Let n;;(¢) be the number of observations in
group i (i = 1,2) and category k (k = 1,...,K), and let my (k = 1,...,K) be the number of
observations in category k. Notice that m; = ny(¢) + nor(t) (k = 1,...,K), Zle my = n,

S n@) =tand Y5 nop() =n—1t.
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Chen & Zhang (2013) and Zhang & Chen (2019) studied ways of extending the underlying
graph-based two-sample tests to accommodate data with repeated observations under the two-
sample testing framework. When the data contain repeated observations, the similarity graph is
not uniquely defined according to common optimization criteria, such as the MST, leading to
multiple optimal graphs. The authors considered two ways of incorporating information from
these graphs: averaging and union. Specifically, they first constructed the similarity graph on the
distinct values, denoted by Cy. Here, Cy could be the MST on all distinct values, the nearest-
neighbour link, the union of all possible MSTs on the distinct values when the MST on the distinct
values is not unique, or some other meaningful graph. Then, the optimal graph initiated from Cj is
defined in the following way: for each pair of edges (k1, k2) € Cy, randomly choose an observation
with value indexed by k; and an observation with value indexed by 4, and connect these two
observations; then, for each k; (i = 1, 2), if there is more than one observation with value indexed
by k;, connect these observations by a spanning tree, so that any edges in this spanning tree
will have distance 0. More detailed explanations of constructing Cy and the associated optimal
graph are provided in the Supplementary Material. Based on these optimal graphs, the averaging
statistic is defined by averaging the test statistic over all optimal graphs, and the union statistic
is defined by calculating the test statistic on the union of all optimal graphs.

3. PROPOSED TESTS

3.1. Extended test statistics for data with repeated observations

Here we focus on extending the weighted, generalized and max-type test statistics for repeated
observations, which will turn out to be asymptotic distribution-free tests. Details of extending
the original edge-count test are given in the Supplementary Material. Based on the two-sample
test statistics in Chen & Zhang (2013) and Zhang & Chen (2019), we define the extended basic
quantities at time ¢ under the averaging approach as

M=

t ) —1 u(D)nyy(?
Riw(®) = ny(O{n (1) — 1} . Z n1y(B)niy( )’ 3)
mp, myn,
k=1 (u,)eCo
K
ok () {nox (1) — 1} 12y (1) 12y (1)
Rt =y oy e 4)
my myn,
k=1 (u,»)eCo
and under the union approach as
< 1k(r>{mk<r> -1
Ry (0) = Z + Y nOn (@), (5)
k=1 (u,v)eCy
S (D (k1) — 1}
Roy(®) =Y 5 + Y mu(Ony(0). (6)
k=1 (u,v)eCy

These are discrete-data versions of Ry (¢) and Ry g (¢) for addressing the infeasibility of com-
puting test statistics on data with repeated observations. Hence, a relatively large value of the
sum of Ry (4)(¢) and Ry (4) (1), or of Ry (,)(¢) and Ry () (?), can be taken as evidence against the
null hypothesis.
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Under the null hypothesis Hp in (1), the null distribution is defined to be the permutation
distribution, which places 1/n! probability on each of the n! permutations of {y;};=1,.. . Let pr,
E, var and cov denote the probability, expectation, variance and covariance, respectively, under the
permutation null distribution. Analytical formulas for the expectation and variance of extended
basic quantities can then be calculated through combinatorial analysis; the detailed expressions
and proofs are given in the Supplementary Material.

For any candidate value ¢ of 7, the extended test statistics can be defined as

Rw,(a) (t) - E{Rw,(a) (Z)}
[var{R,, ) (D}1'/2 °

Rw,(u) (t) - E{Rw,(u) (t)}
[var{R,, ) (1)}]'/?

Zw,(a) (t) = Zw,(u) (Z) =

Sy () = Zjy () + Z3 (), Sy () = Zjy (D) + Z3 (D),
Moy () = max{(Zy,)®), |Za, )OI}, M@y (1) = max{Z,, o) (1), | Za,0 (DI},

where

Ry (a) (1) = {1 = w(®)}R1,a)(®) + W(O)R2,(a) (D),
Ry, ) (1) = {1 = w(®)}R1,) (1) + W(O)R2,u) (1),

Raay(t) — E{Ry (o) (D)}
[var{Rg 4 (H)}11/2

Ra (1) — E{Rg ) (1)}
[var{Rq uy(ONV/?

Zi (o)1) = s Ri)() = Ry@)(®) — Ry ) (D),

Zgw)(t) =

Ry (®) = Ry ) (1) — Ry 0 (1),

with w(¢) = (t — 1)/(n — 2). Relatively large values of the test statistics are evidence against the
null.

3.2. New scan statistics

Based on the extended statistics, we can define scan statistics for the single-changepoint
alternative to handle data with repeated observations as follows:

(1) extended weighted edge-count scan statistic, maX,,<r<n; Zw,(a) (1) and max,,<s<n; Zw,w) (t);
(i1) extended generalized edge-count scan statistic, maX,,<s<n; S(a)(#) and max,,<s<n; Sw)(£);
(iii) extended max-type edge-count scan statistic, maxX,<s<n; M(q)(¢) and max,o<r<n, M) (t).

Here ng and n] are setto prespecified values. For example, we cansetng = [0.05x#] andn; = n—ny
so as to include enough observations to represent the distribution.

Each scan statistic has its own characteristics, suited to different situations; see § 5 for a
comparison. For example, the extended weighted edge-count test is useful when a changepoint
occurs away from the middle of the sequence; the extended generalized edge-count test is effective
under both location and scale alternatives; the extended max-type edge-count test is similar, but
gives more accurate p-value approximation. The null hypothesis is rejected if the maximum is
greater than a certain threshold. In § 4 we describe how to choose the threshold to control the
Type I error rate.
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Fig. 1. Plots of S, (¢) (top row) and S, (¢) (bottom row) against ¢ for a typical observation from Mu(10, prob,) and

the second 50 observations from Mu(10, prob,), where prob, = (0.2,0.3,0.3,0.2)T and prob, = (0.4,0.3,0.2,0.1)T

(left column), and all 100 observations from Mu(10, prob,) (right column). Here Cj is the nearest-neighbour link on
Euclidean distance.

For illustration, Fig. 1 plots the processes of S, (¢) and S, (¢) for the first 50 observa-
tions generated from Mu{10, (0.2,0.3,0.3,0.2)"} and the second 50 observations generated from
Mu(10, (0.4,0.3,0.2,0.1)"}, with Cy being the nearest-neighbour link constructed on Euclidean
distance. We see that both S(,)(#) and S, (¢) peak at the true changepoint T = 50, as seen in the
left panels. On the other hand, when there is no changepoint, S(,)(¢) and S, (#) have random
fluctuations with smaller maximum values, as seen in the right panels. Illustrations of the other
test statistics are given in the Supplementary Material.

For testing the null hypothesis Hy in (1) against the changed-interval alternative H, in (2),
test statistics can be derived in a similar way to the single-changepoint case. For example, the
extended generalized edge-count scan statistics are

max S (f1,15), | ax Sw(t1,12)

l<ti<thh<n <ti<h<n
no<h—1<ny no<h—H<ny

for the averaging and union approaches, respectively, where S, (f1, %) and S, (1, %) are the
extended generalized edge-count statistics on the two samples, consisting of observations within
[1,12) and observations outside [¢1,#). The details of all statistics for the changed-interval
alternative can be found in the Supplementary Material.
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4. ANALYTICAL p-VALUE APPROXIMATION

4.1. Asymptotic distributions of the stochastic processes

We first consider the averaging approach. We are interested in the tail distribution of the scan
statistics under Hy. Taking the extended generalized edge-count scan statistic as an example, we
want to compute

pr{ max S(a)(t)}, pr{ max S(u)(t)}

no<t<ng no<t<ng

for the single-changepoint alternative and compute

l<ti<hr<n I<ti<th<n
no<th—1<ny no<h—H <ny

pr{ max S(a)(tl,tz)}, pr{ max S(u) (l‘],l‘z)}
for the changed-interval alternative.

Under the null hypothesis, the scan statistics are defined as the permutation distribution. For
a small sample size n, we can directly sample from the permutation distribution to compute the
permutation p-value. However, when n is large, one needs to draw a large number of random
permutations to get a good estimate of the p-value, which is very time-consuming. Therefore, we
seek to derive analytical approximations to these tail probabilities.

By the definition of Z,,, (4 (¢), S(a)(¢) and M) (t), the stochastic processes {Z,, (o) (1)}, {S() ()}
and {M4)(?)} boil down to two pairs of basic processes: {Z,, () (t)} and {Zy (,)(¢)} for the single-
changepoint case and, analogously, {Z,, ) (t1,%2)} and {Zy 4)(?1,1)} for the changed-interval
case. Therefore, we first study the properties of these basic stochastic processes. Let Suc % be the
subgraph of Cy containing all edges that connect to node u, let £, be the set of edges in Cy
that contain at least one node in EMC 0 and let |8uC°| and |5uc 9| denote the numbers of edges in the
sets. To derive the asymptotic behaviour of the stochastic’processes in the averaging approach,
we make the following assumptions.

Condition 1. We have that |Cy|, Z(W)eco (mumy)~ = 0(n).

Condition 2. We have that Zle My (my + |ES° D( Zve

C
Yoy +1€,5]) = o(n*?).

Condition3. Wehavethat)_ ., c, <mu +my + |ESY] + Ié'vc"l) (ZWGVCOUVCO mW+|€uC’3|+

Iéfgl) = o(n’/?).
Condition 4. We have that Y"X_ (1€5°| — 2)2/(4m,,) — (|Co| — K)?/n = O(n).
Let [x] denote the largest integer that is no larger than x.

THEOREM 1. Under Conditions 1-4, as n — oo the following hold:

1) {Zw(nw]) : 0 < w < 1} and {Zy @) ([nw]) : 0 < w < 1} converge to independent
Gaussian processes in finite-dimensional distributions, which we denote by {Z:},( 2 w) :
0<w<1}and {Z;,‘,(a) (w) : 0 < w < 1}, respectively,

(1) {Zw, @ ([nw1],[mw2]) : 0 < wy < wo < 1} and {Zg oy ([nw1], [nw2]) : 0 < wy; < wo < 1}
converge to independent Gaussian random fields in finite-dimensional distributions, which
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8 H. SONG AND H. CHEN

we denote by {Z* (a)(wl,wz) O<wy<wy<l1}and {Z (a)(WI,WZ) 0<w) <wy <1},
respectively.

The proof of this theorem uses a technique developed in Chen & Zhang (2015), which utilizes
Stein’s method (Chen & Shao, 2005). The details of the proof are provided in the Supplementary
Material.

Let ,ow (@ (u,v) = cov{Z* (@) (w),Z3 (a) (v)} and ,od @ (u,v) = cov{Z? i.(a) w),Z d (@ (v.)}. The
next theorem gives explicit expressions for the covariance functions of the limiting Gaussian pro-
cesses {Z * o w):0<w<1}and {Z; * i.(a )(w) 0 < w < 1}. It is proved through combinatorial
analysis, ancf details can be found in the Supplementary Material.

THEOREM 2. The covariance functions of the Gaussian processes Z* (@) (w)and Z}; (@ (w) have
the following expressions:

N wuAV{l —(uvVvv)} wuAV{1 —(uvVvv)} 172
PW,(a)(ua V) = ] 5

@l =@y P = [(u VOl — @A)
where u Av = min(u,v) and u vV v = max(u, v).

For the union approach, let G be the set of graphs that is the union of all possible optimal graphs
between observations {y;}, let SI-G be the subgraph of G containing all edges that connect to node
Vi, and let IEI-GI be the number of edges in the subgraph. We assume the following conditions.

Condition 5. We have that |G| = O(n).

Condition 6. Wehavethat >"X_ m3 D ey Co My 2 Co My (mv+ZW€Vc0\ my) = o(n’/?).

v}

Condition 7. We have that Y e, mumy(my Y.

my, (my, + my)} = o(n’/?).

weyCo My + mvz Vo mw) X

{Zwevfouvfo, yeVSO\ ()
Condition 8. We have that " |EG|2 — 4|G|2/n = O(n).

THEOREM 3. Under Conditions 5-8, as n — oo the following hold:

(1) {Zw,w(nw]) : 0 < w < 1} and {Z; ) ([nw]) : 0 < w < 1} converge to independent
Gaussian processes in finite-dimensional distributions, which we denote by {Z @ w) :
0 <w< 1}and{Z} @ (w) : 0 < w < 1}, respectively;

(i) {Zw,qo (w11, [nw2]) :°0 < wi < wa < 1} and {Zg @y ([nw1], [nw2]) 1 0 < wy < wy < 1)
converge to independent Gaussian random fields in finite-dimensional distributions, which
we denote by {Z* (u)(wl,wz) 0<wi<wy<1}and{ d(u)(wl,wz) c0<wy <wy <1},
respectively.

See the Supplementary Material for the proof.

Let p;; w( v) = cov{Z* () W), Z (u) ()} and p} W) (u,v) = cov{Zj 1.0 (), Z; W (»)}. The
next theorem provides exphclt expressions for the covariance functions of the limiting Gaussian
processes {Z (u)(w) 0 <w < 1}and {Z (u)(w) 0 < w < 1}. Its proof is given in the
Supplementary Material.
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THEOREM 4. The covariance functions of the Gaussian processes Z;: ) (w) and Z;lk ) (w) have
the following expressions:

i} w AW — @V v)} @AW — v v}]?
Py (U:V) = ] ,

v — A Pawy) = |:(u Vol — (A v))

Remark 1. By Theorems 2 and 4, we see that the limiting distributions of {Z,, ) ([nw]) :
0 <w < 1}and {Z, ) ([nw]) : 0 < w < 1} are identical and do not depend on the graph at
all. The same is true for the Z;. In addition, the covariance functions in Theorems 2 and 4 are
the same as in Theorem 4.3 of Chu & Chen (2019). Hence, limiting distributions of the extended
graph-based tests based on Z,,, S and M are exactly the same as their corresponding versions for
continuous data. On the other hand, the limiting distributions of the extended original edge-count
scan statistics differ from their corresponding versions in the continuous setting; for details see
the Supplementary Material.

Remark 2. Conditions 1-8 all constrain the number of repeated observations. Conditions 1
and 5 can usually be satisfied with an appropriate choice of Cy. Conditions 2, 3, 6 and 7 constrain
the degrees of nodes in the graph Cy such that they cannot be too large. Condition 4 ensures that
{R1 () (1), R2,(a)(?)}" does not degenerate asymptotically so that S, (¢) is well-defined; similarly
for Condition 8.

We have checked these conditions through simulation studies, shown in the Supplementary
Material, and find that some of them can be violated even when the p-value approximation still
works well. Zhu & Chen (2021) recently studied graph-based two-sample tests for continuous
data and proposed much more relaxed conditions than those in Chu & Chen (2019). They checked
their conditions under both sparse and dense graphs, and the conditions were found to hold well.
We believe that conditions for data with repeated observations in the changepoint setting can also
be relaxed. However, this requires a substantial amount of work, which we leave to future research.

4.2. Asymptotic p-value approximation

We now examine the asymptotic behaviour of tail probabilities. Using arguments similar
to those in the proof of Proposition 3.4 in Chen & Zhang (2015), we can derive analytical
approximations to the probabilities. Assume that ng, n1,n,b — oo in such a way that for some
0 <x9 <x; < landb; > 0, we have no/n — xo, n;/n — xj and b//n — b;.

Based on Theorems 1 and 3, as n — oo, for both the averaging and the union approaches, we
have

no<t<ny

pr{ max Z,(t/n) > b} ~ b (b) / " s ov[br (20 0}/ dx,
X0

no<t<ny

prl max 1Z30/m1 = b}~ 2600) [ men{si @' 2
X0

where v(s) ~ (2/s){P(s/2) — 0.5}/{(s/2)P(s/2) + ¢(s/2)} (Siegmund & Yakir, 2007) with
®(-), and ¢(-) being the standard normal cumulative density function and probability density
function, respectively, and
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30y, (@ (85%) 90y, (g (85%) 00y, (1) (85%) 30y, (1 (85%)
S @ i O i O g 0

I (x) = igr)lc

as SN\X as s,/x as SN as ’
007 (i (8, X) 007 (i (8, X) 307 (1 (8,X) 007 (1 (8,X)
R () = lim — 2@ o i — PO iy RO iy S0
s/ x as SNX as s,/'x as SNX as

It can be shown that £, (x) {x(1 —=x)}" ! and 15 (x) = {2x(1 — x)}_1
Since Z* w.(a )(t) and Z (a) (#) are independent, and zZ* () (t) and Z (u) (¢) are independent, for
both the averaging and the union approaches, we have

pr{ max M*(t/n) > b} =1 —pr{ max |Z;(t/n)| < b}pr{ max Z,(t/n) < b}

<ty no<tr<ng no<t<ny

In addition, following arguments similar to those in the proof of Proposition 4.4 in Chu & Chen
(2019), we obtain analytical p-value approximations for the extended generalized edge-count test.
Assume that ng, n1,n,bs — o0 in such a way that for some 0 < xg < x; < 1 and by > 0, we
have ng/n — x9, n1/n — x1 and bg/n — by. Then, as n — o0, for both the averaging and the
union approaches, we have

| - brepChs/2)

pr{ max S*(¢/n) > bg e

no<t<ny

2w px1
/ / hE (e, wyv[{2b2h7 (x, w)}l/z] dx dw,
0 X0
where i} (x,w) = h:’}(x) cosZ(w) + h,(x) sin’ (w). The analytical p-value approximations for the
changed-interval setting are presented in the Supplementary Material.

Remark 3. In practice, we use ,,(n,x) in place of 4}, (x), where h,,(n,x) is the finite-sample
equivalent of 4, (x), that is,

d
hy(n,x) = n lim M
s,/ 'nx as

with py, (s, 1) = cov{Z,,(s), Z,,(¢)}. The explicit expression for 4,,(n, x) is

(n—1DQnx% =2nx+ 1)

(0 = S W — i n— 1)

It is clear from the above expression that 4,,(n,x) does not depend on the graph Cy, and it is easy
to show that lim,,—, o (2, X) = £, (x). The finite-sample equivalent of /% (x) is exactly the same
as h'(x), i.e.

d B ]

. 0pgq(s,nx) 1
hi(n,x) = n lim = ,
s ,/'nx as 2)6(1 —X)

where p;(s,t) = cov{Zy(s), Z;(t)}.

4.3. Skewness correction

The analytical p-value approximations based on the asymptotic results give ballpark estimates
of the p-values. However, they are in general not accurate enough if ng and n; are taken close
to the two ends, and when the dimension is high. The inaccuracy can largely be attributed to the
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fact that convergence of Z,, (4) (1), Zw, ) (1), Za ) (t) and Zy () (¢) to the Gaussian distribution is
slow when ¢/n is close to 0 or 1.

To improve the analytical p-value approximations, we add extra terms in the formulas to
correct for skewness. In our situation, the extent of the skewness depends on the value of ¢.
Hence, we adopt a skewness correction approach discussed in Chen & Zhang (2015), where
different amounts of correction are applied for different ¢ values; in particular, this approach
leverages better approximation of the marginal probability by using the third moment, y .

After skewness correction, the analytical p-value approximations for the averaging approach
are

ny/n

pr{ max Z, (q)(t) > b} ~ b (b) Hy (a) (nx)hw(n,x)v[b{Zhw(n,x)/n}l/z] dx,
no<t<ny no/n
where
e o exp[ 316 — b)) O + 1h0@) (D03, (1 (1)]
w,(a) = x 5
{1+ Yw,(a) (t)eb,w,(a) (t)}l/z
R {14+ 20w, @0b}' 2 =1
Op,w,(a) (1) = . ,
@ Yw,(a) (t)
and

ny/n
pr{ max Zy q)(t) > b} ~ b (b) 1 Hy () (nx)hd(n,x)v[b{2hd(n,x)/n}l/z] dx,

no<t<ny no/n
where

exp[1{b — Oba, () (DY + %)/d,(a) (t)éid’(a) 0]
{1+ V(@) (O)0p.a,) (D}
{1+ 2¥4,) )b} /* — 1
Y (a)(?)

Hy o) (1) =

b

2

éb,d,(a) (") =

with y () (1) = E {va(t)} and yg)(t) = E {Zg(z)}, whose analytical expressions are provided
in the Supplementary Material. The skewness-corrected analytical p-value approximations for
the union approach and the changed-interval case can be derived in a similar manner; for details
see the Supplementary Material.

Remark 4. By jointly correcting for the marginal probabilities of Z,(¢#) and Z;(¢), we
can derive skewness-corrected p-value approximations for max,,<;<,; S(f) = maxo<w<or
maXu,<r<n; (Zw(t) sin(w) 4+ Z;(¢) cos(w)} (Chu & Chen, 2019). However, the integrand could
easily be nonfinite, so the method relies heavily on extrapolation. We therefore do not perform
skewness correction on S, (f) and S, (¢).

4.4. Checking analytical p-value approximations under finite n

We assess the performance of the analytical p-value approximations obtained in § 4.2 and § 4.3.
In particular, we compare the critical values for the 0.05 p-value threshold through analytical p-
value approximations based on asymptotic results, and skewness correction applied to values
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obtained from performing 10 000 permutations under various simulation settings, to check how
well the analytical approximation works for finite samples. Here, we focus on the extended max-
type scan statistic for the single-changepoint alternative. Results for the other scan statistics and
the changed-interval alternative are reported in the Supplementary Material.

We consider three distributions with different dimensions: C1, multinomial d = 10 with equal
probabilities; C2, Gaussian d = 100 with repeated observations; and C3, multinomial d = 1000
with equal probabilities. We take Cy to be the nearest-neighbour link constructed on Euclidean
distance. The analytical approximations depend on constraints, ng and n1, on the region in which
one searches for the changepoint. For simplicity we set n; = n — ny.

Since analytical p-value approximations without skewness correction do not depend on Cy
in the extended weighted, generalized and max-type tests, the critical value is determined only
by n, ng and n;. Analytical p-value approximations without skewness correction yield the same
result in both the averaging and the union approaches. On the other hand, the skewness-corrected
approximated p-values depend on certain characteristics of the graph structure. The structure
of the nearest-neighbour link depends on the underlying dataset, and so the critical values vary
across simulation runs.

Table 3 shows the results for the extended max-type scan statistics. The top part, labelled A1,
presents the analytical critical values without skewness correction. The lower portion reports
skewness-corrected analytical critical values and permutation critical values in the averaging and
union cases. We also show results for two randomly simulated sequences in each setting. It can
be seen that the asymptotic p-value approximation performs reasonably well. As the window size
decreases, the analytical critical values become less precise. However, the skewness-corrected
approximation performs much better than the approximation without skewness correction. When
the dimension is not too high, such as in C1, the skewness-corrected analytical approximation
performs reasonably well for ng as low as 25. When the dimension is high, such as in C2 and C3,
the approximation performs well when ng > 50.

5. PERFORMANCE OF THE NEW TESTS

We study two aspects of the performance of the new tests: first, whether the test can reject
the null hypothesis of homogeneity when there is a change; and second, if the test can reject Hy,
whether it can estimate the location of the changepoint accurately. We use the configuration model
random graph G (v, k) to generate networks. Here, v is the number of vertices and k= (k1,..., k)
is a degree sequence on v vertices, with &; being the degree of vertex i. To generate conﬁguration
model random graphs, given a degree sequence we choose a uniformly random matching on the
degree stubs, or half-edges.

We generate a sequence of n = 200 networks from the model

G k), i=1,...,1,
Gv,ka), i=t+1,...,200,
In this simulation we explore two cases for the location of the changepoint: in the middle, T = 100,

and close to one end, T = 170, for v = 6 vertices. This dataset has repeated networks. Also, we
consider two types of changes:

(i) an equal degree of changes in the network, where all elements of 7(1 are 2 and two elements
of kp are 4 with the rest being 2;
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Table 3. Critical values for the single-changepoint scan statistics maXu,<i<n; M) (t) and
maXuo<r<n Mw)(t) based on the nearest-neighbour link at the 0.05 significance level, for

n = 1000
ny = 100 nyg = 75 ny = 50 nyg = 25
Al 3.24 3.28 3.32 3.38
Critical values (@)
ny = 100 nyg = 75 ny = 50 nyg = 25
A2 (a) Per (a) A2 (a) Per (a) A2 (a) Per (a) A2 (a) Per (a)
e 3.30 3.30 3.36 3.37 3.43 3.43 3.54 3.58
3.30 3.30 3.35 3.36 343 3.46 3.55 3.62
(2) 3.36 3.34 3.44 3.45 3.56 3.59 3.72 3.98
3.34 3.36 3.42 3.47 3.53 3.64 3.76 4.03
(C3) 3.30 3.30 3.38 3.41 3.48 3.57 3.67 3.93
3.30 3.28 3.38 3.39 348 3.56 3.67 3.87
Critical values (u)
ny = 100 n0=75 }’l0=50 n0=25
A2 (u) Per (u) A2 (u) Per (u) A2 (u) Per (u) A2 (u) Per (u)
1) 3.32 3.30 3.37 3.40 3.44 343 3.54 3.59
3.31 3.32 3.36 3.35 343 3.46 3.55 3.63
(2) 3.35 3.36 3.42 3.43 3.51 3.52 3.62 3.80
3.34 3.39 3.40 3.46 348 3.55 3.67 3.84
(C3) 3.31 3.30 3.39 3.41 3.50 3.57 3.69 3.93
3.31 3.28 3.39 3.39 3.50 3.56 3.69 3.87

Al, analytical critical values without skewness correction; A2 (a) and A2 (), skewness-corrected analytical critical
values in the averaging and union approaches, respectively; Per (@) and Per (1), permutation critical values in the
averaging and union cases, respectively.

Table 4. Estimated power of the new tests

Zy (@) Zy, ) (®) S @) San (@) M (1) M, ()
(S1) 0.98 (0.96) 0.96 (0.89) 0.96 (0.94) 0.95 (0.89) 0.96 (0.95) 0.95 (0.88)
(S2) 0.88 (0.83) 0.89 (0.85) 0.90 (0.84) 0.91 (0.85) 0.89 (0.83) 0.90 (0.87)
(S3) 0.86 (0.83) 0.65 (0.59) 0.85 (0.83) 0.85 (0.82) 0.81 (0.80) 0.70 (0.64)
(S4) 0.81(0.81) 0.73 (0.70) 0.86 (0.84) 0.93 (0.91) 0.84 (0.81) 0.86 (0.82)

(ii) arandom degree of changes in the network, where all elements of 7(1 are 2 and two elements
of kp are randomly selected from {3,4, 5} while the rest are 2.

Thus, we consider the following four combinations: S1, an equal degree change at T = 100; S2,
a random degree change at T = 100; S3, an equal degree change at t = 170; and S4, a random
degree change at T = 170.

We use an adjacency matrix M; to represent the network at ¢, such that the (i, ) element is 1
if vertices i and j are connected and 0 otherwise. We consider the dissimilarity defined by the
number of different entries normalized by the geometric mean of the total edges in each of the
two networks, [|M; — M;||g/(IIM;|l¢ ||Mj||p)1/2, where || - || denotes the Frobenius norm of a
matrix. As a similarity graph for our new methods we take Cj to be the nearest-neighbour link.

Table 4 shows the number of null rejections out of 100 at the 0.05 significance level for
each method. For the accuracy of estimating changepoint location, the count where the estimated
changepoint is within 20 of the true changepoint is shown in parentheses when the null hypothesis
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Averaging / Union (days)

Un
58

293

Stage 1

Stage 2 28 289: 323

52 47

Stage 3

Stage 4 140

[V
A

Stage 5 68 HO+64

Stage 6 6 Y7 164

Stage 7 79

Averaging 53 68 97 140 164 247 289
Union 28 52 66 79 140 164 247 293 323
Shared 52 67 140 164 247 291

Fig.2. Estimated changepoints and the order in which changepoints were detected by the averaging (blue) and union
(red) approaches.

is rejected. We see that all tests work well in the case of a balanced equal degree of changes,
while the extended generalized edge-count test outperforms the other tests in the case of a random
degree of changes. In this simulation, equal-degree changes could be considered a mean change,
and random-degree changes could be considered a change in both location and scale. Hence, the
extended generalized edge-count test and max-type edge-count test perform well in this general
scenario. When the changepoint is not at the centre of the sequence, the extended weighted
edge-count test performs best, which agrees with what we would expect. It can be seen that the
extended generalized edge-count test and max-type edge-count test work well when the change
is in both mean and variance in the unbalanced-sample-size case.

6. PHONE-CALL NETWORK DATA ANALYSIS

In this section we apply the new tests to a phone-call network dataset. The MIT Media Labora-
tory conducted a study following 87 subjects who used mobile phones with a pre-installed device
that can record call logs. The study lasted for 330 days from July 2004 to June 2005 (Eagle et al.,
2009). One question of interest is whether there is any change in the phone-call patterns between
subjects over time; this can be viewed as a change in friendship between the subjects over time.

We discard the phone-calls by day and construct # = 330 networks in total with 87 subjects as
nodes. We encode each network by the adjacency matrix B;, whose (i, /) element takes value 1 if
subject i called subject j on day ¢ and has value 0 otherwise. We define the distance measure as
the number of different entries, i.e., d(B;, Bj) = ||B; — BjII%. Because of repeated observations,
many equal distances between distinct values exist. We let Cy be the nearest-neighbour link in
this example.

We use the single-changepoint detection method, applying the extended generalized scan
statistic to the phone-call network dataset recursively to detect all possible changepoints. As this
dataset contains a lot of noise, we focus on estimated changepoints with a p-value of less than
0.001. Figure 2 shows the estimated changepoints obtained by the averaging approach and the
union approach. We see that the two approaches produce quite a number of similar changepoints.
We define a changepoint 7 as being detected by both approaches if they each find a changepoint
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Fig.3. Heatmap of an L;-norm distance matrix corresponding to 330 networks. Red and blue triangles indicate
estimated changepoints obtained by the union approach and averaging approach, respectively, and purple triangles
indicate their shared changepoints.

within the set [T — 2, T + 2]. We then deem the location of the shared changepoint to be the floor
of the average of the changepoints detected by the two approaches.

Since we do not know the underlying distribution of the dataset, we perform a check with the
distance matrix of the whole period; see Fig. 3. It is evident that there are some signals in this
dataset, and they show a reasonably good match with our results from the new tests.

7. CONCLUSION

In general, the averaging and union approaches work similarly, although inevitably they some-
times produce different results. A brief comparison of the two approaches is provided in the
Supplementary Material. The proposed methods detect the most significant single changepoint
or the changed interval in the sequence. If the sequence has more than one changepoint, the
methods can be applied recursively using techniques such as binary segmentation, circular binary
segmentation and wild binary segmentation (Vostrikova, 1981; Olshen et al., 2004; Fryzlewicz,
2014).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes details of the phone-call net-
work dataset, details of constructing Cy, the extended original scan statistic, scan statistics for
the changed-interval case, discussions of the two solutions, p-value approximations, and proofs
of all the theoretical results.
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