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ABSTRACT

Nonnegative matrix factorization (NMF) has found many ap-
plications including topic modeling and document analysis.
Hierarchical NMF (HNMF) variants are able to learn topics
at various levels of granularity and illustrate their hierarchi-
cal relationship. Recently, nonnegative tensor factorization
(NTF) methods have been applied in a similar fashion in order
to handle data sets with complex, multi-modal structure. Hi-
erarchical NTF (HNTF) methods have been proposed, how-
ever these methods do not naturally generalize their matrix-
based counterparts. Here, we propose a new HNTF model
which directly generalizes a HNMF model special case, and
provide a supervised extension. We also provide a multiplica-
tive updates training method for this model. Our experimen-
tal results show that this model more naturally illuminates the
topic hierarchy than previous HNMF and HNTF methods.

Index Terms— hierarchical topic models, nonnegative
matrix factorization, nonnegative tensor decomposition

1. INTRODUCTION

The complexity and size of available data continues to grow
which in turn leads to an increasing demand for methods to
interpret these large data sets. One important task is topic
modelling, whose goal is to identify latent topics or trends
within a set of data. One popular topic modeling approach
is nonnegative matrix factorization (NMF), a dimensionality
reduction technique that has had great success in the areas of
document analysis, clustering, and classification [1, 2]. NMF
is generalized to multi-modal data by the Nonnegative CAN-
DECOMP/PARAFAC (CP) Decomposition (NCPD) [3, 4].
In topic modeling, one often wishes to additionally iden-
tify hierarchical relationships between topics learned at differ-
ent granularities. Towards this goal, many hierarchical mod-
els have been developed that enforce an approximate linear
relationship between subtopics and supertopics (topics col-
lecting multiple subtopics). More specifically, Hierarchical
NMF (HNMF) and Hierarchical nonnegative tensor factoriza-
tion (HNTF) methods have been developed to factorize data
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sets simultaneously at multiple different granularities with
factorizations learned at coarser granularities constrained by
the factorizations learned at finer granularities; these sequen-
tial factorizations are often viewed as different layers of these
models [5,6,7,8,9, 10, 11].

The most popular models for HNMF and HNTF share a
few common issues: (1) these models only use partial infor-
mation from the factorization at the previous layer in the sub-
sequent layer’s factorization; (2) the hierarchical relationships
learned often only represent the latent structure in a subset of
the modes of the data; and (3) there is no unified model for
both matrices and tensors. In order to address these concerns,
we develop Multi-HNTF, which provides a unified model for
both matrices and tensors, and demonstrates significant im-
provement in learning latent hierarchical structures in multi-
modal data.

1.1. Notation.

We follow the notational conventions of [12]; e.g., tensor X,
matrix X, vector &, and (integer or real) scalar z. We let ®
denote the vector outer product and adopt the CP decomposi-
tion notation

[[X17X27"'7Xk?ﬂEZ$§‘1)®w§'2)®"'®w§'k)7 (1)
j=1

(@)

where ; is the jth column of the ith factor matrix X; [13].

1.2. Nonnegative matrix factorization

NMEF is an approach typically applied in unsupervised tasks
such as dimensionality-reduction, latent topic modeling, and
clustering. Given nonnegative data matrix X € RZ" and
a user-defined target dimension r € N with r < min{m,n},

NMF seeks nonnegative factor matrices A € RZ;", often

referred to as the dictionary or topic matrix, and S € R%",
often referred to as the representation or coefficient matrix,
such that X = AS. There are many formulations of this
model (see e.g., [14, 1, 15]) but the most popular utilizes the
Frobenius norm,

argmin || X — AS||%. (2)
A>0,58>0
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Fig. 1. Visualization of a two layer Multi-HNTF on a tensor with three modes.

Here and throughout, A > 0 denotes the constraint that A is
entry-wise nonnegative. The columns of A are often referred
to as fopics; the NMF approximations to the data (columns
of X)) are additive nonnegative combinations of these topic
vectors. This property of NMF approximations yields inter-
pretability since the strength of relationship between a given
data point (column of X') and the topics of A is given in the
coefficient vector (corresponding column of S). For this rea-
son, NMF has found popularity in applications such as docu-
ment clustering [16], and image and audio processing [17],
Supervised variants of NMF that jointly factorize both the
data matrix X and a matrix of supervision information (e.g.,
class labels) Y have been proposed [18, 19].

1.3. Hierarchical nonnegative matrix factorization

The most popular hierarchical NMF model decomposes a
data matrix X by repeatedly applying NMF to the S ma-
trix output by the previous decomposition, so that each
S0 ~ AU+ §G+1)  Given desired ranks rg,71, ..., 7z,
this process recursively produces the set of factorizations

X~ A0SO

X~ A0 AWM,
©)

X~ A AD 4D gL,

Many complex optimization algorithms have been proposed
to improve the quality of the factorization and minimize
cascading errors, and are mostly based upon this model for
HNMF [5, 6, 20, 21, 7].

1.4. Nonnegative CP Decomposition (NCPD).

The NCPD generalizes NMF to higher-order tensors; specif-
ically, given an order-k tensor X € RZIL"2* "™ and a
fixed integer r, the approximate NCPD of X seeks X; €
RIY", Xp € REP, -+, X € REY" so that

XQJ“HXDX27 an]] (4)

The X; matrices will be referred to as the NCPD factor ma-
trices. This decomposition has found numerous applications
in the area of dynamic topic modeling where one seeks to dis-
cover topic emergence and evolution [22, 23, 24].

1.5. Related work

Previous works have developed hierarchical tensor decompo-
sition models and methods [8, 9, 10, 11]. The models most
similar to ours are that of [25], which we refer to as hier-
archical nonnegative tensor factorization (HNTF), and [11],
which we refer to as HNCPD. HNTF consists of a sequence
of NCPDs, in which one of the factor matrix is held con-
stant at each layer while the remaining factor matrices pro-
duce the tensor that is decomposed at the next layer, and as
a result the performance of HNTF varies significantly based
on which data mode appears first in the representation of the
tensor. We refer to ‘HNTF-:‘ as HNTF applied to the rep-
resentation of the tensor where the modes are reordered with
mode ¢ first. HNCPD consists of an initial NCPD followed
by an HNMF applied to each of the resulting factor matri-
ces. In what follows, Neural HNCPD denotes the HNCPD
model trained with a neural network architecture, while Stan-
dard HNCPD denotes the HNCPD model trained with a mul-
tiplicative updates method [11].

1.6. Contribution and Organization

In Section 2, we introduce our proposed hierarchical tensor
decomposition model, Multi-HNTF, first for the special case
of matrix data, and then in general for tensor data. In Section
3, we perform topic modeling experiments on two document
analysis data sets and one synthetic data set, and compare our
model to other HNMF and HNTF models. Finally, in Section
4 we summarize our findings and discuss future work.

2. MODEL

Here we describe our proposed model for hierarchical matrix
and tensor decomposition, Multi-HNTF. Like previous hierar-
chical nonnegative matrix factorization models, we seek a se-
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ries of factorizations in which sequential factor matrices are
approximate factors of their predecessors (thus leading to a
clear linear relationship between learned topics). However,
unlike previous matrix factorization models, we propose a hi-
erarchical decomposition model that generalizes naturally to
higher-order tensors. As the matrix model is a special case of
the tensor decomposition model, we give pseudo-code only
for the tensor model but give intuition for the matrix case first.

Matrix model: Our model consists of a sequence of non-
negative matrix factorizations that decompose input data ma-
trix X € R™*". Given desired ranks rg, 71, ,7, this
process produces A¥) € R™*"¢ and §() € R"**" such that
X ~ AWS®, while constraining a linear relationship be-
tween successive factor matrices,

A — AOWO g — (0T g0

where W () ¢ R™*7e+1 for each £ = (... L. We note that
the matrix W) collects the r, subtopics into T¢41 Super-
topics at the /th layer.

Tensor model: We generalize this hierarchical model to
tensor data by applying the same linear relationship between
successive factor matrices in a NCPD model (the tensor gen-
eralization of NMF). Given desired ranks rg,r1,--- ,7, and
input tensor X € R™1-™2>»k this process produces X{e) S
Rroxre, X {0 e Rrexme .o X (0) € R™XT¢ such that
X ~ [[Xl(z),Xéf)7 e ,X,gé)]]. As in the matrix model, we
begin with an initial rank r¢ decomposition; in this case, it
is an initial rank 7o NCPD X = [[Xl(o), X2(0)7 . ,X,EO)]]. We
then constrain the linear relationship between successive fac-
tor matrices,

Xz'(“_l) _ Xi(Z)W(z)

foreach{ =0...Landi = 1...k, and compute W ® such
that the new factor matrices X “*% form a rank r¢+1 NCPD,

X ~ [[‘sz)v[/(/f)’)(2(6)1}[/(@)7 ... 7X]§€)Ww)ﬂ.

See Figure 1 for a schematic of this model. In Algorithm 1
we display pseudocode for the Multi-HNTF process. We note
that Line 4 of Algorithm 1 is only approximate minimization.
One could apply any approximate minimization scheme; we
apply a multiplicative updates [15] and averaging scheme (we
omit details here due to space constraints).

Algorithm 1 Multi-HNTF
1: procedure MULTI-HNTF(X)
2 {Xx "k« NCPD(X,r()
3: for{=0...Ldo

4: W «  argmin HX—[[Xl(e)W,...,X,ge)W]]H

WeR! "1
5: fori=0...kdo
Xi(fz+1) _ i(f)W(Z)

=)

3. EXPERIMENTS

Here, we present the results of applying Multi-HNTF to the
20 Newsgroups data set [26], a synthetic tensor data set [11],
and a Twitter political data set [27], along with comparisions
to Hierarchical NMF, Neural HNCPD, HNCPD, and HNTF.
Our reconstruction loss is the Frobenius norm of difference of
the original and reconstructed tensors. Code can be found in
https://github.com/jvendrow/MultiHNTF.

3.1. 20 Newsgroups dataset

The 20 Newsgroups dataset is a collection of text documents
containing messages from newsgroups on the distributed dis-
cussion system Usenet [26]. We use a subset of 1000 docu-
ments split evenly amongst ten newsgroups (graphics, hard-
ware, forsale, motorcycles, baseball, medicine, space, guns,
mideast, and religion) which naturally combine into six su-
pertopics (computer, forsale, recreation, science, politics, re-
ligion). We run a two layer Multi-HNTF and HNMF with no
supervision, and supervision at both layers, at ranks ro = 10
and r; = 6, and report the results in Table 1. We see that with
and without supervision, Multi-HNTF outperforms HNMF in
reconstruction loss and classification accuracy.

Table 1. Reconstruction loss and classification accuracy at
the second layer of two layer Multi-HNTF and HNMF on the
20 newsgroup data set.

Recon Loss Accuracy
Method Unsup.  Sup. | Unsup.  Sup.
Multi-HNTF | 30.81 30.91 | 0.516 0.737
HNMF 30.82 3145 | 0.507  0.636

3.2. Synthetic tensor dataset

In order to measure the capacity of Multi-HNTF to identify
hierarchical relationships on multi-modal tensor data sets, we
run Multi-HNTF on a synthetic tensor data set introduced in
[11]. This dataset is a rank seven tensor of size 40 x 40 x 40
comprised of blocks overlayed to form a hierarchical struc-
ture, with positive Gaussian noise added to each entry. In
Table 2 we display the relative reconstruction loss on the syn-
thetic dataset for Multi-HNTF and comparable models. We
see that Multi-HNTF outperforms Standard HNCPD and ev-
ery ordering of HNTF at each rank ; = 4 and o = 2. Neu-
ral HNCPD is able to outperform Multi-HNTF, however due
to the repeated forward and backward propagation process,
Neural HNCPD utilizes a more complex training method.

3.3. Twitter political dataset

The Twitter political data set [27] is a multi-modal data set
of tweets sent by eight political candidates during the 2016
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Rank 8 Topics Rank 4 Topics Rank 2 Topics
Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 1
trump senate martinomalley ~ berniesanders trump tedcruz trump
hillary florida hillaryclinton people hillary cruz hillary
donald zika realdonaldtrump bernie vote ted people
president venezuela campaigning must people internet vote
timkaine  nicolasmaduro maryland change berniesanders choosecruz realdonaldtrump
Topic 5 Topic 6 Topic 7 Topic 8 Topic 3 Topic 4 Topic 2
tedcruz johnkasich marcorubio crooked johnkasich crooked tedcruz
cruz kasich teammarco hillary kasich hillary cruz
ted ohio vote thank ohio thank ted
internet john flsen great john great johnkasich
choosecruz gov click clinton gov realdonaldtrump kasich
High  clinton Feb Clinton Feb Clinton Feb
Kaine 2;: Kaine 2;: Kaine 2“
O'Malley May O'Malley May O'Malley MZ;
Sanders Jun Sanders Jun Sanders Jun
Cruz Jul Cruz Jul Cruz Jul
Kasich Aug Kasich Aug Kasich Aug
Rubio Zecz Rubio f)ec‘; Rubio f)ecz
Low Trump Nov Trump Nov Trump Nov
1 2 3 456 7 8 123456738 1 2 3 4 12 3 4 1 2 1 2

Fig. 2. A three-layer Multi-HNTF on the Twitter dataset at ranks o = 8, r; = 4 and ro = 2. At each rank, we display the top

keywords and topic heatmaps for candidate and temporal modes.

Table 2. Relative reconstruction loss on the synthetic dataset
for Multi-HNTF, Neural HNCPD, Standard HNCPD, and
HNTF with two levels of noise over 10 trials. For HNTF we
report runs on three re-orderings of the modes the tensor.

Method ro=7 r=4 1ro=2
Multi-HNTF 0.454 0.548 0.721
Neural HNCPD [11] 0.454 0.508 0.714
Standard HNCPD [11] | 0.454 0.612 0.892
HNTF-1 [25] 0.454 0.576 0.781
HNTEF-2 [25] 0.454 0.587  0.765
HNTEF-3 [25] 0.454 0.560 0.747

election season, four Democratic candidates (Hillary Clinton,
Tim Kaine, Martin O’Malley, and Bernie Sanders) and four
Republican candidates (Ted Cruz, John Kasich, Marco Rubio,
and Donald Trump). Following the procedure in [11], we col-
lect all the tweets sent by one politician within each bin of 30
days, from February to December 2016, and combine them
into a bag-of-words representation summarizing that politi-
cian’s twitter activity for the 30 day period. We cap each 30-
day bins per politician to 100 tweets to avoid over-fitting to a
single month. This forms a tensor of size 8 x 10 x 12721 with
8 politicians, 10 time periods of 30 days, and 12721 words;
multi-modal data with candidate, temporal, and text modes.

In Table 3, we list relative reconstruction loss for Multi-
HNTF and comparable methods. We see that Multi-HNTF
outperforms every method other than Neural HNCPD. In Fig-
ure 2 we display a visualization of the topics and keywords
learned by Multi-HNTF. At rank 8, we see that there is nearly
a one-to-one relationship between topics and candidates, at
rank 4 many of the democratic candidates combine into a sin-

Table 3. Relative reconstruction loss on the Twitter political
dataset for Multi-HNTF, Neural HNCPD, Standard NCPD,
Standard HNCPD, and HNTF (for each of the possible ar-
rangements of the tensor) atranks ro = 8,73 = 4, andry = 2.

Method 7”0:8 T1:4 7’2:2
Multi-HNTF 0.834 0.887  0.920
Neural HNCPD [11] | 0.834 0.883 0.918
Standard NCPD [11] | 0.834  0.889  0.919
Standard HNCPD 0.834 0931  0.950
HNTF-1 [25] 0.834 0.890 0.927
HNTF-2 [25] 0.834 0.909  0.956
HNTF-3 [25] 0.834  0.895 0.942

gle topic, and at rank 2 Cruz and Kasich are separated from
the other candidates. This makes sense because both can-
didates were Republicans who left the race at similar times.
Note that at rank 2, the first topic, which includes the two final
presidential candidates, remained strong until the November
election, while the topic corresponding to Cruz and Kasich,
who dropped out earlier, has weaker presence in later months.

4. CONCLUSION

We propose Multi-HNTF, a novel HNTF model that naturally
generalizes from a special-case HNMF model. Our initial
experiments suggest this model provides improvements both
for matrix data over a standard HNMF model, and for multi-
modal tensor data sets over other HNTF models. We expect
that by optimizing our model with a more involved method
akin to those of [6, 20, 7, 11] we could further improve the
performance of Multi-HNTF over other models.
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