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Abstract—There is a significant demand for topic modeling on
large-scale data with complex multi-modal structure in applica-
tions such as multi-layer network analysis, temporal document
classification, and video data analysis; frequently this multi-
modal data has latent hierarchical structure. We propose a
new hierarchical nonnegative CANDECOMP/PARAFAC (CP) de-
composition (hierarchical NCPD) model and a training method,
Neural NCPD, for performing hierarchical topic modeling on
multi-modal tensor data. Neural NCPD utilizes a neural network
architecture and backpropagation to mitigate error propagation
through hierarchical NCPD. Here, we present this hierarchical
NCPD approach and demonstrate its efficacy on experiments
using synthetic and temporal document data sets.

Index Terms—hierarchical tensor decomposition, topic model-
ing, neural network, backpropagation

I. INTRODUCTION

The recent explosion in the collection and availability of
multi-modal tensor formatdata has led to an unprecedented
demand for scalable data analysis techniques [1]. The need to
reduce redundant dimensions (across modes) and to identify
meaningful latent trends within data has rightly become an
integral focus of research within signal processing and com-
puter science. An important application of these dimension-
reduction techniques is topic modeling, the task of identifying
latent topics and themes of a dataset in an unsupervised
or partially supervised approach. A popular topic modeling
approach for matrix data is the dimension-reduction tech-
nique nonnegative matrix factorization (NMF) [2], which is
generalized to multi-modal tensor data by the nonnegative
CP decomposition (NCPD) [3], [4]. These models identify r
latent ropics within the data; here the rank r is a user-defined
parameter that can be challenging to select without a priori
knowledge or a heuristic selection procedure.

In topic modeling applications, one often additionally
wishes to understand the hierarchical topic structure (i.e., how
the topics are naturally related and combine into supertopics).
For matrices (tensors), a naive approach is to apply NMF
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(NCPD) first with rank r and then again with rank 57 < 7,
and simply identify the j supertopics as linear (multilinear)
combinations of the original r subtopics. However, due to
the nonconvexity of the NMF (NCPD) objective function, the
supertopics identified in this way need not be linearly (multi-
linearly) related to the subtopics. For this reason, hierarchical
models that enforce these relationships between subtopics and
supertopics have become a popular direction of research. A
challenge of these models is that the nonconvexity of the
model at each level of hierarchy can yield cascading error
through the layers of models; several works have proposed
techniques for mitigating this cascade of error [5], [6], [7],
(81, [9].

In this work, we propose a hierarchical NCPD model and
Neural NCPD, a method for training this model that exploits
backpropagation techniques to mitigate the effects of error
introduced at earlier (subtopic) layers of hierarchy propagating
downstream to later (supertopic) layers. This approach allows
us to (1) explore the topics learned at different ranks simul-
taneously, and (2) illustrate the hierarchical relationship of
topics learned at different tensor decomposition ranks.
Notation. We follow the notational conventions of [10]; e.g.,
tensor X, matrix X, vector «, and (integer or real) scalar x.
In all models, we use variable r (with superscripts denoting
layer of hierarchical models) to denote model rank and use
7 when indexing through rank-one components. In all tensor
decomposition models, we use k to denote the order (number
of modes) of the tensor and use ¢ when indexing through
modes of the tensor. In all hierarchical models, we use £ to
denote the number of layers in the model and use ¢ to index
layers. We let ® denote the vector outer product and adopt
the CP decomposition notation

T
_ (1) (2) (k)
j=1
where m;i) is the jth column of the ith factor matrix X; [11].
Contributions. Our main contributions are two-fold. First, we
propose a novel hierarchical nonnegative tensor decomposition

model that we denote hierarchical NCPD (HNCPD). Our
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model treats all tensor modes alike and the output is not
affected by the order of the modes in the tensor representation;
this is a property not shared by other hierarchical tensor de-
composition models such as that of [12]. Second, we propose
an effective neural network-inspired training method that we
call Neural NCPD. This method builds upon the Neural NMF
method proposed in [9], but is not a direct extension; Neural
NCPD consists of a branch of Neural NMF for each tensor
mode, but the backpropagation scheme must be adapted for
factorization information flow between branches.
Organization. In the remainder of Section I, we present
related work. In Section II, we present our main contributions,
HNCPD and the Neural NCPD method. In Section III, we test
Neural NCPD on real and synthetic data, and offer some brief
conclusions in Section IV.

A. Related Work

In this section, we introduce NMF, hierarchical NMF, the
Neural NMF method, and NCPD, and then summarize some
relevant work.

Nonnegative Matrix Factorization (NMF). Given a non-
negative matrix X € Rgloxm, and a desired dimension
r € N, NMF seeks to decompose X into a product of
two low-dimensional nonnegative matrices; dictionary matrix

A € R and representation matrix S € RU"™ so that

X%AS:ZG,]‘@S]‘, 2)

Jj=1

where a; is a column (topic) of A and s; is a row of S.
Typically, r is chosen such that » < min{nj, ns} to reduce the
dimension of the original data matrix or reveal latent themes
in the data. Each column of S provides the approximation of
the respective column in X in the lower-dimensional space
spanned by the columns of A. The nonnegativity of the NMF
factor matrices yields clear interpretability; thus, NMF has
found application in document clustering [13], [14], [15],
and image processing and computer vision [2], [16], [17],
amongst others. Popular training methods include multiplica-
tive updates [2], [18], [19], projected gradient descent [20],
and alternating least-squares [21], [22].

Hierarchical NMF (HNMF). HNMF seeks to illuminate
hierarchical structure by recursively factorizing the NMF S
matrices; see e.g., [1]. We first apply NMF with rank (°) and
then apply NMF with rank 7(!) to the S matrix, collecting
the () subtopics into () supertopics. HNMF with £ layers
approximately factors the data matrix as

X~ A0gO
~ A 4D g0

Here the A() matrix represents how the subtopics at layer
i collect into the supertopics at layer ¢ + 1. Note that as
L increases, the error || X — A AM ... AE-1) g1
necessarily increases as error propagates with each step. As a
result, significant error is introduced when L is large. Choosing
O M ... p(£=1) in practice proves difficult as the number
of possibilities grow combinatorially.

Neural NMF (NNMF). In the previous work of [9], the
authors developed an iterative method for training HNMF that
uses backpropagation techniques to mitigate cascading error
through the layers. To form this hierarchical factorization, the
Neural NMF method uses a neural net architecture. Each layer
¢ of the network has weight matrix A(“). In the forward prop-
agation step, the network accepts a matrix S(“~1), calculates
the nonnegative least-squares solution

S = q(A(K), S(é_l)) = arg min ||S(é_1) — A(Z)SHF, ()
S>0

and sends the matrix S to the next layer. In the backprop-
agation step, the method calculates gradients and updates the
weights of the network, which in this case are the A matrices.
Nonnegative CP Decomposition (NCPD). The NCPD gen-
eralizes NMF to higher-order tensors; specifically, given an
order-k tensor X € RIL™X X" and a fixed integer 7,
the approximate NCPD of X seeks X; € RZ*" X, €
RZ2X7 ... X € RZX7 so that -

X%HXI)X27 )Xk]] (5)

The X, matrices will be referred to as the NCPD factor
matrices. A nonnegative approximation with fixed r is ob-
tained by approximately minimizing the reconstruction error
between X and the NCPD reconstruction. This decomposition
has found numerous applications in the area of dynamic topic
modeling where one seeks to discover topic emergence and
evolution [23], [24], [25]. Methods for training NMF models
can often be generalized to NCPD; for example, multiplicative
updates [26] and alternating least-squares [27].

Other Related Work. Other works have sought to mitigate
error propagation in HNMF models with techniques inspired
by neural networks [6], [7], [8], [5]. Additionally, previous
works have developed hierarchical tensor decomposition mod-
els and methods [28], [29], [30]. The model most similar
to ours is that of [12], which we refer to as hierarchical
nonnegative tensor factorization (HNTF). This model consists
of a sequence of NCPDs, where a factor matrix for one mode is
held constant, the remaining factor matrices produce the tensor
that is decomposed at the second layer, and this decomposition
is combined with the fixed matrix from the previous layer. We
note that, unlike our HNCPD model, HNTF is dependent upon
the ordering of the modes, and specifically which data mode

3) appears first in the representation of the tensor. We refer to
' ‘HNTF-i* as HNTF applied to the representation of the tensor
~ A0 201 £-1) g(£-1
~ ADAW . AT gD, where the modes are reordered with mode 7 first.
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Fig. 1: A visualization of a two-layer HNCPD model. Colored
edges of the order-three tensor, X, represent the three modes.

II. OUR CONTRIBUTIONS

In this section, we present our two main contributions.
We first describe the proposed hierarchical NCPD (HNCPD)
model, and then propose a training method, Neural NCPD, for
the model.

A. Hierarchical NCPD (HNCPD)

Given an order-k tensor X € R"t*--*"t HNCPD con-
sists of an initial rank-r NCPD layer with factor matrices
X1, Xs,..., Xk, each with 7 columns, and an HNMF with
ranks (9 (D) ... r(£-2) for each of these factors matrices;
that is, for each X; at layer ¢, we factorize X; as

X, ~X;=A0AW Al g2 (6)

where AZ(.E) has 7() columns; see Figure 1 for a visualization.
Thus, HNCPD consists of tensor approximations

X~ [AD. ADgED o A0 A= gl

? )

To access hierarchical structure between tensor topics at
each layer, we need to utilize information in the Sl-(f) matrices
for all modes. To simplify this hierarchical structure, we
develop an approximation scheme such that the hierarchical
topic structure for all modes is given by a single matrix.

For simplicity, we first consider the two layer case. We note

(X1 X =
Yo ((Ago)):,jl ®...0(AY), ,jk)
1<j1,... 5 <r(0)
3
T 0 0 0
where o, s = 5001 (1)1 0088 ) jap -+ (SE)

We refer to decomposition summands in (8) where j; = jo =

- = J} as vector outer products of same-index factor matrix
topics, and all other summands as vector outer products of
different-index factor matrix topics. To identify clear hierarchy,
we remove these different-index column outer products.

The approximation scheme computes matrices XEO) whose
columns visualize the desired 7(°) NCPD topics along each
mode while removing different-index column outer products
in the decomposition. We approximate the summation (8) by
replacing all summands that include column py of A,(CO) with a
single rank-one vector outer product, (A(O)) e ® (11(20)):’[)2 ®

(A,(C(le);,pz (A,(CO)):M. To minimize error introduced

by this approximation, we transform factor matrices AEO) for
i# kto gl(_o) by collecting into (AVEO));}I,2 the approximate
contribution of all columns of A in vector outer products
with (A", ,, in (8). That is, for 1 < py,p; < r® and
1<i<k let W, € R™”*™” be a matrix with

(Wi)Pl,PQ = Z Q1 oyl
Ji=p1,dk=p2,1<41,42,---jk <7 9
and A(O) A(O)W

After this transformation, we can identify the topic hierarchy
in the HNCPD from the S(O) matrix. We can generalize this
process to later layers ¢ by n0t1n§ that we can group the A;
matrices together, so X; ~ O)Agl) A(Z))S Thus,
we can treat this approximat1on as above, replacing AEO) with
the product AEO)AEI) . AEZ).

Like in HNMF, errors in earlier layers can propagate
through to later layers and produce highly suboptimal ap-
proximations. Challenges encountered during computation of
HNMEF are exacerbated in an HNCPD model. For this reason,
we exploit approaches developed for HNMF in [9] in our
training method Neural NCPD. Furthermore, the computation
of HNMF factor matrices for X; are independent from X
if the factorizations are applied sequentially; Neural NCPD
allows factor matrices in (6) for all other modes to influence
the factorization of a given mode.

B. Neural NCPD

Our iterative method consists of two subroutines, a forward-
propagation and a backpropagation. In Algorithms 1 and 2, we
display the pseudocode for our proposed method. Following
this learning process for the factor matrices in (6), we apply
the approximation scheme described in Section II-A to the
learned factor matrices to visualize the hierarchical structure
of the computed HNCPD model.

Algorithm 1 Forward Propagation

)k, L
procedure FORWARDPROP({ X }¥_, {Af )}1 irg 20
fori=1,--- ,k do
for {=0,---,L—2do
S,L.(é) — q(A,Ee), S,L-(z_l)) > see equation 4

Algorithm 2 Neural NCPD

Input: Tensor X € R™ X"2X--X"k cogt C'
X1, Xa,..., X, ¢ NCPD(X), initialize {A{"}5572
for iterations = 1,...,7 do
ForwardProp({X }l 0 {AEZ)}f % 22 o)
fori=1,---,k, £=0,---,L—2do N
AZ(-K) — (optimizer(AEe)7 8194?’”))
> anybﬁrst-order method

> Alg. 1
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Forward Propagation. The forward-propagation treats Ay)
matrices as neural network weights and uses Al(-e)
layer output to compute

I

and previous

g(Al" 81, (10)

where ¢ is as defined in equation 4 and SZ-(fl) = X, producing
the matrices SZ-(O), .751_(1272) for 1 < ¢ < k. The function
q(A®) §(=1) "ag a nonnegative least-squares problem, can
be calculated via any convex optimization solver; we utilize an
implementation of the Hanson-Lawson algorithm [31]. Finally,
we pass the Al(-e) and Si(g) matrices and X into a loss function,
which we differentiate and backpropagate.
Backpropagation. Here, we differentiate the cost function C'
with respect to the weights in each layer, the Al@) matri-
ces, and backpropagate. This method accepts any first-order
optimization method, denoted optimizer (e.g., SGD [32],
Adam [33]), but projects the updated weight matrix into the
positive orthant to maintain nonnegativity.

For the NCPD task, the most natural loss function is the
reconstruction loss,

C=|X- , Xi]llp- (1D

In order to encourage optimal fit at each layer, we also
introduce a loss function that we refer to as energy loss. We
denote the approximation of X at layer ¢ of our network as

X, =[A0..ADsD A0 AP g

II}hfo"

12)
Then, we calculate energy loss as
£-2
E = HX— [[leXQ’ T ’XkHHF + Z Hx - X€HF~ (13)
£=0

The derivatives of ¢(A, X) with respect to A and X are
derived and exploited to differentiate a generic cost function
for the hierarchical NMF model in [9]; here we summarize
these derivatives and illustrate how to combine them with
simple multilinear algebra for HNCPD.

Results in [9] show that, if <A<m> is the derivative of

C with respect to AZ(- 1) holding the S matrices constant, then

S
oC

£1<la<L—2
where Ui(el’&)’j relates C' to AZ(-ZI) through SZ-(ZZ) and Si(zl)

aC
DA

Ui(el’b)’j, (14)

1<g<r
ES

ac
85(22) ’

the derivative of C' with respect to Si(z2 holding S (f2+1)
, Si(l:*z) constant. The definition of Ui(Zl )7 s given

in [9] and utilizes, via the chain-rule, the partial derivative of

q(A%, 8571 for all £ €[4y, 4]

Example. The derivative of the previously defined, or other,

differentiable cost functions can be calculated using these

is defined column-wise (j), and depends upon

results of [9] and some simple multi-linear algebra. As an
example, we directly compute the backpropagation step for
the reconstruction loss function C' given in equation 11. Let
X () be the mode-¢ matricized version of X, and define

®E+1®E—1 @---@3(/1,

H=X,0... (15)

where ® denotes the Khatri-Rao product (see e.g., [11]). Then
we have that

S
oC S~ " -
(5265) =2 (a0 oy - Ko ym

T
<A§€j+1) . A§£—2)SZ(L—2)) ’
(16)

%

X)) e ar) - X,

and (85’%)
' (17)

With equation 14, these derivatives are sufficient to calculate
the partial derivative of C' with respect to any A matrix.

3

III. EXPERIMENTAL RESULTS

We test Neural NCPD on two datasets: one synthetic and
one collected from Twitter. The synthetic dataset is constructed
as a simple block tensor with hierarchical structure. The
Twitter dataset consists of tweets from political candidates
during the 2016 United States presidential election [34].We
also compare Neural NCPD to Standard NCPD, in which
we perform an independent NCPD decomposition at each
rank, and to Standard HNCPD, in which we perform NCPD
first on the full dataset, and apply HNMF to the fixed factor
matrices; here we sequentially apply NMF to the factor ma-
trices using multiplicative updates and do not update previous
layer factorizations as in Neural NCPD. In all experiments,
we use Tensorly [35] for Standard NCPD calculations and
to initialize the NCPD layer of our hierarchical NCPD, and
in Neural NCPD we do not backpropagate to this layer as
the initialization has usually found a stationary point. We
use Energy Loss (Eq. 13) for all experiments to encourage
fit at every layer. Because we do not backpropagage to the
initial factor matrices, the first term in (Eq. 13) is fixed. For
the Twitter experiment, we use the approximation scheme of
Section H A to recover the relationship b between the columns
of the A ) matrices and visualize the A ) matrices.

A. Experiment on Synthetic Data

We test the Neural NCPD method first using a synthetic
dataset. This dataset is a rank seven tensor of size 40 x 40 x 40
with positive noise added to each entry; we generate noise
as n = |g| where g ~ N(0,0?). To generate this dataset,
we begin with the all-zeros tensor and create two large
nonoverlapping blocks with value 0.75, and then overlay each
block with either two or additional blocks with value 2. Finally,
we add two long parallel tubes to three of the four additional
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TABLE I: Topic modeling loss and relative reconstruction loss, Ci, on the synthetic dataset for Neural NCPD, Standard
HNCPD, HNTF, Neural NMF, and Standard HNMF with two levels of noise over 10 trials. For HNTF we report runs on three
re-orderings of the modes the tensor, and for matrix methods we report results for flattening along each mode of the tensor.

Topic Modeling Loss Relative Reconstruction Loss
o2 =0.1 02 =04 0?2 =0.1 02 =0.4
Method Mode | 7—2 7—-4 4-2 | 7-2 7-4 4-2 | r=7 D=4 D=2 =7 0=g4 B =2
Neural HNCPD 0.043 0.042 0.042 | 0.087 0.087 0.081 | 0.119 0.252 0.563 0.454 0.508 0.714
Standard HNCPD 0.106  0.101  0.189 | 0.145 0.193  0.204 | 0.119 0.494 0.828 0.454 0.612 0.892
I 0.163 0.236 0.182 | 0.171  0.144 0.170 | 0.119 0.502 0.795 0.454 0.576 0.781
HNTF [12] 2 0.087 0.040 0.101 | 0.090 0.116  0.142 | 0.119 0.309 0.665 0.454 0.587 0.765
3 0.078  0.122  0.106 | 0.084  0.111  0.164 | 0.119 0.417 0.713 0.454 0.560 0.747
1 0.154  0.192 0.105 | 0.169 0.219  0.127 | 0.146 0.268 0.593 0.478 0.521 0.705
Neural NMF [9] 2 0.075  0.244  0.146 | 0.153  0.190  0.160 | 0.141 0.289 0.585 0.475 0.513 0.710
3 0.119  0.164 0.110 | 0.158  0.197  0.140 | 0.151 0.236 0.576 0.477 0.512 0.693
1 0.098  0.182 0.052 | 0.164 0.219 0.139 | 0.118 0.235 0.558 0.472 0.524 0.707
Standard HNMF 2 0.080  0.199  0.090 | 0.151  0.213  0.088 | 0.118 0.245 0.566 0.472 0.505 0.709
3 0.060 0.165 0.085 | 0.137  0.193  0.114 | 0.118 0.233 0.563 0.472 0.503 0.717

blocks with value 3, which meet at one edge, so that each
of these tubes matches the shape of the blocks that contain it
in one of the three modes. We display a partial visualization
of this tensor with two levels of noise at the left of Figure 2;
here we plot projections of all tensors (and all approximations)
along the third mode; that is, we construct a matrix with entries
equal to the largest entries of the mode-three fibers (see e.g.,
[11] for relevant definitions). For our synthetic tensor, the
two top left yellow blocks in this projection hide the true
structure of this figure, illustrating how construction of the
tensor obscures topic structure from matrix-based methods.

We add comparisons to Hierarchical NMF methods by
applying these methods to each of the three possible flattenings
of the tensor into a matrix along each of the three modes, as
described in [11]. The synthetic data tensor was constructed
in such a way that for each flattening along a given mode,
a part of the hierarchical structure is obscured. Specifically,
each of the three flattened tensors have matrix rank 6, whereas
the original tensor has CP rank 7. Thus, we expect that
HNMF methods applied to these matrices would produce an
incomplete hierarchical structure, even if they can approximate
the matrices with low reconstruction loss. We compare to
Neural NMF and Standard HNMF, in which we do not update
previous layer factorizations.

To evaluate the topic models produced by each method,
we introduce a metric that we refer to as topic error. Given
a matrix M, € RT'“)XT'U) that represents the underlying
hierarchical relationship between the (%) subtopics and the
r9) supertopics, and a matrix Mg € R xr? produced
by the HNCPD or HNMF method, our topic error measures
the difference between these matrices subject to permutation
of rows and columns. We normalize the rows of M, and
Meq and interpret each row ¢ as the association and learned
association, respectively, between subtopic ¢ and each of the
supertopics at rank (). Because the model approximations
are constant under identical row and column permutations of

successive layer factor matrices, we define the error as

1 .
min

1=70
T PLES, (), P2€5 ()

||Mrue®PlMpredP2Hl (18)

which penalizes deviation of rows of P Meq P> from those
of M. For Neural NCPD and Standard HNCPD, we use
the matrices S, S and A®. As we do not introduce
notation for HNTF due to space constraints, we simply note
that we compare to the same topic modeling metric applied to
factor matrices learned by this model. For Neural NMF and
Standard HNMF, we use Ay, A;, and A; As.

We run Neural NCPD, Standard HNCPD, HNTF, Neural
NMEF, and Standard HNMF on this synthetic dataset with two
different levels of noise added and with three layers with ranks
7, 4, and 2, and display the results in Figure 2 and Table
I; we present tAh; relative reconstruction loss Cp = || X —
[X1, X2, , Xk]l|r/|IX]||F, as well as topic modelling loss
between every two layers. For each level of noise, we display
the rank 7 approximation shared by all the NCPD methods,
and the rank 4 and rank 2 approximations produced by Neural
NCPD, Standard HNCPD, and HNTF. We also display the
corresponding topic modelling matrices used in calculating the
topic modelling loss for each method. For each of the topic
modelling matrices, we normalize along the small dimension
in order to interprate the matrices as probabilities that each
subtopic is associated to each of the supertopics.

From Table I, we see that the the topic modelling loss for
Neural NCPD is less than that of every other NCPD and NMF
model for all but one level of noise and pair of ranks, and the
reconstruction loss for Neural NCPD is no more than that of
Standard HNCPD and HNTF at each rank and level of noise.
As expected, though the NMF models produced, in most cases,
lower reconstruction loss than the NCPD methods, they did
not produced lower topic modeling loss than Neural NCPD,
suggesting that the improved reconstruction provided by NMF
comes at the cost of topic interpretability.
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B. Temporal Document Analysis

We next apply Neural NCPD to a dataset of tweets from four
Republican [R] and four Democratic [D] 2016 presidential
primary candidates, (1) Hillary Clinton [D], (2) Tim Kaine
[D], (3) Martin O’Malley [D], (4) Bernie Sanders [D], (5)
Ted Cruz [R], (6) John Kasich [R], (7) Marco Rubio [R], and
(8) Donald Trump [R]; this is constructed from a subset of
the dataset of [34]. We use a bag-of-words (12,721 words in
corpus) representation of all tweets made by a candidate within
bins of 30 days (from February to December 2016), and cap
each of these groups at 100 tweets to avoid oversampling from
any candidate; resulting in a tensor of size 8 x 10 x 12721.

In Table II, we display the relative reconstruction loss on
the Twitter political dataset for all models. We see that Neural
NCPD significantly outperforms Standard HNCPD, slightly
outperforms Standard NCPD while additionally producing a
hierarchical topic structure, and outperforms all HNTF-¢, for
which loss varies significantly based on the arrangement of the
tensor. In Figure 3, we show the topic keywords and factor ma-
trices of a rank 8, 4, and 2 hierarchical NCPD approximation
computed by Neural NCPD. Note that in the rank 8 candidates
mode factor and keywords we see that nearly every topic is

Standard HNCPD HNTF

Rank 4 Rank 2 Rank 2
Standard HNCPD

¥
¢

Fig. 2: (Top left) Data tensor X with two levels of noise. (Top right) ranks 7, 5, and 3 Neural NCPD, Standard HNCPD,
and HNTF approximations of X. (Bottom left) Underlying topic modelling matrix. (Bottom right) topic modelling matrices
discovered by Neural NCPD, Standard HNCPD, and HNTF, with rows and columns permuted to minimize topic error.

TABLE II: Relative reconstruction loss, Cr, on the Twitter
political dataset for Neural NCPD, Standard NCPD, Standard
HNCPD, and HNTF at ranks r = 8, r(© = 4, and r( =
2. For HNTF we display the loss given the three possible
arrangements of the tensor.

Method r=8 r@0 =4 O =2
Neural NCPD 0.834  0.883 0.918
Standard NCPD | 0.834 0.889 0.919
Standard HNCPD | 0.834  0.931 0.950
HNTE-1 [12] 0.834 0.890 0.927
HNTE-2 [12] 0.834 0.909 0.956
HNTE-3 [12] 0.834 0.895 0.942

identified with a single candidate. Topic two of the rank 8
approximation aligns with political issues (the Zika virus and
the Venezuelan government) rather than a single candidate,
and is temporally most present in May to July 2016 (during
the Zika outbreak and the Venezualan state of emergency).
Topics one and eight, corresponding to candidates Clinton and
Trump, are most present in the months immediately leading up
to the election. At rank 4, we see that topics one and four are
inherited from the rank 8 approximation, topic two combines
the rank 8 topics of candidates Trump and Clinton (final
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Rank 8 Topics Rank 4 Topics Rank 2 Topics

Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 1
trump senate martinomalley  berniesanders marcorubio trump trump
hillary florida hillaryclinton people teammarco hillary hillary
donald zika realdonaldtrump bernie vote donald vote
president venezuela campaigning must flsen people people
timkaine nicolasmaduro maryland change click vote donald

Topic 5 Topic 6 Topic 7 Topic 8 Topic 3 Topic 4 Topic 2

tedcruz johnkasich marcorubio crooked tedcruz senate tedcruz
cruz kasich teammarco hillary cruz florida cruz

ted ohio vote thank ted zika ted
internet john flsen great johnkasich venezuela johnkasich

choosecruz gov click clinton kasich nicolasmaduro kasich

- High  clinton m Feb Feb Clinton Feb

h/:ar I\:ar Kaine I\/:ar

pr pr | pr

May May O'Malley May

Jun Jun Sanders Jun

Jul Jul Cruz Jul

Aug Aug Kasich Aug

Sep Sep . Sep

Oct Oct Rubio Oct

- Low Nov Nov Trump Nov

12 345¢6 7 8 12345678 12 3 4 1234 1 2 12

Fig. 3: A three-layer Neural NCPD on the Twitter dataset at ranks ~ = 8, 7(*) = 4 and (!) = 2. At each rank, we display the
top keywords and topic heatmaps for candidate and temporal modes.
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Rank 8 Topics

Fig. 4: The Séo) (top) and Sél) (bottom) matrices produced
by Neural NCPD on the Twitter dataset.

candidates), and topic 3 combined the topics of candidates
Cruz and Kasich (Republicans). Meanwhile, the rank 2 NCPD
topics are nearly identical to rank 4 NCPD topics 2 and 3.

In Figure 4, we display the S?(,O) (top) and Sél) (bottom)
matrices produced by Neural NCPD on the Twitter dataset,
which illustrate how topics collect at each rank. We see topics
5 and 6 from the rank 8 factorization combine to form topic
3 at rank 4 and topic 2 at rank 2. This is expected as both
topics include keywords from Cruz and Kasich, who had high
presence in topics 5 and 6 respectively.

In Figure 5, we display the results of performing separate
NCPD decomposition of ranks 4 and 2 on the Twitter dataset.
We see that the results are similar to those of Neural NCPD,

Rank 4 Topics Rank 2 Topics
Topic 1 Topic 2 Topic 1
trump berniesanders trump
hillary people hillary
johnkasich bernie vote
ohio mustt people
kasich vote donald
Topic 3 Topic 4 Topic 2
crooked tedcruz tedcruz
hillary cruz cruz
thank ted ted
marcorubio internet johnkasich
great choosecruz kasich

Feb Feb

Clinton Clinton

Kaine
O'Malley
Sanders

Kaine
O'Malley
Sanders
Cruz Cruz
Kasich Kasich
Rubio Rubio

Trump

Trump
1 2 3 4

1234 1 2 12

Fig. 5: Ranks 4 and 2 Standard NCPD of the Twitter dataset.
At each rank, we display the top five keywords and candidate
and temporal mode heatmaps.

but these independent decompositions lack the clear hierar-
chical structure provided by Neural NCPD. While the topics
corresponding to Kasich and Clinton combine in the rank 4
NCPD, these candidates are present in different topics in the
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rank 2 NCPD; Neural NCPD prevents this breach of hierarchy.

IV. CONCLUSIONS

In this paper, we introduced the hierarchical NCPD model
and presented a novel method, Neural NCPD, to train this
decomposition. We empirically demonstrate the promise of
this method on both real and synthetic datasets; in particular,
this model reveals the hierarchy of topics learned at different
NCPD ranks, which is not available to standard NCPD or
NMEF-based approaches.
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