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Abstract: We explore the way different loop quantization prescriptions affect the formation of trapped

surfaces in the gravitational collapse of a homogeneous dust cloud, with particular emphasis on the

so-called µo scheme in which loop quantum cosmology was initially formulated. Its undesirable

features in cosmological models led to the so-called improved dynamics or the µ̄ scheme. While

the jury is still out on the right scheme for black hole spacetimes, we show that as far as black hole

formation is concerned, the µo scheme has another, so far unknown, serious problem. We found

that in the µo scheme, no trapped surfaces would form for a nonsingular collapse of a homogeneous

dust cloud in the marginally bound case unless the minimum nonzero area of the loops over which

holonomies are computed or the Barbero–Immirzi parameter decreases almost four times from its

standard value. It turns out that the trapped surfaces in the µo scheme for the marginally bound

case are also forbidden for an arbitrary matter content as long as the collapsing interior is isometric

to a spatially flat Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime. We found that in

contrast to the situation in the µo scheme, black holes can form in the µ̄ scheme, as well as other

lattice refinements with a mass gap determined by quantum geometry.

Keywords: loop quantum cosmology; loop quantum gravity

1. Introduction

One of the most important predictions of loop quantum cosmology (LQC) is the
resolution of the curvature singularity in the Planck regime by replacing it with a quantum
bounce [1–5]. The generic resolution of singularities has been obtained for isotropic, as
well as anisotropic spacetimes [6–10]. The techniques developed in LQC can be readily
applied to study the final state of the gravitational collapse as well, such as the gravita-
tional collapse of a homogeneous dust cloud whose interior spacetime is described by
the Lemaître–Tolman–Bondi (LTB) metric. An important question in the loop quantiza-
tion program, as in any other quantization strategy, is to find a preferred quantization
that is compatible with physical phenomena and rule out other possible prescriptions.
This exercise has been performed in the past in isotropic cosmological spacetimes, which
uniquely selects the so-called µ̄ scheme or the improved dynamics [11,12] put forward
in [3]. This question has also been asked regarding the static black hole spacetimes [13,14].
However, so far, there is no comparative exploration on this issue for gravitational collapse

using different quantization prescriptions1. Thanks to the isometry with the FLRW space-
time for the homogeneous collapse, the physical implications of the different quantization
prescriptions mathematically permitted in LQC can be examined in the context of gravita-
tional collapse. Though the results known in cosmological spacetimes directly apply to
such a simple gravitational collapse, we show that this exercise reveals a so far unknown
serious problem, which is absent in the cosmological setting with one of the main loop
quantization prescriptions.

Let us recall briefly two of the most well-known loop quantization prescriptions: the
µo scheme [16] and the µ̄ scheme [3]. While the µo scheme can follow naturally from loop
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quantum gravity (LQG), so far, it has been difficult to obtain the µ̄ scheme. Moreover,
in the cosmological setting, the µo scheme has several undesirable properties [11]. Firstly,
in the µo scheme, the maximum energy density at which the bounce occurs is found to
be dependent on the phase space variables whose initial conditions can be chosen such
that the bounce can happen at classical densities. Secondly, in the case of noncompact
manifolds, the dynamics depends on the choice of the fiducial cell used to define the
symplectic structure. Finally, in the presence of matter that violates the strong energy
condition, the universe recollapses at small spacetime curvatures. All of these undesirable
features arise from the way the µo scheme is defined where µo measures the edge length
of the holonomies and is put equal to the square root of the minimum area eigenvalue in
loop quantum gravity. These problems are absent in the µ̄ scheme, where one considers
the physical area of the loop to determine the value of the edge length µ̄. In the context
of the gravitational collapse of a dust cloud, the interior spatial manifold is compact, and
the strong energy condition is not violated. Hence, two of the problems of using the µo

scheme are eliminated. Though the problem of bounce density depending on phase space
variables remains, one can engineer a small set of initial data such that the bounce density
is in the Planck regime.

The strategy used in defining the µo and µ̄ schemes in LQC has led to the introduc-
tion of various quantization prescriptions for loop quantization of static (vacuum) black
hole spacetimes, which can be viewed as generalizations of the above schemes (see, for
example, [13,14,17–25]). Investigations into singularity resolution have been carried out
also for dynamical gravitational collapse spacetimes when a matter field is taken into

account2 [15,28–33]. These studies mainly focused on the µ̄ scheme and showed that the
central singularity is generically resolved and a black hole can form when its mass is above
some threshold value. In this manuscript, we studied the µo scheme in the simplest setting
where a homogeneous dust cloud is collapsing in the marginally bound case. In order to
highlight the main features of the µo scheme in the homogeneous gravitational collapse,
we also considered other loop quantizations due to different kinds of lattice refinements,
including the µ̄ scheme and others parameterized in [11]. We found that although the
central singularity is generically resolved and replaced with a bounce in all loop quanti-
zation schemes considered in this paper, regardless of the initial conditions and even the
matter content, the µo scheme cannot allow for the formation of the trapped surface as
long as the minimal eigenvalue of the area operator that directly determines the specific
value of µo is given by LQG. In contrast, for other loop quantizations, including the µ̄

scheme, the trapped surface can always form during the collapse of the dust cloud when
the dust mass is larger than a threshold mass whose order of magnitude is dependent on
the lattice refinement. We show that the trapped surface cannot form in the µo scheme even
for arbitrary matter, which is compatible with the isometry with an FLRW interior. For a
trapped surface to form in the µo scheme, the minimum nonzero eigenvalue of the area
operator or the Barbero–Immirzi parameter must decrease almost four times. Further, such
a value of a minimum nonzero area eigenvalue or the Barbero–Immirzi parameter would
violate the covariant entropy bound.

In the following, we first briefly review of the homogeneous dust shell model in
Section 2, including the classical Hamiltonian constraint and the matching conditions
between the interior spacetime and the exterior generalized Vaidya spacetime. In Section 3,
we first discuss the loop quantization of the interior collapsing spacetime in the µo scheme
and its physical consequences. Then, we proceed with other loop quantizations including
the µ̄ scheme and other possible lattice refinements. In this section, we concentrate on
the role of different loop quantizations on the formation of the trapped surface during
the nonsingular evolution of the dust cloud. Finally, we conclude our main results in
Section 4. Throughout this paper, we use the Planck units in which h̄ = c = 1, while
keeping Newton’s constant G explicit in our formulae.
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2. Preliminaries: The Classical Dust Shell Model

In this section, we briefly review the classical dust shell model of the gravitational
collapse in the marginally bound case using connection and triad variables. Our discussion
parallels the one in [15], which we refer the reader to for further details.

The dust shell model applies to a homogeneous evolution of the dust cloud, which
ignores the interactions between neighboring shells and thus leads to a collapse of all of the
dust shells at a uniform speed. As a result, the dynamics of the whole dust cloud can be
inferred from the dynamics of the outermost dust shell. The interior collapsing spacetime
is described by the classical LTB metric,

ds2
− = −dt2 +

(R′)2

1 + 2 f (x)
dx2 + R2dΩ

2, (1)

where x is the radial coordinate, R is the areal radius, and dΩ
2 = dθ2 + sin2 θdφ2 is

the angular part of the metric. The prime denotes the differentiation with respect to x.
The function f only depends on the radial coordinate x and stands for the total energy per
unit mass at x = const. Depending on the sign of f , there exist three distinct cases: the
marginally bound case with f = 0, the bound case with f < 0, and the unbound case with
f > 0. In all three cases, the classical dynamical evolution is governed by:

8πGρdust =
F′

R2R′ and Ṙ2 =
F

R
+ 2 f , (2)

where an overdot denotes differentiation with respect to the proper time t, ρdust denotes the
energy density of the dust cloud, and F/2G, which only depends on the radial coordinate
x, is the active gravitating mass enclosed within the dust sphere with radius R(x).

In the following, we only focus on the homogeneous collapse of the dust cloud in
the marginally bound case with f = 0. The homogeneous evolution of the dust cloud
implies that the energy density of the dust cloud only depends on the proper time, and
consequently, the areal radius takes the form R = xa(t). As a result, the interior LTB metric
(1) reduces to the one for a spatially flat FLRW universe. Correspondingly, the dynamical
equations in (2) are equivalent to the equation:

(

Ṙ

R

)2

=
8πG

3
ρdust. (3)

As already discussed in detail in [15], in terms of the areal radius R and its conjugate
momentum, the gravitational and the matter sectors of the Hamiltonian constraint of the
outermost dust shell are given respectively by:

Hshell
grav = − Ṙ2

bRb

2G
and Hshell

dust =
Fb

2G
, (4)

where the angular part in the Hamiltonian constraint has already been integrated and the
integration along the radial direction has been performed from the center of the dust cloud
x = 0 to its outermost shell x = xb (namely, the boundary surface), yielding Rb = a(t)xb

and Fb = F(xb). In order to loop quantize the dust shell model, it is a prerequisite to
express the above Hamiltonian constraint of the dust shell model in terms of the Ashtekar
variables, which was first analyzed in [34] for an inhomogeneous dust cloud and later
adapted to the shell model for a homogeneous dust cloud in [15]. In the dust shell model,
one can identify the radial component of the densitized triad with the square of the areal

radius, namely Rb :=
√

|Ex
b | with Ex

b
:= Ex(xb). Then, in terms of Ex

b and its conjugate

momentum Kxb
:= Kx(xb), which is half of the radial component of the extrinsic curvature,

the Hamiltonian of the outermost shell of the dust cloud can be written as [15]:
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Hshell
classical = − 2

G
K2

xb

√

|Ex
b | = −Edust, (5)

with Fb = 2GEdust, and Edust represents the mass of the dust cloud. Finally, one can
recover the classical Hamiltonian constraint in the cosmological setting for the dust interior
by identifying:

Kxb
=

c

2γ

(

3

4π

)1/3

, Ex
b = p

(

3

4π

)2/3

, (6)

in which Equation (5) reduces to the familiar form in terms of the connection c and the
triad p, namely:

Hshell
classical = − 3

√
pc2

8πGγ2
+ Edust, (7)

with {c, p} = 8πGγ
3 , and the volume of the dust interior is given by V = p3/2 = 4π

3 R3
b.

For a complete description of the gravitational collapse of the dust cloud, it is necessary
to match the interior collapsing spacetime with an exterior spacetime. Without loss of
generality, we chose the generalized Vaidya spacetime as the exterior spacetime since,
in general, the dust cloud acquires an effective nonvanishing pressure after quantum
gravity effects are taken into account. The generalized Vaidya spacetime in the advanced
Eddington–Finkelstein coordinates takes the form [35]:

ds2
+ = −

(

1 − 2GM(ν, Y)

Y

)

dν2 + 2dνdY + Y2dΩ
2, (8)

where M(ν, Y) stands for the Vaidya mass. Note that the interior spacetime (1) is glued to
the exterior (8) by requiring the continuation of the first and second fundamental forms at
the boundary surface Σb : x = xb. The matching conditions can be worked out explicitly by
computing the first and second fundamental forms at Σb from the interior and the exterior
metrics, yielding [36]:

Y
∣

∣

Σb
= Rb(t) = xba(t),

(

dν

dt

)∣

∣

∣

∣

Σb

=
R,x + xb ȧ

1 − F/R
, (9)

Fb(t) = 2M(ν, Y)G, M(ν, Y),YG =
F

2R
+ x2

baä. (10)

As a result, the boundary surface would become a trapped surface when 2GM(ν, Y) >
Rb or, equivalently, Fb > Rb. Using the second dynamical equation in (2), the criterion for
the formation of the trapped surface in the marginally bound case turns out to be Ṙ2

b > 1.
Moreover, from the detailed discussions on the expansion parameters given in [15], we
can identify a black hole for Ṙb < −1 in the contracting phase and a white hole for Ṙb > 1
in the expanding phase. Classically, these two branches are disjoint, and one inevitably
encounters a central singularity either in the past or in the future. However, after loop
quantization, the expanding and contracting branches can be connected via a bounce due
to quantum gravity effects, such as in the µ̄ scheme [15].

3. Loop Quantizations of the Dust Shell Model

In this section, we discuss the physical implications of the loop quantizations of
the dust shell model in the marginally bound case with emphasis on the question of
the formation of the trapped surfaces in the µo scheme. Our analysis was based on the
effective dynamics, which was proven via numerical simulations to faithfully capture the
underlying quantum dynamics for the states sharply peaked around the classical solutions
at late times [3,37–39].
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3.1. The µo Scheme

The loop quantization of the classical Hamiltonian constraint was carried out in terms
of the Ashtekar–Barbero connection and the densitized triad, which in the homogeneous
spacetime reduce to the connection c and the triad p. The nonperturbative quantum
gravity modification arises from the regularization of the field strength of the connection,
which leads to a quantum difference equation, whose dynamics can be faithfully captured
by an effective Hamiltonian constraint for the sharply peaked states. For the classical
Hamiltonian constraint of the dust shell model given in (7), the effective Hamiltonian
constraint in the µo scheme takes the form [2]:

H(µ̄o)
eff = − 3

√
p

8πGγ2µ2
o

sin2(µoc) + Edust. (11)

Using Hamilton’s equation for the triad p and the vanishing of the effective Hamilto-
nian constraint, one obtains:

(

Ṙb

Rb

)2

=
8πG

3
ρdust

(

1 − 8πGγ2µ2
o p

3
ρdust

)

. (12)

The quadratic term with a negative sign tells us that Ṙb/Rb vanishes at a maximum
energy density:

ρ
(µ̄o)
max =

27

(8πGγ2µ2
o)

3E2
dust

. (13)

Unlike the classical theory, the central singularity is avoided in the collapse of the dust

shell. Instead, the shell bounces at ρ = ρ
(µ̄o)
max . Note that the maximum energy density in the

µo scheme is not a constant, but depends explicitly on the mass of the dust cloud. When
the dust mass is taken to be macroscopic, the bounce takes place at a very small spacetime
curvature. This problem is well known in the cosmological setting for the µo scheme [2,11].
Our goal here was to investigate the formation of trapped surfaces. For this, it is sufficient
to note that the square of the velocity of the outermost shell is given by:

Ṙ2
b =

(

3

4π

)2/3 ṗ2

4p
=

(

3

4π

)2/3

x
(

1 − γ2µ2
o x
)

, (14)

where x is defined by:

x :=
8πGEdust

3
√

p
. (15)

On the other hand, from the effective Hamiltonian constraint (11), one can find:

x =
sin2(µoc)

γ2µ2
o

∈
(

0,
1

γ2µ2
o

)

. (16)

It is important to note that the above upper and lower limits for x are constant, which
do not depend on the triad p. As a result, combining (14) and (16), we found that at
x = 1

2γ2µ2
o
, the square of the velocity of the outermost dust shell attains its maximum value,

which turns out to be:

Ṙ2
max =

(

3

4π

)2/3

× 1

4γ2µ2
o
≈ 0.063 < 1, (17)

where we used µo = 3
√

3 ≈ 5.20 and γ ≈ 0.2375, which is fixed by the black hole
thermodynamics discussed in [40]. For these values of µo and γ, a trapped surface cannot
form in the µo scheme. Can one choose other values of γ and µo such that Ṙ2

b > 1? In order
to have a black hole form during the collapse, the factor γµo in the denominator of (17)
has to satisfy γµo . 0.31, which implies we need to decrease γ and/or µo. The freedom
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to choose a different µo depends on how µo is determined in the µo scheme. As discussed
in [2], µo is related to the minimal nonzero eigenvalue of the area operator denoted by
∆ via:

µo =
6∆

8πγℓ2
pl

, (18)

where ℓpl is the Planck length. Since ∆ is proportional to γ, decreasing the Barbero–Immirzi
parameter does not affect the magnitude of µo. If the value of µo needs to be decreased, then
one would have to change the way the minimum area of the loop over which holonomies
are computed is equated with the minimum nonzero area eigenvalues in LQG. If one keeps
the Barbero–Immirzi parameter unchanged, the value of µo has to decrease by four times.
On the other hand, if µo is kept fixed, one needs to decrease the Barbero–Immirzi parameter
by four times. However, the value of the Barbero–Immirzi parameter is determined by
the black hole entropy. Though the value γ ≈ 0.2375 is generally used in LQC [40], other
evaluations exist [41–44], and the lowest evaluated value is γ ≈ ln 3√

8π
≈ 0.12 [42]. Even if

one uses this value, the µo scheme does not allow a trapped surface formation. Interestingly,
in earlier works in LQC, ∆ was chosen to be the lowest nonzero eigenvalue 2

√
3πγℓ2

pl, but

its corresponding eigenstates were argued to not yield homogeneous classical metrics [45].
Despite a lack of physical justification to examine this, even using this value of µo along
with γ ≈ ln 3√

8π
≈ 0.12 does not allow the formation of trapped surfaces since one finds

γµo ≈ 0.32, which is still larger than the value (≈ 0.31). Further, such a change in the
value of the Barbero–Immirzi parameter is incompatible with the covariant entropy bound.
Here, we note that the value γ ≈ 0.2375, which is currently used in the literature, leads
to a maximum energy density in the µ̄ scheme, which almost saturates the covariant
entropy bound [46]. Any decrease in γ, as needed above, would not be consistent with
the covariant entropy bound in LQC. Since γ should be a universal constant in loop
quantizations, irrespective of whether one chooses the µo or µ̄ scheme, we concluded that
if trapped surfaces form in the µo scheme for the model discussed above, the covariant
entropy bound would be violated. In conclusion, irrespective of the initial conditions,
the black hole would not form during the collapse of a homogeneous dust cloud in the
marginally bound case for any possibly allowed values of µo and γ that have appeared in
the literature.

Remark 1. It should be noted that the result that no trapped surface can form in the marginally
bound case with the µo scheme can be extended to an arbitrary matter content. The effective
Hamiltonian constraint for any matter content can be expressed as:

H(µ̄o)
eff = − 3

√
p

8πGγ2µ2
o

sin2(µoc) +Hm, (19)

where Hm stands for the matter Hamiltonian. It is straightforward to check from the corresponding
Hamilton equations that one obtains the same expression for Ṙ2 as given in (14) with x := 8πGHm

3
√

p ,

which takes the values in the same range shown in (16). As a result, for any matter content,
the maximum velocity squared of the outermost shell of a collapsing cloud is still given by (17),
which implies no trapped surface can form during the collapse and expansion of the cloud, irrespective
of the initial conditions and the matter content.

3.2. The µ̄ Scheme

The effective dynamics in the µ̄ scheme is governed by the effective Hamiltonian
constraint, which takes the form [3]:

H(µ̄)
eff = − 3p3/2

8πGγ2λ2
sin2

(

λ
c√
p

)

+ Edust, (20)
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where λ =
√

∆, and the resulting dynamics was already discussed in detail in the context
of the gravitational collapse in [15]. The corresponding equation for the outermost shell
takes the form:

(

Ṙb

Rb

)2

=
8πG

3
ρdust

(

1 − ρdust

ρc

)

, (21)

where ρc =
3

8πGγ2λ2 ≈ 0.41m4
pl. As a result, the bounce in the µ̄ scheme takes place in the

Planck regime at a fixed maximum energy density, which does not depend on the initial
conditions. Furthermore, during the evolution of the dust cloud, the velocity squared of
the outermost dust shell is given by:

Ṙ2
b =

8πGE2/3
dustρ

1/3
dust

(48π2)1/3

(

1 − ρdust

ρc

)

. (22)

Therefore, at ρdust = ρc/4, Ṙ2
b attains its maximum value, which turns out to be:

Ṙ2
max =

3

4

(

GEdust

λγ

)2/3

. (23)

The above equation implies that in contrast to the µo scheme, the dust mass would
affect the formation of the trapped surface in the µ̄ scheme. To be specific, we found that
there exists a threshold dust mass [15]:

E∗
dust =

8λγ

3
√

3G
≈ 0.831mpl . (24)

When the initial dust mass is larger than E∗
dust, the trapped surface would form during

the collapse or the expansion of the dust cloud. On the other hand, if the initial dust mass
is lower than E∗

dust, no trapped surface can form during the nonsingular evolution of the
dust cloud.

3.3. Other Quantizations with Different Kinds of Lattice Refinement

In the literature, it has been sometimes argued that one can have quantization pre-
scriptions based on lattice refinements, which are a more general case of the µo and µ̄

schemes [47]. Though the physical derivation of such refinements remains unclear, their
implications have been discussed earlier in the cosmological setting, which rules all of
them out except the µ̄ scheme [11]. We considered these generalizations for the formation
of trapped surfaces. In this model, one deals with a generalized set of the phase space
variables, which are obtained from the (c, p) variables by a canonical transformation [11]:

Pg = cpn, g =
p1−n

1 − n
, (25)

where n is a constant, which carries the information of a particular refinement and can
take any values in the range [−1/2, 0]. The case n = 0 corresponds to the µo scheme, and
n = −1/2 corresponds to the µ̄ scheme. Following the ideas in loop quantization, one then
polymerizes the momentum Pg, leading to the effective Hamiltonian constraint [11]:

Heff = − 3p
1−4n

2

8πGγ2µ2
n

sin2(µncpn) + Edust, (26)
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where µn only depends on n. From the effective Hamiltonian constraint, one can derive the
corresponding Hamilton equations and a constraint equation for Rb, which takes the same
form as (21), but with a different maximum energy density given explicitly by:

ρmax =
3

8πGγ2µ2
n

(

8πGγ2µ2
nEdust

3

)

4n+2
4n−1

. (27)

As a result, only in the µ̄ scheme, the maximum energy density does not depend on
the dust mass, which agrees with the observations in [11]. For other lattice refinements
including the µo scheme, the maximum energy density is always determined by the dust
mass. On the other hand, it is straightforward to obtain the velocity squared of the
outermost shell of the dust cloud for an arbitrary n, which takes the form:

Ṙ2
b =

(

3

4π

)2/3

× 8πGEdust

3
√

p

(

1 − 8πGγ2µ2
nEdust

3p
1−4n

2

)

. (28)

Using the Hamiltonian constraint and the definition of the dust energy density, we
found the maximum of the velocity squared in terms of the dust mass and the lattice
refinement factor n,

Ṙ2
max =

(

3

4π

)2/3(8πG

3
Edust

)− 4n
1−4n

(

1 − 4n

2 − 4n

)

{

1

(2 − 4n)γ2µ2
n

}

1
1−4n

, (29)

which reduces to Equation (17) in the µo scheme and Equation (23) in the µ̄ scheme. In order
to form a trapped surface during the evolution of the dust cloud, one requires the maximum
value of the velocity squared larger than unity, which gives rise to the condition:

Edust ≥ E∗
dust =

3

8πG

(

4π

3

)− 1−4n
6n
(

2 − 4n

1 − 4n

)− 1−4n
4n

{

(2 − 4n)γ2µ2
n

}− 1
4n

. (30)

Except for n = 0 (the µo scheme), the right-hand side of the above equation gives the
threshold dust mass E∗

dust for an arbitrary choice of n. We show the dependence of the
threshold mass on the parameter n in Figure 1. Assuming that numerically, µn takes a
value of the same order as µo or λ, we see from the figure that when n increases from −1/2
to zero, the threshold mass increases rapidly and approaches infinity as n approaches zero.
Thus, we found that except in the µo scheme, one can always choose the dust mass so that
a trapped surface forms, which can be identified with a dynamical black hole or white hole.
It is important to note that even though there exist values of n except n = −1/2 that allow
the formation of the trapped surface, this does not imply their viability. These quantization
prescriptions would suffer from the dependence of energy density at the bounce on the
phase space variables, as a result of which the bounce density can be very small for a
gravitational collapse of a macroscopic dust cloud.
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is remarkable to note that only in the µo scheme, the trapped surface would not form
regardless of the dust mass, the initial radius, and even the matter content.

A few remarks regarding our main findings are in order. Firstly, the exclusion of
trapped surfaces in the µo scheme can also be argued using Bousso’s covariant entropy
bound. If this bound is satisfied, the minimal area gap cannot decrease to the value required
for the formation of the trapped surface in the µo scheme. Secondly, though we believe
that the simplest treatment of the dust collapse in the homogeneous setting does grasp
some generic features of the full quantum gravity effects, including the resolution of the
central singularity and the lower bounds on the dust mass for the formation of the trapped
surfaces in some loop quantizations, since the scale of any finite celestial bodies cannot be
compared with the universe, a homogeneous reduction that can be well justified for the
entire universe may not be sufficient to describe a realistic gravitational collapse. In other
words, to completely exclude the µo scheme, one still needs to further investigate the
inhomogeneous case where the energy density also changes in the radial direction and
the interactions between neighboring shells could in principle change the dynamics of the
outermost shell. Thirdly, even in the homogeneous case, we only considered the marginally
bound case of the dust collapse. Note that the marginally bound case could be matched to
the spatially flat interior, and it was straightforward to deal with it using effective dynamics
of the spatially flat isotropic model in LQC. However, an important question is whether
these results hold in the presence of spatial curvature, i.e., the bound and the unbound
cases. Since the spatial curvature can result in qualitatively distinct dynamics even in the
classical theory, its inclusion at the quantum level for the gravitational collapse of a dust
cloud can potentially give rise to a richer phenomenology. As an example, the bound
case corresponds to the positively curved interior, which brings in various nontrivialities
under loop quantization because of the interaction between the spatial curvature and
quantum geometry effects. It can be shown that for the bound case, the µ̄ scheme yields a
trapped surface for different loop quantizations, but the µo scheme fails to give a viable
macroscopic model of gravitational collapse, for the holonomy [48] and connection-based
approaches [49,50], because of the lack of the classical limit [51]. These are important
avenues to be investigated in the future for the bound and unbound cases and to check
the robustness of the results obtained in this manuscript. Finally, our analysis leaves open
the question of whether the generalizations of the µo and µ̄ schemes, which are applied
to the static black hole spacetimes, still remain valid for the collapsing spacetime. It will
be interesting to apply the arguments used in this manuscript to examine the viability of
such approaches.
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Notes

1 Recently, a question on similar lines was asked regarding a homogeneous collapse to understand the role of triad vs. gauge-

covariant fluxes, but only for a specific quantization prescription (the µ̄ scheme) [15].
2 For early works taking only inverse volume modifications into account, see [26,27]. These modifications only become relevant

near Planck lengths and are negligible compared to holonomy modifications [2,3]. In this work, we ignored the inverse volume

modifications.
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