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Abstract: Lack-of-fit testing is often essential in many applications of statistical/machine learn-

ing. Despite the availability of large-scale datasets, the challenges associated with model check-

ing when some resource budgets are limited are not yet well addressed. In this paper, we propose

a design-adaptive testing procedure to check a general model when only a limited number of

data observations are available. We derive an optimal sampling strategy to select a small subset

from a large pool of data, Structure-Adaptive-Sampling, with which the proposed test possesses

the asymptotically best power. Numerical results on both synthetic and real-world data confirm

the e↵ectiveness of the proposed method.

Keywords and phrases: Dimension reduction; Kernel smoothing; Large-scale dataset; Nonpara-

metric lack-of-fit tests; Optimal sampling; Semiparametric modelling.

1. Introduction

The emergence of big data area o↵ers statisticians both unprecedented opportuni-

ties and challenges. One of the key challenges is that directly applying statistical meth-
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SAS MODEL CHECKING 2

ods to super-large data with conventional computing approaches is prohibitive, which

calls for the development of new tools. Recently, statistical analysis and inference in

the large-scale dataset have drawn much attention, and some computationally scalable

methods have been proposed to reduce the computation and storage e↵ort from vari-

ous aspects of applications, such as the divide-and-conquer procedures (Battey et al.,

2018; Jordan et al., 2019; Zhao et al., 2019), subsampling strategies (Kleiner et al.,

2014; Wang et al., 2018) and on-line learning methods (Balakrishnan and Madigan,

2008; Schifano et al., 2016). In most of these works, one usually assumes a parametric

model, typically linear or logistic regression models. Therefore, it is necessary to check

the misspecification of a given regression model such that the subsequent planning,

analysis, and inference can proceed in a creditable way. Lack-of-fit checking for para-

metric and semiparametric models in a large-scale dataset setting is the focus of this

paper.

Suppose Y is the response and X = (x1, . . . , xp)> 2 R
p is the p-dimensional covari-

ate. We consider a general model in Xia (2009)

Y = G (X;�,g) + ", (1.1)

where g = (g1, . . . , gq)
> are unknown smooth functions of X, G(·) is known up to a

parameter vector �, and " is the random error with E (" | X)=0. This model includes

many parametric and semiparametric models as special cases, such as generalized ad-

ditive models (Hastie and Tibshirani, 1986), partially linear models (Speckman, 1988),

single-index or multi-index models (Hardle et al., 1993; Xia et al., 2002), and varying

coe�cient models (Hastie and Tibshirani, 1993). Specifically, the generalized additive
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models and single-index models admit the forms of Y = g1(x1)+g2(x2)+· · ·+gp(xp)+"

and Y = g(X>�) + ", respectively.

The cared model checking problem can be formulated as the following test

H0 : E (Y | X) = G (X;�0,g0) , for some �0 2 ⇥,g0 2 G,

H1 : E (Y | X) 6= G (X;�,g) , for any � 2 ⇥,g 2 G,
(1.2)

where G(X;�0,g0) is a pre-specified model with unknown �0 and g0, and ⇥ and G are

the parameter and function spaces, respectively.

In this paper, we aim to answer the question that “given a limited budget or

resources, how can a practitioner optimally use this budget to test (1.2) in a large-

scale dataset analysis”. There are usually two types of limited budgets. On one hand,

computing time is a typical budget, which is only able to process a small portion of

data. As model checking is very likely one of the most preliminary steps in the data

analysis, practitioners would be reluctant to use much computational e↵ort. Several

lack-of-fit tests for small and moderate sample sizes have been proposed. Among

them, the nonparametric smoothing-based tests and their variants, such as Hardle and

Mammen (1993), Zheng (1996) and Fan and Huang (2005), are very popular due to

their e�ciency and flexibility; see González-Manteiga and Crujeiras (2013) and Guo and

Zhu (2017) for some comprehensive reviews. However, the computational complexity

and large memory of those methods are typically quadratic in the sample size, which

may greatly hamper their applicability to large-scale dataset applications. On the other

hand, despite the availability of large-scale datasets, in many applications, collecting

responses or labels for all data points is impossible due to measurement constraints
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SAS MODEL CHECKING 4

or costs (Wang et al., 2017; Ren et al., 2020), especially at the very beginning of the

data processing. As a result, these constraints often require us to select a small subset

from a large pool of given design points X and use the limited budget to obtain the

corresponding responses Y . For example, in the problem of speech recognition, one may

easily get plenty of unlabeled audio data but the accurate labeling of speech utterances

is extremely time-consuming and requires trained linguists. Annotation at the word

level can take ten times longer than the actual audio (Tur et al., 2005).

When proven statistical methods are no longer applicable due to the two types of

limited resources, a natural and appealing method to extract useful information from

data is the subsampling method (Kleiner et al., 2014; Ma and Sun, 2015). Many existing

pieces of research on subsampling take uniform samples from the full data. However,

a nonuniform sampling strategy may achieve better performance. For example, in the

estimation problem of linear models, Ma et al. (2015) and Ma and Sun (2015) put

forward a so-called algorithmic leveraging with a nonuniform sampling probability to

draw a more informative subsample dataset. Some other recent developments in this

trend include Wang et al. (2019); Yao and Wang (2019); Yu et al. (2020) and Ai et al.

(2021). However, the challenges associated with designing an e�cient testing procedure

for model checking are not yet well addressed.

In this paper, we propose a new design-adaptive testing procedure for the prob-

lem (1.2) when a computation or measurement budget is imposed. The main idea is

to select the most informative sample points from the full data, and then construct

a computationally tractable test statistic based on the observations of those select-
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ed points. We derive an optimal sampling strategy, the Structure-Adaptive-Sampling

(SAS), with which the proposed test possesses the asymptotically best power. An

initial step is needed to get raw estimations of the quantities involved in the opti-

mal design criterion, and the estimated designs with plug-in estimators are shown to

perform equally to the theoretical oracle one from asymptotic viewpoints. The SAS

procedure addresses one key question in a general semiparametric framework: how to

use the limited resources to implement e�cient lack-of-fit tests. Our simulation results

clearly demonstrate the superiority of the proposed procedure over existing methods.

The remainder of our paper is structured as follows. In Section 2, we present

the construction of the optimal sampling designs along with a detailed discussion on

asymptotic justifications. Some practical guidelines are given in Section 3. Numerical

studies and a real-data example are conducted in Section 4. Section 5 concludes the

paper, and theoretical proofs are delineated in the Appendix.

2. Methodology

Assume that there are total N available data points or observable subjects X =

{Xa
j}Nj=1 2 R

p. Given a measurement constraint, only n samples S = {Xi, Yi}ni=1 can

be obtained, or similarly the computational budget only allows us to deal with one

dataset with size n, where Yi is the response and n ⌧ N . For the dataset S, it is

assumed that we independently sample Xi from X with replacement and then observe

its corresponding response Yi. We start with the test construction on S given the full

data.
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2.1 Test construction

Denote that the residual ✏ = Y �G (X;�0,g0), and then test problem (1.2) amounts

to assess whether E (✏ | X) = E {Y �G (X;�0,g0) | X} is equal to zero or not. A

standard way is to construct a test statistic based on estimated E (✏ | X) with fitted

residuals under the null hypothesis. See, for example, Hardle and Mammen (1993);

Stute et al. (1998); Dette (1999); Fan et al. (2001). However, due to the di�culty

in nonparametric estimation of the function E (✏ | X) or E (Y | X) when p > 2, the

e�ciency of those methods drops rapidly as the dimension p of the covariates increases.

To this end, we consider a structured alternative model as E (✏ | X) = M
�
✓>X

�
,

where ✓ 2 R
p is one projection direction with k✓k2 = 1 and M(·) is an unknown

smooth function. Thus, the alternative E (✏ | X) 6= 0 is equivalent to E
�
✏ | ✓>X

�
6= 0.

It is also clear that E
�
✏ | ✓>X

�
= 0 due to E (✏ | X) = 0 under the null hypothesis.

Then, test problem (1.2) can be formulated to the following one

H0 : E
�
✏ | ✓>X

�
= 0 versus H1 : E

�
✏ | ✓>X

�
= M(✓>X) 6= 0, (2.1)

where M(✓>X) 6= 0 for some ✓>X 2 ⌦ ⇢ R. Intuitively, E
�
✏E
�
✏ | ✓>X

� 
is a good

choice to measure the derivation between H0 and H1. Under H0, E
�
✏E
�
✏ | ✓>X

� 
= 0,

while under H1, E
�
✏E
�
✏ | ✓>X

� 
= E

�
E

2
�
✏ | ✓>X

� 
> 0. Then, our test can be built

by E
�
✏E
�
✏ | ✓>X

� 
, which is a popular quantity in the context of model specification

test (Zheng, 1996; Guerre and Lavergne, 2005).

Given the projection direction ✓, a nonparametric estimation of E
�
✏E
�
✏ | ✓>X

� 
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based on S = {Xi, Yi}ni=1 is

Vf =
1

n(n� 1)

nX

i=1

nX

j 6=i

b✏ib✏jKh (!i � !j)p
f (!i)

p
f (!j)

,

where !i = ✓>Xi is followed by a density f(·), b✏i = Yi � G(Xi; b�, bg) are the fitted

residuals, b� and bg are respectively estimates of � and g, and Kh(·) = K (·/h) /h

denotes a one-dimensional kernel function with a bandwidth h. For notation simplicity,

we only emphasize the dependence of test statistic Vf on density f(·). Under some mild

conditions, it can be shown that Vf is asymptotically normal under H0 (Zheng, 1996;

Guerre and Lavergne, 2005), that is

Tf := nh1/2Vf/�V
L�! N (0, 1), (2.2)

where �2
V = 2�4|⌦|

R
K2(u)du is the asymptotic variance under null, and |⌦| is the

cardinality of ⌦ and �2 = E(✏2 | ✓>X). The arrow
L�! should be understood as

convergence in distribution. A large value of Tf would lead to rejection of the null.

The use of ✓ plays an important role of dimension reduction in the test statistic Vf .

In practice, ✓ can be either user-specified or estimated via some dimension reduction

techniques. Detailed discussions on the determination of ✓ can be found in Section 3.

Similar projection-based tests have been proposed in the literature. For example, Fan

and Huang (2001) reduced the dimension based on X alone; Xia (2009) proposed to

project the fitted residuals along a direction that adapts to the systematic departure

of the residuals from the hypothetical pattern with cross-validation in the single-index

model. A more related work is Guo et al. (2016) in which they checked the single-index

models based on a joint estimation of the dimension reduction matrix. Other works

include Zhu et al. (2017) and Tan et al. (2018).
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2.2 Optimal sampling strategy

To implement the proposed method, it is important to specify the sampling density

f(!). The conventional choice is to let f(!) as uniform distribution (Stute and Zhu,

2002; Ferragut and Laska, 2012; Guo et al., 2016), which corresponds to the simple

uniform sampling. However, the uniform sampling may not be optimal so that the in-

formative subsamples are not selected. Under certain local alternatives, the asymptotic

distribution of Tf is also normal but with a positive mean, which depends on f(!). It

implies that if an appropriate sampling density f(!) can be chosen, the power of this

test will be maximized.

Next, we will provide a result that sheds lights on how to determine the opti-

mal sampling density. Firstly, we need the following to facilitate the derivation. Let

(�⇤,g⇤) = argmin(�,g)2⇥⌦G E {Y �G(X;�,g)}2. Under H0, it is clear that (�⇤,g⇤) =

(�0,g0).

Assumption 1. (Moments condition) For  = 4 + � with small enough � > 0, E(" |

X)  C1 < 1, where C1 > 0 is a fixed constant.

Assumption 2. (Density function) The density function of !, f(!), is continuous on

the compact support ! 2 ⌦, satisfying 0 < inf!2⌦ f(!)  sup!2⌦ f(!) < 1.

Assumption 3. (Kernel function) K(·) is a continuous, nonnegative, bounded, and

symmetric kernel function with a bounded first order derivative.

Assumption 4. (Model) The semiparametric model can be approximated by first order
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Taylor expansion

G(X; b�, bg) = G(X;�,g) +rG>
� (X; e�, eg)(b� � �) +rG>

g (X; e�, eg)(bg � g),

where rGg(X;�,g) =
�
rGg1(X;�, z), . . . ,rGgq(X;�, z)

 >
with rGgk(X;�, z) =

@G(X;�, z)/@zk. Here egk(⌫) lies between gk(⌫) and bgk(⌫), k = 1, . . . , q, and e� lies

between � and b�. And rG�(X;�,g) = @G(X;�,g)/@�. Furthermore, rG� and rGg

are Lipschitz continuous with 0 < max�2⇥,g2G
�
E {rG�(Xi;�, gk)}2 ,E {rGg(Xi;�, gk)}2

�


C2 < 1, i = 1, . . . , n, k = 1, . . . , q with some positive constant C2.

Assumption 5. (Asymptotic representation) Suppose

���b� � �⇤
��� = Op(n�1/2). As-

sume that all the link functions g1, . . . , gq own a common compact support �, and their

estimators admit the following asymptotic expansions

sup
⌫2�

�����bgk(⌫)� g⇤k(⌫)�Rk(⌫)b
2 � n�1Hk(⌫)

nX

i=1

�k(Xi)Qb (uki � ⌫) "i

����� = Op(n
�1/2),

for k = 1, . . . , q, where uki is a measurable function of Xi, R(·), H(·), and �(·) are

bounded continuous functions. For some positive integer r � 2, the rth derivative of

gk(·) is bounded. Qb(·) is a bounded, symmetric and r order continuously di↵erentiable

kernel function with smoothing parameter b, satisfying
R
Qb(u)du = 1,

R
uiQb(u)du =

0, and
R
urQb(u)du 6= 0 for 0  i < r, b ! 0 and nb ! 1 as n ! 1.

Assumption 6. (Bandwidth) The testing bandwidth h satisfies h ! 0, nh ! 1, and

nh1/2b2r ! 0 as n ! 1 with positive integer r � 2.

Remark 1. Assumptions 1�3 are quite standard in kernel-based methods, though

some of them may not be the weakest possible. For instance, we only require f(·)
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to be Lipschitz continuous and bounded away from zero if some other conditions are

imposed. Assumption 4 is a regularity condition on the semiparametric model. This is

reasonable because we cannot expect that our procedure would work well if the G(·) is

not in a regular form. The formulation is quite mild and can be satisfied by all the com-

monly used semiparametric models mentioned before. Assumption 5 sets theoretical

requirements for the estimates of the model, and is fulfilled by most semiparametric es-

timation methods and models, including the partially linear model (Speckman, 1988),

the additive model (Horowitz and Mammen, 2004), the varying coe�cient model (Fan

and Zhang, 1999) and the single-index model (Ichimura, 1993) under the condition that

the nonparametric part g is twice continuously di↵erentiable function on ⌦; see also

Xia (2009) for similar discussions. Assumption 6 gives the bandwidth requirements

for implementing the test Vf with asymptotic normal calibration. The optimal rate of

nonparametric estimation n�1/5 appears to be not allowed if we set b = h for simplicity

and consider the case r = 2. This is very common in the problem of nonparametric

specification tests; certain under-smoothing is necessary (see Fan et al., 2001). ⇤

Consider the local alternative model as Y = G(X;�,g) + �nl(!) + " and the

corresponding local alternatives become

H1n : M(!) = �nl(!) for ! 2 ⌦, (2.3)

where M(!) = E
�
✏ | ✓>X = !

�
and �n ! 0 as n ! 1, l(!) is continuously di↵eren-

tiable on ⌦ satisfying E {l2(!)} < 1 and bounded away from zero almost everywhere.

Under (2.3), �nl(!) characterizes the model di↵erence from the null to alternative,

which goes to zero as n ! 1. Then, we have the following result.
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Theorem 1. Suppose Assumptions 1�6 hold. Under the local alternatives (2.3) with

�n =
�
nh1/2

��1/2
, the test based on Tf reaches its asymptotic best power if the sampling

density f(!) / M2(!).

Under the local alternative (2.3), E(Tf ) = Ef {l2 (!)} /�V and the asymptotic

variance �2
V is irrelevant with f(!) and l (!), so an explicit power expression, depending

on Ef {l2 (!)}, can be obtained. Theorem 1 enlightens us to construct a locally most

powerful test by choosing the sampling distribution f(!) as a linear function of M2(!).

A similar optimization technique, Cauchy’s inequality, is adopted in Wang et al. (2018)

to derive the nonuniform sampling strategy under some optimality criterion, but it is

an estimation problem and its focus is to estimate the sampling probabilities when

the whole data is available which is quite di↵erent with our testing procedure. In our

work, we only need to sample the data point X with sampling density f(·) and then

observe its corresponding response Y . Since the sampling density is related to the

underlying model structure, we term this strategy as the Structure-Adaptive-Sampling

(SAS) procedure.

2.3 Estimation of optimal density f(·)

The optimal sampling density depending on M(!) contains the unknown function

l(!) in Theorem 1, so an exact f(!) is inapplicable directly for practical implementa-

tion. Hence, it is necessary to obtain raw but informative estimates by a pilot study.

Then an approximately optimal sampling plan can be achieved. Assume we have the

dataset S0 = {X0i, Y0i}n0

i=1 for pilot study, where n0  n and {X0i}n0
i=1 are uniformly
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sampled from X . Given ✓, let {b✏0i}n0

i=1 be the fitted residuals based on S0, then a

consistent estimator of M(!) is

cM(!) =

n0P
i=1

Khf
(!0i � !)b✏0i

n0P
i=1

Khf
(!0i � !)

, (2.4)

where !0i = ✓>X0i and hf is a pre-specified bandwidth which satisfies hf ! 0 and

n0hf/ log n0 ! 1 as n0 ! 1. By Theorem 1, the optimal distribution f(!) can be

estimated by

bf(!) = max{⇠n0 ,cM2(!)}
R
max{⇠n0 ,cM2(!)}d!

, (2.5)

where ⇠n0 is fixed as O {(log n0)c/(n0hf )} for c > 1. The use of ⇠n0 in (2.5) is to

ensure that the estimated density is bounded away from zero, especially under H0

where M(!) = 0 for any ! 2 ⌦. By our theoretical results given in the Appendix,

sup! |M(!)| = op(⇠
1/2
n0 ) under H0, and further bf(!) is degenerated to a uniform distri-

bution with probability tending to one, i.e., bf(!) = 1/ |⌦|.

The next result shows that the e↵ect of replacing M(!) by appropriate estimators

can be asymptotically negligible and the e�ciency of the locally most powerful test

can still be achieved under some mild conditions.

Theorem 2. Assume Assumptions 1�6 and (n0/n)(h2
f/h)

1/2/(log n0)c ! 1 all hold.

Under the local alternatives H1n (2.3), the power function of our SAS test with bf(!)

can be approximated by

⇧f = �

✓
{
Z

l4(!)d!/

Z
l2(!)d!}/�V � z↵

◆
,

where �(·) denotes the cumulative distribution function of standard normal, and z↵ is

the corresponding upper-↵ quantile.
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Note that Ef {l2(!)} is the alternative mean of test statistics Vf and satisfies

Ef {l2(!)} 
R
l4(!)d!/

R
l2(!)d!. Thus, using the estimated density bf(!) in (2.5)

yields a more powerful test.

Furthermore, a more compelling result is that the optimal sampling strategy could

be more prominent when the signal function M(!) exhibits a sparse pattern. Consider

the following sequence of “singular” local alternatives

H
0
1n : M(!) = �0nl(!) for ! 2 ⌦n, (2.6)

where ⌦n ⇢ ⌦ satisfying |⌦n| ⇡ an with an ! 0 being a deterministic sequence and

l(!) is bounded away from zero on ⌦n almost everywhere. The main feature of these

“singular” local alternatives is that they have narrow spikes and change rapidly as

the sample size n increases. In other words, the alternatives in (2.6) can be regarded

as sparse/high-frequency alternatives, while the alternatives in (2.3) as dense/low-

frequency alternatives.

Corollary 1. Consider the “singular” local alternative (2.6) with �0n = (nh1/2a1/2n )�1/2
,

an/h ! 1 and inf!2⌦n l(!) � lmin > 0. Suppose the conditions in Corollary 2 hold. If

(n0/n)(h2
f/h)

1/2/
n
a1/2n (log n0)c

o
! 1, the asymptotic power of our sampling test with

bf(!) is not small than � (µ(f,⌦n)/�V (f,⌦n)� z↵), where µ(f,⌦n) = |⌦n|�1/2 l2min and

�2
V (f,⌦n) = 2�4 |⌦n|

R
K2(u)du.

The condition an/h ! 1 in Corollary 1 ensures that our test could work well if the

sparse signal size of ⌦n goes to zero slower than h as n increases. The advantage of the

proposed test under (2.6) is that the conditions imposed on estimating bandwidth hf

are more relaxed in Corollary 1. That is if an = h1/2, the optimal rate of nonparametric
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bandwidth hf = O(n�1/5
0 ) can be allowed as long as the testing bandwidth h satisfies

nh3/4/n4/5
0 ! 0.

2.4 The SAS-bsed testing procedure

Hence, our procedure for model checking is summarized as follows.

Algorithm 1 Model checking via structure-adaptive-sampling
Step 1 (Initialization) Specify K(·), n0, n, hf , h and ✓;

Step 2 (Pilot study) Estimate model (1.1) based on S0 = {X0i, Y0i}n0

i=1 and compute

the fitted residuals {b✏0i}n0
i=1, where X0i’s are uniformly sampled from X ;

Step 3 (Sampling) Obtain bf(!) by (2.5) with cM(!) in (2.4) based on S0 and {b✏0i}n0
i=1;

sample n data points Xi’s with bf(!) from X and get the corresponding Yi’s as

S = {Xi, Yi}ni=1;

Step 4 (Test) Compute {b✏i}ni=1 based on S, and then build T bf by (2.2); further,

reject H0 if T bf > z↵.

To generate n samples at Step 3, we could estimate the sampling probabilities by

(2.5) for N possible data points in X and then draw n sampling points {Xi}ni=1 by

a multinomial distribution. This sampling procedure is fast to implement with the

computational complexity O(Nn0hf ). Note that the computational complexity for the

estimation of G(·) is generally linear in the sample size, thus the computing time of

the pilot study is O(n0). In this way, the computation of our SAS testing procedure is

O(n0 +Nn0hf + n2h), where O(n2h) is the complexity for computing T bf in Step 4.

We use a numerical example to demonstrate the performance of our SAS test. We
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Scenario I Scenario II Scenario III
IID

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0
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δ
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we

r
method SAS US0 US OS

Figure 1: Empirical sizes and powers (%) for the tests with di↵erent sampling methods

under Scenarios I�III when errors follow N (0, 1) independently and the design points

X are from N (0, Ip). The gray dotted line is the significance level ↵ = 0.05.

sample n = 1000 data points and n0 = 300 pilot samples from X with size N = 105 and

consider three alternative models. See Scenarios I�III in Section 4 for details. Figure 1

compares the power curves of our proposed procedure, SAS, with three other sampling-

based tests. They di↵er only in their sampling strategies. To be specific, OS uses the

so-called ”oracle” density M2(!)/
R
M2(!)d! as if M(!) is known, and the US0 and

US use uniform distribution to sample n and n+ n0 for building Tf respectively. The

pilot study (if needed) for all methods is based on n0 observations. The improvement

of our adaptive-sampling-based test over US0 and US test is clear. The OS approach

has superior performance as expected, but the di↵erence between SAS and OS becomes

smaller than US0 and the US as signal � increases.

In the foregoing discussion, we assume the alternative model as E (✏ | X) = M(✓>X) 6=

0 for any vector ✓. In fact, we cannot expect this model holds exactly, and a more re-
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alistic assumption is that E (✏ | X) = MB(B>X), where B is a p ⇥ d matrix with

unknown d � 1. In such a situation, we may work with a misspecified model.

However, as long as the alternative satisfies E
�
MB

�
B>X

�
| ✓>X

 
6= 0, the pro-

posed test would still work well and its power function can be verified by ⇧MB =

� (µ(f,B,✓)/�V (B,✓)� z↵) , where �2
V (B,✓) = 2�4| |

R
K2

d(s)ds with B>X 2  and

a d-dimensional kernel function Kd(·), and µ(f,B,✓) = Ef

⇥
E
�
MB(B>X)

 
| ✓>X

⇤2
.

Note that if E
�
E (✏ | X) | ✓>X

 
is a function of ✓>X, say d = 1, then ⇧MB reduces to

the one given in Theorem 2.

3. Practical guidelines

In this section, several practical issues on implementing the SAS procedure are

discussed, including the choices of projection direction and bandwidths as well as the

determination of n0.

3.1 Determination of ✓

One key in the implementation of the SAS procedure is the selection of the projec-

tion direction ✓. Actually, one can assign a fixed ✓ based on practical requirements or

estimate it via some dimension reduction techniques. For example, we want to check

whether there might be a nonlinear relationship between the response Y and covari-

ate x1 when the null hypothesis is a linear function. In this case, we can directly set

✓ = (1, 0, . . . , 0)>.

In general, we can obtain a reliable estimation of ✓ in the pilot study with some

techniques on su�cient dimension reduction (SDR). To identify the dimension reduc-
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tion subspace, the literature contains many proposals, such as classical sliced inverse

regression (SIR, Li, 1991), sliced average variance estimation (SAVE, Cook and Weis-

berg, 1991), directional regression (DR, Li and Wang, 2007) and likelihood acquired

directions (Cook and Forzani, 2009). Specifically, Xia et al. (2002) proposed the min-

imum average variance estimate (MAVE) to estimate the reduction space with fewer

regularity conditions on the covariates X.

Next, we demonstrate the asymptotic properties of the test statistics T bf when ✓ is

estimated in the pilot study (Step 2 in Algorithm 1).

Assumption 7. (Projection direction) The estimated projection direction with a sam-

ple of size n0 satisfies b✓ � ✓ = Op(n
�1/2
0 ) as n0 ! 1, where

✓ = argmin
↵:k↵k2=1

E
�
✏� E(✏ | ↵>X = !)

 2
.

Assumption 7 is very mild and typically holds for most of the SDR methods.

Theorem 3. Suppose Assumptions 1�7 and n0h3/2 ! 1 hold. The variance �2
V can be

consistently estimated by b�2
V = {n(n� 1)}�1 2h

Pn
i=1

Pn
j 6=i b✏2ib✏2jK2

h (b!i � b!j)
n
bf(b!i) bf(b!j)

o�1

.

We have

(i) Under the null hypothesis H0 (2.1), T bf
L�! N (0, 1);

(ii) Under the local alternative H1n (2.3) with (n0/n)(h2
f/h)

1/2/(log n0)c ! 1 and

�n =
�
nh1/2

��1/2
, T bf � {

R
l4(!)d!/

R
l2(!)d!}/b�V

L�! N (0, 1).

Theorem 3 can be viewed as a counterpart of the asymptotic normality result given

in Zheng (1996) and Guerre and Lavergne (2005) as shown in (2.2), by generalizing a
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parametric null specification model to a much more generic semiparametric one (1.1).

Due to the involvement of both the estimations of ✓ and G(·), the technical details of

our theory are not straightforward and cannot be obtained from those existing works.

Theorem 3 implies that our SAS procedure could achieve the best power with

b✓ from asymptotic viewpoints and the results in Theorem 2 still can achieve. It is

further verified by the numerical comparisons over a wide range of values of ✓ in the

Supplementary Material Table S1. In this paper, we use the MAVE method (Xia

et al., 2002) to estimate ✓ in the pilot study due to its easy implementation with the

R package MAVE.

3.2 Bandwidth selection

Like many other smoothing-based tests, the performance of the SAS test possibly

depends on the bandwidth h in the test statistic T bf and the hf in density estima-

tor (2.4). By Corollary 1, the optimal hf for estimator cM(!) can achieve the order

O(n�1/5
0 ). Thus, we take the empirical bandwidth formula hf = 0.5sd(!0)n

�1/5
0 as a

rule of thumb, where sd(!0) denotes the sample standard deviation of !0 = {✓>X0i}n0
i=1.

Di↵erent from the estimating bandwidth hf , it is widely known that the selection

of bandwidth h for optimal testing power is an open problem (Hart, 1997; Stute et al.,

2005). Asymptotically, a range of bandwidths that satisfy Assumption 6 will retain the

consistency of the test, while a larger bandwidth generally results in a better power in

the view of Corollary 2. However, in practice, the condition h ! 0 will restrict h not

too large, and the condition nh3/4/n4/5
0 ! 0 will ensure that h cannot be too small.

Based on our numerical results, the observed significance changes only mildly over a
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wide range of value of h, and we recommend h =
�
hf (n0/n)1/5

 2+⌘
with some ⌘ > 0

so that the condition (n0/n)(h2
f/h)

1/2/{a1/2n (log n0)c} ! 1 in Corollary 1 is roughly

valid. This choice works well for a wide range of models and pilot sample sizes as

shown in Section 4.

3.3 Choices of sample sizes

In practice, we could uniformly sample n0 data points as S0 for the pilot study.

Note that there is a trade-o↵ in the selection of n0 between estimation e�ciency and

computational complexity. Intuitively, a larger n0 would attain more accurate estima-

tions of the density function bf(·) and projection direction ✓ (if needed), but involves

more computational burden. To satisfy our theoretical requirements, we could roughly

consider n0 = bn3/5(log n)c0c with some c0 > 0. Our simulations appear that reliable

estimations could be obtained and the performance of SAS is not a↵ected too much

as long as n0 � 200 in the pilot study, which seems to be acceptable for a large-scale

dataset.

It is also worth noting that better performance would be expected when n is larger.

How large sample size n is allowed depends on practitioners’ resource constraints, such

as computational power, measurement costs, and processing time.

4. Numerical studies

In this section, we examine the performance of our proposed SAS procedure via

some Monte Carlo simulation studies and a real-data example.
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4.1 Simulation studies

The data are generated by the model Y = G(X;�,g) + ", where " is distributed

fromN (0, 1) and the covariatesX are independently from the whole space X . Consider

the whole data points X with N = |X | = 105 are i.i.d from N (0,⌃). Two classes of

⌃ are explored: one is the identity matrix Ip, and the other has the components

(⌃)ij = 0.5|i�j| for i, j = 1, . . . , p. We denote these two as “IID” and “COR” cases

respectively. The sample size n is fixed as 1000. Three scenarios for G(X;�,g) are

considered:

• Scenario I (Linear Model): G(X;�,g) = �>X + � · 0.4|✓>X|3 under p = 4,

� = (1, 1,�1,�1)>/2 and ✓ = (1,�1, 0, 0)>/
p
2;

• Scenario II (Single-index Model): G(X;�,g) = 2 exp(��>X) + � · 0.4(✓>X)2

under p = 6, � = (1,�1, 0, 0, 0, 0)>/
p
2 and ✓ = (0, 0, 1,�1, 0, 0)>/

p
2;

• Scenario III (Multi-index Model): G(X;�,g) = (�>
1 X)2+(�>

2 X)2+�·0.8 exp
�
�0.4✓>X

�

under p = 4, �1 = (1, 0, 0, 0)>, �2 = (0, 1, 0, 0)> and ✓ = (0, 0, 1, 0)>.

where � � 0, and � = 0 corresponds the null hypothesis in (1.2). All the simulation

results are based on 500 replications.

We fix the target significant level ↵ as 0.05 and evaluate the performance of SAS

procedure via comparing empirical sizes under the null and powers under the alterna-

tives. We discuss the choices of kernel functions for the nonparametric test statistics

in the Supplementary Material Table S2 and find that the e↵ect of kernel functions

can be ignorable. The Epanechnikov kernel function is applied here. As discussed in
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Section 3, we consider the empirical bandwidth formula hf = 0.5sd(!0)n
�1/5
0 in the

density estimator (2.5) and h =
�
hf (n0/n)1/5

 2+⌘
in the test statistics T bf for some

⌘ > 0, where sd(!0) is the sample standard deviation of !0 = {✓>X0i}n0
i=1. Table 1

reports the empirical sizes and powers of SAS procedure with di↵erent bandwidths

when ⌃ is from the “IID” case. We observe that three di↵erent values of ⌘ 2 (0, 0.2]

present similar results: the empirical sizes and powers are not significantly di↵erent

across all the settings. Meanwhile, our SAS procedure is not a↵ected too much under

the null and presents reliable power under the alternatives when the sample size n0 in

the pilot study is larger than 200. Hence, ⌘ = 0.1 and n0 = 300 are used in the rest of

simulations.

We next compare our SAS procedure with several benchmarks. Besides the meth-

ods with uniform sampling strategy as mentioned before, i.e., US0 and US, we also

consider two other existing methods. The first one is from Guo et al. (2016), in which

they proposed a dimension reduction model-adaptive local smoothing test for para-

metric single-index models. We term it as Guo for simplicity. The second one is a

global testing approach from Stute and Zhu (2002), named as SZ here, in which they

developed a dimension reduction test and approximated the distribution of the test

statistics based on a certain empirical process. To make a fair comparison, we apply

Guo and SZ on a subset with n + n0 samples where the covariates X are uniform

sampling from X and use wild bootstrap of 500 times to mimic their critical values.

Figure 2 displays the comparisons of empirical sizes and powers among SAS, US0

and US. Our SAS outperforms US0 and US uniformly across all the settings. This is not
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Table 1: Empirical sizes and powers (%) of SAS procedure with di↵erent bandwidths

under Scenarios I�III when ⌃ is from the “IID” case.

Scenario I Scenario II Scenario III

n0

⌘

�

0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50

0.05 5.8 91.0 100.0 4.2 9.2 58.2 5.0 5.4 26.8

200 0.1 5.6 90.8 100.0 4.4 9.2 57.8 4.8 5.4 25.4

0.2 6.6 90.0 99.6 4.6 9.0 57.2 4.8 5.4 23.4

0.05 6.6 97.0 100.0 4.2 16.6 75.2 4.4 9.0 32.2

300 0.1 5.8 97.0 99.8 4.4 17.4 75.4 5.2 9.0 31.8

0.2 5.8 95.6 99.8 4.2 16.8 74.2 4.6 9.0 30.2

0.05 7.0 98.0 100.0 4.6 19.8 85.8 4.6 8.8 38.6

400 0.1 7.4 97.6 100.0 4.2 19.6 85.6 4.8 9.2 37.4

0.2 7.2 97.4 100.0 4.0 18.8 84.6 4.8 9.2 35.2

surprising, since the “optimal” sampling in SAS takes account of the data structure like

our theoretical analysis in Section 2.3. The US usually owns a higher power compared

to US0 due to the test statistic of the former one based on a larger set with sample size

n+ n0. However, US performs a little poorly in terms of the empirical size than US0,

since the samples for the tests are dependent on the estimated ✓ in the pilot study.

In Figure 3, we further compare the proposed method SAS with Guo from Guo

et al. (2016) and SZ from Stute and Zhu (2002) under Scenario I. In most cases, our

method SAS performs e↵ectively and leads to a higher power than the competitors. The
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Scenario I Scenario II Scenario III
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Figure 2: Empirical sizes and powers (%) for SAS, US0 and US under Scenarios I�III.
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Figure 3: Empirical sizes and powers (%) for SAS, US0, US, Guo in Guo et al. (2016)

and SZ in Stute and Zhu (2002) under Scenario I.
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SZ performs not well. This is not surprising, since the local-smoothing-based methods

work better than the global testing procedure SZ for local alternatives as suggested by

existing numerical studies in the literature. We also observe that the SAS test tends

to be more conservative than the Guo method slightly when the signal � is very small,

especially under the COR case. This can be understood that the Guo uses the n+ n0

samples for testing. However, the power of SAS increases quickly as � increases and

its adaptive-sampling advantage becomes remarkable.

In what follows, we consider one general varying coe�cient model.

• Scenario IV (Varying coe�cient model): G(X;�,g) = �1(X1)X2+�2(X1)X3+� ·

0.3
�
✓>X

�3
under p = 4, �1(X1) = sin(X1)+cos(X1), �2(X1) = 2X1(1�X1), and

✓ = (0, 1, 1, 1)> /
p
3. X1 s U(0, 1), and X2, X3, X4 s N (0, Ip), where U(0, 1) is

the standard uniform distribution.

N(0,1) X�(1) t(3)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0
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75

100

δ

po
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method SAS US0 US

Figure 4: Empirical sizes and powers (%) for SAS, US0 and US under Scenario IV.

In Scenario IV, we examine the robustness of the proposed test when the errors

"i’s are from di↵erent distributions. Figure 4 shows that the empirical sizes and powers
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for SAS, US0 and US under three standardized error distributions, i.e., N (0, 1), �2(1)

and t(3). Again, it can be seen that the SAS outperforms the US0 and US uniformly

and there are no significant di↵erences among the power curves under di↵erent error

distributions.

Table 2: Computing times (seconds) for SAS, US0 and US when "i’s are i.i.d from

N (0, 1) and the full sample size N is from 103 to 106 under Scenario IV.

�

Method

N
103 104 105 106

SAS 0.237 0.787 3.913 29.907

0.00 US0 0.215 0.251 0.239 0.259

US 0.414 0.471 0.310 0.350

FULL 0.426 7.794 750.735 77033.543

SAS 0.233 0.487 3.405 30.336

0.25 US0 0.196 0.222 0.230 0.252

US 0.268 0.316 0.307 0.330

FULL 0.432 7.845 790.955 78946.865

SAS 0.233 0.484 3.407 30.164

0.5 US0 0.196 0.222 0.234 0.254

US 0.267 0.316 0.305 0.324

FULL 0.433 7.832 795.734 81033.674
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Finally, to further investigate the computational benefit of our SAS procedure in

large-scale datasets, the computing time is reported in Table 2. As the full sample size

N increases, subsampling methods take significantly less computing time compared to

the full data approach. We also observe that the computing time of the SAS procedure

roughly linearly increases as the sample size N increases but the time based on the full

sample is quadratically increased, which is consistent with our theoretical computing

cost analysis. It is not surprising that the US0 and US run fast since there is no

sampling distribution need to be estimated.

4.2 Real data analysis

Wave Energy Converters (WECs) are of interest to governments and industry as a

way of complementing other renewable energy sources (Neshat et al., 2018) since they

have advantages in terms of high availability of resource. However, huge information for

the WECs can be recorded and monitored with buoys, but analyzing all the collected

data will lead to a heavy computing burden. To overcome this challenge, we apply

the proposed SAS to the “Wave Energy Converters Data Set”. This data includes all

216000 measuring sample points under the three real wave scenarios from the southern

coast of Australia and it is available from UCI Machine Learning Repository http:

//archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters.

The interest in this problem is to study the relationships between the total absorbed

wave power output (Y ) and the WECs positions (X). Here we focus on the first three

WECs’ positions, i.e. p = 6. Since the power output is often positive but large, we

take the logarithm transformation to the response Y . We randomly select 70% of the
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full data as the training set (N = 151200) and let the rest as the validation set. For

the pilot study, n0 = 300 samples are uniformly sampled from the training set and are

used to estimate the projection direction ✓ and optimal sampling distribution f(·).

In this application, we would like to check whether the linear model (LM) and

mult-index model (MIM) are su�cient to describe the relationship between response

and covariates. Specifically, we denote the multi-index model with two indexes as

MIM2. The MIM3 and MIM4 are defined similarly. In Table 3, we compare the

estimated p-values of SAS, US0 and US under di↵erent model assumptions.

Table 3: The estimated p-value and MSPE of wave energy converters dataset.

p-value MSPE

Model SAS US0 US

LM 0.000 0.000 0.000 164.686

MIM2 0.005 0.097 0.055 0.201

MIM3 0.970 0.444 0.848 0.195

MIM4 0.928 0.607 0.525 0.200

It is clear that all three methods suggest a nonlinear relationship between wave

power and the WECs positions due to p-values equal to 0 under the linear model

assumption. Consider the significant level ↵ is 0.05. We find that US0 and US perform

similarly and both of them tend to choose MIM2 for model construction. However,

SAS suggests MIM3 is more reliable, as it owns a much smaller p-value 0.005 than the

other two methods under the model assumption MIM2. This is probably because the

full data consists of three real wave scenarios. The result can be further verified by the
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comparison of the mean square prediction errors (MSPE) on the test data. In the last

column of Table 3, the MSPEs under MIM3 are much smaller than the other models.

5. Concluding remarks

Model checking in large-scale datasets is an important preliminary step for statis-

tical analysis and machine learning. In this paper, we construct a structure-adaptive-

sampling, SAS test, in a general semiparametric framework to overcome the large-scale

dataset computational bottleneck with limited budget or resources. The SAS proce-

dure could select those most informative samples with an optimal sampling procedure.

It is shown that our proposed method can asymptotically achieve locally best power.

The asymptotic and numerical results demonstrate the advantages of the proposed

procedure in testing and computation via comparing to the uniform sampling strategy

and some existing model checking approaches.

In general, the SAS procedure can be readily extended to many other testing

problems with sampling techniques in modern large-scale datasets analysis, such as

clustering several regression curves or datasets, as long as the design point sampling

is allowed in the process. Our analysis shows that the covariate correlation plays an

important role in the performance of the SAS procedure. Though our results reveal

that the superiority of the proposed method is valid under certain correlations, it is of

interest to see how to incorporate the correlation information into the testing procedure

in an e�cient way. Besides, we only use a small pilot dataset to estimate the projection

direction ✓ when no more information is given. It requires more research to obtain a
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more accurate estimation of the projection direction for test power improvement.
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A. Appendix: Proofs

In this Appendix, we prove the main theoretical results in our paper. Before we

present the proofs of the main results, we first state several essential lemmas whose

proofs can be founded in the Supplementary Material. Denote ⌥⇤
j = G(Xj; b�, bg) �

G(X;�⇤,g⇤) and ⌥⇤ = (⌥⇤
1, . . . ,⌥

⇤
n)

>. Under H0, ⌥⇤
j = G(Xj; b�, bg)�G(X;�0,g0) due

to (�⇤,g⇤) = (�0,g0). For the notation simplicity, we denote the following form as

Wn(s, t) =
1

n(n� 1)

nX

i=1

nX

j 6=i

sitjp
f(!i)f(!j)

Kh(!i � !j),
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where s = (s1, . . . , sn)> and t = (t1, . . . , tn)> are two sequences. For example, our

test statistic can be written as Vf (✓) = Wn(b", b"), where b" = (b"1, . . . , b"n)>, b"i = Yi �

G(Xi; b�, bg).

Lemma A.1. Suppose the Assumptions 1�3 and 6 hold, and denote " = ("1, . . . , "n)>.

With a given ✓, then under H0 we have nh1/2Wn(", ")/�V
L�! N (0, 1).

Lemma A.2. Suppose the Assumptions 4 and 5 hold, then

sup
⌫2�

���G
⇣
X; b�, bg(⌫)

⌘
�G (X;�⇤,g⇤(⌫))

��� = Op

�
b2 + n�1/2 + (nb/ log n)�1/2

 
.

Lemma A.3. Suppose the Assumptions 1�6 hold. Given ✓, then under H0 we have:

(i) Wn(",⌥⇤) = op(n�1h�1/2); (ii) Wn(⌥⇤,⌥⇤) = op(n�1h�1/2).

Lemma A.4. Suppose the Assumptions 1�6 hold. Given L(·) is a continuously di↵er-

entiable function, which satisfies |L(X)|  '(X) for all X 2 R
p
and E {'2(X)} < 1.

Denote L = {L(Xi)}ni=1. With a given ✓, then under H0 the following result holds

Wn(",L) =
1

n(n� 1)

nX

i=1

nX

j 6=i

"iL(Xj)p
f(!i)f(!j)

Kh(!i � !j) = Op(n
�1/2).

Lemma A.5. Suppose Assumptions 1�3 hold. With a given ✓, then for the density

estimator bf(!) in (2.5) from the pilot study, we have

sup
!2⌦

| bf(!)� f(!)| = Op

 
h2
f +

s
log n0

n0hf

!
.

We give a sketch of our proofs. We first derive the asymptotic distribution of our

SAS test statistic with a given dimension reduction direction ✓. Next, the method of

deriving the optimal sampling distribution f(·) is conducted in Theorem 1. Then we
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give the power function for our SAS test in Theorem 2. At last, we extend our sampling

strategy to the “singular” signal case in Corollary 1. The relevant proof of estimated

dimension reduction direction is delineated in the Supplementary Material.

Proposition A.1. Suppose Assumptions 1�6 hold. Under the local alternatives H1n

(2.3) with �n =
�
nh1/2

��1/2
and a given ✓, we have Tf � Ef {l2(!)} /�V

L�! N (0, 1).

Proof. our SAS test statistic Tf = nh1/2Vf (✓) and Vf (✓) has the following decompo-

sition

Vf (✓) =
1

n(n� 1)

nX

i=1

nX

j 6=i

✏ip
f(!i)

Kh(!i � !j)
✏jp
f(!j)

� 2

n(n� 1)

nX

i=1

nX

j 6=i

✏ip
f(!i)

Kh(!i � !j)
⌥⇤

jp
f(!j)

+
1

n(n� 1)

nX

i=1

nX

j 6=i

⌥⇤
ip

f(!i)
Kh(!i � !j)

⌥⇤
jp

f(!j)

=:Wn(✏, ✏)� 2Wn(✏,⌥
⇤) +Wn(⌥

⇤
,⌥⇤),

where ✏ = (✏1, . . . , ✏n)> and ✏i = Yi �G(Xi;�⇤,g⇤) = �nl(!i) + "i under H1n.

Similarly, we can write the first term as Wn(✏, ✏) = Wn(", ") + 2�nWn(", l) +

�2nWn(l, l) where l = (l(!1), . . . , l(!n))>. Note that Wn(l, l) is a U-statistic of order

two with kernel Hn(!i,!j), say Hn(!i,!j) = l(!i)l(!j)Kh(!i � !j) {f(!i)f(!j)}�1/2,

and

E {Hn(!1,!2)} = E [E {Hn(!1,!2)|!1}]

=
1

h

Z
K(u)l(!)l(! � hu)

p
f(!)f(! � hu)hdud!

=

Z
K(u)l2(!)f(!)dud! + o(1)

= Ef

�
l2(!)

 
+ o(1).
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E
�
H2

n(!1,!2)
 
=

1

h2

Z
l2(!i)l2(!j)

f(!i)f(!j)
K2

✓
!i � !j

h

◆
f(!i)f(!j)d!id!j

=
1

h

Z
K2(u)du ·

Z
l2(!j + hu)l2(!j)d!j

=
1

h

Z
K2(u)du ·

Z
l4(!j)d!j + o(1/h)

= O(1/h) = o(n).

By Lemma S.2, we can get Wn(l, l) = Ef {l2(!)} + op(1). Combining this with the

results in Lemma A.1 and Lemma A.3, we have nh1/2Wn(✏, ✏)/�V �Ef {l2(!)} /�V
L�!

N (0, 1).

Next, we consider the second term Wn(✏,⌥⇤) = Wn(",⌥⇤) + �nWn(l,⌥⇤). By

Lemma A.2 and

1

n(n� 1)

nX

i=1

nX

j 6=i

l(!i)p
f(!i)

1p
f(!j)

Kh(!i � !j) = Ef {l(!)}+ op(1),

we can claim that Wn(l,⌥⇤) = Op(n�1/2)Op

�
b2 + n�1/2 + (nb/ log n)�1/2

 
. As a con-

sequence, we have Wn(✏,⌥⇤) = op(n�1h�1/2) by Lemma A.3.

Finally, it can be checked that Wn(⌥⇤,⌥⇤) = op(n�1h�1/2) by Lemma A.3, from

which the assertion of the proposition holds. ⇤

Proof of Theorem 1.

By Proposition A.1, it implies that the asymptotic power function of proposed test

based on Tf only depends on Ef {l2(!)} /�V . Note that �2
V = 2�4|⌦|

R
K2(u)du is a

constant not depending on the density f(!) under a prescribed kernel function K(·).

According to Cauchy-Schwarz inequality, we have

Ef

�
l2(!)

 
=

Z
l2(!)f(!)d! 

⇢Z
l4(!)d!

�1/2⇢Z
f 2(!)d!

�1/2

,
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and the equality holds if and only if f(!) = ⇢l2(!), where ⇢ is some constant. Thus, if

the sampling distribution f(!) is proportional to l2(!), i.e. f(!) = l2(!)/
R
l2(!)d!,

we can maximize the asymptotic power function. That is the locally best power will

be reached by choosing f(!) = l2(!)/
R
l2(!)d!. ⇤

Proof of Theorem 2.

The test statistic is T bf with estimated bf(!) from the pilot study. Under the local

alternatie H1n, the power is ⇧f = Pr(T bf > z↵). By Proposition A.1, we have

Pr(T bf > z↵)� �
⇣
�z↵ + E bf{l

2(!)}/�V

⌘
P! 0.

Using the uniform convergence rate given in Lemma A.5, we have

E bf
�
l2(!)

 
�
Z

l4(!)d!/

Z
l2(!)d!

P! 0,

provided that the order of signal of strength is larger than that the maximum noise level

say (nh1/2)�1/2/
p

log n0/n0hf ! 1. The condition (n0/n)(h2
f/h)

1/2/(log n0)c ! 1

implies that the result holds. ⇤

Proof of Corollary 1.

For simplicity, we assume there is only one signal region ⌦n, and the proof for the

case with more than one region is similar. By condition (n0/n)(h2
f/h)

1/2/
n
a1/2n (log n0)c

o
!

1, it su�ces to show that the Nadaraya-Watson estimator of M(!) in (2.4) is still a

uniformly consistent one except for the boundary under “singular” local alternatives

(2.6) (Ren et al., 2020), say

sup
!2⌦n\Bh

���cM(!)�M(!)
��� = Op

 
h
2
f�

0
n +

s
an log n0

n0hf

!
, sup
!2(⌦\⌦n)\Bh

���cM(!)
��� = Op

 s
an log n0

n0hf

!
,
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where Bh denotes a one-dimensional interval with radius h that is around the boundary of

⌦n. The rate of bias term is obvious as ✏i = �nl(!i)+ "i under (2.6), and the rate of variance

term is reasonable because it uniformly takes maximum over ! 2 ⌦n. Then we have

Z

⌦n[Bh

f(!)d! = 1 +Op

 s
an log n0

n0hf

!
, Pr

n
f(!i) < ⇠

1/2
n0

, 8!i /2 ⌦n [ Bh

o
! 1,

where ⇠n0 is the threshold defined in (2.5). Hence, we have

Pr
⇣
T bf > z↵|X

⌘
� � (µ(f,⌦n)/�V (f,⌦n)� z↵)

P! 0,

where �
2
V (f,⌦n) ⇡ 2�4|⌦n|

R
K

2(u)du, and

µ(f,⌦n) = nh
1/2

�
0
n
2
Z

⌦n[Bh

l
2(!)f(!)d!

⇡ nh
1/2

�
0
n
2
Z

⌦n\Bh

l
4(!)d!/

Z

⌦n\Bh

l
2(!)d!

� nh
1/2

�
0
n
2
Z

⌦n

l
2(!)l2mind!/

Z

⌦n

l
2(!)d!

= a
�1/2
n l

2
min.

Thus, the power of our SAS is not small than � (µ(f,⌦n)/�V (f,⌦n)� z↵). Finally, by

the assumption that an ! 0, the asymptotic power converges to 1. ⇤

B. Supplementary Material

• A Supplementary PDF contains the proofs of several technical lemmas, the relevan-

t proof of estimated dimension reduction direction, and some additional simulation

results.

• R computing code for the numerical analysis.
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