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Abstract: Lack-of-fit testing is often essential in many applications of statistical/machine learn-
ing. Despite the availability of large-scale datasets, the challenges associated with model check-
ing when some resource budgets are limited are not yet well addressed. In this paper, we propose
a design-adaptive testing procedure to check a general model when only a limited number of
data observations are available. We derive an optimal sampling strategy to select a small subset
from a large pool of data, Structure-Adaptive-Sampling, with which the proposed test possesses
the asymptotically best power. Numerical results on both synthetic and real-world data confirm

the effectiveness of the proposed method.

Keywords and phrases: Dimension reduction; Kernel smoothing; Large-scale dataset; Nonpara-

metric lack-of-fit tests; Optimal sampling; Semiparametric modelling.

1. Introduction

The emergence of big data area offers statisticians both unprecedented opportuni-

ties and challenges. One of the key challenges is that directly applying statistical meth-
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ods to super-large data with conventional computing approaches is prohibitive, which
calls for the development of new tools. Recently, statistical analysis and inference in
the large-scale dataset have drawn much attention, and some computationally scalable
methods have been proposed to reduce the computation and storage effort from vari-
ous aspects of applications, such as the divide-and-conquer procedures (Battey et al.,
2018; |Jordan et al., 2019; Zhao et al., [2019), subsampling strategies (Kleiner et al.,
2014; [Wang et al., |2018) and on-line learning methods (Balakrishnan and Madigan,
2008; Schifano et al., 2016). In most of these works, one usually assumes a parametric
model, typically linear or logistic regression models. Therefore, it is necessary to check
the misspecification of a given regression model such that the subsequent planning,
analysis, and inference can proceed in a creditable way. Lack-of-fit checking for para-
metric and semiparametric models in a large-scale dataset setting is the focus of this
paper.

Suppose Y is the response and X = (z1, . .. ,:Jcp)T € R? is the p-dimensional covari-

ate. We consider a general model in Xial (2009)
Y= G(X:Bg)te (11)

where g = (g1,...,9,) are unknown smooth functions of X, G(-) is known up to a
parameter vector 3, and ¢ is the random error with E (¢ | X)=0. This model includes
many parametric and semiparametric models as special cases, such as generalized ad-
ditive models (Hastie and Tibshirani, [1986), partially linear models (Speckman, 1988),
single-index or multi-index models (Hardle et al., |1993; Xia et al., [2002), and varying

coefficient models (Hastie and Tibshirani, [1993). Specifically, the generalized additive
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models and single-index models admit the forms of Y = g1 (z1) +ga(xa) +- - -+ gp(x,) +¢
and Y = g(X"83) + ¢, respectively.

The cared model checking problem can be formulated as the following test

Hy: E(Y | X) =G (X;Bo,80), for some By € ©,g) € G,
(1.2)

H, :E(Y |X)#G(X;8,8), forany 3€0,g€g,
where G(X; Bo, g0) is a pre-specified model with unknown 3y and gp, and © and G are
the parameter and function spaces, respectively.

In this paper, we aim to answer the question that “given a limited budget or
resources, how can a practitioner optimally use this budget to test in a large-
scale dataset analysis”. There are usually two types of limited budgets. On one hand,
computing time is a typical budget, which is only able to process a small portion of
data. As model checking is very likely one of the most preliminary steps in the data
analysis, practitioners would be reluctant to use much computational effort. Several
lack-of-fit tests for small and moderate sample sizes have been proposed. Among
them, the nonparametric smoothing-based tests and their variants, such as|Hardle and
Mammen| (1993), Zheng (1996) and [Fan and Huang (2005), are very popular due to
their efficiency and flexibility; see Gonzalez-Manteiga and Crujeiras (2013) and (Guo and
Zhu (2017) for some comprehensive reviews. However, the computational complexity
and large memory of those methods are typically quadratic in the sample size, which
may greatly hamper their applicability to large-scale dataset applications. On the other
hand, despite the availability of large-scale datasets, in many applications, collecting

responses or labels for all data points is impossible due to measurement constraints
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or costs (Wang et al., 2017; [Ren et al.| [2020), especially at the very beginning of the
data processing. As a result, these constraints often require us to select a small subset
from a large pool of given design points X and use the limited budget to obtain the
corresponding responses Y. For example, in the problem of speech recognition, one may
easily get plenty of unlabeled audio data but the accurate labeling of speech utterances
is extremely time-consuming and requires trained linguists. Annotation at the word
level can take ten times longer than the actual audio (Tur et al., 2005).

When proven statistical methods are no longer applicable due to the two types of
limited resources, a natural and appealing method to extract useful information from
data is the subsampling method (Kleiner et al., 2014; Ma and Sun, |2015). Many existing
pieces of research on subsampling take uniform samples from the full data. However,
a nonuniform sampling strategy may achieve better performance. For example, in the
estimation problem of linear models, Ma et al. (2015) and Ma and Sun (2015) put
forward a so-called algorithmic leveraging with a nonuniform sampling probability to
draw a more informative subsample dataset. Some other recent developments in this
trend include |Wang et al. (2019); |[Yao and Wang (2019); |Yu et al. (2020) and |Ai et al.
(2021). However, the challenges associated with designing an efficient testing procedure
for model checking are not yet well addressed.

In this paper, we propose a new design-adaptive testing procedure for the prob-
lem (|1.2)) when a computation or measurement budget is imposed. The main idea is
to select the most informative sample points from the full data, and then construct

a computationally tractable test statistic based on the observations of those select-
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ed points. We derive an optimal sampling strategy, the Structure-Adaptive-Sampling
(SAS), with which the proposed test possesses the asymptotically best power. An
initial step is needed to get raw estimations of the quantities involved in the opti-
mal design criterion, and the estimated designs with plug-in estimators are shown to
perform equally to the theoretical oracle one from asymptotic viewpoints. The SAS
procedure addresses one key question in a general semiparametric framework: how to
use the limited resources to implement efficient lack-of-fit tests. Our simulation results
clearly demonstrate the superiority of the proposed procedure over existing methods.

The remainder of our paper is structured as follows. In Section [2| we present
the construction of the optimal sampling designs along with a detailed discussion on
asymptotic justifications. Some practical guidelines are given in Section |3, Numerical
studies and a real-data example are conducted in Section [d Section [5] concludes the

paper, and theoretical proofs are delineated in the Appendix.

2. Methodology

Assume that there are total N available data points or observable subjects X =
{Xg évzl € RP. Given a measurement constraint, only n samples & = {X;,Y;}"; can
be obtained, or similarly the computational budget only allows us to deal with one
dataset with size n, where Y; is the response and n < N. For the dataset S, it is
assumed that we independently sample X; from X with replacement and then observe
its corresponding response Y;. We start with the test construction on S given the full

data.
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2.1 Test construction

Denote that the residual e = Y —G (X; By, g0), and then test problem (1.2)) amounts
to assess whether E (¢ | X) = E{Y — G (X; Bo,80) | X} is equal to zero or not. A
standard way is to construct a test statistic based on estimated E (e | X) with fitted
residuals under the null hypothesis. See, for example, Hardle and Mammen (1993);
Stute et al.| (1998); Dette (1999); [Fan et al. (2001). However, due to the difficulty
in nonparametric estimation of the function E (¢ | X) or E(Y | X) when p > 2, the
efficiency of those methods drops rapidly as the dimension p of the covariates increases.

To this end, we consider a structured alternative model as E (¢ | X) = M (67X),
where @ € RP is one projection direction with ||@]s = 1 and M(-) is an unknown
smooth function. Thus, the alternative E (e | X) # 0 is equivalent to E (¢ | 87X) # 0.
It is also clear that E (¢ | 87X) = 0 due to E (e | X) = 0 under the null hypothesis.

Then, test problem ((1.2)) can be formulated to the following one
Ho:E(e|0'X) =0 versus Hy:E (| 6'X) = M(0'X) #0, (2.1)

where M(67X) # 0 for some 8'X € Q C R. Intuitively, E {eE (e | #"X)} is a good
choice to measure the derivation between Hj and H;. Under Hy, E {eE (e | GTX) } =0,
while under Hy, E {¢E (¢ | "X)} =E {E? (¢ | #"X)} > 0. Then, our test can be buil
by E {dE (e \ OTX) }, which is a popular quantity in the context of model specification
test (Zheng, 1996; Guerre and Lavergne, 2005).

Given the projection direction 6, a nonparametric estimation of E {e]E (e | GTX)}
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based on § = {X;,Y;}, is

Z Z €6 Ky (w; —wj)

= A V@)V (@)
where w; = 07X, is followed by a density f(-), & = Y; — G(XZ»;B\, g) are the fitted
residuals, B and g are respectively estimates of 8 and g, and Kn(:) = K(-/h) /h
denotes a one-dimensional kernel function with a bandwidth h. For notation simplicity,
we only emphasize the dependence of test statistic V; on density f(-). Under some mild
conditions, it can be shown that V; is asymptotically normal under Hj, (Zheng, 1996;

Guerre and Lavergne, 2005), that is
Ty = nh'?Vy oy - N(0, 1), (2.2)

where 02, = 20*|Q| [ K?(u)du is the asymptotic variance under null, and |Q| is the
cardinality of Q and 0% = E(¢2 | 7X). The arrow — should be understood as
convergence in distribution. A large value of T would lead to rejection of the null.
The use of 0 plays an important role of dimension reduction in the test statistic V5.
In practice, 8 can be either user-specified or estimated via some dimension reduction
techniques. Detailed discussions on the determination of @ can be found in Section
Similar projection-based tests have been proposed in the literature. For example, Fan
and Huang (2001) reduced the dimension based on X alone; Xia/ (2009) proposed to
project the fitted residuals along a direction that adapts to the systematic departure
of the residuals from the hypothetical pattern with cross-validation in the single-index
model. A more related work is|Guo et al. (2016) in which they checked the single-index
models based on a joint estimation of the dimension reduction matrix. Other works

include [Zhu et al. (2017) and [Tan et al. (2018).
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2.2 Optimal sampling strategy

To implement the proposed method, it is important to specify the sampling density
f(w). The conventional choice is to let f(w) as uniform distribution (Stute and Zhu,
2002; Ferragut and Laska, 2012; Guo et al., 2016), which corresponds to the simple
uniform sampling. However, the uniform sampling may not be optimal so that the in-
formative subsamples are not selected. Under certain local alternatives, the asymptotic
distribution of T} is also normal but with a positive mean, which depends on f(w). It
implies that if an appropriate sampling density f(w) can be chosen, the power of this
test will be maximized.

Next, we will provide a result that sheds lights on how to determine the opti-
mal sampling density. Firstly, we need the following to facilitate the derivation. Let
(B*,g") = argming g)cong E{Y — G(X; 3, g)}z. Under Hy, it is clear that (8*,g") =

(50; go)-

Assumption 1. (Moments condition) For k = 4 + ~ with small enough v > 0, E(e" |

X) < C) < o0, where Cy > 0 is a fized constant.

Assumption 2. (Density function) The density function of w, f(w), is continuous on

the compact support w € Q, satisfying 0 < inf,cq f(w) < sup,eq f(w) < oo.

Assumption 3. (Kernel function) K(-) is a continuous, nonnegative, bounded, and

symmetric kernel function with a bounded first order derivative.

Assumption 4. (Model) The semiparametric model can be approximated by first order
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Taylor expansion
G(X;B,8) = G(X: B.8) + VG5(X: B.8)(B — B) + VG, (X B,8)( — 8).

where VGg(X;B,8) = {VG’gl(X;,B, z),..., VG, (X; 3, z)}T with VG, (X;8,2) =

G(X: B, 2)/0z. Here Gu(v) lies between gi(v) and Go(v), k = 1,....q, and B lies
between B and B And VGa(X; B,8) = 0G(X;B8,8)/0B. Furthermore, VGg and VGg
are Lipschitz continuous with 0 < maxgee geg (IE {VGs(X;; B, gk)}2 E{VGe(X; 8, gk)}Q) <

Cy<oo,i=1,...,n, k=1,..., q with some positive constant Cy.

Assumption 5. (Asymptotic representation) Suppose ‘ 3 — L(n7Y?). As-
sume that all the link functions gy, ..., g, own a common compact support I', and their
estimators admit the following asymptotic expansions

sup |Gi(v) = gi(v) = Re(w)b” —n” " Hi(v Zm Qb (uri — v) & = Op(n ),

ve

for k =1,...,q, where uy; is a measurable function of X;, R(-), H(-), and ¢(-) are
bounded continuous functions. For some positive integer r > 2, the rth derivative of
gk(+) is bounded. Qy(-) is a bounded, symmetric and r order continuously differentiable
kernel function with smoothing parameter b, satisfying [ Qp(u)du =1, [u'Qp(u)du =

0, and [u" Qp(u)du # 0 for 0 <i<r, b— 0 and nb— oo as n — .

Assumption 6. (Bandwidth) The testing bandwidth h satisfies h — 0, nh — oo, and

nh'2b>" = 0 as n — oo with positive integer r > 2.

Remark 1. Assumptions are quite standard in kernel-based methods, though

some of them may not be the weakest possible. For instance, we only require f(-)
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to be Lipschitz continuous and bounded away from zero if some other conditions are
imposed. Assumption [4]is a regularity condition on the semiparametric model. This is
reasonable because we cannot expect that our procedure would work well if the G(-) is
not in a regular form. The formulation is quite mild and can be satisfied by all the com-
monly used semiparametric models mentioned before. Assumption [5| sets theoretical
requirements for the estimates of the model, and is fulfilled by most semiparametric es-
timation methods and models, including the partially linear model (Speckman, [1988),
the additive model (Horowitz and Mammen, [2004), the varying coefficient model (Fan
and Zhang; |1999) and the single-index model (Ichimura, |1993) under the condition that
the nonparametric part g is twice continuously differentiable function on €2; see also
Xial (2009) for similar discussions. Assumption @ gives the bandwidth requirements
for implementing the test V; with asymptotic normal calibration. The optimal rate of
nonparametric estimation n~/® appears to be not allowed if we set b = h for simplicity
and consider the case r = 2. This is very common in the problem of nonparametric

specification tests; certain under-smoothing is necessary (see |[Fan et al., |2001). 0

Consider the local alternative model as Y = G(X;8,8) + d,l(w) + € and the

corresponding local alternatives become
Hy, : M(w) = 0pl(w) for w e, (2.3)

where M(w) =E (| 0"X = w) and §, — 0 as n — oo, I(w) is continuously differen-
tiable on ) satisfying E {{*(w)} < oo and bounded away from zero almost everywhere.
Under (2.3)), 0,l(w) characterizes the model difference from the null to alternative,

which goes to zero as n — oco. Then, we have the following result.
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Theorem 1. Suppose Assumptions hold. Under the local alternatives (2.3) with
O (nhl/Q)_1/2, the test based on Ty reaches its asymptotic best power if the sampling

density f(w) oc M?(w).

Under the local alternative (2.3), E(Ty) = E;{l*(w)} /oy and the asymptotic
variance o is irrelevant with f(w) and [ (w), so an explicit power expression, depending
on E; {I* (w)}, can be obtained. Theorem [1| enlightens us to construct a locally most
powerful test by choosing the sampling distribution f(w) as a linear function of M?(w).
A similar optimization technique, Cauchy’s inequality, is adopted in \Wang et al.| (2018)
to derive the nonuniform sampling strategy under some optimality criterion, but it is
an estimation problem and its focus is to estimate the sampling probabilities when
the whole data is available which is quite different with our testing procedure. In our
work, we only need to sample the data point X with sampling density f(-) and then
observe its corresponding response Y. Since the sampling density is related to the

underlying model structure, we term this strategy as the Structure-Adaptive-Sampling

(SAS) procedure.

2.3 Estimation of optimal density f(-)

The optimal sampling density depending on M (w) contains the unknown function
[(w) in Theorem |1} so an exact f(w) is inapplicable directly for practical implementa-
tion. Hence, it is necessary to obtain raw but informative estimates by a pilot study.
Then an approximately optimal sampling plan can be achieved. Assume we have the

dataset Sy = {Xq;, Yoi }io; for pilot study, where ng < n and {Xg;}7°; are uniformly
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sampled from X. Given 0, let {€;};2, be the fitted residuals based on Sp, then a

consistent estimator of M (w) is

0
> th (woi — w) €os
i=1

M(w) = (2.4)

no )

Zlth (wOi — w)

1=

where wy; = 07X, and hy is a pre-specified bandwidth which satisfies hy — 0 and
nohys/logng — oo as ng — oco. By Theorem , the optimal distribution f(w) can be

estimated by

Fo) = (&, M ()}
fw) fmaux{fno,]\42(w)}du}7

where &, is fixed as O {(logng)¢/(nohs)} for ¢ > 1. The use of &,, in (2.5) is to

(2.5)

ensure that the estimated density is bounded away from zero, especially under Hy
where M(w) = 0 for any w € Q. By our theoretical results given in the Appendix,

~

sup,, | M (w)| = o,( %2) under Hy, and further f(w) is degenerated to a uniform distri-
bution with probability tending to one, i.e., f(w) = 1/]€).

The next result shows that the effect of replacing M (w) by appropriate estimators
can be asymptotically negligible and the efficiency of the locally most powerful test

can still be achieved under some mild conditions.

Theorem 2. Assume Assumptions and (ng/n)(h3/h)'/?[(logng)® — oo all hold.
Under the local alternatives Hy,, (2.3), the power function of our SAS test with f(w)

can be approximated by

= ({ [ 1/ [ Peaa /o =),

where ®(-) denotes the cumulative distribution function of standard normal, and z, is

the corresponding upper-a quantile.
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Note that E;{l*(w)} is the alternative mean of test statistics V; and satisfies
Ef {*(w)} < [I*(w)dw/[*(w)dw. Thus, using the estimated density flw) in (25)
yields a more powerful test.

Furthermore, a more compelling result is that the optimal sampling strategy could
be more prominent when the signal function M (w) exhibits a sparse pattern. Consider

the following sequence of “singular” local alternatives
H, : M(w) =48 l(w) for we Q,, (2.6)

where 2, C Q satisfying |Q2,,| = a, with a, — 0 being a deterministic sequence and
[(w) is bounded away from zero on 2, almost everywhere. The main feature of these
“singular” local alternatives is that they have narrow spikes and change rapidly as
the sample size n increases. In other words, the alternatives in can be regarded
as sparse/high-frequency alternatives, while the alternatives in as dense/low-

frequency alternatives.

Corollary 1. Consider the “singular” local alternative (2.6) with &/ = (nh'/ 2y )12,
an/h — 00 and inf,ecq, (W) > lnin > 0. Suppose the conditions in Corollary@ hold. If
(no/n)(h3/h)/?/ {a}/z(log no)c} — 00, the asymptotic power of our sampling test with

-~

Flw) is not small than ® (u(f, Q) /ov(f, ) — za), where p(f,Qn) = | Q|2 12, and

ot (f, ) =20 Q] [ K*(u)du.

The condition a,,/h — oo in Corollary [1]ensures that our test could work well if the
sparse signal size of €2,, goes to zero slower than h as n increases. The advantage of the
proposed test under (2.6]) is that the conditions imposed on estimating bandwidth h

are more relaxed in Corollary That is if a,, = h'/?, the optimal rate of nonparametric
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bandwidth hy = O(n, Y 5) can be allowed as long as the testing bandwidth A satisfies

nh3/4 Ing’® = 0.

2.4 The SAS-bsed testing procedure

Hence, our procedure for model checking is summarized as follows.

Algorithm 1 Model checking via structure-adaptive-sampling
Step 1 (Initialization) Specify K(-), ng, n, hy, h and 6;

Step 2 (Pilot study) Estimate model (1.1)) based on Sy = {Xo;, Yo;}:>, and compute

the fitted residuals {€p; };2;, where Xg;’s are uniformly sampled from X’;

Step 3 (Sampling) Obtain f(w) by with ]\7(@)) in dﬁb based on Sy and {€; }12;;
sample n data points X;’s with fA'(w) from X and get the corresponding Y;'s as
§= {X%Yi}?:l;

Step 4 (Test) Compute {€;};_; based on S, and then build T7 by ([2-2); further,

reject Hy if Tf > Zg.

To generate n samples at Step 3, we could estimate the sampling probabilities by
for N possible data points in X and then draw n sampling points {X;}?, by
a multinomial distribution. This sampling procedure is fast to implement with the
computational complexity O(Nnghs). Note that the computational complexity for the
estimation of G(-) is generally linear in the sample size, thus the computing time of
the pilot study is O(ng). In this way, the computation of our SAS testing procedure is
O(ng + Nnohy + n?h), where O(n?h) is the complexity for computing T7in Step 4.

We use a numerical example to demonstrate the performance of our SAS test. We
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method SAS =A= US, 4 US 0s
Scenario | Scenario Il Scenario Il
- 5 ey 1 P
100 /.r_ F e o = e |
v’ ’:¢ P |
I/ 't A
757 I‘ of / / 'O'
s /) N
5 I" /1 o 'l B
§ 50- 1, / ,‘ // " 5
b’ ’
‘7, /",' 'g‘
25 /,A / A / A
. ", ’
/} | 2 7 - O h
i{’ 2 _" _—_‘ = ;-__._;: =

0.00 025 0.50 075 1.00 0.00 025 0.50 075 1.00 0.00 025 0.50 075 1.00

Figure 1: Empirical sizes and powers (%) for the tests with different sampling methods
under Scenarios I—IIT when errors follow A (0, 1) independently and the design points

X are from N(0,1,). The gray dotted line is the significance level a = 0.05.

sample n = 1000 data points and ng = 300 pilot samples from X with size N = 10° and
consider three alternative models. See Scenarios I—III in Section {4 for details. Figure
compares the power curves of our proposed procedure, SAS, with three other sampling-
based tests. They differ only in their sampling strategies. To be specific, OS uses the
so-called "oracle” density M?(w)/ [ M?*(w)dw as if M(w) is known, and the USy and
US use uniform distribution to sample n and n + ng for building 7% respectively. The
pilot study (if needed) for all methods is based on ng observations. The improvement
of our adaptive-sampling-based test over USy and US test is clear. The OS approach
has superior performance as expected, but the difference between SAS and OS becomes
smaller than USy and the US as signal ¢ increases.
In the foregoing discussion, we assume the alternative model as E (¢ | X) = M (0"X) #

0 for any vector 6. In fact, we cannot expect this model holds exactly, and a more re-
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alistic assumption is that E (¢ | X) = M(B'X), where B is a p X d matrix with
unknown d > 1. In such a situation, we may work with a misspecified model.
However, as long as the alternative satisfies E{MB (BTX) | OTX} # 0, the pro-
posed test would still work well and its power function can be verified by Iy, =
P (u(f,B,0)/ov(B,0) — z,) , where 0 (B, 0) = 20*|V| [ K3(s)ds with B'X € ¥ and
a d-dimensional kernel function Ky(-), and pu(f,B,6) = E; [E{Mp(B'X)} | OTXF.
Note that if E {E (e | X) | 67X} is a function of 8'X, say d = 1, then I, reduces to

the one given in Theorem

3. Practical guidelines

In this section, several practical issues on implementing the SAS procedure are
discussed, including the choices of projection direction and bandwidths as well as the

determination of ng.

3.1 Determination of 6

One key in the implementation of the SAS procedure is the selection of the projec-
tion direction 8. Actually, one can assign a fixed @ based on practical requirements or
estimate it via some dimension reduction techniques. For example, we want to check
whether there might be a nonlinear relationship between the response Y and covari-

ate r7 when the null hypothesis is a linear function. In this case, we can directly set

In general, we can obtain a reliable estimation of 8 in the pilot study with some

techniques on sufficient dimension reduction (SDR). To identify the dimension reduc-
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tion subspace, the literature contains many proposals, such as classical sliced inverse
regression (SIR, [Li, |1991), sliced average variance estimation (SAVE, Cook and Weis-
berg, 1991), directional regression (DR, |Li and Wang, 2007) and likelihood acquired
directions (Cook and Forzani, [2009). Specifically, Xia et al.| (2002) proposed the min-
imum average variance estimate (MAVE) to estimate the reduction space with fewer
regularity conditions on the covariates X.

Next, we demonstrate the asymptotic properties of the test statistics 1% when 6 is

estimated in the pilot study (Step 2 in Algorithm .

Assumption 7. (Projection direction) The estimated projection direction with a sam-

ple of size ng satisfies 60— 0= Op(nalﬂ) as ng — 0o, where

0= argmin]E{e—E(e |a'X :w)}Q.

a:l|lafl2=1
Assumption 7| is very mild and typically holds for most of the SDR methods.

Theorem 3. Suppose Assumptions|1-7 and noh®?* — oo hold. The variance o3 can be

~ ~

—1
consistently estimated by 3% = {n(n — 1)} " 20 Y0, Y 2K} (@i — ©;) { (@) f@j)} .

We have
. . c
(i) Under the null hypothesis Hy (2.1), T — N(0,1);

(1) Under the local alternative Hy,, (2.3 with (no/n)(h?c/h)lﬂ/(log ng)¢ — oo and

6u = ()7 T — { [ 1H(w)dw/ [ 2(w)dw} /Gy 55 N(0,1).

Theorem |3|can be viewed as a counterpart of the asymptotic normality result given

in Zheng (1996) and Guerre and Lavergne (2005) as shown in (2.2]), by generalizing a
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parametric null specification model to a much more generic semiparametric one .
Due to the involvement of both the estimations of 8 and G(-), the technical details of
our theory are not straightforward and cannot be obtained from those existing works.

Theorem (3| implies that our SAS procedure could achieve the best power with
0 from asymptotic viewpoints and the results in Theorem |2| still can achieve. It is
further verified by the numerical comparisons over a wide range of values of 8 in the
Supplementary Material Table E In this paper, we use the MAVE method (Xia
et al., 2002) to estimate @ in the pilot study due to its easy implementation with the

R package MAVE.

3.2 Bandwidth selection

Like many other smoothing-based tests, the performance of the SAS test possibly
depends on the bandwidth % in the test statistic 77 and the hy in density estima-
tor . By Corollary |1} the optimal h; for estimator M (w) can achieve the order
O(n51/5). Thus, we take the empirical bandwidth formula hy = O.SSd(wo)nEI/E’ as a
rule of thumb, where sd(wp) denotes the sample standard deviation of wy = {0 X; }12,.

Different from the estimating bandwidth Ay, it is widely known that the selection
of bandwidth A for optimal testing power is an open problem (Hart, |1997; Stute et al.,
2005)). Asymptotically, a range of bandwidths that satisfy Assumption [6] will retain the
consistency of the test, while a larger bandwidth generally results in a better power in
the view of Corollary 2 However, in practice, the condition A — 0 will restrict h not

too large, and the condition nh%*/ né/ ® — 0 will ensure that h cannot be too small.

Based on our numerical results, the observed significance changes only mildly over a
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wide range of value of h, and we recommend h = {hf(no/n)1/5}2+n with some 7 > 0
so that the condition (no/n)(hfc/h)l/Q/{a}/z(log no)¢} — oo in Corollary 1] is roughly
valid. This choice works well for a wide range of models and pilot sample sizes as

shown in Section [4l

3.3 Choices of sample sizes

In practice, we could uniformly sample ng data points as Sy for the pilot study.
Note that there is a trade-off in the selection of ng between estimation efficiency and
computational complexity. Intuitively, a larger ng would attain more accurate estima-
tions of the density function f(-) and projection direction 8 (if needed), but involves
more computational burden. To satisfy our theoretical requirements, we could roughly
consider ng = [n*°(logn)®| with some ¢y > 0. Our simulations appear that reliable
estimations could be obtained and the performance of SAS is not affected too much
as long as ng > 200 in the pilot study, which seems to be acceptable for a large-scale
dataset.

It is also worth noting that better performance would be expected when n is larger.

How large sample size n is allowed depends on practitioners’ resource constraints, such

as computational power, measurement costs, and processing time.

4. Numerical studies

In this section, we examine the performance of our proposed SAS procedure via

some Monte Carlo simulation studies and a real-data example.
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4.1 Simulation studies

The data are generated by the model Y = G(X; 3,g) + €, where ¢ is distributed
from N(0, 1) and the covariates X are independently from the whole space X'. Consider
the whole data points X with N = |X| = 10° are i.i.d from N(0,X). Two classes of
3. are explored: one is the identity matrix I,, and the other has the components
(2);; = 0.5 for 4,5 = 1,...,p. We denote these two as “IID” and “COR” cases
respectively. The sample size n is fixed as 1000. Three scenarios for G(X;3,g) are

considered:

e Scenario I (Linear Model): G(X;8,g) = B'X + J - 0.4]6"X|? under p = 4,

B=(1,1,-1,-1)T/2and 6 = (1,-1,0,0)" /v2;

e Scenario IT (Single-index Model): G(X;8,g) = 2exp(—B"X) + 4 - 0.4(07X)?

under p =6, B = (1,-1,0,0,0,0)" /v/2 and 8 = (0,0,1,—1,0,0)" //2;

e Scenario III (Multi-index Model): G(X; 8,g) = (8 X)*+(8; X)?+4-0.8 exp (—0.40 " X)

under p =4, 8; = (1,0,0,0)", By = (0,1,0,0)" and 8 = (0,0,1,0)".

where § > 0, and 0 = 0 corresponds the null hypothesis in (1.2). All the simulation
results are based on 500 replications.

We fix the target significant level v as 0.05 and evaluate the performance of SAS
procedure via comparing empirical sizes under the null and powers under the alterna-
tives. We discuss the choices of kernel functions for the nonparametric test statistics
in the Supplementary Material Table [S2 and find that the effect of kernel functions

can be ignorable. The Epanechnikov kernel function is applied here. As discussed in
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Section , we consider the empirical bandwidth formula h; = 0.5sd(wp)n, % in the
density estimator and h = {hs(no/n)" 5}2+n in the test statistics 77 for some
n > 0, where sd(wp) is the sample standard deviation of wy = {07 X }12,. Table
reports the empirical sizes and powers of SAS procedure with different bandwidths
when X is from the “IID” case. We observe that three different values of n € (0,0.2]
present similar results: the empirical sizes and powers are not significantly different
across all the settings. Meanwhile, our SAS procedure is not affected too much under
the null and presents reliable power under the alternatives when the sample size ng in
the pilot study is larger than 200. Hence, n = 0.1 and ny = 300 are used in the rest of
simulations.

We next compare our SAS procedure with several benchmarks. Besides the meth-
ods with uniform sampling strategy as mentioned before, i.e., USy and US, we also
consider two other existing methods. The first one is from |Guo et al. (2016), in which
they proposed a dimension reduction model-adaptive local smoothing test for para-
metric single-index models. We term it as Guo for simplicity. The second one is a
global testing approach from [Stute and Zhu (2002), named as SZ here, in which they
developed a dimension reduction test and approximated the distribution of the test
statistics based on a certain empirical process. To make a fair comparison, we apply
Guo and SZ on a subset with n + ng samples where the covariates X are uniform
sampling from X and use wild bootstrap of 500 times to mimic their critical values.

Figure [2] displays the comparisons of empirical sizes and powers among SAS, US,

and US. Our SAS outperforms USy and US uniformly across all the settings. This is not
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Table 1: Empirical sizes and powers (%) of SAS procedure with different bandwidths

under Scenarios [—III when X is from the “IID” case.

Scenario I

Scenario II

Scenario IIT

ng ’ 0.00 0.25 0.50 0.00 0.25 0.50 0.00 0.25 0.50
Ui
0.05 5.8 91.0 100.0 42 9.2 582 5.0 54 26.8
200 0.1 5.6 90.8 100.0 44 92 5738 4.8 54 254
0.2 6.6 90.0 99.6 46 9.0 572 48 54 234
0.05 6.6 97.0 100.0 4.2 16.6 75.2 4.4 9.0 322
300 0.1 5.8 97.0 998 4.4 174 754 5.2 9.0 318
0.2 5.8 95.6 99.8 4.2 168 74.2 4.6 9.0 30.2
0.05 7.0 98.0 100.0 4.6 19.8 85.8 46 88 38.6
400 0.1 74 97.6 100.0 4.2 196 85.6 4.8 92 374
0.2 7.2 974 100.0 4.0 188 84.6 4.8 9.2 352

surprising, since the “optimal” sampling in SAS takes account of the data structure like

our theoretical analysis in Section 2.3. The US usually owns a higher power compared

to USy due to the test statistic of the former one based on a larger set with sample size

n + ng. However, US performs a little poorly in terms of the empirical size than USy,

since the samples for the tests are dependent on the estimated 6 in the pilot study.

In Figure 3] we further compare the proposed method SAS with Guo from |Guo

et al. (2016) and SZ from Stute and Zhu| (2002) under Scenario I. In most cases, our

method SAS performs effectively and leads to a higher power than the competitors. The
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Figure 2: Empirical sizes and powers (%) for SAS, USy and US under Scenarios I—III.
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Figure 3: Empirical sizes and powers (%) for SAS, US, US, Guo in Guo et al.| (2016)

and SZ in |Stute and Zhu (2002) under Scenario .
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SZ performs not well. This is not surprising, since the local-smoothing-based methods
work better than the global testing procedure SZ for local alternatives as suggested by
existing numerical studies in the literature. We also observe that the SAS test tends
to be more conservative than the Guo method slightly when the signal ¢ is very small,
especially under the COR case. This can be understood that the Guo uses the n 4 ng
samples for testing. However, the power of SAS increases quickly as ¢ increases and
its adaptive-sampling advantage becomes remarkable.

In what follows, we consider one general varying coefficient model.

e Scenario IV (Varying coefficient model): G(X; 3,g) = B1(X1)Xao+B2(X1) X340+
0.3 (GTX)3 under p =4, B81(X1) = sin(X;)+cos(X1), Ba(X1) = 2X;(1—-X), and
6 =(0,1,1,1)" /v/3. X3 ~U(0,1), and X,, X5, X; ~ N(0,L,), where (0, 1) is

the standard uniform distribution.

method =@ SAS == US, us
N(0,1) X2(1) 1(3)
100~
J/ ]
75- y g A A ,A
> L .’ ~
XN A ¢
9] ’ &' 4
L4
g so- f A X ,x
a / ¢ . ”
L4 ¢ 7'\
/ x A ¢
/ ", ’ .
25- = . ,
A . A
Y, A
" ZA” g = , LA
- =
i ‘_‘.__- =f—*
0- 0 [l 0 0 0 [l l 0 0 l I [l 0
0.00 0.‘25 0.:50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Figure 4: Empirical sizes and powers (%) for SAS, USy and US under Scenario IV.

In Scenario IV, we examine the robustness of the proposed test when the errors

g;’s are from different distributions. Figure 4|shows that the empirical sizes and powers
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for SAS, USy and US under three standardized error distributions, i.e., A/(0,1), x*(1)
and t(3). Again, it can be seen that the SAS outperforms the USy and US uniformly

and there are no significant differences among the power curves under different error

distributions.

Table 2:  Computing times (seconds) for SAS, USy and US when ¢;’s are i.i.d from

N(0,1) and the full sample size N is from 10 to 10° under Scenario IV.

N
0 103 10* 10° 108
Method
SAS 0.237 0.787 3.913 29.907
0.00 US, 0.215 0.251 0.239 0.259
US 0.414 0.471 0.310 0.350
FULL 0.426 7.794 750.735 77033.543
SAS 0.233 0.487 3.405 30.336
0.25 US, 0.196 0.222 0.230 0.252
UsS 0.268 0.316 0.307 0.330
FULL 0.432 7.845 790.955 78946.865
SAS 0.233 0.484 3.407 30.164
0.5 USy 0.196 0.222 0.234 0.254
UsS 0.267 0.316 0.305 0.324
FULL 0.433 7.832 795.734 81033.674
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Finally, to further investigate the computational benefit of our SAS procedure in
large-scale datasets, the computing time is reported in Table[2] As the full sample size
N increases, subsampling methods take significantly less computing time compared to
the full data approach. We also observe that the computing time of the SAS procedure
roughly linearly increases as the sample size IV increases but the time based on the full
sample is quadratically increased, which is consistent with our theoretical computing
cost analysis. It is not surprising that the USy, and US run fast since there is no

sampling distribution need to be estimated.

4.2 Real data analysis

Wave Energy Converters (WECs) are of interest to governments and industry as a
way of complementing other renewable energy sources (Neshat et al., 2018) since they
have advantages in terms of high availability of resource. However, huge information for
the WECs can be recorded and monitored with buoys, but analyzing all the collected
data will lead to a heavy computing burden. To overcome this challenge, we apply
the proposed SAS to the “Wave Energy Converters Data Set”. This data includes all
216000 measuring sample points under the three real wave scenarios from the southern
coast of Australia and it is available from UCI Machine Learning Repository http:
//archive.ics.uci.edu/ml/datasets/Wave+Energy+Converters.

The interest in this problem is to study the relationships between the total absorbed
wave power output (Y) and the WECs positions (X). Here we focus on the first three
WECs’ positions, i.e. p = 6. Since the power output is often positive but large, we

take the logarithm transformation to the response Y. We randomly select 70% of the
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full data as the training set (N = 151200) and let the rest as the validation set. For
the pilot study, ng = 300 samples are uniformly sampled from the training set and are
used to estimate the projection direction 8 and optimal sampling distribution f(-).

In this application, we would like to check whether the linear model (LM) and
mult-index model (MIM) are sufficient to describe the relationship between response
and covariates. Specifically, we denote the multi-index model with two indexes as
MIM2. The MIM3 and MIM4 are defined similarly. In Table [3] we compare the

estimated p-values of SAS, USy and US under different model assumptions.

Table 3: The estimated p-value and MSPE of wave energy converters dataset.

p-value MSPE
Model SAS USy US
LM 0.000 0.000 0.000 164.686
MIM2 0.005 0.097 0.055 0.201
MIM3 0.970 0.444 0.848 0.195
MIM4 0.928 0.607 0.525 0.200

It is clear that all three methods suggest a nonlinear relationship between wave
power and the WECs positions due to p-values equal to 0 under the linear model
assumption. Consider the significant level a is 0.05. We find that USy and US perform
similarly and both of them tend to choose MIM2 for model construction. However,
SAS suggests MIM3 is more reliable, as it owns a much smaller p-value 0.005 than the
other two methods under the model assumption MIM2. This is probably because the

full data consists of three real wave scenarios. The result can be further verified by the
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comparison of the mean square prediction errors (MSPE) on the test data. In the last

column of Table 3] the MSPEs under MIM3 are much smaller than the other models.

5. Concluding remarks

Model checking in large-scale datasets is an important preliminary step for statis-
tical analysis and machine learning. In this paper, we construct a structure-adaptive-
sampling, SAS test, in a general semiparametric framework to overcome the large-scale
dataset computational bottleneck with limited budget or resources. The SAS proce-
dure could select those most informative samples with an optimal sampling procedure.
It is shown that our proposed method can asymptotically achieve locally best power.
The asymptotic and numerical results demonstrate the advantages of the proposed
procedure in testing and computation via comparing to the uniform sampling strategy
and some existing model checking approaches.

In general, the SAS procedure can be readily extended to many other testing
problems with sampling techniques in modern large-scale datasets analysis, such as
clustering several regression curves or datasets, as long as the design point sampling
is allowed in the process. Our analysis shows that the covariate correlation plays an
important role in the performance of the SAS procedure. Though our results reveal
that the superiority of the proposed method is valid under certain correlations, it is of
interest to see how to incorporate the correlation information into the testing procedure
in an efficient way. Besides, we only use a small pilot dataset to estimate the projection

direction @ when no more information is given. It requires more research to obtain a
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more accurate estimation of the projection direction for test power improvement.
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A. Appendix: Proofs

In this Appendix, we prove the main theoretical results in our paper. Before we
present the proofs of the main results, we first state several essential lemmas whose
proofs can be founded in the Supplementary Material. Denote T3 = G(X;; [/3\, g) —
G(X; B, g") and T* = (T7,...,T:)T. Under Ho, T35 = G(X;; 8,8) — G(X; Bo, &) due

o (B*,8") = (Bo, o). For the notation simplicity, we denote the following form as

W(s,t) ),
(s, t) ;; —wz o) — wj)
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where s = (s1,...,8,)" and t = (¢,...,t,)" are two sequences. For example, our
test statistic can be written as V;(0) = W,(g,€), where € = (€1,...,8,)", & =Y, —
G(X;;8,8).

Lemma A.1. Suppose the Assumptions and@ hold, and denote € = (e1,...,e,)".

With a given 0, then under Hy we have nh/>W, (e, €) /oy - N(0,1).

Lemma A.2. Suppose the Assumptions | and |4 hold, then

sup G(X;B,@(V)) G(X;8%g"( ) =0, {b2—|—n Y2 1 (nb/logn)~ 1/2}

vell
Lemma A.3. Suppose the Assumptions hold. Given @, then under Hy we have:

(i) Wa(e, X*) = 0,(n~"h™2); (1) Wo (X", 07) = op(n~th 2.

Lemma A.4. Suppose the Assumptions ﬂ hold. Given L(-) is a continuously differ-
entiable function, which satisfies |L(X)| < o(X) for all X € R? and E {p?(X)} < co.

Denote L = {L(X;)},. With a given 0, then under Hy the following result holds

—wj) = Op(n_l/Q)-

Wiie.1) )3 D
77, - 1 =1 j#i wl wj
Lemma A.5. Suppose Assumptions hold. With a given 0, then for the density

estimator f n - from the pilot study, we have

-~ 1
sup |(w) — 7(w)| = 0, (h% + ,/%,Zf) -

We give a sketch of our proofs. We first derive the asymptotic distribution of our
SAS test statistic with a given dimension reduction direction 8. Next, the method of

deriving the optimal sampling distribution f(-) is conducted in Theorem (I Then we
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give the power function for our SAS test in Theorem 2| At last, we extend our sampling
strategy to the “singular” signal case in Corollary [ The relevant proof of estimated

dimension reduction direction is delineated in the Supplementary Material.

Proposition A.1. Suppose Assumptions[IH6 hold. Under the local alternatives Hy,

(2.3) with 6, = (n hl/z) ? and a given 0, we have Ty —Ep {i*(w)} Jov £ N(0,1).

Proof. our SAS test statistic Ty = nh/?V;(0) and V;(0) has the following decompo-

sition

Vi) = szﬁ T @) s

i=1 j#i
>3 K)o
—
n_l i— 1]#2 Wz ’ f(wj)

=Wy (€,€) —2W, (e, X*) + W, (X", X7),

where € = (e1,...,6,)" and ¢ = Y; — G(X;; 8%, g") = 6,l(w;) + &; under Hy,,.
Similarly, we can write the first term as W,(e,e) = W, (e, &) + 20,W, (e, 1) +
62W, (L, 1) where I = (I(wy),...,l(w,))". Note that W,(l,1) is a U-statistic of order
two with kernel H,(w;,w;), say H,(w;,w;) = l(w;)l(w;)Kp(w; — wj) {f(wi)f(wj)}fl/z,

and

E{Hn(wi,w2)} = E[E{H, (w1, ws)|w: }]

- %/K(u)l(w)l(w — hu)/ f(w) f(w — hu)hdudw

_ / K (u) () f (w)dudw + o1)
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IE{H wl,w2)} ( ) <%>K2 (wl ;%) fwi) f(wy)dw;dw;

/K2 )du - /12 wj + hu)l?(w;)dw;

I*(w;j)dw; + o(1/h)
= O0(1/h) = o(n).

By Lemma we can get W, (1,1) = E; {I*(w)} + 0,(1). Combining this with the

results in Lemma |A.1|and Lemma |A 3] we have nh/2W, (e, €) /oy —E; {I2(w)} /oy —=

N(0,1).
Next, we consider the second term W,(e, X*) = W, (e, X*) + §,W, (I, Y*). By

Lemma [A.2] and

—w;) = E¢ {l(w op(1),
Zgﬁﬁ wj) = By {1(w)} +0,(1)

we can claim that W, (I, Y*) = O,(n""/2)0, {b* + n~ /> + (nb/logn)~*/*}. As a con-
sequence, we have W, (e, Y*) = 0,(n"'h~'/?) by Lemma
Finally, it can be checked that W, (X*, X*) = o,(n"'h~'/2) by Lemma from

which the assertion of the proposition holds. O

Proof of Theorem [l

By Proposition [A.1] it implies that the asymptotic power function of proposed test
based on T} only depends on E; {I*(w)} /oy. Note that o = 20*|Q| [ K*(u)du is a
constant not depending on the density f(w) under a prescribed kernel function K(-).

According to Cauchy-Schwarz inequality, we have

B {0} = [P < { [ z4<w>dw}1/2{ / f?(w)dw}l/z,
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and the equality holds if and only if f(w) = pl?(w), where p is some constant. Thus, if
the sampling distribution f(w) is proportional to I*(w), i.e. f(w) = *(w)/ [ *(w)dw,
we can maximize the asymptotic power function. That is the locally best power will

be reached by choosing f(w) = 1*(w)/ [ *(w)dw. O

Proof of Theorem [2]

The test statistic is T7 with estimated f (w) from the pilot study. Under the local

alternatie Hy,,, the power is II; = Pr(Tf > z,). By Proposition we have
P
Pr(T; > z,) — (—za + EAP(W)) /0V> 5o.
Using the uniform convergence rate given in Lemma [A.5] we have
P
Eq{l*(w)} —/14(w)dw//l2(w)dw—>0,

provided that the order of signal of strength is larger than that the maximum noise level

say (nh'/2)=Y2/,/logng/noh; — oo. The condition (no/n)(h?/h)lﬂ/(logno)c — 00

implies that the result holds. OJ

Proof of Corollary
For simplicity, we assume there is only one signal region €,,, and the proof for the
. S " 1/2 ¢
case with more than one region is similar. By condition (n/n)(h%/h)"/?/ {an/ (log no) } —
00, it suffices to show that the Nadaraya-Watson estimator of M (w) in (2.4)) is still a

uniformly consistent one except for the boundary under “singular” local alternatives

(2.6) (Ren et al., 2020), say

—

M(w) — M(w)‘ =0, (hjfcég 4 | logno> , sup

sup

(IJEQn\Bh n()hf

— an logng
M w == O ’
nohy we(Q\Q)\By, ( )‘ p( )
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where Bj, denotes a one-dimensional interval with radius h that is around the boundary of
Q. The rate of bias term is obvious as €; = d,l(w;) +&; under (2.6)), and the rate of variance

term is reasonable because it uniformly takes maximum over w € €),,. Then we have

ol
/ fwdw=1+0, [ ,[228"0) = py {f(wi) < €2 v, ¢ Q, UIBBh} 1,
QnU]Bh n()hf

where &, is the threshold defined in ([2.5). Hence, we have
P
Pr (5> 2l ) = @ (u(f, Q) /v (£, Q) — 2) 0,

where o (f, ) ~ 20%|Q,| [ K?(u)du, and

(. 0) = b5 [ P fw)ds

Qn,UBy,

~ nhl/25 2 / Bwdo/ [ Plw)dw
Q,\By, Qr\By,

> nhl/2g) 2 / 2(w)i2, dw) / 12 (w)dw
Qn Qn

= o1/

min*

Thus, the power of our SAS is not small than ® (u(f,2,)/ov(f, ) — 24). Finally, by

the assumption that a, — 0, the asymptotic power converges to 1. 0

B. Supplementary Material

e A Supplementary PDF contains the proofs of several technical lemmas, the relevan-
t proof of estimated dimension reduction direction, and some additional simulation

results.

e R computing code for the numerical analysis.
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