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Abstract

Subsampling methods, aim to select a subsample as a surrogate for
the observed sample. Such methods have been used pervasively in
large-scale data analytics, active learning, and privacy-preserving
analysis in recent.decades. Instead of model-based methods, in this
paper, we study model-free subsampling methods, which aim to
identify a subsample that is not confined by model assumptions.
Existing model-free subsampling methods are usually built upon
clustering techniques or kernel tricks. Most of these methods suffer
from either a large computational burden or a theoretical weakness.
In particular, the theoretical weakness is that the empirical
distribution of the selected subsample may not necessarily
converge to the population distribution. Such computational and
theoretical limitations hinder the broad applicability of model-free
subsampling methods in practice. We propose a novel model-free
subsampling method by utilizing optimal transport techniques.
Moreover, we develop an efficient subsampling algorithm that is
adaptive to the unknown probability density function. Theoretically,


http://crossmark.crossref.org/dialog/?doi=10.1080/10618600.2022.2084404&domain=pdf

we show the selected subsample can be used for efficient density
estimation by deriving the convergence rate for the proposed
subsample kernel density estimator. We also provide the optimal
bandwidth for the proposed estimator. Numerical studies on
synthetic and real-world datasets demonstrate the performance of
the proposed method is superior.

Keywords: Subsampling; Optimal transport; Star discrepancy; Density estimation;

Inverse transform sampling

1 Introduction

A subsampling problem can be described as follows: given a d-dimensional
sample {x,}’, generated from an unknown probability distribution;.the goal is to
take a subsample {x}/ . < n, as a surrogate for the original.sample. In recent
decades, the subsampling problem has drawn greatiattention in machine
learning, statistics, and computer science. For example, subsampling methods
are used pervasively in optimal design/activeilearning problems, where in a large
sample of unlabeled data, the goal is to'select an informative subsample to label
(Settles 2012). Consider privacy-preserving analysis as another example. In
some applications, subsampling methods have the potential to enhance data
security (Nissim et al. 2007,.Li et al. 2012). Specifically, a carefully selected
subset of data can reveal little ‘confidential information (Shu et al. 2015). Last but
not least, subsampling:methods are also widely applied in algorithm design to
alleviate the computational burden in large-scale data analysis (Tsai

et al. 2015, Zhou'etal. 2017).

Many existing subsampling methods are model-based methods, which assume
predictors and responses, if any, follow a postulated model. These methods aim
to select an informative subsample that benefits model-fitting and prediction.
Various models have been considered in subsampling problems, including linear
regression (Drineas et al. 2006, 2011, Ma et al. 2014, 2015, Ma &

Sun 2015, Wang et al. 2017, Meng et al. 2017, Zhang et al. 2018, Ma

et al. 2020, Li & Meng 2020), generalized linear regression (Wang et al. 2018, Ai



et al. 2021b, Yu et al. 2020), /, regression (Dasgupta et al. 2009), quantile
regression (Ai et al. 2021), streaming time series model (Xie et al. 2019),
Gaussian mixture model (Feldman et al. 2011), nonparametric regression (Meng
et al. 2020a, 2021), among others (Bardenet et al. 2017, Quiroz et al. 2018, Yu &
Wang 2022). While model-based subsampling methods have already yielded
impressive achievements, the key to the success of these methods highly
depends on the correct model specification. Nevertheless, in practice, model
specification is a trial and error process, and a postulated model for the data
could be misspecified. For example, in supervised learning, we start withva-high
dimensional model with numerous features; and by using modelsselection, we
may end up with a low dimensional model with parsimonious*features. In another
instance, we may start with a linear regression model for ‘a,continuous response;
and by discretizing the response, we may end up withia classification model.
Model-based subsampling methods, however, may result in subsamples
hampering such dynamic processes of model specification (Tsao & Ling 2012).
Consequently, in scenarios when the model may be misspecified or in the stage
of exploratory analysis, more preferred methods are model-free subsampling
methods, which can identify a subsample that is not confined by model

assumptions.

Recently, there have been emerging model-free subsampling methods, which
aim to select a representative subsample that can capture the overall patterns of
the observed sample. These methods can be divided into two classes: clustering-
based approaches and kernel-based approaches. Clustering-based approaches,
which are‘usually used in unsupervised learning methods, include A~-medoids
method (Kaufman & Rousseeuw 1987, Park & Jun 2009), 4-center method
(Feder & Greene 1988), and Wasserstein barycenter method (Agueh &

Carlier 2011, Cuturi & Doucet 2014). The A~medoids method is closely related to
the A-means algorithm, and the A-center method is used extensively in fast
multipole methods (Greengard & Strain 1991, White et al. 1994, Yang

et al. 2003, Lee & Gray 2009). The Wasserstein barycenter method aims to find



the barycenter of a set of empirical probability measures under the optimal
transport metric, and such a barycenter itself can be regarded as a
representative subsample. Despite wide applications of these subsampling
methods, the empirical distributions of the selected subsamples, yielded by these
clustering-based approaches, may not resemble the probability distribution of the
original sample. That is, as the subsample size increases, the probability
distributions of the subsample identified by these methods may not necessarily
converge to the true probability distribution. To address such a limitation;
researchers developed kernel-based approaches, which aim to selectia
subsample that can effectively approximate the population distribution. These
approaches include the kernel herding method (Chen & Zhang 2014), the coreset
for kernel density estimation (Phillips 2013, Zheng et al. 2013,.2017), and the
support point method (Mak & Joseph 2018). Despiterthe theoretical benefits, one
limitation of these kernel-based approaches is that they may result in a large

computational burden in large-scale data analysis.

To overcome the computational and theoretical limitations of the aforementioned
methods, we propose a novel model-free subsampling method that is
computationally efficient and enjoys nice theoretical properties. The proposed
method combines the techniques of optimal transport and space-filling designs.
In particular, we first transform the observed sample to be uniformly distributed
on a hypercube using’optimal transport techniques (Villani 2008, Peyré

et al. 2019), then select a set of data points that can effectively represent the
uniform distribution using space-filling designs (Owen 2003, Fang et al. 2005).
The desired subsample is the one corresponding to the selected data points. The
idea is analogous to an inverse procedure of the inverse transform sampling
technique, which transforms a uniformly distributed sample to a sample that
follows an arbitrary probability density function. Theoretically, we show the
proposed subsample kernel density estimator converges to the true probability
density function under mild conditions. Moreover, we show the proposed

estimator converges faster than the estimator based on a randomly selected



subsample, suggesting the proposed method can be utilized for efficient density
estimation. We also provide the optimal bandwidth for the proposed estimator.
Numerically, utilizing projection-based optimal transport methods (Pitie

et al. 2005, Rabin et al. 2011), the computational cost for the proposed method is
at the order of 0 (nlog(n)d*) for a d-dimensional sample of size n. The proposed
method thus is scalable to datasets with large 7 and moderate d. Numerical
studies on synthetic and real-world datasets demonstrate the superior
performance of the proposed method in comparison with mainstream
competitors. The proposed method is implemented in an R package, named

SPARTAN.

2 Preliminaries

2.1 Star discrepancy and space-filling designs

The proposed method is developed upon the notion.of star discrepancy, which is
a classical metric that measures the disecrepancy between a set of discrete data
points and the uniform distribution en the unit hypercube [0,1]*, denoted by
uo,11° (Niederreiter 1992, Fang & Wang 1993, Fang et al. 2005). Let 1{-} be the

indicator function and « = (a,.... ,@,) €[0,11° be a vector. Let [0,4) = [T ro.a,) be

a hyper-rectangle and ¥ =t }"  be a set of rdata points in [0,1]" . We introduce

the definition of the star discrepancy in the following.

Definition 1..Given” and a hyper-rectangle [0.,a), a <[0,11° , the corresponding
local discrepancy is defined as, D(ur,a) =|1—Z Hu, e[0,a)}—]] «,|. The star

i=1 Jj=1

discrepancy is defined as

D' y= sup DU ,a).

ae[o,11”

Definition 1 suggests a set of data points “ , which can effectively represent

Ur0,11*, has a small value of p" (¥ ), and vice versa. There exist methods that



generate design points via directly minimizing the star discrepancy, and these
methods are called uniform design methods (Fang et al. 2005). Despite wide
applications, most of these methods are computationally expensive and are not
scalable to a design with a large number of points. To alleviate such a
computational burden, methods yielding a set of design points with a relatively
small star discrepancy could be used as alternatives for uniform design methods.
These alternatives include space-filling design methods (Wu &

Hamada 2011, Fang et al. 2005) and low-discrepancy sequences

(Owen 2003, Lemieux 2009, Dick et al. 2013, Leobacher &

Pillichshammer 2014). The former aims to generate a set of design points that
spread out over the domain as uniformly as possible. The latter sequentially
generates the design points, which achieve an asymptotically.fast decay rate
respecting the star discrepancy. Consequently, thesemmethods provide powerful

tools to generate a set of representative design peints in terms of v[o0,11" .

We now discuss the theoretical property.of space-filling designs and low-
discrepancy sequences in terms ofithe star. discrepancy (Owen 2003). For a
Sobol sequence S, = (s,}/_, , a representative of low-discrepancy sequences,

D’ (%,) converges to zero at the rate of o (log(r)’ /) . In other words, the
convergence rate of p'(5,) is of the order o(» """y for an arbitrary small s > o
and fixed d, as rgoes toinfinity. For comparison, when a set of data points

X - (x, is randomly generated from v 0,11, the convergence rate of b’ (%)

-(1-95)

is of the order.o((oglog(r)/ ") , which is much slower than o (» )
(Chung,1949). By adopting a method which is no worse than the Sobol
sequence; in this paper, we always assume the star discrepancy p"(°))

-(1-4)

converges to zero with the rate o(r ) . There also exist some space-filling
designs that can achieve a potentially faster convergence rate in terms of star

discrepancy (Fang et al. 2005).

Utilizing space-filling design techniques, we propose a simple algorithm to select

a representative subsample from a sample that is generated from v 0,1]” . Let



{u,}"  be such a sample. The proposed algorithm, summarized in Algorithm 1,
combines space-filling design techniques and the one-nearest-neighbor

approximation.

Algorithm 1 Select a representative subsample from a sample generated

from vo,17".

Step 1. Generate a set of space-filling design points {s,}/_, <[0.1]°

Step 2. Fori=1to/

Select the nearest neighbor for s;from {«,}" , using the Euclidean distance
Let «. be the selected data point

Step 3. The final subsample is given by ¥ = (u}' |

Lemma 1 below, which is first stated in Meng et al. (2020a); characterizes the
approximation error of the subsample selected by,Algorithm 1. This lemma
suggests the selected subsample can effectively approximate the design points
in the sense that their corresponding star discrepancies are almost at the same

order under certain conditions.

Lemma 1. Let ¢ = (s}, <[0,1{" be a set of design points which satisfy

-(1-9)

D'(®)=0(r ) for any.arbitrary small s > o, as r - « . Suppose d is fixed,

—(1-95)

when r = 0"y, asu—w ,we have b U’ y=0 (r ).
r P

Algorithm 1 can be extended to the case that the cumulative distribution function
F of the samples is non-uniform when d= 1. The idea is analogous to the
classical inverse transform sampling method (Devroye 1986, Mosegaard &
Tarantola 1995). Let {x,}", ¢ ® be the observed sample, we first calculate
{F(x,)}, , from which, we then select a subsample {F (x,)} _, using Algorithm 1.
Notice that the transformed sample is uniformly distributed on [0.1] ; thus, the
selected subsample is relatively representative of v [0.1]. Finally, the desired
subsample is given by {x;}/, . Although this simple strategy works well in

practice, a limitation of such a strategy is that it is inapplicable when 4 > 2 1. To



overcome the limitation, we introduce the optimal transport map, which serves as
a surrogate for Fin multivariate cases. This idea is similar to the one in
Chernozhukov et al. (2017), where the authors used the optimal transport map to
extend the concepts of quantiles and ranks from one-dimensional samples to
multivariate samples. Analogously, in this paper, we use the optimal transport
map to extend the technique of inverse transform sampling from one-dimensional

cases to high-dimensional cases.
2.2 Optimal transport maps

Optimal transport maps have been extensively used as a standard technique to
transform one probability distribution to another. Recently, such maps have
received a significant attention in machine learning and computer science
(Ferradans et al. 2014, Rabin et al. 2014, Su et al. 2015, Courty

et al. 2017, Meng et al. 2020b, Peyre et al. 2019); due to its close relationship
with generative models, including generative ‘adversarial nets (Goodfellow

et al. 2014), the “decoder” network in variational autoencoders (Kingma &

Welling 2013), among others.

Instead of introducing the general definition of the optimal transport map, we now
present a specific map of.ourinterest, and we refer to Villani (2008), Peyré

et al. (2019), Zhang et al. (2021) for more details. Let v be the uniform probability
distribution on [0,11“.Let pxand o < ®‘ be the probability distribution and the
domain of the.random variable X, respectively. Let # be the push-forward
operator, such that for all measurable B < @ , we have ¢,(p,)(B)=p, (4 '(B)).
Among all'the maps ¢:a — [0,1]" suchthat ¢,(p )= and ¢, (u)= p,, the
optimal transport map ¢° of our interest is the one that minimizes the L cost,

jﬂ|| X - ¢(x)|’ dp, , where ||| denotes the Euclidean norm. We focus on L cost

in this paper for simplicity and it is possible to consider other costs as long as the
optimal transport map exists. For the L, cost, as a special case, when o = R and

d=1,itis known that 4" is equivalent to the cumulative distribution function F



(Villani 2008). This fact motivates us to use the 4~ as a surrogate for Fin high-

dimensional cases.

To obtain the desired optimal transport map that maps the observed sample to
be uniformly distributed on [0,1]*, we propose to first generate a synthetic sample
from v0,11°, then calculate the optimal transport map from the observed sample
to the synthetic sample. One can utilize the auction algorithm or the refined
auction algorithm to calculate such a map (Bertsekas 1992, Schuhmacher

et al. 2020). Despite the effectiveness, the auction algorithm has an average
computational cost of the order o(»*), and thus it may incur an enormous
computational cost when nis large. To alleviate the computational burden, in
practise, we propose to approximate the optimal transport map 4" using
projection-based methods (Pitié et al. 2007, Bonneel et'al. 2015, Rabin

et al. 2011, Meng et al. 2019, Zhang et al. Just accepted). These methods tackle
the problem of estimating a a-dimensional @ptimal transport map iteratively by
breaking down the problem into a series.of subproblems. Each of the
subproblems involves finding a one-dimensional optimal transport map between
the projected samples, and such a subproblem can be easily solved through

sorting algorithms.

3 Main algorithm

We develop a novel'subsampling method named SPARTAN, which integrates
space-filling design.techniques and optimal transport methods. The proposed
methodworks,as follows. First, we transform the observed sample, denoted by
{x,}_,, to'be uniformly distributed on (0,11 . We achieve this goal by utilizing the
empirical optimal transport map. Here, the empirical optimal transport map is also
called the optimal matching between two discrete distributions, such that each of
them have natoms and each atom has weight 1/» . We use such an empirical
optimal transport map as a surrogate of the optimal transport map between the
underlying population density function of the observed sample and the uniform

distribution. We then select a set of data points of size rfrom the transformed



sample using Algorithm 1. The subsample corresponding to the selected data

points is the final output. We summarize the algorithm below.
Algorithm 2 Space-filling after optimal transport (SPARTAN)

Step 1. Generate a synthetic random sample {«,}, from v[o0,11°

Step 2. Calculate the empirical optimal transport map, denoted by 4 , that maps
the observed sample {x,}/_, to the synthetic sample {u 3}

Step 3. Calculate the transformed sample {4(x)}"

Step 4. Select a set of data points {4(x')}’_ from {4(x )" using Algorithm,1
Step 5. The final subsample is given by (x '}/ .

Figure 1 illustrates Algorithm 2 using a toy example. A two=dimensional synthetic
sample of size 1000, marked as grey dots, is shownrinFig«1(a). We first
transform the sample to be uniformly distributedson [0,1]* using the projection
pursuit Monge map method (Meng et al. 2019), shown in Fig. 1(b). We then
generate 32 design points using a space-filling design method (Owen 2003, Fang
et al. 2005). The design points are marked as triangles in Fig. 1(c). Next, for each
design point, we search for its nearest neighbor, labeled as black dots in

Fig. 1(c). Finally, the subsample corresponding to the selected data points,

marked as black dots infFig. 1(d), gives the desired subsample.

The computational cost for Algorithm 2 mainly incurs in Step 2 and Step 4. In
particular, we.use a projection-based method to approximate the desired optimal
transport map in'Step 2, requiring a computational cost of the order o (n1og(n)d?)
(Pitié et'al. 2007, Bonneel et al. 2015, Meng et al. 2019). Step 4 includes two
sub-steps: generating the design points and searching the corresponding nearest
neighbors. The design points can be generated beforehand; thus, the
computation time for generating these points is not considered here. For
searching the nearest neighbors, we opt to use the A-d tree method, whose

computation cost is at the order of o (nlog(n)) (Bentley 1975, Wald &



Havran 2006). In sum, the overall computational complexity for Algorithm 1 is at

the order of 0 (nlog(n)d?).

Figure 2 visualizes the subsamples (black dot) selected by the proposed method
(lower row) compared with the subsamples selected by the random subsampling
method (upper row). The two-dimensional samples (grey dots) are generated
from three different distributions: the standard Gaussian distribution (left column),
a mixture Gaussian distribution (middle column), and a mixture beta distribution
(right column). From plots in the left column, one can observe that the randomly
selected subsample is far from symmetric. From plots in the middle andthe'right
columns, one can see that some peaks in the probability distribution are largely
overlooked by the random subsampling method. We observe'that the
subsamples identified by the proposed method have a more robust and
appealing visual representation of the corresponding probability distribution in all

the cases.

4 Theoretical results

In this section, we study the theoretical properties of the subsamples obtained in
Algorithm 2. In particular, we develop an asymptotic theory concerning the rates
of convergence of the estimated density to the true density as the sample size
goes to infinity. The ratesiare calculated in terms of the point-wise mean squared
error (MSE) that.defined as MSE(5(z)) = E{p(z)- p(z)}" , Where z ¢ R 5 isthe
density estimator,and p is the true density. The density is estimated using the
widely<used kernel density estimation method. Throughout this paper, we
considerthe Gaussian kernel. The extension of the main theorem to other kernel
functions is straightforward, as long as such a kernel function satisfies some
regularity conditions, which are relegated to the Supplementary Material. A more
in-depth discussion on different choices of kernel functions can be found in
Scott (2015). To avoid trivial cases, we consider the case that « > 2 in this
section. Without lose of generality, we assume the points {x } are distinct, and

the points {« } are distinct. In such cases, the optimal transport map in Step 2 of



Algorithm 2 is a one-to-one map from {x.}" , to {«,}",. Let p be the probability
density function to be estimated. Two widely-used regularity conditions for p are
required in kernel density estimation,

 Condition (a). 8" p(z)/ oz, is absolutely continuous, for j=1,....d ,;
e Condition (b). 6’ p(z) /62’ is square-integrable, for j=1,...,d .

J

xd

Let x <« R be the sample matrix, where the (/ ))-th element is xj, and x"“aR
be the subsample matrix, where the (/, ))-th elementis x . Let 2> Otbe‘the
bandwidth and x : ® -, ® be a kernel function. For any z ¢ ®* | the'full-sample

product kernel density estimator can be written as

n |' d '|
f?(z)=Z|HK{(zj—xij)/h}/hJ/n. (D
Equation (1) can be generalized to a more@eneral multivariate kernel density
estimator. In particular, for a d x d nonsingular bandwidth matrix H and a
multivariate kernel function © : R & R a'general multivariate kernel estimator

can be written as

(I 1
P generar (2) = mz L S5 )
It is apparent that.Equation (2) is equivalent to Equation (1) when H = r1,,
where 1, is the'identity matrix. Let © be the Gaussian kernel in Equation (2), it is
equivalent toichoose X = N (0,=) with H =1, or to choose X = V (0,1,) with
H = x""in Equation (1). Consequently, with a properly chosen kernel function,
one can reformulate a general multivariate kernel estimator to a product kernel
density estimator. We thus only focus on the product kernel density estimator in

this section without loss of generality.

Analogous to Equation (1), the density estimator 5 (z) that computed from the

subsample can be written as



. rre . 1
P =3 |T] K{Gz,=x)/h}/h|lr.
i=1 |_ j=1 J
We derive the convergence rate for the mean squared error for the proposed
subsample estimator. The results are summarized in Theorem 1 below, and the

proof is relegated to Appendix.

Theorem 1. Suppose p satisfies Conditions (a) and (b). Moreover, supposep has
a compact convex domain o < R, and there exists a constant c > 1 for which

c'<px)<sc forany xea.Whendaz=2,r=0m""),asn—- «» and -0 for

any arbitrary small s > o , we have

e ( . s
MSE(p (z)) = Oka +O0(h).

—2(1-8)/(d+6)

In particular, if h = o (r )y, we have

MSE(p (z))=O(r "7, 3)

Theorem 1 shows the proposed subsample estimator converges to the true
probability density function. Moreover;Theorem 1 indicates the proposed
subsampling method can be usedfor efficient density estimation. Specifically, let
X" e R be a randomly selected subsample matrix, and 5" (z) be the
corresponding subsample estimator. According to Theorem 6.4 of Scott (2015),

~1/(4+d)

as r=o(n) and(n »¢o , When n»=o(r ), MSE(p ' (z)) achieves the optimal

—4/(d+4)

convergence rate o(r y forany z e @ . Such a convergence rate is much
slower than:the convergence rate in Equation (3). Consequently, Theorem 1
indicates one can approximate the probability density function p more efficiently
using the proposed subsample kernel density estimator, compared with the

counterpart based on a randomly selected subsample.

Consider the bandwidth A, or generally, the bandwidth matrix w « X In

practice, one can determine the value of H through the plug-in approach or the



cross-validation approach (Duong & Hazelton 2003, Chacén &
Duong 2010, Scott 2015). One limitation of these approaches, however, is that
they may result in a computational burden for the sample with moderate or large

n. To combat the computational burden, we opt to determine the value of H using

1/2

xx for

—1/(d+4)

the general Scott’s rule (Scott 2015), which suggests to use H = r
a subsample kernel density estimator that based on a subsample of size r. Here,
r is the empirical variance-covariance matrix for the observed sample.

Analogously, as suggested by Theorem 1, we also consider using

—2/(d +6)

H=r <z forthe proposed estimator. Consider the essential’condition in
Theorem 1, which requires the domain of p to be compact convex. Empirically,
we find the proposed estimator still works reasonably well when,such a condition

does not hold, as shown in the following section.

5 Simulation Results

To evaluate the proposed subsampling.method, we compare it with three
mainstream competitors in terms of the estimation accuracy of the kernel density
estimator. The competitors includesthe uniform subsampling method, also called
the random subsampling method;the“A-medoids method, and the support point
method (Mak & Joseph 2018). We'use the projection-pursuit Monge map method
(Meng et al. 2019) for approximating the optimal transport map in Algorithm 2. All

the methods are implemented in r, and all the parameters are set as default.

For each subsampling method, we first calculate the subsample kernel density

estimatorwp.(x) then evaluate the accuracy of which using the Hellinger distance
(Li etal. 2016), defined as 1- % P (x)/ p(x,) /n, Where {x,}’ is anindependent

testing dataset generate from the same probability density function as the
training sample. Empirically, we find other metrics, like the mean squared error
considered in Theorem 1, also yield similar performance. For the kernel density
estimator, we use the Gaussian kernel and the general Scott’s rule (Scott 2015)

to determine the bandwidth matrix. In particular, for all the subsample estimator,



1/2

=X , where x is the empirical variance-

—1/(d+4)

the bandwidth matrix H = »

covariance matrix. For the proposed method, we also consider the cases that

1/2

x £ , according to Theorem 1. The standard errors are calculated

—2/(d+6)

H=r
through a hundred replicates. In each replicate, we generate a synthetic training
sample with » = 10" from 4 = {2,5,10,20} and each of the following three

probability density functions,

p1: A Gaussian distribution V (0. 2), where £, = 05"/, i, j=1....d4

e Dp2: A mixture Gaussian distribution

e Na,zy/a+N(-1,2)/4+N(0,5)/2,where £ =08"", i, j/=1,0d .

e D3: A mixture #distribution, whose degree-of-freedomsequals 8,10, and 12,

e £(0,X,8)/3+£(0,£,10)/3+1(0,£,12)/3 ,where £ =08"",i/;j=1,..d.

Figure 3 shows the Hellinger distance versus different runder various settings.
Each row represents a particular data distribution'pi=p3, and each column
represents a particular d. We use crosses to denote the uniform subsampling
method (UNIF), hollow circles to denote the K-medoids method (KM), hollow
triangles to denote the support point method (SP), solid circles to denote the

proposed method (SPARTAN), and solid triangles to denote the proposed

A2

method with H = » 7" < » "\ (SPARTAN").

Three significant observations can be made from Fig. 3. We first observe that the
K-medoids method performs worse than the uniform subsampling method in
almost all cases¢ Moreover, the support point method outperforms the uniform
subsampling.method in all cases. We also observe the Hellinger distance yielded
by these two methods do not converge to zero in some cases. Such an
observation can be attributed to the fact that the probability distribution of the
subsample identified by these two methods may not necessarily converge to the

true probability distribution.



Second, we observe the Hellinger distance yielded by the proposed method
decreases as rincreases. Moreover, the proposed method outperforms the
uniform subsampling method in all cases. These observations are consistent with
Theorem 1, which indicates the proposed subsample estimator converges to the
true probability density function and is more efficient than the estimator

corresponding to the uniform subsampling method.

1/2

x outperforms'ithe

—1/(d+4)
X

Third, we observe the proposed estimator with 1 = »
other three competitors in most of the cases. As the same bandwidthimatrices
are applied in all these estimators, such a comparison is fair. Consequently, the
aforementioned observation suggests the subsample identified by the proposed
subsampling method is more representative of the observed 'sample than the

subsamples selected by the other three methods. We also abserve the proposed

1/2

x £ consistently outperforms the one with

—2/(d+6)

estimator with H =

—-1/(d+4)
7

H = «x . This observation is consistent with Theorem 1, which suggests
h=o0( """y yields the smallest upper.bound of the asymptotic integrated

mean squared error for the proposed estimator.

6 Real data example

6.1 Density estimation

Throughout this section,'we'consider the banknote authentication dataset, which
is extracted from images that were taken from 1372 genuine and forged
banknotes. Wavelet transform was used to extract four features from images 2.
To evaluate the performance of the proposed subsampling method, we compare
it with other competitors in terms of the accuracy of the kernel density estimation
and the prediction accuracy in active learning. A brief introduction to active

learning will be given later.

We first visualize the banknote authentication dataset and the subsample

selected by the proposed method. In Fig.4, the lower diagonal panels show the



scatter plots for each pair of the predictors. We select a subsample of size fifty,
and the scatter plots for such a subsample are shown in the upper panels of
Fig.4. The heat maps are obtained using kernel density estimation. We observe
the selected subsample has an appealing visual representation of the original

sample.

For density estimation, we consider three competitors, as mentioned in the
previous section. Same as the settings stated in the previous section, we used
the Gaussian kernel for kernel density estimators and the general Scott’s rule to
determine the value of the bandwidth matrix. All the parameters are set as the
same as the ones we used in the previous section. We replicated the experiment
twenty times. In each replication, the dataset is randomly.divided into the training
set and the testing set of equal sizes. We first calculate the full sample kernel

density estimator using the testing set, denoted by "z, ."For each subsample

kernel density estimator, we then evaluatedts estimation accuracy through the

empirical Hellinger distance, defined as i =3" \/ﬁ(xl_) /D (x) I n, Where {x ;.

represents the testing set. This empirical Hellinger distance is not a formal
distance and thus may have negativewalues, as we will see later. Nevertheless,
the empirical Hellinger distance .can be used as a surrogate for the true Hellinger
distance since a small value of the empirical Hellinger distance is associated with

a small value of the'true Hellinger distance, intuitively.

The left panel of Fig. 5 shows the empirical Hellinger distance versus different
subsample sizes r. The standard error bars are obtained from one hundred
replicates. We observe that the uniform subsampling method consistently
outperforms the K-medoids method. We then observe that the proposed method
and the support point method perform similarly, and both have better

performance than the uniform subsampling method. Finally, we observe the

1/

> 2, as guided by Theorem 1, gives the

~2/(d+6)

proposed estimator with H = »



best result. All these observations are consistent with the findings in the previous

section.
6.2 Active learning

We now consider the task of active learning, which aims to make an accurate
prediction, with the number of labeled training data points as small as possible
(Krogh & Vedelsby 1995, Cohn et al. 1996). These approaches are essential for
numerous sophisticated supervised learning tasks, where the labeled instances
are challenging, time-consuming, or expensive to obtain. Take speech
recognition as an example; accurate labeling of speech utterances isiextremely
time-consuming and requires trained linguists. It is reportedsthat annotation at the
level of the phoneme can take 400 times longer than the actual‘audio

(Settles 2012). In general, active learning approachesiselect the data points (also
termed as the query points) iteratively and interactively. In each iteration, one
query the oracle to obtain the label at a new query_ point, based on certain
criteria. It is known that a representative subsample is potentially associated with

an accurate prediction in active learning (Settles 2012).

The proposed subsampling method can be cast as an active learning approach.
In particular, we generate.the:Sobol sequence (Owen 2003) in Algorithm 1 and
select the query points sequentially in Algorithm 2. To evaluate the performance
of the proposed method, we 'compare it with the following baseline methods: (1)
random sampling (RANDOM), (2) query by committee (COMMITTEE), which
select guery points that maximize the disagreement among different models
(Settles'2012), and (3) margin-based method (MARGIN) which choose query
points that lie on the margin of the decision line (Schohn & Cohn 2000).

We replicate the experiment a hundred times on the banknote dataset. In each
replication, the dataset is randomly divided into the training set and the testing
set of equal sizes. We evaluate the classification model by its mean classification

accuracy on the testing set. The classification accuracy is defined as



(TP + FN)/n , where ndenotes the size of the testing set, and 7P and FN denote
true positive and false negative, respectively. We use the support vector
machine, implemented by the R package <1071 (Meyer et al. 2015)), for
classification in the active learning. The RBF kernel with default parameters is
applied. The size of query points ranges from 10 to 200. For the committee
method and the margin-based method, which require several initial labeled data

points as input, ten data points are randomly selected and labeled.

The right panel of Fig. 5 shows the mean classification accuracy of different
active learning methods versus different numbers of query points. The vertical
bars represent the standard errors. These bars, however, are almost invisible
due to extremely small values of standard errors. We observe the proposed
method consistently outperforms all the competitors. \We, attribute such an
observation to the fact that the proposed method selectsra representative
subsample in a sequential way, resulting in‘a more accurate prediction in active

learning.

7 Discussion

In this paper, we proposed,a novel'model-free subsampling method, utilizing the
space-filling design and eptimal.transport techniques. The proposed algorithm is
efficient and can be adaptive to the unknown probability density function.
Theoretically, wesshow the proposed subsample kernel density estimator
converges tostheitrue probability density function under mild conditions. The
order for.the optimal smoothing parameter for the proposed kernel density
estimator'is also derived. The superior performance of the proposed method over

mainstream competitors was justified by various numerical experiments.

In this paper, we mainly focus on using the unit cube as the target distribution
due to mathematically simplicity. In practise, it is possible to consider standard
Gaussian distribution instead. Specifically, we could generate the random sample

from the standard Gaussian distribution in Algorithm 2, and use the Gaussian



Sobol sequence instead of the space-filling design points in Algorithm 1. The
other steps remain the same. Empirical results show such a scheme may lead to
slightly better performance. The proposed method has the potential to be applied
to many large-sample applications, including but not limited to nonparametric
regression, kernel methods, and low-rank approximation of matrices. This work

may speed up these researches with theoretical guarantees.
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Notes

1 One exceptioniis that when all the covariates of the sample are independent
with each other, in which case one can directly calculate the multivariate
cumulative distribution function as the product of all the one-dimensional
marginal cumulative distribution function. Nevertheless, independent covariates

are rarely the case in practice.

2The dataset can be downloaded from

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
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