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Abstract 
Subsampling methods aim to select a subsample as a surrogate for 
the observed sample. Such methods have been used pervasively in 
large-scale data analytics, active learning, and privacy-preserving 
analysis in recent decades. Instead of model-based methods, in this 
paper, we study model-free subsampling methods, which aim to 
identify a subsample that is not confined by model assumptions. 
Existing model-free subsampling methods are usually built upon 
clustering techniques or kernel tricks. Most of these methods suffer 
from either a large computational burden or a theoretical weakness. 
In particular, the theoretical weakness is that the empirical 
distribution of the selected subsample may not necessarily 
converge to the population distribution. Such computational and 
theoretical limitations hinder the broad applicability of model-free 
subsampling methods in practice. We propose a novel model-free 
subsampling method by utilizing optimal transport techniques. 
Moreover, we develop an efficient subsampling algorithm that is 
adaptive to the unknown probability density function. Theoretically, 
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we show the selected subsample can be used for efficient density 
estimation by deriving the convergence rate for the proposed 
subsample kernel density estimator. We also provide the optimal 
bandwidth for the proposed estimator. Numerical studies on 
synthetic and real-world datasets demonstrate the performance of 
the proposed method is superior.  

Keywords: Subsampling; Optimal transport; Star discrepancy; Density estimation; 
Inverse transform sampling  

1 Introduction 

A subsampling problem can be described as follows: given a d-dimensional 
sample  generated from an unknown probability distribution, the goal is to 

take a subsample , as a surrogate for the original sample. In recent 

decades, the subsampling problem has drawn great attention in machine 
learning, statistics, and computer science. For example, subsampling methods 
are used pervasively in optimal design/active learning problems, where in a large 
sample of unlabeled data, the goal is to select an informative subsample to label 
(Settles 2012). Consider privacy-preserving analysis as another example. In 
some applications, subsampling methods have the potential to enhance data 
security (Nissim et al. 2007, Li et al. 2012). Specifically, a carefully selected 
subset of data can reveal little confidential information (Shu et al. 2015). Last but 
not least, subsampling methods are also widely applied in algorithm design to 
alleviate the computational burden in large-scale data analysis (Tsai 
et al. 2015, Zhou et al. 2017).  

Many existing subsampling methods are model-based methods, which assume 
predictors and responses, if any, follow a postulated model. These methods aim 
to select an informative subsample that benefits model-fitting and prediction. 
Various models have been considered in subsampling problems, including linear 
regression (Drineas et al. 2006, 2011, Ma et al. 2014, 2015, Ma & 
Sun 2015, Wang et al. 2017, Meng et al. 2017, Zhang et al. 2018, Ma 
et al. 2020, Li & Meng 2020), generalized linear regression (Wang et al. 2018, Ai 
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et al. 2021b, Yu et al. 2020), lp regression (Dasgupta et al. 2009), quantile 
regression (Ai et al. 2021), streaming time series model (Xie et al. 2019), 
Gaussian mixture model (Feldman et al. 2011), nonparametric regression (Meng 
et al. 2020a, 2021), among others (Bardenet et al. 2017, Quiroz et al. 2018, Yu & 
Wang 2022). While model-based subsampling methods have already yielded 
impressive achievements, the key to the success of these methods highly 
depends on the correct model specification. Nevertheless, in practice, model 
specification is a trial and error process, and a postulated model for the data 
could be misspecified. For example, in supervised learning, we start with a high 
dimensional model with numerous features; and by using model selection, we 
may end up with a low dimensional model with parsimonious features. In another 
instance, we may start with a linear regression model for a continuous response; 
and by discretizing the response, we may end up with a classification model. 
Model-based subsampling methods, however, may result in subsamples 
hampering such dynamic processes of model specification (Tsao & Ling 2012). 
Consequently, in scenarios when the model may be misspecified or in the stage 
of exploratory analysis, more preferred methods are model-free subsampling 
methods, which can identify a subsample that is not confined by model 
assumptions.  

Recently, there have been emerging model-free subsampling methods, which 
aim to select a representative subsample that can capture the overall patterns of 
the observed sample. These methods can be divided into two classes: clustering-
based approaches and kernel-based approaches. Clustering-based approaches, 
which are usually used in unsupervised learning methods, include k-medoids 
method (Kaufman & Rousseeuw 1987, Park & Jun 2009), k-center method 
(Feder & Greene 1988), and Wasserstein barycenter method (Agueh & 
Carlier 2011, Cuturi & Doucet 2014). The k-medoids method is closely related to 
the k-means algorithm, and the k-center method is used extensively in fast 
multipole methods (Greengard & Strain 1991, White et al. 1994, Yang 
et al. 2003, Lee & Gray 2009). The Wasserstein barycenter method aims to find 
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the barycenter of a set of empirical probability measures under the optimal 
transport metric, and such a barycenter itself can be regarded as a 
representative subsample. Despite wide applications of these subsampling 
methods, the empirical distributions of the selected subsamples, yielded by these 
clustering-based approaches, may not resemble the probability distribution of the 
original sample. That is, as the subsample size increases, the probability 
distributions of the subsample identified by these methods may not necessarily 
converge to the true probability distribution. To address such a limitation, 
researchers developed kernel-based approaches, which aim to select a 
subsample that can effectively approximate the population distribution. These 
approaches include the kernel herding method (Chen & Zhang 2014), the coreset 
for kernel density estimation (Phillips 2013, Zheng et al. 2013, 2017), and the 
support point method (Mak & Joseph 2018). Despite the theoretical benefits, one 
limitation of these kernel-based approaches is that they may result in a large 
computational burden in large-scale data analysis.  

To overcome the computational and theoretical limitations of the aforementioned 
methods, we propose a novel model-free subsampling method that is 
computationally efficient and enjoys nice theoretical properties. The proposed 
method combines the techniques of optimal transport and space-filling designs. 
In particular, we first transform the observed sample to be uniformly distributed 
on a hypercube using optimal transport techniques (Villani 2008, Peyré 
et al. 2019), then select a set of data points that can effectively represent the 
uniform distribution using space-filling designs (Owen 2003, Fang et al. 2005). 
The desired subsample is the one corresponding to the selected data points. The 
idea is analogous to an inverse procedure of the inverse transform sampling 
technique, which transforms a uniformly distributed sample to a sample that 
follows an arbitrary probability density function. Theoretically, we show the 
proposed subsample kernel density estimator converges to the true probability 
density function under mild conditions. Moreover, we show the proposed 
estimator converges faster than the estimator based on a randomly selected 
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subsample, suggesting the proposed method can be utilized for efficient density 
estimation. We also provide the optimal bandwidth for the proposed estimator. 
Numerically, utilizing projection-based optimal transport methods (Pitie 
et al. 2005, Rabin et al. 2011), the computational cost for the proposed method is 
at the order of  for a d-dimensional sample of size n. The proposed 
method thus is scalable to datasets with large n and moderate d. Numerical 
studies on synthetic and real-world datasets demonstrate the superior 
performance of the proposed method in comparison with mainstream 
competitors. The proposed method is implemented in an R package, named 
SPARTAN.  

2 Preliminaries 

2.1 Star discrepancy and space-filling designs 

The proposed method is developed upon the notion of star discrepancy, which is 
a classical metric that measures the discrepancy between a set of discrete data 
points and the uniform distribution on the unit hypercube , denoted by 

 (Niederreiter 1992, Fang & Wang 1993, Fang et al. 2005). Let  be the 

indicator function and  be a vector. Let  be 

a hyper-rectangle and  be a set of r data points in . We introduce 
the definition of the star discrepancy in the following.  

Definition 1. Given  and a hyper-rectangle , the corresponding 

local discrepancy is defined as,  The star 

discrepancy is defined as  

 

Definition 1 suggests a set of data points , which can effectively represent 

, has a small value of , and vice versa. There exist methods that 
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generate design points via directly minimizing the star discrepancy, and these 
methods are called uniform design methods (Fang et al. 2005). Despite wide 
applications, most of these methods are computationally expensive and are not 
scalable to a design with a large number of points. To alleviate such a 
computational burden, methods yielding a set of design points with a relatively 
small star discrepancy could be used as alternatives for uniform design methods. 
These alternatives include space-filling design methods (Wu & 
Hamada 2011, Fang et al. 2005) and low-discrepancy sequences 
(Owen 2003, Lemieux 2009, Dick et al. 2013, Leobacher & 
Pillichshammer 2014). The former aims to generate a set of design points that 
spread out over the domain as uniformly as possible. The latter sequentially 
generates the design points, which achieve an asymptotically fast decay rate 
respecting the star discrepancy. Consequently, these methods provide powerful 
tools to generate a set of representative design points in terms of .  

We now discuss the theoretical property of space-filling designs and low-
discrepancy sequences in terms of the star discrepancy (Owen 2003). For a 
Sobol sequence , a representative of low-discrepancy sequences, 

 converges to zero at the rate of . In other words, the 

convergence rate of  is of the order  for an arbitrary small  

and fixed d, as r goes to infinity. For comparison, when a set of data points 
 is randomly generated from , the convergence rate of  

is of the order , which is much slower than  
(Chung 1949). By adopting a method which is no worse than the Sobol 
sequence, in this paper, we always assume the star discrepancy  

converges to zero with the rate . There also exist some space-filling 
designs that can achieve a potentially faster convergence rate in terms of star 
discrepancy (Fang et al. 2005).  

Utilizing space-filling design techniques, we propose a simple algorithm to select 
a representative subsample from a sample that is generated from . Let 
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 be such a sample. The proposed algorithm, summarized in Algorithm 1, 

combines space-filling design techniques and the one-nearest-neighbor 
approximation.  

Algorithm 1 Select a representative subsample from a sample generated 
from . 

Step 1. Generate a set of space-filling design points   

Step 2. For i = 1 to r 
Select the nearest neighbor for si from  using the Euclidean distance 

Let  be the selected data point 

Step 3. The final subsample is given by  

Lemma 1 below, which is first stated in Meng et al. (2020a), characterizes the 
approximation error of the subsample selected by Algorithm 1. This lemma 
suggests the selected subsample can effectively approximate the design points 
in the sense that their corresponding star discrepancies are almost at the same 
order under certain conditions.  

Lemma 1. Let  be a set of design points which satisfy 
 for any arbitrary small , as . Suppose d is fixed, 

when , as , we have   

Algorithm 1 can be extended to the case that the cumulative distribution function 
F of the samples is non-uniform when d = 1. The idea is analogous to the 
classical inverse transform sampling method (Devroye 1986, Mosegaard & 
Tarantola 1995). Let  be the observed sample, we first calculate 

, from which, we then select a subsample  using Algorithm 1. 

Notice that the transformed sample is uniformly distributed on ; thus, the 
selected subsample is relatively representative of . Finally, the desired 
subsample is given by . Although this simple strategy works well in 

practice, a limitation of such a strategy is that it is inapplicable when  1. To 
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overcome the limitation, we introduce the optimal transport map, which serves as 
a surrogate for F in multivariate cases. This idea is similar to the one in 
Chernozhukov et al. (2017), where the authors used the optimal transport map to 
extend the concepts of quantiles and ranks from one-dimensional samples to 
multivariate samples. Analogously, in this paper, we use the optimal transport 
map to extend the technique of inverse transform sampling from one-dimensional 
cases to high-dimensional cases.  

2.2 Optimal transport maps 

Optimal transport maps have been extensively used as a standard technique to 
transform one probability distribution to another. Recently, such maps have 
received a significant attention in machine learning and computer science 
(Ferradans et al. 2014, Rabin et al. 2014, Su et al. 2015, Courty 
et al. 2017, Meng et al. 2020b, Peyré et al. 2019), due to its close relationship 
with generative models, including generative adversarial nets (Goodfellow 
et al. 2014), the “decoder” network in variational autoencoders (Kingma & 
Welling 2013), among others.  

Instead of introducing the general definition of the optimal transport map, we now 
present a specific map of our interest, and we refer to Villani (2008), Peyré 
et al. (2019), Zhang et al. (2021) for more details. Let u be the uniform probability 
distribution on . Let pX and  be the probability distribution and the 
domain of the random variable X, respectively. Let  be the push-forward 
operator, such that for all measurable , we have . 

Among all the maps  such that  and , the 

optimal transport map  of our interest is the one that minimizes the L2 cost, 
, where  denotes the Euclidean norm. We focus on L2 cost 

in this paper for simplicity and it is possible to consider other costs as long as the 
optimal transport map exists. For the L2 cost, as a special case, when  and 
d = 1, it is known that  is equivalent to the cumulative distribution function F 
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(Villani 2008). This fact motivates us to use the  as a surrogate for F in high-
dimensional cases.  

To obtain the desired optimal transport map that maps the observed sample to 
be uniformly distributed on , we propose to first generate a synthetic sample 
from , then calculate the optimal transport map from the observed sample 
to the synthetic sample. One can utilize the auction algorithm or the refined 
auction algorithm to calculate such a map (Bertsekas 1992, Schuhmacher 
et al. 2020). Despite the effectiveness, the auction algorithm has an average 
computational cost of the order , and thus it may incur an enormous 
computational cost when n is large. To alleviate the computational burden, in 
practise, we propose to approximate the optimal transport map  using 
projection-based methods (Pitié et al. 2007, Bonneel et al. 2015, Rabin 
et al. 2011, Meng et al. 2019, Zhang et al. Just accepted). These methods tackle 
the problem of estimating a d-dimensional optimal transport map iteratively by 
breaking down the problem into a series of subproblems. Each of the 
subproblems involves finding a one-dimensional optimal transport map between 
the projected samples, and such a subproblem can be easily solved through 
sorting algorithms.  

3 Main algorithm 

We develop a novel subsampling method named SPARTAN, which integrates 
space-filling design techniques and optimal transport methods. The proposed 
method works as follows. First, we transform the observed sample, denoted by 

, to be uniformly distributed on . We achieve this goal by utilizing the 

empirical optimal transport map. Here, the empirical optimal transport map is also 
called the optimal matching between two discrete distributions, such that each of 
them have n atoms and each atom has weight . We use such an empirical 
optimal transport map as a surrogate of the optimal transport map between the 
underlying population density function of the observed sample and the uniform 
distribution. We then select a set of data points of size r from the transformed 
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sample using Algorithm 1. The subsample corresponding to the selected data 
points is the final output. We summarize the algorithm below.  

Algorithm 2 Space-filling after optimal transport (SPARTAN) 

Step 1. Generate a synthetic random sample  from   

Step 2. Calculate the empirical optimal transport map, denoted by , that maps 
the observed sample  to the synthetic sample  

Step 3. Calculate the transformed sample  

Step 4. Select a set of data points  from  using Algorithm 1 

Step 5. The final subsample is given by  

Figure 1 illustrates Algorithm 2 using a toy example. A two-dimensional synthetic 
sample of size 1000, marked as grey dots, is shown in Fig. 1(a). We first 
transform the sample to be uniformly distributed on  using the projection 
pursuit Monge map method (Meng et al. 2019), shown in Fig. 1(b). We then 
generate 32 design points using a space-filling design method (Owen 2003, Fang 
et al. 2005). The design points are marked as triangles in Fig. 1(c). Next, for each 
design point, we search for its nearest neighbor, labeled as black dots in 
Fig. 1(c). Finally, the subsample corresponding to the selected data points, 
marked as black dots in Fig. 1(d), gives the desired subsample.  

The computational cost for Algorithm 2 mainly incurs in Step 2 and Step 4. In 
particular, we use a projection-based method to approximate the desired optimal 
transport map in Step 2, requiring a computational cost of the order  
(Pitié et al. 2007, Bonneel et al. 2015, Meng et al. 2019). Step 4 includes two 
sub-steps: generating the design points and searching the corresponding nearest 
neighbors. The design points can be generated beforehand; thus, the 
computation time for generating these points is not considered here. For 
searching the nearest neighbors, we opt to use the k-d tree method, whose 
computation cost is at the order of  (Bentley 1975, Wald & 
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Havran 2006). In sum, the overall computational complexity for Algorithm 1 is at 
the order of .  

Figure 2 visualizes the subsamples (black dot) selected by the proposed method 
(lower row) compared with the subsamples selected by the random subsampling 
method (upper row). The two-dimensional samples (grey dots) are generated 
from three different distributions: the standard Gaussian distribution (left column), 
a mixture Gaussian distribution (middle column), and a mixture beta distribution 
(right column). From plots in the left column, one can observe that the randomly 
selected subsample is far from symmetric. From plots in the middle and the right 
columns, one can see that some peaks in the probability distribution are largely 
overlooked by the random subsampling method. We observe that the 
subsamples identified by the proposed method have a more robust and 
appealing visual representation of the corresponding probability distribution in all 
the cases.  

4 Theoretical results 

In this section, we study the theoretical properties of the subsamples obtained in 
Algorithm 2. In particular, we develop an asymptotic theory concerning the rates 
of convergence of the estimated density to the true density as the sample size 
goes to infinity. The rates are calculated in terms of the point-wise mean squared 
error (MSE) that defined as , where  is the 
density estimator and p is the true density. The density is estimated using the 
widely-used kernel density estimation method. Throughout this paper, we 
consider the Gaussian kernel. The extension of the main theorem to other kernel 
functions is straightforward, as long as such a kernel function satisfies some 
regularity conditions, which are relegated to the Supplementary Material. A more 
in-depth discussion on different choices of kernel functions can be found in 
Scott (2015). To avoid trivial cases, we consider the case that  in this 
section. Without lose of generality, we assume the points  are distinct, and 

the points  are distinct. In such cases, the optimal transport map in Step 2 of 
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Algorithm 2 is a one-to-one map from  to . Let p be the probability 

density function to be estimated. Two widely-used regularity conditions for p are 
required in kernel density estimation,  

 Condition (a).  is absolutely continuous, for ,;  

 Condition (b).  is square-integrable, for . 

Let  be the sample matrix, where the (i, j)-th element is xij, and  
be the subsample matrix, where the (i, j)-th element is . Let h > 0 be the 

bandwidth and  be a kernel function. For any , the full-sample 
product kernel density estimator can be written as  

 (1)  

Equation (1) can be generalized to a more general multivariate kernel density 
estimator. In particular, for a d × d nonsingular bandwidth matrix H and a 
multivariate kernel function , a general multivariate kernel estimator 
can be written as  

 (2) 

It is apparent that Equation (2) is equivalent to Equation (1) when , 

where  is the identity matrix. Let  be the Gaussian kernel in Equation (2), it is 

equivalent to choose  with , or to choose  with 

 in Equation (1). Consequently, with a properly chosen kernel function, 
one can reformulate a general multivariate kernel estimator to a product kernel 
density estimator. We thus only focus on the product kernel density estimator in 
this section without loss of generality.  

Analogous to Equation (1), the density estimator  that computed from the 
subsample can be written as  
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We derive the convergence rate for the mean squared error for the proposed 
subsample estimator. The results are summarized in Theorem 1 below, and the 
proof is relegated to Appendix.  

Theorem 1. Suppose p satisfies Conditions (a) and (b). Moreover, suppose p has 
a compact convex domain , and there exists a constant  for which 

 for any . When , as  and , for 
any arbitrary small , we have  

 

In particular, if , we have  

 (3)  

Theorem 1 shows the proposed subsample estimator converges to the true 
probability density function. Moreover, Theorem 1 indicates the proposed 
subsampling method can be used for efficient density estimation. Specifically, let 

 be a randomly selected subsample matrix, and  be the 
corresponding subsample estimator. According to Theorem 6.4 of Scott (2015), 
as  and , when  achieves the optimal 
convergence rate  for any . Such a convergence rate is much 
slower than the convergence rate in Equation (3). Consequently, Theorem 1 
indicates one can approximate the probability density function p more efficiently 
using the proposed subsample kernel density estimator, compared with the 
counterpart based on a randomly selected subsample.  

Consider the bandwidth h, or generally, the bandwidth matrix . In 
practice, one can determine the value of H through the plug-in approach or the 
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cross-validation approach (Duong & Hazelton 2003, Chacón & 
Duong 2010, Scott 2015). One limitation of these approaches, however, is that 
they may result in a computational burden for the sample with moderate or large 
n. To combat the computational burden, we opt to determine the value of H using 

the general Scott’s rule (Scott 2015), which suggests to use  for 
a subsample kernel density estimator that based on a subsample of size r. Here, 

 is the empirical variance-covariance matrix for the observed sample. 
Analogously, as suggested by Theorem 1, we also consider using 

 for the proposed estimator. Consider the essential condition in 
Theorem 1, which requires the domain of p to be compact convex. Empirically, 
we find the proposed estimator still works reasonably well when such a condition 
does not hold, as shown in the following section.  

5 Simulation Results 

To evaluate the proposed subsampling method, we compare it with three 
mainstream competitors in terms of the estimation accuracy of the kernel density 
estimator. The competitors include the uniform subsampling method, also called 
the random subsampling method, the k-medoids method, and the support point 
method (Mak & Joseph 2018). We use the projection-pursuit Monge map method 
(Meng et al. 2019) for approximating the optimal transport map in Algorithm 2. All 
the methods are implemented in R, and all the parameters are set as default.  

For each subsampling method, we first calculate the subsample kernel density 
estimator , then evaluate the accuracy of which using the Hellinger distance 

(Li et al. 2016), defined as  where  is an independent 

testing dataset generate from the same probability density function as the 
training sample. Empirically, we find other metrics, like the mean squared error 
considered in Theorem 1, also yield similar performance. For the kernel density 
estimator, we use the Gaussian kernel and the general Scott’s rule (Scott 2015) 
to determine the bandwidth matrix. In particular, for all the subsample estimator, 
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the bandwidth matrix  where  is the empirical variance-
covariance matrix. For the proposed method, we also consider the cases that 

 according to Theorem 1. The standard errors are calculated 
through a hundred replicates. In each replicate, we generate a synthetic training 
sample with  from  and each of the following three 
probability density functions,  

 D1: A Gaussian distribution , where ;  

 D2: A mixture Gaussian distribution  
 , where .  
 D3: A mixture t-distribution, whose degree-of-freedom equals 8,10, and 12,  
 , where . 

Figure 3 shows the Hellinger distance versus different r under various settings. 
Each row represents a particular data distribution D1–D3, and each column 
represents a particular d. We use crosses to denote the uniform subsampling 
method (UNIF), hollow circles to denote the K-medoids method (KM), hollow 
triangles to denote the support point method (SP), solid circles to denote the 
proposed method (SPARTAN), and solid triangles to denote the proposed 

method with  (SPARTAN ).  

Three significant observations can be made from Fig. 3. We first observe that the 
K-medoids method performs worse than the uniform subsampling method in 
almost all cases. Moreover, the support point method outperforms the uniform 
subsampling method in all cases. We also observe the Hellinger distance yielded 
by these two methods do not converge to zero in some cases. Such an 
observation can be attributed to the fact that the probability distribution of the 
subsample identified by these two methods may not necessarily converge to the 
true probability distribution.  
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Second, we observe the Hellinger distance yielded by the proposed method 
decreases as r increases. Moreover, the proposed method outperforms the 
uniform subsampling method in all cases. These observations are consistent with 
Theorem 1, which indicates the proposed subsample estimator converges to the 
true probability density function and is more efficient than the estimator 
corresponding to the uniform subsampling method.  

Third, we observe the proposed estimator with  outperforms the 
other three competitors in most of the cases. As the same bandwidth matrices 
are applied in all these estimators, such a comparison is fair. Consequently, the 
aforementioned observation suggests the subsample identified by the proposed 
subsampling method is more representative of the observed sample than the 
subsamples selected by the other three methods. We also observe the proposed 

estimator with  consistently outperforms the one with 

. This observation is consistent with Theorem 1, which suggests 
 yields the smallest upper bound of the asymptotic integrated 

mean squared error for the proposed estimator.  

6 Real data example 

6.1 Density estimation 

Throughout this section, we consider the banknote authentication dataset, which 
is extracted from images that were taken from 1372 genuine and forged 
banknotes. Wavelet transform was used to extract four features from images 2. 
To evaluate the performance of the proposed subsampling method, we compare 
it with other competitors in terms of the accuracy of the kernel density estimation 
and the prediction accuracy in active learning. A brief introduction to active 
learning will be given later.  

We first visualize the banknote authentication dataset and the subsample 
selected by the proposed method. In Fig.4, the lower diagonal panels show the 
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scatter plots for each pair of the predictors. We select a subsample of size fifty, 
and the scatter plots for such a subsample are shown in the upper panels of 
Fig.4. The heat maps are obtained using kernel density estimation. We observe 
the selected subsample has an appealing visual representation of the original 
sample.  

For density estimation, we consider three competitors, as mentioned in the 
previous section. Same as the settings stated in the previous section, we used 
the Gaussian kernel for kernel density estimators and the general Scott’s rule to 
determine the value of the bandwidth matrix. All the parameters are set as the 
same as the ones we used in the previous section. We replicated the experiment 
twenty times. In each replication, the dataset is randomly divided into the training 
set and the testing set of equal sizes. We first calculate the full sample kernel 
density estimator using the testing set, denoted by . For each subsample 

kernel density estimator, we then evaluate its estimation accuracy through the 

empirical Hellinger distance, defined as  where  

represents the testing set. This empirical Hellinger distance is not a formal 
distance and thus may have negative values, as we will see later. Nevertheless, 
the empirical Hellinger distance can be used as a surrogate for the true Hellinger 
distance since a small value of the empirical Hellinger distance is associated with 
a small value of the true Hellinger distance, intuitively.  

The left panel of Fig. 5 shows the empirical Hellinger distance versus different 
subsample sizes r. The standard error bars are obtained from one hundred 
replicates. We observe that the uniform subsampling method consistently 
outperforms the K-medoids method. We then observe that the proposed method 
and the support point method perform similarly, and both have better 
performance than the uniform subsampling method. Finally, we observe the 

proposed estimator with , as guided by Theorem 1, gives the 
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best result. All these observations are consistent with the findings in the previous 
section.  

6.2 Active learning 

We now consider the task of active learning, which aims to make an accurate 
prediction, with the number of labeled training data points as small as possible 
(Krogh & Vedelsby 1995, Cohn et al. 1996). These approaches are essential for 
numerous sophisticated supervised learning tasks, where the labeled instances 
are challenging, time-consuming, or expensive to obtain. Take speech 
recognition as an example; accurate labeling of speech utterances is extremely 
time-consuming and requires trained linguists. It is reported that annotation at the 
level of the phoneme can take 400 times longer than the actual audio 
(Settles 2012). In general, active learning approaches select the data points (also 
termed as the query points) iteratively and interactively. In each iteration, one 
query the oracle to obtain the label at a new query point, based on certain 
criteria. It is known that a representative subsample is potentially associated with 
an accurate prediction in active learning (Settles 2012).  

The proposed subsampling method can be cast as an active learning approach. 
In particular, we generate the Sobol sequence (Owen 2003) in Algorithm 1 and 
select the query points sequentially in Algorithm 2. To evaluate the performance 
of the proposed method, we compare it with the following baseline methods: (1) 
random sampling (RANDOM), (2) query by committee (COMMITTEE), which 
select query points that maximize the disagreement among different models 
(Settles 2012), and (3) margin-based method (MARGIN) which choose query 
points that lie on the margin of the decision line (Schohn & Cohn 2000).  

We replicate the experiment a hundred times on the banknote dataset. In each 
replication, the dataset is randomly divided into the training set and the testing 
set of equal sizes. We evaluate the classification model by its mean classification 
accuracy on the testing set. The classification accuracy is defined as 
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, where n denotes the size of the testing set, and TP and FN denote 
true positive and false negative, respectively. We use the support vector 
machine, implemented by the R package e1071 (Meyer et al. 2015)), for 
classification in the active learning. The RBF kernel with default parameters is 
applied. The size of query points ranges from 10 to 200. For the committee 
method and the margin-based method, which require several initial labeled data 
points as input, ten data points are randomly selected and labeled.  

The right panel of Fig. 5 shows the mean classification accuracy of different 
active learning methods versus different numbers of query points. The vertical 
bars represent the standard errors. These bars, however, are almost invisible 
due to extremely small values of standard errors. We observe the proposed 
method consistently outperforms all the competitors. We attribute such an 
observation to the fact that the proposed method selects a representative 
subsample in a sequential way, resulting in a more accurate prediction in active 
learning.  

7 Discussion 

In this paper, we proposed a novel model-free subsampling method, utilizing the 
space-filling design and optimal transport techniques. The proposed algorithm is 
efficient and can be adaptive to the unknown probability density function. 
Theoretically, we show the proposed subsample kernel density estimator 
converges to the true probability density function under mild conditions. The 
order for the optimal smoothing parameter for the proposed kernel density 
estimator is also derived. The superior performance of the proposed method over 
mainstream competitors was justified by various numerical experiments.  

In this paper, we mainly focus on using the unit cube as the target distribution 
due to mathematically simplicity. In practise, it is possible to consider standard 
Gaussian distribution instead. Specifically, we could generate the random sample 
from the standard Gaussian distribution in Algorithm 2, and use the Gaussian 

( ) /T P F N n
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Sobol sequence instead of the space-filling design points in Algorithm 1. The 
other steps remain the same. Empirical results show such a scheme may lead to 
slightly better performance. The proposed method has the potential to be applied 
to many large-sample applications, including but not limited to nonparametric 
regression, kernel methods, and low-rank approximation of matrices. This work 
may speed up these researches with theoretical guarantees.  
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Notes 

1 One exception is that when all the covariates of the sample are independent 
with each other, in which case one can directly calculate the multivariate 
cumulative distribution function as the product of all the one-dimensional 
marginal cumulative distribution function. Nevertheless, independent covariates 
are rarely the case in practice.  

2 The dataset can be downloaded from 
https://archive.ics.uci.edu/ml/datasets/banknote+authentication  
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Fig. 1 Illustration for Algorithm 2. The two-dimensional sample, marked as gray 
dots in panel (a), is first transformed to be uniformly distributed on , shown 
in panel (b). We then generate a set of space-filling design points, marked as 
triangles, and search for the nearest neighbor for each of them, marked by black 
dots in panel (c). Panel (d) shows the subsample corresponding to the selected 
data points. 
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Fig. 2 Subsamples (black dots) selected by the proposed method (lower) 
versus randomly selected subsamples (upper). Contours (black) are 
superimposed. One can observe the proposed method selects subsamples that 
have more appealing visual representation of the corresponding population. 
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Fig. 3 Simulation under different d (from left to right) and different probability 
density functions (from upper to lower). The Hellinger distance (H-dist) are 
plotted versus different r. Vertical bars represent the standard errors. 
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Fig. 4 Visualization of the banknote authentication dataset. The lower diagonal 
panels show the scatter plots for each pair of predictors. The upper diagonal 
panels show the scatter plots for the selected subsample using the proposed 
algorithm. The heat maps are obtained using kernel density estimation. 
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Fig. 5 Left: For the density estimation of the banknote authentication dataset, 
the empirical Hellinger distance (H-dist) is plotted versus different subsample 
sizes r. Right: For the active learning of the banknote authentication dataset, the 
testing accuracy is plotted versus different query sizes. Vertical bars represent 
the standard errors. In the right panel, the standard errors are tiny, and thus the 
error bars are almost invisible. 
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