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ABSTRACT: Modeling physiochemical relationships using dynamic data is a common
task in fields throughout science and engineering. A common step in developing
generalizable, mechanistic models is to fit unmeasured parameters to measured data.
However, fitting differential equation-based models can be computation-intensive and
uncertain due to the presence of nonlinearity, noise, and sparsity in the data, which in
turn causes convergence to local minima and divergence issues. This work proposes a
merger of machine learning (ML) and mechanistic approaches by employing ML
models as a means to fit nonlinear mechanistic ordinary differential equations (ODEs).
Using a two-stage indirect approach, neural ODEs are used to estimate state derivatives,
which are then used to estimate the parameters of a more interpretable mechanistic
ODE model. In addition to its computational efficiency, the proposed method
demonstrates the ability of neural ODEs to better estimate derivative information than interpolating methods based on algebraic
data-driven models. Most notably, the proposed method is shown to yield accurate predictions even when little information is
known about the parameters of the ODEs. The proposed parameter estimation approach is believed to be most advantageous when
the ODE to be fit is strongly nonlinear with respect to its unknown parameters.

1. INTRODUCTION
A truly optimal workflow for model building is one that
properly leverages available data resources, domain-knowledge
resources, and computational resources. The first two of these
can be maximized through mechanistic approaches, where
hypotheses based on first principles knowledge are used to
formulate mechanistic models, which can be fit and validated
with fewer experiments than purely empirical approaches.
However, sufficient first principles understanding is often
lacking, and this hinders the formulation of accurate
mechanistic models. Moreover, when they are available,
accurate models tend to require excessive compute time for
fitting their parameters, simulation, and optimization. Data-
driven models, on the other hand, tend to be computationally
efficient but require either too much data or have too little
interpretability to solve many scientific problems.1 Due to the
contrasting yet complementary strengths of data-driven and
mechanistic approaches to model building, many authors have
sought to combine these paradigms in ways that increase
interpretability and lower data requirements.2−4 Readers
interested in a comparison of data-driven, mechanistic, and
hybrid approaches to model building are encouraged to consult
recent surveys.5−7

Ultimately, mechanistic models offer the greatest interpret-
ability and thus methods that efficiently regress parameters of
mechanistic models, especially those formulated as differential
algebraic equations, would facilitate vetting of model
formulations when there is a high degree of uncertainty in
parameter values. Yet, despite decades of increasing computa-

tional power, fitting and simulation of differential equation
(DE) models remain computationally challenging for many
systems of interest. The primary methods for fitting nonlinear
ordinary differential equation (ODE) models include “direct”
approaches such as the nonlinear least squares (NLS),8−11

principle differential analysis,12−14 and direct Bayesian15,16 and
Gaussian Process-based methods.17−21 Following the nomen-
clature of ref 22, direct NLS procedures can be further divided
into sequential and simultaneous approaches.
Also known as the constrained or nonfeasible path approach,

the simultaneous approach avoids integrating the differential
equations (DEs) repeatedly. For example, multiple shooting is
a simultaneous approach that breaks up the state trajectory
into linked stages or intervals, parameterized by polynomial
basis functions.23−26 Alternatively, using collocation methods,
state profiles are approximated using polynomials connected
on finite elements.11,27 In these algebraic nonlinear programs
(NLPs), the parameters of the polynomial functions are solved
simultaneously along with the parameters of the differential
equations. Especially, the latter approach is frequently used
when solving a boundary value or optimal control problem as it
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offers a straightforward way to incorporate inequality or path
constraints and can be solved even when initial parameter
guesses cause the differential equations to diverge upon
integration. However, due to its large formulation, it is less
frequently used to solve initial value problems (IVPs).22

For the unconstrained, or sequential, NLS, the DEs are
integrated repeatedly during training. The forward solution
from integration is used to calculate the error between the DE
model predictions and true data. The gradients of the
computed error or loss function are calculated to give the
optimizer direction parameters that should be updated at each
iteration. Unconstrained NLS is the version of the direct
approach used in this work. A comparison of strategies for
integration and parameter estimation using the direct approach
can be found in ref 28.
However, the direct approach has several weaknesses,

including a poor rate of convergence for highly nonlinear
systems and the potential to converge to local minima.29,30

This can be ameliorated somewhat via multiple shooting
methods, which may mitigate divergence when parameter
values are far from their correct values. However, if a good
initial guess of model parameters is unavailable, integration of
the differential equations, especially for stiff systems, may still
be infeasible. Although Bayesian approaches have the potential
to overcome some of the local minima issues of direct NLS
methods, the direct Bayesian methods are beholden to the
same divergence issues as direct NLS methods since they
involve the integration of the original DEs.31 In addition, as
noted in ref 31, obtaining the posterior distribution for fully
Bayesian and Gaussian Process-based methods often relies on
sampling via Metropolis Hastings-type algorithms, which can
be impractical for high-dimensional problems. Finally, partial
differential analysis (PDA) can be unattractive for similar
reasons as the constrained NLS scheme proposed by ref 27
since both create a large optimization problem with a large
number of unknowns, which may be challenging to solve.
Alternatively, a far less computationally costly method is the

two-stage, or indirect, approach to parameter estimation.32−35

In the two-stage approach, state measurements are interpolated
(i.e., smoothed) via data-driven models. Next, the data-driven
model is differentiated to estimate system derivative
information at sampling times. Derivatives can also be inferred
without interpolation, though with limited accuracy, from
numerical approximations. Finally, using the derivative and
state estimates of the data-driven model, one can set up an
algebraic nonlinear programming (NLP) problem to fit the
parameters. We note here that the two-stage indirect approach
should not be confused with the indirect approach in control
theory based on Pontryagin’s Maximum Principle.36,37 In this
work, the two-stage indirect approach seeks to find the
parameter values of a differential equation (DE) without
integrating the original DE during training. By bypassing the
integration of the original DEs, two-stage methods tend to give
significant compute advantages over direct approaches.
Initially, the β-splines were suggested as the data-driven
interpolator for two-stage methods for ODE parameter
estimation.33 Since then, authors have implemented the two-
step approach using other data-driven models, including
support vector machines38 and neural networks (NNs).39 An
illustration of the steps in the direct and indirect approaches is
depicted in Figure 1.
Despite its compute advantages, traditional two-stage

approaches suffer from limited accuracy for real systems and,

at best, are used to provide an initial guess for parameter
values.40 This is because, especially when data is noisy or
contains outliers, data-driven models used to interpolate data
tend to yield low-quality derivative estimates, which reduces
the quality of parameter estimates obtained when solving the
NLP.41 Furthermore, it is often the desire to experimentally
explore a system using multiple experimental runs with varying
conditions, yet none of the derivative estimation techniques
currently proposed have a straightforward way to account for
multiple batches of data with a single data-driven model. Each
set of conditions would require estimation with a different
data-driven model, increasing the data burden and complexity
further. Thus, to be useful for real systems, the data-driven
model in the two-stage approach needs to accurately capture
derivatives for nonlinear dynamic systems, with minimal
compute time, in the case of limited and/or noisy data, and
possibly with data spread across system runs collected under
different process conditions.
Among options for data-driven models, neural networks

(NNs) are an attractive choice, as they have long been used to
approximate nonlinear algebraic relationships due to their
universal approximation potential.42 Methods to model
dynamic systems by applying NNs to approximate relation-
ships within differential equations go as far back as the early
90s.43−45 More recently, “neural ordinary differential equa-
tions” (NODEs)46 have been integrated with software with
pervasive automatic differentiation to accelerate fitting to
spatiotemporal data for a variety of systems.47 By defining NNs
to predict the system derivatives directly, the NODE captures
both state and derivative information during NN training. This
could potentially enable the NODE to better capture the
curvature in the response of dynamically evolving data than
algebraic data-driven models that do not consider derivative
information during training. A conceptual depiction of this
hypothesized advantage is illustrated in the abstract figure at
the beginning of this article.
This work proposes a novel approach to address the

shortcomings of a two-stage approach through the application
of neural ordinary differential equations (NODEs) as the data-
driven component within an indirect approach framework.
This work also proposes a novel integration scheme for fitting
neural ODEs. As the original ODE equations often have
physically interpretable, albeit unknown, parameters values,
they are herein referred to as the mechanistic ODE or simply
the mechanistic model. This will aid in differentiating it from
the more data-driven neural ODE. In this work, we set out to
prove that (1) neural ODEs generally outperform purely data-
driven NN models at estimating first-order state derivatives of
dynamic data and (2) estimating mechanistic ODE parameters

Figure 1. Depiction of the direct vs indirect two-stage approach to
parameter estimation.
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via a two-stage approach abetted by neural ODEs can be
competitive computationally and more flexible than direct
approaches to fitting DE models. To achieve this end, three
cases studies are examined based on the Lotka−Volterra
equations, the dehydrogenation of ethylbenzene (EB), and
penicillin production via cell culture fermentation. Different
aspects of the method’s flexibility are illustrated via each of
these case studies.
The remainder of this paper is structured as follows. In

Section 2, the two parameter fitting steps of the two-stage
approach are mathematically formulated and a general outline
of the two-stage approach is provided. The performance and
flexibility of the approach is explored in the Results section
(Section 3) through the lens of three case studies. A discussion
of the results can be found in Section 4. Finally, Section 5
concludes and identifies opportunities for further investigation.

2. METHODS
As illustrated previously in Figure 1, the two-stage approach
fits the parameters of the mechanistic model by solving two
separate regression problems. In the first stage, the parameters
of the data-driven model are fitted using the original
measurement data. In the second stage, the parameters of
the mechanistic ODE are found using the state and derivative
estimates of the data-driven model. The novel implementation
of the two-stage approach proposed in this work (see Figure 2)
fits a neural ODE as the data-driven model. This is done by
first solving the following regression problem

x x wmin )k j k j, ,meas , ,pred
2 2∑ ∑λ− + (1)

s t
x
t

x w. .
d
d

NN( , )k
k=

(2)

Here, K state variables xk, where k = 1,...,K, are measured and
predicted at time points j, where j = 1,..., J, by integrating an
NODE with respect to independent variable t. Neural network
parameters w are fitted to minimize an objective function equal
to the sum of squared errors between the model prediction and
measured state data and a regularization term. Due to the large
number of parameters in the neural network, a regularized
penalty term of the weights is added to the objective function
multiplied by a hyperparameter λ. Once the NODE is trained,
derivative estimates are obtained by integrating the trained
NODE from time t0 = 0 to a final time tf of measured data

using the same process conditions of the measured data. State
predictions of the NODE are used to simulate derivatives at
times where measured data is available. For the second stage of
the two-stage approach, a nonlinear program (NLP) is
formulated as in eqs 3 and 4 to find the parameters of the
original mechanistic ODE.

x

t
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t
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d

d
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{
zzzzz∑ −

(3)

s t
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d
( , )j k

j k
, ,MM

, ,NODE=
(4)

To solve this formulation, the parameters p of the mechanistic
ODE model f(x,p) are found by minimizing the sum of
squared differences between the derivatives predicted by the
NODE and the derivatives predicted by the mechanistic model
in the NLP. Alternatively, the objective to minimize could be
the sum of squared errors of the states. Note that all equations
in the NLP formulation are purely algebraic and no integration
is involved. Further, it is worth emphasizing that the state and
state derivative values (xj,k,NODE and dxj,k,NODE/dt, respectively)
used to solve the NLP are estimates from the fitted NODE, not
the original measurement data. To test the limits of this
approach, it is assumed that minimal prior knowledge of the
true parameter values was available. Thus, all parameters are
initialized to the same value and given wide bounds when
solving the NLP. Technically, since the neural ODE can be
simulated at any time t, additional points could be added to the
NLP formulation. However, limiting the number of state/
derivative values to the number of measured points was
adequate for the purposes of this study. In addition, derivative
estimates of the NODE at initial conditions t = 0 tended to be
poor and were not used when formulating the NLP. For each
of the two optimization routines in the two-stage approach, an
appropriate scaling method is used to account for states with
differing orders of magnitude. Namely, all state variables were
divided by the range of their respective state measurements.
A comparison of steps for the direct and indirect approach is

depicted in Figure 2. All neural networks were trained using
PyTorch,48 which uses automatic differentiation via the
Autograd software package to accelerate gradient calculation
and thus parameter estimation. Moreover, all numerical
integration, whether for the direct or indirect approach, was

Figure 2. Depiction of steps and software used for training and testing DE models via the direct and NODE-based indirect approaches.
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conducted in PyTorch. The quasi-Newton method L-BFGS
was used to train all PyTorch models, and all NLP
formulations were solved with nonlinear solver IPOPT49

using linear solver MUMPS,50 in the Pyomo modeling
environment.51,52 A neural network with a single hidden
layer with a hyperbolic tangent activation function was found
to give reasonable accuracy across all case studies. However, as
this work also sought to analyze NODE performance across
different noise levels, it was considered prudent to fit multiple
NODEs for each level of noise, varying parameters of the
NODE stage 1 fitting algorithm (also known as hyper-
parameters) to maximize the generalizability of the trained
NODE. Specifically, the hyperparameter tuning was set to
include 5, 7, or 10 hidden nodes, and the weight of λ in stage 1
objective function was set to 10 × 10−4, 10 × 10−5, or 10 ×
10−6. Using a grid search fitting of all combinations of these
hyperparameters, the NODE whose hyperparameters led to
the lowest mean squared error between model predictions and
noisy training data was selected for the second stage regression
problem.
A key technical challenge of this work was developing an

integration training algorithm that consistently fit an
interpolating model to continuous data of arbitrary non-
linearity, sparsity, and quality. In addition to structural
hyperparameters, some parameters of the optimization solver
should be considered. Important hyperparameters were found
to be the termination criteria of the neural ODE training
algorithm and the discretization method used. For all cases, the
training algorithm was stopped when the objective function
ceased to improve by a set tolerance (rtol = 10−6) for more
than 10 epochs. The forward Euler method was used to
integrate the ODEsa necessary step to obtain model
gradients during training. However, additional modifications
of the numerical integration algorithm were found necessary,

which are best discussed in the Results section and is shown
through the Lotka−Volterra case study.

3. RESULTS

Before presenting the results for each case study, a brief
introduction and objective of each example are provided here.
The Lotka−Volterra study will be used to illustrate key aspects
of the NODE regression algorithm as well as differentiate
between the behavior of NODEs and mechanistic ODEs. Next,
the styrene reaction system will be used to contrast the
performance of NODEs with algebraic data-driven models,
specifically algebraic neural networks, when estimating system
derivatives. This system is also used to demonstrate the
indirect approach’s ability to estimate parameters for
mechanistic ODEs with highly nonlinear terms. Finally, a
fermenter system will investigate the performance of NODEs
for noisy systems as well as possible adaptions of the NODE
indirect approach when domain knowledge is available to
inform the interpolating model (i.e., via hybrid modeling). All
case studies use the same integration algorithm, but due to
their unique features and for the sake of concision, we present
different results and highlight different aspects of our approach
through each case study.

3.1. Lotka−Volterra Equations. The Lotka−Volterra
equations53,54 were chosen as a first demonstration of the
versatility of the NODE-based two-stage approach. Commonly
known as the predator−prey model, these equations are
frequently used to track interactions between oscillatory
populations for a wide variety of systems, including chemical
reactions,55 biological competition,56 and ecological systems.57

In addition, these equations are frequently used to test
differential equation solution methods (for example, see refs
27, 28, 32, 33) due to their characteristic nonlinearity and

Figure 3. Progression of NODE predictions in green for the Lotka−Volterra system at the beginning (left) and end (right) of training when
integrating from a single IV (top) and multiple IVs (bottom).
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simple formulation. To train the NODE, 20 “measurements”
for populations of species x and y were collected within a
period t = [0, 5] by simulating the Lotka−Volterra ODE
model, summarized in the Supporting Information. The task at
hand is to fit all of the parameters of the mechanistic ODE
using the two-stage approach.
Initially, the NODE was fitted by integrating over a single

interval from time to = 0 to final time tf = 5. However, this
consistently resulted in the NODE training converging to a
local minimum between the min and max values of the state
profiles as shown in Figure 3. To overcome this undesired
behavior, the training algorithm was modified to integrate the
neural ODE not from a single initial value but from multiple
initial values. Specifically, each timepoint j with measured data
is used as an initial value (IV) in the integrator, which is
integrated forward in time for an arbitrary number of data
points n, from tj to tj+n. Clearly, a balance must be made
between the time interval for the forward integration steps, the
nonlinearly of the state space, and the quality (i.e., level of
noise) of the data. It was decided to fix the total integration to
a span of five measured points for each initial value, and the
number of Euler time steps between measured data was set to
6. For the LV equations with 20 simulated points in the time
interval t = [0, 5], the smallest Euler step size was Δt = 0.0417.
The improved convergence using the revised integration
algorithm can be seen in Figure 3. Due to the improved
convergence, this method integrating over overlapping
intervals spanning five measured points was used to train all
NODEs in this work.
The use of integration from multiple initial values may

appear similar to the multiple shooting approach. However, in
general multiple shooting methods, integration intervals do not
overlap; rather, boundary conditions are optimized with other
model parameters until the final values of one interval are equal
to the initial value of the subsequent interval, creating a
continuous dynamic solution. In contrast, the integration
method applied herein integrates over multiple overlapping
intervals, beginning from time points where measured data is
available. Although the initial values could be included as
trainable parameters, in this work, the initial value of each
integral is fixed at locations of measured data. The integration
scheme also differs from multiple shooting in its fundamental
purpose. Whereas the purpose of multiple shooting is to avoid
divergence during integration, the motivation for our method
is specifically to avoid convergence to local minima when
training the NODE. To our best knowledge, this is the first

work to propose integrating over overlapping intervals to
enable interpolation of dynamic data of arbitrary nonlinearity.
With a properly fitted NODE, the NODE can now be used

to fit the mechanistic ODE (see again, stage 2 in Figure 2).
Prior to this second fitting problem, the trained NODE is
integrated from a single initial value across the entire time
trajectory to obtain state and derivative estimates used in the
NLP estimating mechanistic parameters. The NLP can then be
solved without integrating the mechanistic ODE. It is worth
clarifying that NODEs are not the end model in the two-stage
approach. More appropriately, the NODE can be viewed as a
data-driven means to a mechanistic end. Due to their data-
driven nature, NODEs cannot be expected to offer accurate
predictions far beyond the range of training data, despite the
fact that they are used to predict derivatives. Rather, the
NODE is fitted to obtain system state and derivative estimates
for regressing mechanistic differential equations. If properly
formulated, the mechanistic model offers system interpret-
ability and extrapolation properties.
To illustrate this principle, Figure 4 demonstrates the effect

of simulating a trained NODE beyond the limit of training
data. For this illustration, the NODE was trained on 20 data
samples in the interval t = [0, 5] corrupted with Gaussian-
distributed noise equal to 0, 1, 5, or 10% of the range of the
state data, and it is then simulated for a period twice the time
interval of the training data. In addition, a mechanistic model is
fitted by solving an algebraic NLP using the NODE state and
derivative estimates from the training interval t = [0, 5] and is
then simulated for double this interval. Several principles can
be extracted from Figure 4, of which two are highlighted here.
First, neural ODE predictions are not adversely affected by the
addition of a small amount of noise, even improving when the
noise added is small, which may seem counterintuitive.
However, this can be explained by the general overfitting
properties of neural networks (NNs). Numerous previous
studies have shown that in many cases NNs tend to generalize
less well when data is “perfect” (i.e., noiseless), suggesting that
modelers add noise to the data to discourage overfitting.58−61

NODEs are essentially neural networks that predict the
instantaneous change in a system. Thus, they inherit similar
overfitting properties of neural networks. However, as
extrapolation is not required for estimation of the mechanistic
ODE, the effects of overfitting on extrapolation are not of
serious concern for the NODE indirect approach.
Second, it may appear from Figure 4, based on the case

wherein the NODE is trained on 5% noise, that the overfitting

Figure 4. Simulation of fitted neural ODE (left) and fitted Lotka−Volterra equations (right) when trained on data corrupted by Gaussian-
distributed noise equivalent to 0, 1, 5, or 10% of the true data. True data represented by dots. Training data restricted to interval t = [0, 5]. The
same initial value as training data.
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issue has been overcome and the NODE can extrapolate
competitively with the fitted mechanistic model. The ability of
neural ODEs to capture oscillatory dynamics is congruent with
similar studies.62 However, this behavior is better interpreted
as sophisticated pattern matching rather than rigorous
extrapolation. To clarify this claim, we tested the fitted neural
ODE and mechanistic ODE on the case where the initial
conditions of the predator−prey system change (see Figure 5).
Without retraining the models, the NODE and mechanistic
model are simulated assuming a higher initial amount of
“predator” in our system. This time the NODE clearly fails to
capture nuanced interactions between system variables,
regardless of the quality of the training dataeven predicting
physically unrealistic negative values. As a juxtaposition, the

correctly parameterized mechanistic model captures variable
interactions with far greater precision. It is the potential for
increased interpretability and extrapolation that motivates the
final model to be a mechanistic model in the two-stage
approach.

3.2. Styrene Example. Serving as a second demonstration,
the dehydrogenation of ethylbenzene (EB) to form styrene is
modeled in a tubular reactor.63,64 The reactor is assumed to
operate in plug flow, and thus, reactant concentrations change
only in the axial direction. This system consists of a reversible
reaction to the desired products styrene and hydrogen as well
as two undesired, irreversible side reactions. Benzene and
ethylene are produced in equimolar amounts and are thus
assumed to have the same concentration. The same is true of

Figure 5. Simulation of fitted NODE (left) and fitted Lotka−Volterra equations (right) when trained on data corrupted by Gaussian-distributed
noise equivalent to 0, 1, 5, or 10% of the true data. True data is represented by dots. Different initial values from training data.

Figure 6. State and state derivative fits of the neural ODE to styrene system data. Solid lines represent NODE predictions, solid points are training
data, and “x” tick marks are the derivatives of the original simulation without noise.
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toluene and methane. In total, the seven chemical species
involved in the reaction include ethylbenzene, styrene,
hydrogen, benzene, ethylene, toluene, and methane. The
stoichiometry of the reaction along with the mechanistic model
used to simulate the styrene production process is found in the
Supporting Information. To collect training data, the
mechanistic model is simulated over a reactor length t = [0,
12] meters with initial temperatures in the range of T = [850,
950] Kelvin and an initial ethylbenzene flow rate in the range
FEB = [3, 5] mol/s, all other species concentrations starting at
zero. Six system experiments are simulated with the above inlet
conditions, and 10 measurements of system states are sampled
at equidistant points along the reactor for each experiment for
a total of 60 time points of available training data.
To motivate the use of NODEs in the two-stage approach,

we compared its ability to capture system derivatives with
other data-driven models. For the EB system, the neural
network representing the NODE receives K = 6 inputs xk
corresponding to the flow rate of ethylbenzene, styrene,
hydrogen, benzene/ethylene, and toluene/methane and
temperature. The NODE has six outputs corresponding to
the instantaneous derivatives of each of the system states. The
states predicted by the NODE are obtained by numerically
integrating the model with respect to reactor length t.
As mentioned previously, a major shortcoming of the two-

stage approaches found in literature so far is poor estimation of
system derivative information, which leads to poor estimation
of mechanistic parameters. To demonstrate the improved
performance of the NODE, an algebraic (i.e., nondynamic)
neural network was also fitted, which receives the length of

reactor t as its only input and outputs the six state variables of
the EB system (not derivatives). This algebraic NN (a-NN)
can predict state derivatives by computing the gradient of NN
outputs with respect to its input, reactor length. The state
variables could also be used as inputs, although these did not
significantly enhance the accuracy of the a-NN. The
mathematical equations for the neural ODE and the a-NN
are thus formalized in eqs 5 and 6, respectively.

x
t

x w
d
d

NN( , )k
k=

(5)

x t wNN( , )k = (6)

Both the neural ODE and a-NN are trained on a single batch
of reaction data (i.e., 10 points along the reactor) using the
process conditions outlined in Experiment 1 in Table S1 in the
Supporting Information. A small amount of Gaussian-
distributed noise equivalent to 1% of the range of each state
variable is added. Figures 6 and 7 show the state and derivative
estimates of the trained neural ODE and the a-NN,
respectively. Clearly, both data-driven models provide an
adequate interpolation of the state data. Yet, when used to
predict state derivatives, the neural ODE estimates are far more
reliable. The a-NN visibly fails to capture derivative profiles
despite the state data being corrupted with minimal error (i.e.,
1% noise). The simple explanation for this lies in the fact that
in the process of integrating the NODE to predict the states,
the NODE must accurately predict the derivatives. In contrast,
no state derivative information is involved in the training of the
a-NN.

Figure 7. State and state derivative fits of the algebraic NN to styrene system data. Solid lines represent NN predictions, solid points are training
data, and x tick marks are the derivatives of the original simulation without noise.
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The a-NN model was likewise fitted to the state data of the
other case studies considered in this work and the predicted
derivatives plotted against the true rates, with equally
underwhelming results. For the sake of brevity, we surmise
that for every system considered herein the NODE model gave
more accurate estimates of the state derivatives than a standard
a-NN. These results are not surprising in light of previous
work, which has shown the importance of using dynamic data-
driven models to interpolate dynamic data, rather than their
algebraic equivalents.45

With confidence in the NODE’s ability to capture system
derivative information, we now turn to NODE’s ability to
estimate the parameter values of the original mechanistic ODE.
For this task, measurements from all six process conditions are
used to fit the NODE and mechanistic ODE. It was assumed
that three parameters of the EB model were unknown, namely,
the frequency factor (FF) of each reaction, all other parameters
fixed at their true values. Unknown mechanistic parameters
were initialized to a value of 2 prior to regression. To
demonstrate the robustness of NODE models to low-quality
training data, Gaussian noise was added to the measured data
equal to 0, 5, and 10% of the range of the state data.
Table 1 shows the fits of the three frequency factors using

the direct and indirect approaches. Recall that the direct
approach requires the repeated integration of the mechanistic
ODEs during parameter estimation, whereas the indirect
approach avoids integrating the mechanistic ODEs in favor of
integrating NODEs via the NODE 2-stage approach. Both
approaches perform well at estimating the frequency factors for
reactions 1 and 3. However, the neural ODE 2-stage approach

consistently provides superior estimates for the frequency
factor of reaction 2, even when training data is corrupted with
a large amount of noise. The inability of the direct approach to
estimate A2 can be explained in part by the difference in
magnitude of the model gradients calculated during training.
The initial value of the second parameter is furthest from the
true value, resulting in a gradient that is orders of magnitude
different from the gradients computed for the other
parameters. This results in a poorly behaved parameter
updating algorithm during training. To try to understand the
success of the two-stage approach in overcoming this
parameter sensitivity issue, we also solve the stage 2
formulation with L-BFGS rather than formulating it as an
NLP and solving it with IPOPT. The L-BFGS solver was
unable to find the true frequency factor for reaction 2, even
when perfect state and derivative values were used in the stage
2 formulation. The exact cause for the success of the interior
point method remains under investigation, and we are
hypothesizing possible reasons such as better internal scaling.
internally by the IPOPT solver enables more accurate
convergence. This issue could be resolved with a priori scaling
or reformulation of the ODE model. However, without good
foreknowledge of true parameter values, such an ad hoc
approach is not straightforward. In contrast, the NODE
approach abetted by an advanced NLP solver offers good
estimates of all system parameters without significant prior
knowledge of the correct parameter values.

3.3. Penicillin Model. For the final case study used in this
work to illustrate the versatility of NODEs, we chose to model
the production of penicillin via yeast fermentation. The

Table 1. Table of Frequency Factor (FF) Estimates via Direct and NODE Indirect Approachesa

0% noise 5% noise 10% noise

FF (direct) [−0.1626, 2.0039, 0.2787] [−0.1063, 2.0027, 0.3751] [−0.1020, 2.0025, 0.4575]
FF (indirect) [−0.1936, 13.0463, 0.16928] [−0.2622, 12.8374, 0.2061] [−0.2079, 12.8301, 0.3044]

aTrue frequency factor values: A1, A2, A3 = [−0.08539, 13.2392, 0.2961]. Initial FF estimates (pretraining): A1, A2, A3 = [2.0, 2.0, 2.0].

Figure 8. Simulated state profiles from the penicillin fermentation ODE model with correct parameters for all nine experimental batch conditions.
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fermentation has several challenging elements unique to this
system. First, modeling the reactor requires incorporating
external forcing variables (also known as control or system
operating variables), namely, the flow rate and substrate
concentration of the feed. Moreover, the level of nonlinearity
in the system differs significantly between state variables. It is
further assumed that none of the 11 parameter values of the
original mechanistic ODE are known, posing a serious test to
the proposed NODE algorithm. The system equations and
process conditions can be found in the Supporting
Information. Nine sets of process run conditions are used to
generate training data. Assuming 10 data points can be
collected from each run, 90 data points are available for
training. A depiction of the continuous state profiles of the
nine process runs is given for reference in Figure 8.
A few options exist for incorporating forcing variables in the

formulation of the neural ODE. The simplest approach is to
include the forcing variables as inputs to the neural network
(eq 7).

x
t

x w
d
d

NN( , c, )k
k=

(7)

With all of the state and forcing variables included, the NODE
would have six inputs, including two forcing variables c = [F,
Sf] corresponding to the substrate concentration in the feed
(Sf) and feed flow rate (F) and four state variables (xk). With
respect to outputs, the NODE would predict the derivatives of

the three state variables biomass (B), substrate (S), and
product (P) concentration. However, the addition of forcing
variables requires the NODE to learn complex nonlinear
relationships with little extra data information since the forcing
variables are often constant throughout the process. Not
surprisingly, training with all variables resulted in inconsistent
and diverging training properties. Alternatively, the size of the
neural network component of the NODE can be reduced by
including mechanistic information in the neural differential
equation. Generally speaking, engineering systems have some
readily available mechanistic knowledge such as conservation
balances that can be combined with data-driven models to
create more interpretable models. This is akin to hybrid
semiparametric modeling introduced in the early 90s.43,44 In
the case of the fermenter example, the change in volume and
the effect on concentration from the feed rate can easily be
deduced from a mass balance. This “hybrid” model is
formulated below (eqs 8−12).

B
t

x w BD
d
d

NN( , )k= −
(8)

S
t

x w S S D
d
d

NN( , ) ( )k f= + −
(9)

P
t

x w PD
d
d

NN( , )k= −
(10)

Figure 9. Fit of neural ODE to penicillin state data (left) and estimate of state derivatives (right) when data is corrupted with 5% Gaussian noise.
Data and fit are shown for batch case #1.

Figure 10. Simulation of the penicillin ODE system after fitting with data corrupted with 0% (left) and 10% (right) noise. Data and fit are shown
for batch case #1.
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d
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=
(11)

D
F
V

=
(12)

With the mass balance properly specified, the number of NN
inputs required to predict the remaining rate term is reduced
from 6 to 3. To thoroughly characterize the potential of the
hybrid NODE formulation in the context of the fermentation
case study, the NODE is fit to data with varying levels of noise
ranging from 0 to 10%. Figure 9 shows the NODE estimation
versus state data for a single-batch experiment after training the
NODE on all nine sets of batch data with 5% added noise.
Figure 9 also shows NODE estimates of the state derivatives,
having removed the poor derivative predictions at time t = 0.
Save for the initial value, the NODE tends to give reasonable
estimates of the state derivatives.
Similar to the previous examples, the derivative and state

estimates from fitting the hybrid NODE are used to estimate
parameters of the mechanistic ODE. Once again, little prior
information is assumed about the values of the mechanistic
parameters, and thus, all mechanistic parameters are initialized
to equal 2 at the beginning of NLP optimization. The fitted
mechanistic model using derivatives estimates from hybrid
NODEs trained on different levels of noise is shown in Figure
10.
Figure 11 shows calculated errors of the fitted penicillin

model and juxtaposes those errors with the errors from the

mechanistic models of the previous case studies fitted via the
two-stage approach. Errors reported in Figure 11 are the mean
absolute value error (MAE) between the state data predicted
by the fitted mechanistic ODE and the original mechanistic
ODE with true parameter values, averaged over N training data
points (see eq 13), where i = 1, ..., N.

x x

N
MAE

abs( )i i,true ,pred=
∑ −

(13)

To visualize errors on the same plot, the MAE of styrene
predictions are scaled by a factor of 10; all other errors are left
unscaled. The trends in accuracy tend to be consistent with
what was observed earlier in the Lotka−Volterra study. In the
presence of near-perfect data with no noise, the fitted
mechanistic model tends to show slightly inferior performance.
This is believed to be caused by the NODE slightly overfitting
the data, a problem less evident at small amounts (i.e., 1%) of
noise. This is interesting when considering the fact that the
NODE is trained using the measurement data as the fixed
initial condition during integration, which becomes more
erroneous as the level of noise increases. However, the NODE
fit is by no means impervious to poor quality data, and this
latter factor explains the increase in fitting error when training
on data with greatest corruption (i.e., 10% noise). Never-
theless, the issues of overfitting and poor data quality
notwithstanding, using data from multiple experiments as
well as the method of overlapping integration, the neural ODE
still offers a reasonable interpolation of the state data as
depicted previously in Figure 9.
Table 2 shows parameter values of the fitted mechanistic

model. Unlike the previous two case studies, ODE parameters
found via the two-stage approach did not always approach
values close to those in the original set of equations simulating
the data. As a check that the NLP solution found is a global
one, the parameters were also initialized to their true values
and the NLP was solved with the improved starting values.
However, this consistently converged to the same set of
parameter values as the NLP with poor initial parameter values.
This can be attributed to the variance in sensitivity of the
parameters. In an actual modeling scenario, some parameters
may be identified before model fitting using separate
experiments or nominal literature values. Modelers may often
choose to fix insensitive parameters to nominal values, thus
decreasing the number of mechanistic parameters that require
fitting. This would invariably increase the accuracy of the final
parameter fit in our two-stage approach.

3.4. Compute TimeDirect and Indirect Approaches.
As a final assessment of the relative merits of the NODE 2-
stage approach, the computational requirements of the
proposed approach and the traditional direct approach were
tabulated for the case of noiseless training data. For this study,
the NN in the NODE was fixed at 10 hidden nodes. All
training studies were conducted on a laptop computer with an
Intel Core i7-6700 CPU processor (3.4 GHz). To ensure a fair
comparison, the algorithms and software used to find the
parameters of mechanistic ODEs and neural ODEs were kept
nearly identical. Specifically, both ODE types are repeatedly
integrated using the same numerical integrator (Euler’s
method), use the same method for gradient calculation

Figure 11. Mean absolute error for three case studies fitted to data
with different levels of noise.

Table 2. Actual and Fitted Parameter Estimates for Penicillin Case Study

cLmax kL ki m_xm k kp μ_m kx qpm Yps Yxs

true values 0.0519 0.05 1 0.01 0.0137 0.0001 0.0100 0.3 0.0837 1.2 0.47
0% noise 0.0447 6.3077 11.0 0.0010 0.0084 9.9708 0.0049 0.1251 0.0083 0.2713 0.4076
1% noise 0.0382 0.0104 19.99 0.0129 0.0077 9.9922 0.0069 0.2420 0.0056 0.4781 0.4273
5% noise 0.0461 0.0108 19.99 0.0047 0.0054 9.9796 0.0138 0.535 0.0052 0.2780 0.4406
10% noise 0.0401 0.0106 19.99 0.0420 0.0026 9.9919 0.0105 0.4693 0.0044 0.6278 0.6673
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(automatic differentiation), and use the same nonlinear
optimizer (L-BFGS). Both minimize the same objective
function (eq 1) except the direct approach that does not
include the regularization term penalizing large parameter
values. For the direct approach, compute time was defined as
the time required to train mechanistic ODE parameters.
Whereas the compute time for the indirect approach includes
the time to fit the neural ODE parameters and the time to
solve the NLP for the mechanistic parametersstages 1 and 2
of the indirect approach, respectively. Not included in the time
comparison is the hyperparameter tuning. In other words,
stage 1 includes only the time required to fit a single NODE.
Although hyperparameter tuning invariably increases the
compute cost of the NODE 2-stage approach, the cross-
validation procedure using grid search can be parallelized to
prevent such a procedure from substantially increasing
compute times.
The results are presented in Table 3. The compute times

tend to be comparable despite the larger number of parameters
in the neural network that must be fit. For example, in the case
of the ethylbenzene system, which is made highly nonlinear by
the presence of exponential functions, the direct approach is
required to fit three mechanistic parameters vs. 136 parameters
in the neural ODE. In contrast, the Lotka−Volterra system,
which is linear with respect to its three parameters, observes
minimal compute gains using the two-stage approach. It is
reasonable to conclude, therefore, that the influence of
nonlinear operators on the sensitivity of the parameter
gradients, rather than the number of parameters, plays a
bigger role in compute costs. The NLP when properly
formulated requires little compute power in comparison to
fitting the ODE models.
A comparison with the direct approach for the penicillin

model is not possible as the direct approach quickly diverged
unless parameter estimates close to the true values are supplied
as an initial guess. However, obtaining good parameter guesses
is not always possible. Thus, more than faster compute times, it
may be that the greatest advantage of the two-stage approach is
the ability to obtain reasonable model estimates when little is
known about their parameter values. This obviates the need for
ad hoc scaling and parameter bounding that would be required
for direct approaches, which although harder to quantify may
represent a significant time savings of the two-stage approach.

4. DISCUSSION

There are several aspects and findings of this study that are
worth further discussion. First, although there is a trend toward
deep machine learning architectures, a simple neural network
with a single hidden layer was found to be sufficiently robust
when used in the NODE to model the state and rate space of
each case study. This is not to say that alternate NN
architectures could not improve the approximation accuracy of
neural ODEsa question that may hold interesting answers,

especially for more complex systems or systems with more
dimensions. It is also important to mention that this approach
offers more than a simple data-driven correction to the
mechanistic model. In this approach, the NODE (or hybrid
ODE) is not the final model, rather it is the tool that helps us
arrive at a parametrized mechanistic model.
Hyperparameter tuning may help minimize overfitting of the

NODE, generating a more optimal interpolation of the data. In
this work, the NODE was selected after hyperparameters such
as the number of hidden nodes and regularization weight were
varied. Hyperparameters such as the discretization method and
termination criteria for training were held constant across case
studies or given random initial values (i.e., initialization of NN
weights). Other possible hyperparameters that one may choose
to consider include the NN structure (number of hidden
layers, activation function, etc.) and features of the nonlinear
optimizer (e.g., learning rate). We acknowledge, however, that
these are all (hyper)parameters of the approach that may need
to be optimized for other case studies using either an
automated grid search or more advanced techniques. Parallel
computing can be used to prevent such a grid search from
exponentially increasing compute time. As software packages
for implementing NODEs become more standardized, we
anticipate the selection of these hyperparameters to be
increasingly streamlined, making hyperparameter tuning and
cross-validation a fast and straightforward process.
Another interesting finding of this work is related to the use

of integration when training neural ODEs. Typical two-stage
approaches use algebraic data-driven models to estimate state
derivatives to avoid the time-intensive integration of DEs
required in the direct approach. In contrast, by applying
NODEs for derivative estimation, the proposed method
effectively reintroduces integration into the two-stage
approach, albeit only in the first stage. Algebraic data-driven
models, such as the algebraic neural network used in this work,
can be trained in fractions of the time required to train neural
ODEs, yet their derivative estimates are not sufficiently
accurate for solving the NLP in stage 2. Therefore, as argued
in this work, the ability of neural ODEs to accurately capture
derivative information favors their use notwithstanding the
added compute cost of integration/gradient calculation during
NODE training.
Conversely, although neural ODEs required more training

time than an a-NN, their training time was competitive, if not
faster, than the direct estimation of mechanistic parameters.
Although the NODE’s neural network architecture used in this
work may be small when compared to many deep learning
architectures, the NODE had many more parameters that
required fitting than the mechanistic model. It may seem
counterintuitive that a model with more parameters can be fit
with competitive compute cost and more reliably than directly
fitting a model with fewer parameters.

Table 3. Compute Times for Direct vs Indirect Approachesa

Lotka Volterra
(2 states, 3 parameters, 20 dp)

Ethylbenzene
(6 states, 3 parameters, 60 dp)

Penicillin
(3 states, 11 parameters, 90 dp)

Direct approach Total: 76 s Total: 352 s Did not converge
Indirect NODE or hybrid ODE
approach

Total: 62 s Total: 116 s Total: 183 s
NODE: 62 s NODE: 110 s NODE: 181 s
NLP: 0.009 s NLP: 6.76 s NLP: 1.932 s

adp = number of data points used for training.
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Two factors are believed to contribute to this observation.
First, due to their large number of parameters, NN fits are
often nonunique, enabling the model to interpolate the
available data equally well with several combinations of
parameter values. This feature is not an issue in terms of
generalizability of the proposed approach as the NODE is not
the final model and is not expected to extrapolate. Second,
gradients used to update parameters during NN training tend
to be better behaved and fall within a tighter range than what
can be expected of some mechanistic models. This is because
nonlinear operators in mechanistic ODEs, especially exponen-
tial and logarithmic terms, tend to cause parameter values and
gradients to range over larger orders of magnitude. For
example, in the case of the styrene system, when the direct
approach was used and the gradients of the unknown
mechanistic parameters (initially assumed to equal 2) were
calculated with respect to the loss function at the start of
training, it was found that the difference between the true
parameter values and parameter gradients varied over 8 orders
in magnitude. In contrast, none of the initial gradients of the
136 NODE parameters at the start of training differed from the
final parameter values by more than 3 orders in magnitude. A
wide discrepancy between parameter gradients and true
parameter values invariably leads to poor convergence. In
summary, the NODE 2-stage approach can be faster than the
direct estimation of mechanistic models by avoiding
integration of the mechanistic model during estimation of its
parameters, which may be less sensitive and more constrained
than NODE parameters. Only in stage 2 of the two-stage
approach must the mechanistic constraints be considered, but
since the NLP formulation is already algebraic, no numerical
methods are involved at this stage. Although the problem of
mechanistic parameter sensitivity could be addressed with
model scaling and reformulation, when mechanistic parameters
are unknown, the proper scaling is not always obvious. A more
thorough treatment of neural ODEs observed stable
convergence is a potential topic for future work.
A common concern when training the weights of neural

networks is convergence to local minima. In this work,
designing the algorithm to integrate over overlapping intervals
was found to overcome convergence to unacceptable local
minima. Moreover, in this work, it was assumed that a sample
for each state variable was available at each sampling moment
and the initial values for integration were fixed at the
measurement values. Although not emphasized in the results,
the algorithm also proved to readily generalize to training on
data sampled at irregular intervals. For example, the interval
between sampled states of the fermenter varied slightly
between 21 and 24 h, requiring the automated adjustment of
the Euler step size during training. For cases where the data is
even sparser, states are measured at uneven time intervals or
some measurements are missing; algebraic data-driven models
could be used to interpolate missing state values. However, it
should be acknowledged that if data is too sparse such that it
does not cover the curvature of state trajectory, NODE
interpolations will not represent the true trajectory well and
the two-stage method is not expected to give satisfactory
results. Global optimization methods could be added to the
neural ODE training stage to ensure global convergence;
however, this would significantly increase computational cost.
More importantly, as the NODE is not the end model and
already offers the needed accuracy for derivative estimates,
global optimization methods for NODE training might not be

necessary. Although not done here, the weights of the neural
network could be pretrained with the courser derivative
estimates of algebraic data-driven models prior to training the
neural ODE, which could further accelerate NODE training.
A potential weakness of estimating system derivatives with

data-driven models is the poor derivative estimates at initial
conditions. This is unfortunate as the most interesting
nonlinear behavior tends to occur at the initial stage of the
process. This behavior has been observed repeatedly for
splines34,41 but has not been studied for NODEs. A hypothesis
for this behavior is that the initial system derivatives present an
extra degree of freedom not constrained by data as at
intermediate time points. If the modeler knows the initial
rates, these could be enforced, eliminating the extra degree of
freedom, though such information is generally not known.
More realistically, since the NODE can be regressed on
multiple batches of data, thoughtful design of experiments
could mitigate the effect of poor initial estimates. Regardless,
this work follows the heuristic of removing derivative estimates
at initial conditions, and the two-stage approach still managed
to yield reasonable fits to the state data.
It is well known that a direct approach can have greater

statistical accuracy than indirect approachesthis is because
the additional step of fitting the data-driven model in the
indirect approach may incur an “information loss” that may
bias the final mechanistic model fit.65,66 Even in this case, as
has been demonstrated in previous studies,30,33,66 the
discovered parameters from the faster indirect approach can
be used as initial guesses in the direct approach to alleviating
some of the computational burdens. This advantage would be
even more pronounced in situations where the exact formula of
the mechanistic model is uncertain. In this contribution, it was
assumed that the available mechanistic model was the same as
mechanistic ODEs that simulated the measurement data.
However, when the true ODE model is unknown, the modeler
may be required to select between multiple mechanistic
models with different parameterizations. In this case, a single
NODE can be regressed whose derivative estimates are used to
fit all of the proposed mechanistic models separately, a task
that would be computationally more significant with a direct
approach.
Finally, it should be stressed that our proposed approach is

not exempt from issues of parameter identifiability and
sensitivity. With all parameter estimation approaches, one
should verify that data quantity and quality is adequate to
obtain the needed level of parameter precision prior to
parameter fitting (e.g., by conducting identifiability and
sensitivity analysis). Moreover, other sources of domain
knowledge that could be used to improve initial guesses and
tighten the feasibility bounds for parameters should be
incorporated when available. As with other indirect ap-
proaches, the NODE indirect approach does not have a
straightforward extension to systems with unmeasured (i.e.,
latent) states. If the mechanistic DEs are assumed to be a
function of unmeasured states, methods typically associated
with the direct approaches will be required to relate
unmeasured states to measured variables during parameter
estimation. A comparison of the proposed approach with direct
integration methods was conducted to highlight the advantage
of the proposed approach versus direct approaches. However,
to fully classify the scenarios where indirect estimation via
neural ODEs would be superior, a more comprehensive
comparison with other DE solution methods mentioned in the

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.1c00552
Ind. Eng. Chem. Res. 2021, 60, 16330−16344

16341

pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.1c00552?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Introduction section should be conducted. Many of these
direct approaches are under active development or being
revisited, and a full comparison is outside the scope of this
study.

5. CONCLUSIONS
This work compared the ability of NODEs and algebraic NNs
to extract state derivative information from data. It further
compared the indirect approach based on NODEs with a
direct NLS approach for regressing ODE models. A clear
increase in accuracy was shown when NODEs are the
interpolating model. Other data-driven models could be used
to estimate system derivatives and an exhaustive comparison
with all methods was outside the scope of this work. However,
we anticipate that NODEs will outperform all methods based
on algebraic interpolating models (e.g., splines) as none of
these methods consider state derivatives during model fitting.
Moreover, a single algebraic data-driven model has no
straightforward way to interpolate data from multiple batch
runs based on different system forcing conditions. In contrast,
the differential equation-based NODEs can easily incorporate
data from different system conditions via user specification of
initial and boundary conditions and external forcing variables.
Although the neural ODE-based approach showed computa-

tional gains over direct integration of mechanistic ODEs, the
most attractive advantage of this approach lies in its ability to
find mechanistic parameters with minimal prior knowledge of
their values and minimal parameter scaling. Improvement in
parameter estimation is most notable for mechanistic DEs that
require parameterization of highly nonlinear operators (e.g.,
logarithms and exponentials). Many interesting questions
remain in regards to possible extensions of the method.
Especially interesting would be analyses on the scalability of
the NODE 2-stage method to more complex differential
equation systems (e.g., PDEs) and higher-order DE
systems.47,67 It may also be worth exploring the effect of
including the initial conditions as trainable parameters along
with the NODE parameters if the initial conditions are
uncertain. The potential to improve parameter estimates by
solving the NLP with global optimization solvers is yet another
interesting direction. These and other directions are a matter
for future investigation.
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