

1 **Photochemical degradation of short-chain chlorinated paraffins in aqueous solution**
2 **by hydrated electrons and hydroxyl radicals**

3

4 Brian P. DiMento,^{a,b*} Cristina L. Tusei,^{a,c} Christoph Aeppli^{a,b}

5

6 ^aBigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, USA

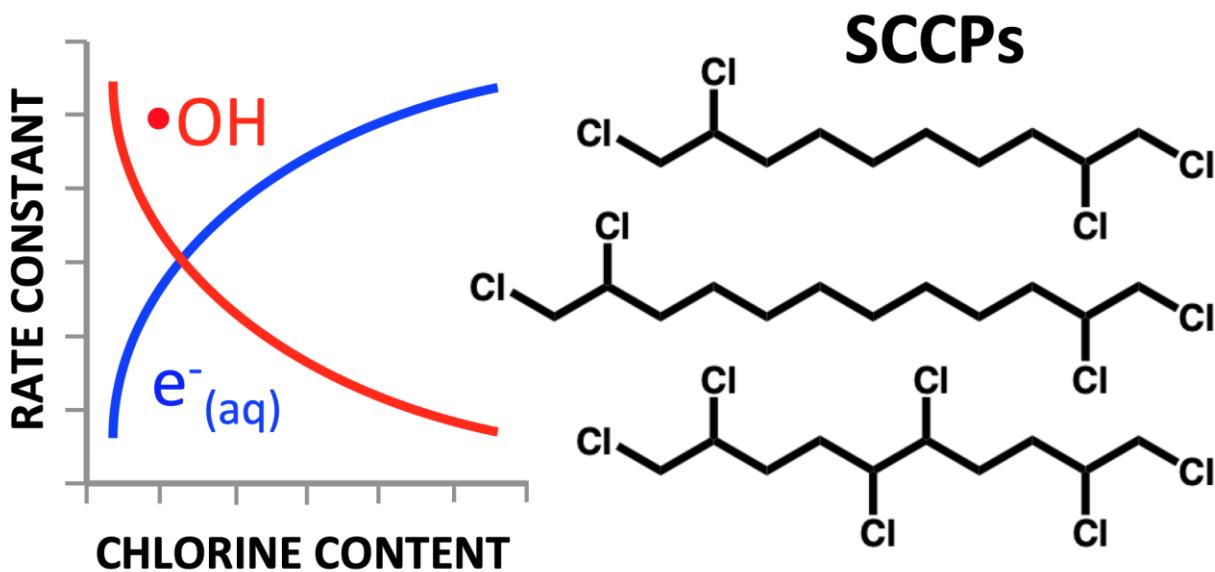
7 ^bColby College, 4000 Mayflower Hill Dr, Waterville, ME, USA

8 ^cHumboldt State University, 1 Harpst St, Arcata, CA, USA

9

10 *Corresponding author

11 Email address: bdimento@colby.edu, Tel: +1 207 859 4100 ext. 5771


12

13 **Abstract**

14 Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated
15 alkanes (C₁₀-C₁₃, chlorine content 40-70%), and have been categorized as persistent
16 organic pollutants. However, there are knowledge gaps about their environmental
17 degradation, particularly the effectiveness and mechanism of photochemical degradation in
18 surface waters. Photochemically-produced hydrated electrons (e⁻_(aq)) have been shown to
19 degrade highly chlorinated compounds in environmentally-relevant conditions more
20 effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic
21 pollutants. This study aimed to evaluate the potential for e⁻_(aq) and ·OH to degrade SCCPs.
22 To this end, the degradation of SCCP model compounds was investigated under laboratory
23 conditions that photochemically produced e⁻_(aq) or ·OH. Resulting SCCP degradation rate

24 constants for $e^{-}_{(aq)}$ were on the same order of magnitude as well-known chlorinated
25 pesticides. Experiments in the presence of $\cdot OH$ yielded similar or higher second-order rate
26 constants. Trends in $e^{-}_{(aq)}$ and $\cdot OH$ degradation rate constants of the investigated SCCPs
27 were consistent with those of other chlorinated compounds, with higher chlorine content
28 producing in higher rate constants for $e^{-}_{(aq)}$ and lower for $\cdot OH$. Above a chlorine:carbon
29 ratio of approximately 0.6, the $e^{-}_{(aq)}$ second-order rate constants were higher than rate
30 constants for $\cdot OH$ reactions. Results of this study furthermore suggest that SCCPs are likely
31 susceptible to degradation in sunlit surface waters, facilitated by dissolved organic matter
32 as a source of photochemically produced $e^{-}_{(aq)}$ and $\cdot OH$.

33

34

35

36 **Keywords**

37 Photodegradation, chlorinated paraffin, persistent organic pollutant, hydrated electron,
38 hydroxyl radical, dissolved organic matter

39

40 **Highlights**

41 • **Photochemically-produced hydrated electrons and hydroxyl radicals can**
42 **degrade SCCPs**

43 • **Hydrated electron rate constants increase with increasing chlorine content**

44 • **Hydroxyl radical rate constants decrease with increasing chlorine content**

45 • **SCCP photodegradation was also facilitated by dissolved organic matter**

46 **1. Introduction**

47 Short-chain chlorinated paraffins (SCCPs) are a highly complex mixture of
48 polychlorinated n-C₁₀ through n-C₁₃ alkanes with thousands of congeners and a chlorine
49 content typically between 40 and 70% (U.S. Environmental Protection Agency, 2009). They
50 are high-volume industrial chemicals that have been used since the 1930s as additives in
51 high-pressure lubricants and cutting fluids for metalworking, as well as flame retardants
52 and plasticizers in a variety of products such as paints, adhesives, and sealants (Bayen et
53 al., 2006; U.S. Environmental Protection Agency, 2009). SCCPs are compounds of concern
54 due to their toxicity, bioaccumulation potential (Houde et al., 2008), persistence, and long-
55 range transport potential (Bayen et al., 2006; Fisk et al., 1999; Tomy et al., 1998; Zeng et al.,
56 2013; 2017a; 2017b; 2012; 2011). Due to the widespread usage and improper disposal of
57 products containing SCCPs, they can now be found throughout the environment in surface
58 waters, sediments, and biota (Bayen et al., 2006; Bennie et al., 2000; Campbell and
59 McConnell, 1980; Casà et al., 2019; Du et al., 2018; Feo et al., 2009; H. Li et al., 2017;
60 Štejnarová et al., 2005; Tomy et al., 1997; UNEP, 2016), and they have since been added to
61 Appendix A of the Stockholm Convention on Persistent Organic Pollutants (UNEP, 2017).

62 Understanding the fate of SCCPs in the aquatic environment is critical to estimating
63 their bioaccumulation and environmental risk. Although SCCPs have undergone
64 environmental risk assessment for more than 30 years (EPA, 1978; Mukherjee, 1990;
65 UNEP, 2015), the Persistent Organic Pollutants Review Committee (POPRC) of the
66 Stockholm Convention concluded in 2016 that the current studies on photodegradation
67 and biodegradation are of limited use for assessing the degradation of SCCPs in natural
68 waters and that “there is insufficient information to conclude on the persistence of SCCPs in
69 water” (UNEP, 2016). While studies on biodegradation found the possibility of degradation
70 in activated sewage sludge (Heath et al., 2004; Lu, 2012) and aerobic sediments (European
71 Chemicals Bureau, 2008; Tomy et al., 1999; UNEP, 2015), SCCPs can still be detected in
72 sediments after more than 50 years. Besides biodegradation, the other potentially relevant
73 environmental sink for SCCPs is photodegradation; however, there are only a few studies
74 focusing on this process (Chen et al., 2016; El-Morsi et al., 2000; 2002; Friesen et al., 2004;
75 Yan et al., 2021; Zhang et al., 2019). These studies leave major knowledge gaps regarding
76 photochemical degradation under environmentally relevant conditions. To constrain the
77 fate of SCCPs in the environment, more research into their photochemistry is necessary.

78 Since SCCPs do not absorb light in the wavelengths relevant on the Earth’s surface,
79 direct photochemical degradation of SCCPs is not a viable pathway (Friedman and
80 Lombardo, 1975). However, indirect photodegradation pathways involving reactions with
81 photochemically produced reactive intermediates (PPRI) are possible. These
82 intermediates, including hydroxyl radicals ($\cdot\text{OH}$) and hydrated electrons ($\text{e}^{\cdot\text{(aq)}}$), can be
83 formed in surface water following the absorption of light by constituents of natural water
84 such as dissolved organic matter (DOM) or nitrate (Clark and Zika, 2000). Hydroxyl

85 radicals have been implicated in the photochemical degradation of many organic pollutants
86 (Atkinson, 1985; Haag and Hoigné, 1985; Haag and Yao, 1992; Vaughan and Blough, 1998).
87 While it was hypothesized that $\cdot\text{OH}$ are less important in the degradation of highly
88 chlorinated alkanes (Milosavljevic et al., 2005), recent research suggests that the $\cdot\text{OH}$ -
89 mediated degradation might be relevant for the degradation of chlorinated paraffins in
90 surface waters (Yan et al., 2021).

91 In addition to $\cdot\text{OH}$, $\text{e}^{-\text{(aq)}}$ have also been shown to be important in the degradation of
92 chlorinated pollutants, including mirex (Burns et al., 1997; 1996), hexachlorobenzene
93 (Grannas et al., 2012), chloromethanes (Calza and Pelizzetti, 2004), chloroethanes
94 (Milosavljevic et al., 2005), and more recently per- and polyfluoroalkyl substances (PFAS)
95 (Bentel, 2020; 2019). While $\text{e}^{-\text{(aq)}}$ has been a known product of water radiolysis for more
96 than 50 years (Herbert and Coons, 2017), it can also be produced in surface waters by the
97 interaction of sunlight with constituents of DOM (Thomas-Smith and Blough, 2001). It
98 appears that the lifetime of the $\text{e}^{-\text{(aq)}}$ in the DOM phase is sufficient for its reaction with
99 hydrophobic compounds sorbed into the DOM phase (Breugem et al., 1986). Due to the
100 hydrophobic nature of SCCPs, with estimated octanol-water partition coefficients (K_{ow})
101 between 9×10^4 and 3×10^7 (Glüge et al., 2013), these compounds have the potential to be
102 degraded by this mechanism. However, the reactivity of $\text{e}^{-\text{(aq)}}$ towards SCCPs has not yet
103 been systematically investigated. In addition, the majority of previous research has focused
104 on engineered systems for water treatment, not environmentally-relevant processes
105 (Bentel, 2020; 2019; Calza and Pelizzetti, 2004; Cui et al., 2020; Huang et al., 2007;
106 Milosavljevic et al., 2005; Song et al., 2013; Yuan et al., 2015; Zona et al., 2008).

107 The aim of this study was therefore to determine the reactivity of SCCPs with $e^{-\text{(aq)}}$
108 and $\cdot\text{OH}$, and to evaluate these pathways for the relevance of SCCP degradation in natural
109 water, where degradation within the DOM phase has been hypothesized to provide a
110 suitable environment for their degradation (Yan et al., 2021). We mainly focused on the
111 reactivity of SCCP model compounds in DOM-free conditions, where $e^{-\text{(aq)}}$ are produced
112 using an artificial photosensitizer, N,N-dimethylaniline (DMA) (Thomas-Smith and Blough,
113 2001), and $\cdot\text{OH}$ are produced by nitrate (NO_3^-) photolysis (Zepp et al., 1987b).
114 Furthermore, we performed select experiments in the presence of DOM to evaluate the
115 potential for DOM-mediated degradation of SCCPs.

116 **2. Materials and methods**

117 *2.1 Chemicals*

118 Due to the lack of commercially available single compounds or simple mixtures of
119 SCCPs in gram quantities, three model compounds were synthesized for use in
120 photodegradation experiments. 1,2,9,10-tetrachlorododecane (TCD) (50.6 % Cl by mass),
121 1,2,5,6,9,10-hexachlorododecane (HCD) (61.0 % Cl), and 1,2,11,12-tetrachlorododecane
122 (TCDod) (46.0 % Cl) were chosen as representative SCCPs due to their varying degrees of
123 chlorination and carbon chain length, as well as the commercial availability of their diene
124 and triene precursors: 1,9-decadiene, 1,5,9-decatriene, and 1,11-dodecadiene (Combi-
125 Blocks Inc.; San Diego, CA). Chlorination of the double bonds was achieved using sulfuryl
126 chloride (SO_2Cl_2 ; obtained from Sigma-Aldrich) as a chlorine source and 2,2'-azobis(2-
127 methylpropionitrile) (AIBN; Sigma-Aldrich) as a radical initiator (Fisk et al., 1999;

128 Kharasch and Zavist, 1951; Nikiforov, 2010) (Figure A1 in Appendix A). Further details on
129 the synthesis procedure are provided in Appendix A. Analytical standards (100 µg/mL) for
130 TCD, HCD, and TCD_{OD} were obtained from Chiron (Trondheim, Norway) to identify and
131 quantify the synthesized SCCPs.

132 In addition, the following chlorinated organic compounds (COCs) were included to
133 increase the range of chlorine content studied and to facilitate comparison with literature
134 data: 1,6-dichlorohexane (DCH), 1,10-dichlorodecane (DCD), chlorobenzene (CB), and
135 lindane (γ -hexachlorocyclohexane) (Sigma-Aldrich). N,N-dimethylaniline (DMA) was used
136 for hydrated electron ($e^{-}_{(aq)}$) generation (Thomas-Smith and Blough, 2001) and sodium
137 nitrate for hydroxyl radical ($\cdot OH$) generation (Sigma-Aldrich) (Zepp et al., 1987b). Both
138 compounds were used at aqueous concentrations of 1 mM. Buffered solutions were
139 prepared with mono- and dibasic potassium phosphate (Sigma-Aldrich). Suwannee River
140 Natural Organic Matter (SR-NOM; International Humic Substances Society, 2R101N) was
141 used as a source of DOM.

142 *2.2 Preparing Solutions for Experiments*

143 Experiments were conducted in reagent grade water buffered to pH 7.0 with 1 mM
144 phosphate buffer. All glassware was soaked overnight in 1% detergent (Extran 300; Sigma-
145 Aldrich) followed by 10% hydrochloric acid to remove organic and trace metal
146 contaminants. After rinsing with reagent grade water, the glassware was heated overnight
147 at 450 °C to remove organic contaminants.

148 During a first set of experiments, chlorinated compounds with low water solubility
149 were added directly in an acetonitrile (ACN) solution. ACN was selected because it was

150 reported to be an inert co-solvent with minimal effect on the degradation mechanism
151 (ASTM International, 2005; Zhang et al., 2019). 100 μ L of chlorinated compound mixture in
152 ACN was added per liter of solution to achieve desired final concentrations (approximately
153 10x below their water solubility), and the solution was stirred for 24 hours to ensure that
154 the compounds were fully dissolved prior to beginning an experiment.

155 A passive dosing approach to add the COCs (Smith et al., 2010) was then used for the
156 experiments with the SCCP model compounds in order to avoid any possible complication
157 due to the presence of ACN in the reaction solutions. Discs (8 mm diameter) were cut out of
158 a sheet of polydimethylsiloxane (PDMS; 0.8 mm thickness, 50 durometer; CS Hyde, Lake
159 Villa, IL). They were cleaned prior to use by subsequently soaking overnight in 1%
160 detergent (Extran, Sigma Aldrich), 10% HCl, and then three portions of methanol (MeOH).
161 The discs were loaded with COCs by equilibrating in 20 mL MeOH solutions containing the
162 COCs (see Table A1 for details) on a shaker table for 24 h. Due to the low partitioning of
163 COCs from MeOH onto PDMS, the depletion of COCs in MeOH after equilibration of the discs
164 was minimal (< 1%); therefore, the same MeOH solution was reused for each experiment.
165 Loaded PDMS discs were gently rinsed with a small amount of reagent grade water to
166 remove MeOH immediately before use. Two loaded discs were added per liter of buffered
167 water (pH 7.0) and equilibrated overnight on a shaker table in glass media bottles. The
168 concentration of chlorinated compounds needed in MeOH for desired final aqueous
169 concentrations was estimated by predicting PDMS-MeOH and PDMS-water partition
170 coefficients of COCs using the COSMO-RS based COSMOtherm software (Goss, 2011). After
171 an initial test, the COC concentrations in MeOH were adjusted as needed, achieving initial
172 aqueous COC concentrations of ~15-120 nM (Table A1). For the experiment using DOM,

173 PDMS chips were equilibrated directly in SR-NOM water, which was prepared in 1 mM
174 phosphate buffer (pH 7.0) at 40 mg C L⁻¹ and filtered to 0.2 µm.

175 Experiments were performed with mixtures of COCs rather than single compounds,
176 as it was assumed that the presence of multiple COCs would not significantly decrease the
177 steady-state concentration of e⁻_(aq) ([e⁻_(aq)]_{ss}). The rationale for this assumption was that O₂
178 typically acts as the primary sink of e⁻_(aq) in aerated solution, and therefore controls [e⁻_(aq)]_{ss}.
179 The second-order rate constant for oxygen's reaction with e⁻_(aq) (2.00×10^{10} M⁻¹ s⁻¹) (Buxton
180 et al., 1988) is equal to or greater than expected values for the COCs studied (10^8 - 10^{10} M⁻¹ s⁻¹;
181 Table A7) (Anbar and Hart, 1964; Burns et al., 1997; Buxton et al., 1988; Milosavljevic et
182 al., 2005). Furthermore, the oxygen concentration in air-equilibrated aqueous solutions
183 (278 µM) was much greater than the COC concentrations used in these experiments. As a
184 result, the predicted decrease in [e⁻_(aq)]_{ss} resulting from the presence of numerous COCs
185 was expected to be less than 1%. To confirm the validity of our assumptions, we measured
186 the degradation rate constant of lindane independently and in a mixture of three COCs. The
187 resulting degradation rate constants were not significantly different ($p = 0.36$) between the
188 two solutions.

189 For experiments with lower oxygen concentrations, solutions were purged for 6
190 hours prior to passive dosing and irradiation using ultrapure nitrogen flowing through a
191 gas dispersion tube (Ace Glass, porosity B, 70-100 µm). Oxygen concentrations were
192 measured using a PreSens Microx 4 fiber optic oxygen meter with NTH-PSt7 microsensor
193 (PreSens Precision Sensing GmbH; Regensburg, Germany). They dropped from 2.78×10^{-4} M
194 in air-saturated solution to 7.50×10^{-5} M, or about 26 % saturation, after purging and
195 transferring the solution to reaction vessels.

196 2.3 Photodegradation Experiments

197 A solar simulator with a 1,800 W Xe arc lamp (Q-SUN Xe-1; Q-Lab Corp., Westlake,
198 OH) was used for photodegradation experiments. A Daylight-Q filter (Q-Lab Corp.) was
199 chosen to provide an accurate spectral match to direct sunlight at the Earth's surface
200 (Figure A2). The irradiance was calibrated at 340 nm and 0.68 W m^{-2} using an irradiance
201 sensor (Q-SUN Irradiance Smart Sensor; Q-Lab Corp.) to ensure that higher energy
202 wavelengths were accurately represented. This intensity closely matches the solar
203 maximum at the Earth's surface (global, noon sunlight, normal incidence during summer
204 solstice (CIE, 1989). Absolute irradiance spectra of the solar simulator and natural sunlight
205 measured with a FLAME spectroradiometer (Ocean Insight; Orlando, FL) are shown in
206 Figure A2, and irradiance intensities at UVB (280-320 nm), UVA (320-400 nm), and PAR
207 (400-700 nm) wavelengths are shown in Table A2.

208 Reaction vessels consisted of custom quartz round bottom flasks (Quartz Scientific,
209 Inc.; Fairport Harbor, OH) with a volume of about 330 mL (86 mm diameter) and Teflon
210 lined screw caps. Flasks were filled to minimize headspace, and eight at a time sat partially
211 submerged in a water bath inside the solar simulator. The solar simulator was modified so
212 that the irradiation chamber sat horizontally to accommodate the water bath. Evaporative
213 cooling of the water bath, controlled by an internal fan coupled with a submerged
214 temperature sensor, kept the water and samples at $25 \pm 1 \text{ }^{\circ}\text{C}$. The fill level of the water bath
215 was kept constant with a float switch-controlled pump and water reservoir. Teflon-coated
216 magnetic stir bars were used to homogenize solutions during the irradiations. Initial
217 irradiations in reagent grade water (Milli-Q) and DMA lasted 24 h, before determining that
218 6 h was sufficient to observe significant degradation. DMA concentrations dropped 12.5%

219 over this period. Each experiment consisted of three to five irradiation durations (i.e., time
220 points), each performed in duplicate or triplicate. Two time points were repeated with foil-
221 wrapped samples for dark controls to account for potential non-photochemical loss of
222 COCs. Generally, no loss was observed in the dark control samples.

223 Solar actinometry experiments (Kieber et al., 2007) were used to correct for
224 variability in light intensity at the eight positions where flasks were placed within the
225 irradiation chamber by quantifying light fluxes within the reaction vessels. The average
226 light dose received by the sample calculated using the nitrate actinometer was 5.55 ± 0.31
227 $\mu\text{E cm}^{-2} \text{h}^{-1}$, with a 5.5% relative standard deviation between the positions. Calculating the
228 actinic flux (outside the quartz flasks) using data collected with the FLAME
229 spectroradiometer across the spectral bandwidth of this actinometer (307-333 nm) yielded
230 values of 8.87, 7.27, and $6.56 \mu\text{E cm}^{-2} \text{h}^{-1}$ at the top, middle, and bottom height of the flask.
231 This difference between actinometry and spectroradiometer-derived light fluxes highlights
232 the importance of actinometry in accounting for the attenuation and scattering of light by
233 the vessels and their surroundings.

234 Irradiance in the UV range is relevant for the investigated DMA and NO_3^- -sensitized
235 reactions. The total UV intensity of natural sunlight at sea level is about 5% of net surface
236 shortwave (290 – 4000 nm) surface radiation (168 W m^{-2}) (International Agency for
237 Research on Cancer, 1992; Kiehl and Trenberth, 1997), or about 8.4 W m^{-2} . The total UV
238 output by the solar simulator at the top of the reaction vessel was 69.1 W m^{-2} , which is
239 about 8.2 times higher than global average sunlight (mean daily irradiance averaged
240 spatially and temporally). Therefore, a 24 h irradiation corresponded to 8.2 days of average
241 solar radiation on Earth reaching the flask.

242 2.4 *Analytical Methods*

243 Following irradiation experiments, the full sample volumes were extracted three
244 times with 15, 10, and 10 mL of dichloromethane (DCM) using o-terphenyl (oTP) as a
245 recovery standard. The extraction method was modified for samples containing DOM to
246 improve extraction efficiency by adding 5 mL of brine (saturated NaCl) along with 35 mL
247 DCM to the solutions. This mixture was shaken for 24 h on a shaker table before the DCM
248 was collected, followed by an additional 10 mL extraction in a separatory funnel. The
249 extracts were combined and dried with sodium sulfate, and the volume was reduced to ~1
250 mL in a rotary evaporator followed by a nitrogen evaporator.

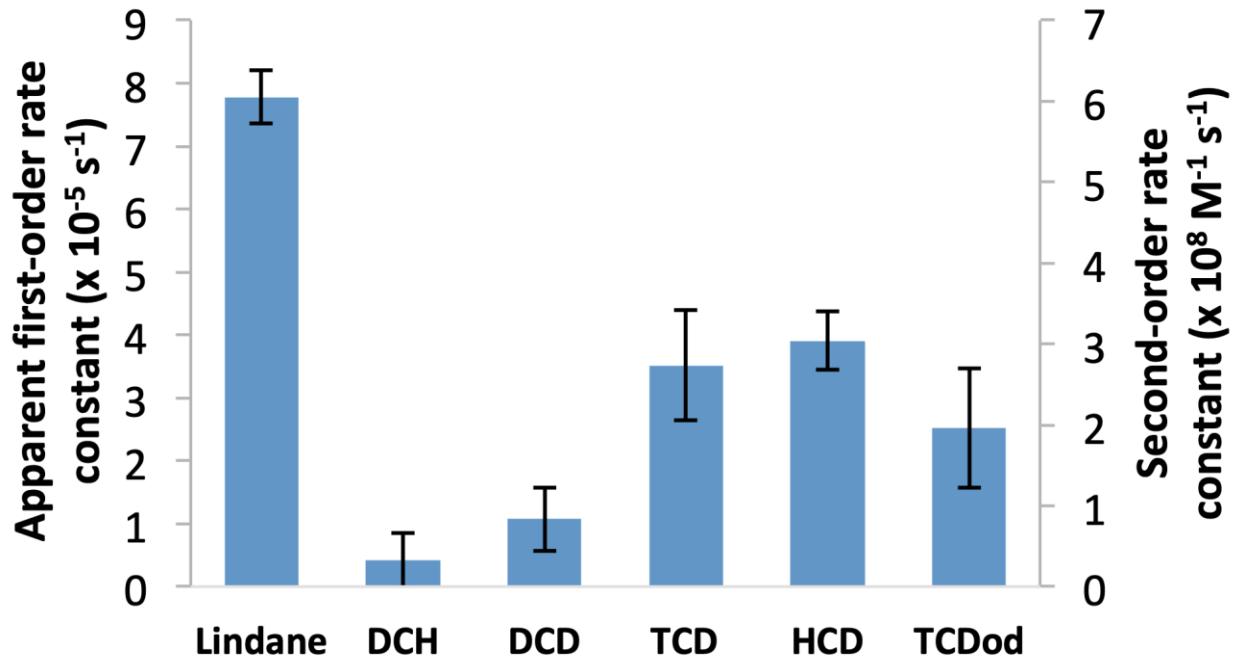
251 COCs were analyzed by gas chromatography coupled to mass spectrometry (GC-MS)
252 using a 7890B GC coupled to a 5977A MS (Agilent Technologies, Inc.; Santa Clara, CA)
253 equipped with a DB-XLB column (60 m, 250 μ m i.d., 0.25 μ m film, Model 122-1262; Agilent
254 Technologies). Samples were injected in splitless mode, using an injector temp of 300 °C
255 and a transfer line temperature of 300 °C. The column temperature was 40 °C for 10 min,
256 then ramped to 300 °C at a rate of 20 °C min⁻¹, and was held there for 15 min. Ultra-high
257 purity He (99.999%) was used as carrier gas with a constant flow of 1.2 mL min⁻¹. The MS
258 was operated in selected ion monitoring (SIM) mode using two dominant mass fragments
259 for each compound. Quantification was performed using a 6-point calibration curve, using
260 an internal standard (deuterated chlorobenzene, Sigma-Aldrich) to calculate relative
261 responses. The recovery standard oTP was used to correct for losses during extraction.

262 2.5 Data evaluation

263 Degradation of the COCs generally followed apparent (pseudo) first-order kinetics
264 following the equation $d[C]/dt = -k'[C]$, where $[C]$ is the concentration of the COC and k' is
265 the apparent first-order rate constant. These kinetics rely on a steady-state concentration
266 of a single PPRI ($[PPRI]_{ss}$), where its formation and scavenging rate remain constant over
267 time. The apparent first-order rate constant is therefore defined as $k' = k_C [PPRI]_{ss}$, where k_C
268 is the second-order rate constant for the reaction between the COC and the PPRI.
269 Degradation in this study represents the loss of the parent COC – products with lower
270 degrees of chlorination are potentially formed and further degraded during the
271 experiments.

272 Apparent first-order rate constants were reported in s^{-1} units, but they can be
273 converted to photon flux for comparison with other studies by dividing by the light dose
274 (e.g., using the light dose from the nitrate actinometer, $5.55 \mu\text{E cm}^{-2} \text{h}^{-1}$ or $15.4 \mu\text{E m}^{-2} \text{s}^{-1}$).
275 In some experiments, first-order kinetics were not followed for the entire 6 or 24 h
276 duration, possibly indicating that the PPRI concentration was changing due to factors such
277 as a decreasing concentration of the PPRI source, an increasing sink, or increased light
278 attenuation due to colored byproducts of the reaction. In these cases, rate constants were
279 calculated from the slope of the linear portion of the $\ln(\text{concentration})$ vs. time regression.
280 When multiple experiments were conducted with the same compound, data were pooled to
281 calculate degradation rate constants. Prism software (GraphPad, San Diego, CA) was used
282 to evaluate statistical differences in rate constants using their calculated standard error.

283 **3. Results and Discussion**


284 *3.1 Evaluating Direct Photodegradation of SCCPs*

285 Control experiments were conducted in pH 7 buffered Milli-Q water testing for the
286 presence of direct photochemical degradation. No significant degradation was observed for
287 irradiation times up to 24 h (Table A3). This is not surprising given the lack of light
288 absorption in the range of the solar spectrum reaching the Earth's surface (> 290 nm) for
289 SCCPs (Friedman and Lombardo, 1975; Zhang et al., 2019).

290 *3.2 Indirect SCCP Degradation in DMA system*

291 In irradiated aqueous solutions containing the $e^{-}_{(aq)}$ -producing DMA (Köhler et al.,
292 1985), degradation of all investigated COCs was observed (Figure 1). The SCCP first-order
293 rate constants ranged from $2.5 \times 10^{-5} \text{ s}^{-1}$ (TCDod) to $3.9 \times 10^{-5} \text{ s}^{-1}$ (HCD). Dichlorinated
294 compounds degraded more slowly than similar tetra- and hexachlorinated compounds
295 (DCH/DCD vs. TCD/HCD; see Table A4 for statistics). These SCCP degradation rate
296 constants were lower, but in the same order of magnitude as that of well-characterized
297 compounds such as lindane (γ -hexachlorocyclohexane; $k' = 7.8 \times 10^{-5} \text{ s}^{-1}$), which has
298 previously been investigated for its $e^{-}_{(aq)}$ reactivity (Burns et al., 1997). Lindane was
299 included in most experiments throughout this study to facilitate comparison with previous
300 studies.

301

302

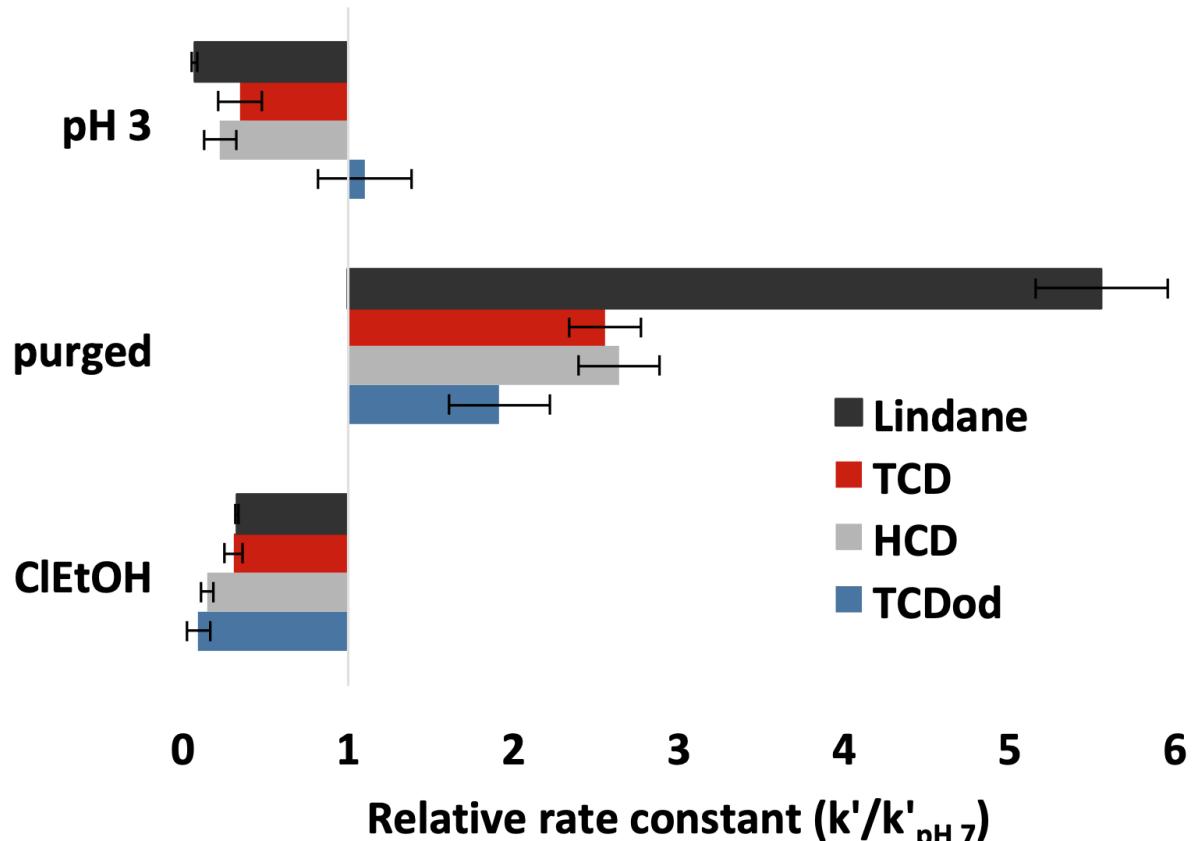
303 **Figure 1.** Apparent first and second-order rate constants for the photochemical
 304 degradation of chlorinated compounds lindane, 1,6-dichlorohexane (DCH), 1,10-
 305 dichlorodecane (DCD), 1,2,9,10-tetrachlorodecane (TCD), 1,2,5,6,9,10-hexachlorodecane
 306 (HCD), and 1,2,11,12-tetrachlorododecane (TCDod) in solutions of 1 mM dimethylaniline
 307 (DMA).

308

309 3.3 *Confirming $e^{-\text{(aq)}}$ as Reactive Species*

310 To confirm that $e^{-\text{(aq)}}$ is responsible for the observed degradation, amendments were
 311 made to the solution by changing the type and concentration of scavengers present (Figure
 312 2). Known scavengers that affect $[e^{-\text{(aq)}}]_{\text{(ss)}}$ and thus k' include hydrogen ions (H^+) (Watkins,
 313 1974), oxygen (O_2) (Buxton et al., 1988), and halogenated compounds such as 2-
 314 chloroethanol (ClEtOH) (Zepp et al., 1987a).

315 First, the effect of increased H⁺ concentration was tested. At pH 3, the degradation
316 rate constant of both TCD and lindane significantly decreased compared to a pH 7 solution
317 (Figure 2, Table A5). This result supports the hypothesis that e⁻_(aq) is responsible for their
318 degradation, as H⁺ is known to react with it at a diffusion-controlled rate (Burns et al.,
319 1997; Watkins, 1974). Our observations are consistent with that of Burns et al. (1997), who
320 also observed a decrease in COC (mirex) degradation at low pH.


321 Second, we varied the dissolved oxygen in the solution. With its rapid reaction with
322 e⁻_(aq), O₂ is an important scavenger of e⁻_(aq) in aqueous solutions. In solutions purged with N₂,
323 lindane, TCD, and HCD degraded significantly faster than in oxygen-saturated solution
324 (Figure 2, Table A5). While TCDod also degraded more quickly, the increase in rate
325 constant was not significant ($p = 0.142$). The observed increase in k' with decreasing O₂
326 concentrations are consistent with e⁻_(aq) as the reactive species, and rule out oxygen-based
327 PPRI such as singlet oxygen and superoxide. Thereby, O₂ is either a scavenger of e⁻_(aq), or it
328 quenches excited states that are e⁻_(aq) precursors.

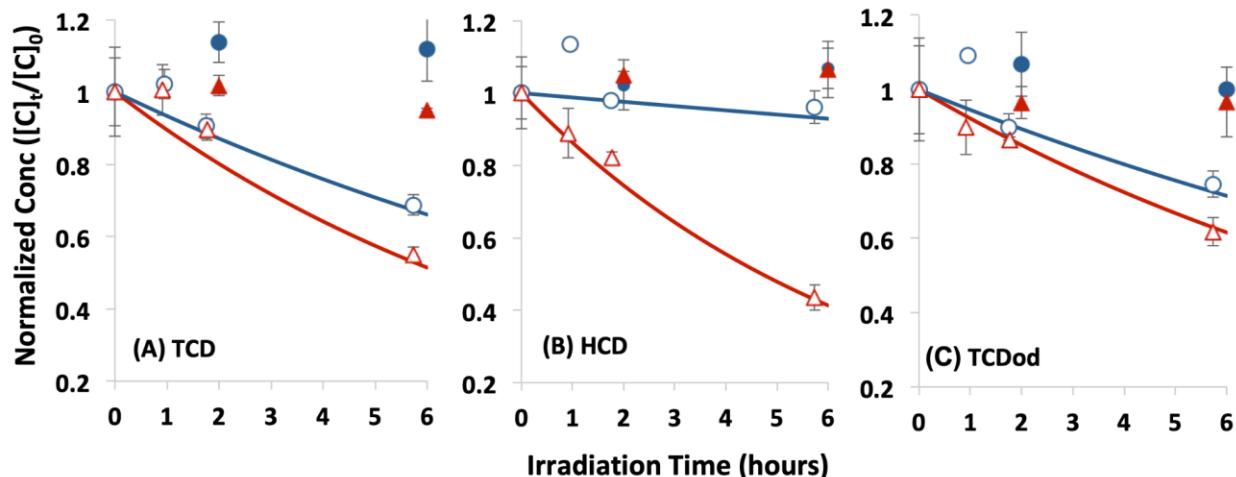
329 Last, we added ClEtOH, which has been reported to be an effective probe for e⁻_(aq)
330 (Zepp et al., 1987a). The addition of 0.05 M ClEtOH to a 1 mM DMA solution resulted in
331 significantly slower degradation of lindane, TCD, and HCD (Figure 2, Table A5). Again,
332 TCDod followed the same trend, but the change was not significant ($p = 0.145$).

333 To further evaluate the role of e⁻_(aq) in the observed reactions, we calculated its
334 steady-state concentration ([e⁻_(aq)]_{ss}) using the previously published second-order rate
335 constant for the reaction between lindane and e⁻_(aq) of $6.05 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ (Burns et al., 1997),
336 along with our measured k' value for lindane. The resulting [e⁻_(aq)]_{ss} was $1.29 \times 10^{-13} \text{ M}$.
337 Assuming that dissolved O₂ is the primary sink for e⁻_(aq) and thus controls its steady-state

338 concentration, the production rate of $e^{-}_{(aq)}$ ($r_{e^{-}prod}$) can be estimated from $r_{e^{-}prod} = k_{e^{-}}[e^{-}_{(aq)}]_{ss}[O_2]$. With an O_2 concentration in our air-saturated solution of 2.78×10^{-4} M and a rate
339 constant for the reaction of $e^{-}_{(aq)}$ with O_2 of 2×10^{10} M $^{-1}$ s $^{-1}$ (Burns et al., 1997; Buxton et al.,
340 1988), a $e^{-}_{(aq)}$ production rate of 7.15×10^{-7} M $^{-1}$ s $^{-1}$ was determined. With an added ClEtOH
341 concentration of 0.05 M and a reported rate constant for its reaction with $e^{-}_{(aq)}$ of 4.1×10^8
342 M $^{-1}$ s $^{-1}$ (Anbar and Hart, 1965), a new $[e^{-}_{(aq)}]_{ss}$ was calculated using the previously
343 determined production rate of $e^{-}_{(aq)}$. The predicted decrease in $[e^{-}_{(aq)}]_{ss}$ of 72 % was in close
344 agreement with the observed 67 % decrease. It is noteworthy to point out that despite our
345 evidence supporting O_2 as the primary $e^{-}_{(aq)}$ scavenger, the O_2 concentration only dropped
346 21.5% during a 6-hour experiment (after remaining near 100% saturation for the first 2
347 hours) despite a predicted initial rate of disappearance of about 0.7 μ M s $^{-1}$. This result
348 suggests either a regeneration pathway for O_2 (e.g., through disproportionation of
349 superoxide), the ability of O_2 to quench $e^{-}_{(aq)}$ precursors, or alternative $e^{-}_{(aq)}$ scavengers
350 present in the solution.

352

353


354 **Figure 2.** Effect of pH, deoxygenation, and addition of 2-chloroethanol on the apparent
 355 first-order rate constant for lindane, 1,2,9,10-tetrachlorodecane (TCD), 1,2,5,6,9,10-
 356 hexachlorodecane (HCD), and 1,2,11,12-tetrachlorododecane (TCDod) compounds relative
 357 to their rate constants in oxygenated, pH 7, 1 mM dimethylaniline (DMA) solution. Error
 358 bars represent the propagated 95% confidence intervals from the ratio of k' to $k'_{pH\ 7}$.

359

360 3.4 Comparison of $e^{-}_{(aq)}$ with $\cdot OH$ -Mediated SCCP Degradation

361 In addition to $e^{-}_{(aq)}$, $\cdot OH$ can also degrade many COCs. To compare the reaction rate
 362 of our investigated compounds with $e^{-}_{(aq)}$ and $\cdot OH$, we performed experiments where $\cdot OH$ is
 363 produced using NO_3^- as a photosensitizer (Zepp et al., 1987b). Figure 3 shows the

364 photochemical degradation of SCCPs in 1 mM DMA (source of $e^{-}_{(aq)}$) and 1 mM NO_3^- (source
365 of $\cdot OH$) solutions. Loss of SCCPs was not observed in dark controls. While apparent first-
366 order rate constants were higher for degradation in DMA solution, second-order rate
367 constants for the reaction between SCCPs and PPRIs are dependent on the actual
368 concentration of PPRIs in solution. As mentioned above, $[e^{-}_{(aq)}]_{ss}$ was calculated using the
369 published second-order rate constant for the reaction of lindane with $e^{-}_{(aq)}$. Similarly, the
370 second-order rate constant for the reaction of CB and $\cdot OH$ ($4.3 \times 10^9 M^{-1} s^{-1}$) (Kochany and
371 Bolton, 1992) was used to calculate a $[\cdot OH]_{ss}$ of $6.84 \times 10^{-15} M$ in our NO_3^- containing system.
372 Using this concentration, second-order rate constants for our investigated COCs were
373 calculated. These rate constants were generally higher for $\cdot OH$ than $e^{-}_{(aq)}$ for the
374 investigated SCCPs (Table 1, statistics in Table A6), but the difference was only significant
375 ($p < 0.05$) for DCD due to experimental variability. The faster reaction of lower substituted
376 SCCPs with $\cdot OH$ could indicate a H-abstraction pathway (Haag and Yao, 1992), which would
377 be hindered by higher numbers of Cl atoms. While no specific congeners overlap with this
378 study, Yan et al. (2021) reported similar rate constants for the reaction of SCCPs with $\cdot OH$
379 (e.g., $2.0 \times 10^9 M^{-1} s^{-1}$ for pentachlorododecane versus $2.3 \times 10^9 M^{-1} s^{-1}$ for
380 tetrachlorododecane in this study).

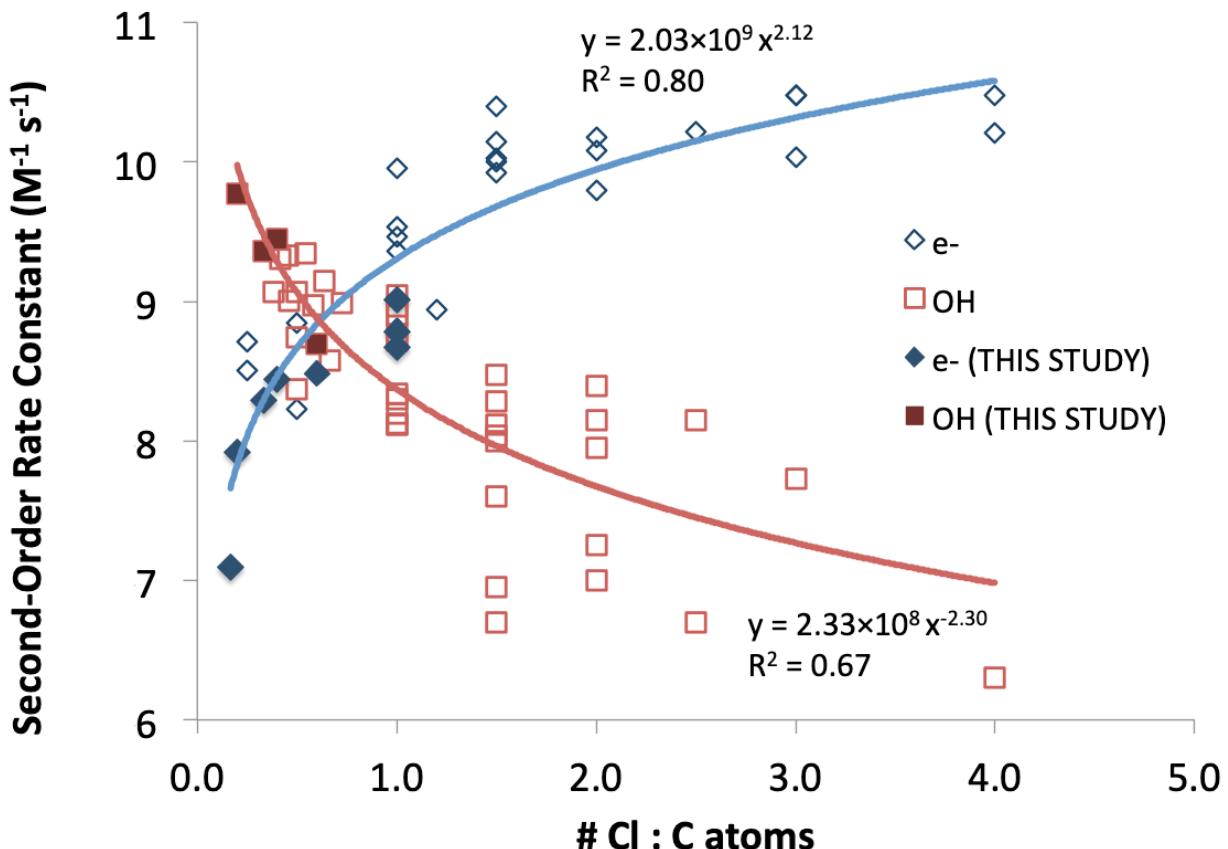
381

382 **Figure 3.** Fractional loss of 1,2,9,10-tetrachlorododecane (TCD), 1,2,5,6,9,10-
 383 hexachlorododecane (HCD), and 1,2,11,12-tetrachlorododecane (TCDod) during
 384 photodegradation experiments in solutions containing 1mM dimethylaniline (DMA; red
 385 triangles) or 1mM nitrate (NO_3^- ; blue circles). Irradiated samples are indicated by open
 386 symbols, while dark controls are indicated by shaded symbols.

387

388 **Table 1.** Apparent first and second-order rate constants for the degradation of 1,10-
 389 dichlorododecane, 1,2,9,10-tetrachlorododecane (TCD), 1,2,5,6,9,10-hexachlorododecane (HCD),
 390 and 1,2,11,12-tetrachlorododecane (TCDod) in NO_3^- and DMA solutions. Error represents
 391 95% confidence intervals.

	First-order ($\times 10^{-6} \text{ s}^{-1}$)		Second-order ($\times 10^8 \text{ M}^{-1} \text{ s}^{-1}$)	
	$\text{NO}_3^-/\cdot\text{OH}$	DMA/ $\text{e}^-_{(\text{aq})}$	$\text{NO}_3^-/\cdot\text{OH}$	DMA/ $\text{e}^-_{(\text{aq})}$
DCD	40 ± 8	11 ± 5	59 ± 27	0.8 ± 0.4
TCD	19 ± 5	35 ± 9	28 ± 14	2.7 ± 0.7
HCD	3 ± 7	39 ± 5	5 ± 14	3.0 ± 0.4
TCDod	16 ± 8	25 ± 10	23 ± 14	2.0 ± 0.8


392 3.5 *Review of Degradation of Other COCs by •OH and e⁻_(aq)*

393 To put our obtained results for SCCPs in context with the degradation of other COCs,
394 we reviewed reported •OH and e⁻_(aq) mediated degradation of a large range of COCs. Many
395 previous studies have shown •OH to be capable of degrading a wide range of COCs. 1,2,9,10-
396 tetrachlorodecane was degraded (dechlorinated) in the presence of •OH during the
397 photolysis of hydrogen peroxide (H₂O₂) and Fenton's reagent (Fe²⁺/H₂O₂), as well as the
398 modified Fenton reaction (Fe³⁺/H₂O₂/UV) (El-Morsi et al., 2002; Friesen et al., 2004). The
399 hydroxyl radical was also shown to be important for the degradation of 1-chlorodecane
400 (CD) by 254 nm UV radiation. H-abstraction pathways were determined to be an
401 exothermic reaction, as opposed to endothermic Cl-abstraction, making Cl-abstraction an
402 unlikely pathway for CD degradation (Zhang et al., 2019). Surface bound •OH in aqueous
403 suspensions of TiO₂ have been used to degrade 1,10-dichlorodecane (El-Morsi et al., 2000),
404 and other UV/H₂O₂ catalyzed processes have degraded SCCPs (Koh and Thiemann, 2001).
405 Gaseous SCCP degradation by •OH in the atmosphere has also been modeled (C. Li et al.,
406 2014). Lindane has been degraded by photo- and electro-Fenton processes involving •OH
407 (Dominguez et al., 2018; Nitai et al., 2013). Nitai et al. (2013) found that dechlorination did
408 not happen simultaneously with •OH attack, but rather chlorinated intermediates were
409 formed first. While these studies are generally aimed at engineered systems designed for
410 remediation of contaminated water rather than understanding natural processes, they still
411 indicate the possibility of a •OH pathway occurring in the environment.

412 Besides chlorinated alkanes, other types of COCs can also be degraded by ·OH,
413 including chloroaromatics (Czaplicka, 2006) and chloroacetones (Williams et al., 2002).
414 Haag and Yao (1992) found ·OH to be relatively nonselective with C-H bonds, but it was
415 least reactive with aliphatic polyhalogenated compounds. On the other hand, it reacted at
416 nearly diffusion-controlled rates with olefins and aromatics. Chlorobenzene (CB) can also
417 be degraded with Fenton's reagent and UV/H₂O₂ systems (Juang et al., 1998), with
418 products identified including chlorophenol, chlorobenzoquinone, and dichlorobiphenyls
419 (Kovacevic and Sabljic, 2013; Sedlak and Andren, 1991). The position of chlorine atoms on
420 chlorophenols has also been shown to affect degradation rates (Krutzler et al., 1999; Moza
421 et al., 1988). Addition of ·OH to an aromatic ring has also been observed with fluorinated
422 benzenes (Köster and Asmus, 1973).

423 There are also a number of studies describing the degradation of chlorinated and
424 fluorinated organic compounds by e⁻_(aq). Reductive dehalogenation involving e⁻_(aq) is a
425 known pathway used to degrade halogenated organic compounds (X. Li et al., 2014). Anbar
426 and Hart (1965) showed that neighboring electron-withdrawing groups enhanced
427 dehalogenation. Compounds including chloromethanes (Calza and Pelizzetti, 2004),
428 chloroacetones (Williams et al., 2002), and substituted aromatics such as chlorobenzene
429 (Anbar and Hart, 1964; Yuan et al., 2015), chlorobenzoic acids (Zona et al., 2008), and
430 fluorinated benzenes (Köster and Asmus, 1973) have all been shown to react with e⁻_(aq).
431 PFAS, which are considered especially resistant to degradation, also react with e⁻_(aq) at
432 varying rates depending on the length of fluoroalkyl chain and functional group present
433 (Bentel, 2020; 2019; Huang et al., 2007; Park et al., 2009).

434

435

436 **Figure 4.** Compiled second-order rate constants for the reaction of chlorinated alkanes
 437 with hydrated electrons (blue diamonds) and hydroxyl radicals (red squares) vs. the
 438 chlorine content (number of chlorine atoms normalized to the number of carbon atoms per
 439 molecule). Data from this study are shown by solid symbols.

440

441 3.6 Trends in $\cdot\text{OH}$ and $\text{e}^{-\text{(aq)}}$ Degradation Rates for SCCPs in Comparison to Other COCs

442 To understand how our investigated SCCP degradation rates compared to other
 443 halogenated compounds, we compiled second-order rate constants from the literature for
 444 their reaction with $\cdot\text{OH}$ and $\text{e}^{-\text{(aq)}}$ (Figure 4, Table A7). Analysis of the data revealed a

445 correlation between rate constants and degree of chlorination (# Cl atoms normalized to #
446 C atoms). For similar compounds (e.g., chloroethanes), the relationship could be simplified
447 to the number of chlorine atoms (Milosavljevic et al., 2005). An increasing Cl:C ratio
448 represents a greater relative amount of Cl atoms available to capture $e^{-}_{(aq)}$, resulting in
449 higher rates of dechlorination. For example, $e^{-}_{(aq)}$ rate constants increased from 1.7×10^8 to
450 $1.6 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$ with the number of chlorine atoms increasing from monochloroethane
451 (Cl:C 0.5) to pentachloroethane (Cl:C 2.5) (Milosavljevic et al., 2005). Values for mirex (Cl:C
452 1.2) and lindane (Cl:C 1.0) fell in between at $8.71 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ and $6.05 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$,
453 respectively (Burns et al., 1997). Note that geminal dihalides (with both halogens on the
454 same carbon) were noted to be more easily reduced than isolated halides (Burns et al.,
455 1997; Fingerling et al., 1996), potentially explaining some of the deviations from the trend
456 in Figure 4.

457 The trend for $\cdot\text{OH}$ rate constants was opposite to that of $e^{-}_{(aq)}$. Instead, increasing
458 Cl:C resulted in decreasing rate constants. This trend supports a H-abstraction pathway for
459 degradation by $\cdot\text{OH}$, where a higher Cl:C means a lower availability of H atoms. Additional
460 Cl atoms could also sterically hinder the reaction. Milosavljevic et al. (2005) observed that
461 rate constants for $\cdot\text{OH}$ with chloroethanes dropped by 1-2 orders of magnitude when no H
462 atoms were present on a carbon atom. The type of C-H bond had a significant effect on the
463 H-abstraction reaction rate. For example, 1,1,1,2-tetrachloroethane had a rate constant of
464 $1.0 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ while 1,1,2,2-tetrachloroethane was $2.5 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$, despite them both
465 having a Cl:C ratio of 2.0. Also, 1,1,1-trichloroethane, which contains three primary C-H
466 bonds, had a rate constant of $5.0 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$, while 1,1,2-trichloroethane had a value of
467 $3.0 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ (both Cl:C 1.5). Its two secondary and one tertiary C-H bonds are more

468 reactive with $\cdot\text{OH}$ than the primary C-H bonds of 1,1,1-trichloroethane. Other compounds
469 with fully chlorinated carbons also fell below the $\cdot\text{OH}$ trendline in Figure 4 (e.g., carbon
470 tetrachloride Cl:C 4.0, $2.00 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$) (Haag and Yao, 1992).

471 Trendlines for the two PPRI ($\cdot\text{OH}$ and $\text{e}^{-\text{(aq)}}$) cross at ~ 0.6 Cl:C. Rate constants for
472 both PPRI ranged from 1×10^6 to $1 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$. Compounds in this study had Cl:C values on
473 the lower end of data from the literature, but their rate constants appeared to follow
474 similar trends as other compounds from the literature. Complex mixtures of SCCPs, which
475 typically are 40-70% Cl by mass (Cl:C ~ 0.25 -0.85) (U.S. Environmental Protection Agency,
476 2009), are expected to follow the same trends shown in Figure 4. This pattern is also
477 supported by the results of Yan et al. (2021), who reported rate constants with $\cdot\text{OH}$ of 0.94-
478 $2.20 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, with higher values at lower degrees of chlorination. The trends for other
479 classes of halogenated organic compounds were less robust (Figure A3). For example,
480 chlorinated aromatics tended to degrade faster than similar non-aromatic compounds. For
481 their reaction with $\text{e}^{-\text{(aq)}}$, hexachlorobenzene (HCB, Cl:C 1) had a rate constant of 1.10×10^9
482 $\text{M}^{-1} \text{ s}^{-1}$ (Zacheis et al., 2000), while lindane (also Cl:C 1) was $6.05 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ (Burns et al.,
483 1997). Similarly for reaction with $\cdot\text{OH}$, lindane had a rate constant of $8.00 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ while
484 various chlorobenzenes, which can react by addition of $\cdot\text{OH}$ to double bonds rather than H-
485 abstraction, had values of $4.00 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ (Haag and Yao, 1992).

486 3.7 *Environmental Significance: DOM-mediated SCCP degradation*

487 The results of this study can be used to improve our understanding of the fate of
488 SCCPs in surface waters. The presented experimental rate constants are consistent with $\text{e}^{-\text{(aq)}}$
489 as well as $\cdot\text{OH}$ being capable of degrading SCCPs. The relative importance of these PPRI

490 will depend on their concentrations as well as the SCCP properties (degree of chlorination,
491 hydrophobicity/partitioning). Based on our determined second-order rate constants, the
492 investigated SCCPs would have half-lives of minutes in engineered systems (with typical
493 $\cdot\text{OH}$ concentrations of 10^{-12} M). However, half-lives of days to years would be expected in
494 natural surface waters, where typical $\cdot\text{OH}$ concentrations range from 10^{-15} to 10^{-18} M
495 (Mopper and Zhou, 1990; Zepp et al., 1987b). For reactions with $\text{e}^{-\text{(aq)}}$, similar SCCP half-
496 lives would be expected if the reaction occurred in the bulk water phase, in which $\text{e}^{-\text{(aq)}}$
497 concentrations between 10^{-13} M to 10^{-17} M (Breugem et al., 1986; Zepp et al., 1987a) have
498 been reported.

499 In the environment, the degradation of hydrophobic SCCPs is likely a function of
500 their reactivity as well as their partitioning into DOM, where microheterogeneous
501 distributions of PPRI have been measured (Grandbois et al., 2008; Latch and McNeill, 2006;
502 Yan et al., 2021). DOM is expected to facilitate SCCP photodegradation since the lifetimes of
503 PPRI such as $\text{e}^{-\text{(aq)}}$ and $\cdot\text{OH}$ have been shown to be much longer in a DOM
504 microenvironment with different characteristics (e.g., lower O_2) than the bulk aqueous
505 solution (Grandbois et al., 2008; Hassett, 2006). Such DOM-sensitized photolysis is known
506 to be an important pathway for the degradation of organic contaminants with a high
507 affinity for DOM. For example, HCB with its second-order rate constant with $\text{e}^{-\text{(aq)}}$ of
508 $1.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ (Zacheis et al., 2000) would have an estimated half-life of approximately
509 two months to two years in natural waters with a bulk $[\text{e}^{-\text{(aq)}}]$ of 10^{-16} to 10^{-17} M. However,
510 in the presence of 6 mg C L^{-1} DOM, a half-life of only 14 h was obtained by Grannas et al.
511 (2012), suggesting a 100 to 1,000 times higher $[\text{e}^{-\text{(aq)}}]$ in the DOM phase. Furthermore,
512 lindane has a similar second-order rate constant to HCB, but a DOM-water partition

513 coefficient about five times lower. No significant lindane degradation was observed over a
514 24 h irradiation in the presence of DOM, presumably due to its predicted negligible affinity
515 for the DOM phase (Burns et al., 1997). Under the same conditions, the more hydrophobic
516 pesticide mirex degraded with a half-life of about 10 h. These results indicate that $e^{-}_{(aq)}$ is
517 quickly scavenged outside the DOM matrix, resulting in compounds in the bulk dissolved
518 phase not having access to bound-phase reactivity.

519 Similar to $e^{-}_{(aq)}$, $\cdot OH$ has also been suggested to have a higher concentration within
520 DOM than in the bulk aqueous phase. While our data suggest that both $e^{-}_{(aq)}$ and $\cdot OH$ are
521 capable of degrading SCCPs, Yan et al. (2021) concluded that $\cdot OH$ was more relevant than
522 other PPRI including $e^{-}_{(aq)}$ in oxygenated DOM solutions, with $\cdot OH$ concentrations two to
523 three orders of magnitude higher within the DOM microenvironment versus the bulk
524 aqueous phase.

525 Because SCCPs are hydrophobic compounds, with estimated $\log(K_{ow})$ values
526 between 5.2 to 7.5 (Glüge et al., 2013), similar to that of HCB (5.7) (De Bruijn et al., 1989)
527 and mirex (6.9) (U.S. EPA Environmental Protection Agency, 1995), they are expected to
528 sorb to DOM in natural waters. We therefore expect DOM-sensitized photochemical
529 degradation to be a relevant sink for SCCPs in surface waters. To test this hypothesis, we
530 performed a preliminary experiment using 40 mg C⁻¹ SR-NOM and observed
531 photodegradation of all three SCCPs. At this concentration, 50% of a SCCP with a log DOM
532 partition coefficient (K_{DOM}) of 4.4 would be in the DOM “phase”. First-order rate constants
533 for TCD, HCD, and TCD_{DOD} were $2.6 \pm 0.6 \times 10^{-6} \text{ s}^{-1}$, $0.7 \pm 0.5 \times 10^{-6} \text{ s}^{-1}$, and $4 \pm 1 \times 10^{-6} \text{ s}^{-1}$,
534 respectively. The most hydrophobic SCCP tested, TCD_{DOD}, degraded the fastest. This was
535 expected since this compound likely also has the highest partitioning into the DOM phase,

536 where the degradation reaction occurs. The slower degradation of HCD compared to TCD
537 aligns better with our trend for $\cdot\text{OH}$ rate constants, which decrease with increasing chlorine
538 content, than for our $e^{-\text{(aq)}}$ rate constants (which increase with increasing chlorine content).
539 This result is in line with the results from Yan et al. (2021) and supports the hypothesis
540 that the DOM phase is relevant for the photochemical degradation of SCCPs.

541 Our study also contributes to the available data of $e^{-\text{(aq)}}$ mediated degradation of
542 COCs. While the potential of $e^{-\text{(aq)}}$ to degrade persistent organic pollutants (POPs) in
543 aqueous environments has been investigated for more than three decades (Herbert and
544 Coons, 2017), there are still relatively few published studies about this process available.
545 Besides its relevance in natural water, $e^{-\text{(aq)}}$ are also relevant in engineered systems, where
546 high concentrations of $e^{-\text{(aq)}}$ are produced using photosensitizers (generally paired with
547 strong UV-C irradiation) or by radiolysis (Anbar and Hart, 1965; Gu et al., 2017a; 2017b;
548 Wach et al., 2004). In this context, $e^{-\text{(aq)}}$ have received renewed attention with the report of
549 $e^{-\text{(aq)}}$ mediated degradation of the emerging PFAS (Bentel, 2020; 2019; Cui et al., 2020; Raul
550 Tenorio, 2020; Van Hoomissen and Shubham Vyas, 2019). Our study implies that
551 engineered systems that generate $e^{-\text{(aq)}}$ for water treatment could be effective for degrading
552 SCCPs, and demonstrates the versatility of $e^{-\text{(aq)}}$ as a relevant PPRI for the degradation of
553 persistent organic pollutants (POPs).

554

555 **Appendix A. Supplementary information**

556 Supporting details describing the SCCP synthesis; Supporting figures showing the
557 postulated chlorination mechanisms, spectrum of the solar simulator (Xe arc lamp), and
558 plots of literature degradation rate constants for the $e^{-\text{(aq)}}$ and $\cdot\text{OH}$ mediated degradation of

559 halogenated compounds; Supporting tables with details for the passive dosing approach,
560 the measured irradiance during the experiments, results from the statistical tests for the
561 determined degradation rate constants described, and a compilation of literature
562 degradation rate constants for the $e^{-}_{(aq)}$ and $\cdot OH$ mediated degradation of halogenated
563 compounds.

564

565 **Acknowledgments**

566 Erin Beirne (Bigelow Laboratory) is acknowledged for analytical support, and Dasan
567 Thamattoor (Colby College, Waterville, ME) for assistance with the SCCP syntheses. This
568 work was funded by a grant from the National Science Foundation (NSF CHE-1808054).
569 CLT was supported by a National Science Foundation REU grant to Bigelow Laboratory
570 (NSF OCE-1460861).

571

572 **References**

573 Anbar, M., Hart, E.J., 1965. The Reaction of Haloaliphatic Compounds with Hydrated
574 Electrons1. *J. Phys. Chem.* 69. doi:10.1021/j100885a041

575 Anbar, M., Hart, E.J., 1964. The Reactivity of Aromatic Compounds toward Hydrated
576 Electrons. *J. Am. Chem. Soc.* 86, 5633–5637. doi:10.1021/ja01078a046

577 ASTM International, 2005. Standard Test Method for Conducting Aqueous Direct
578 Photolysis Tests. ASTM International, West Conshohocken, PA. doi:10.1520/D1193

579 Atkinson, R., 1985. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl
580 radical with organic compounds under atmospheric conditions. *Chem. Rev.* 85, 69–201.

581 doi:10.1021/cr00071a004

582 Bayen, S., Obbard, J.P., Thomas, G.O., 2006. Chlorinated paraffins: A review of analysis and
583 environmental occurrence. *Environment International* 32, 915–929.

584 doi:10.1016/j.envint.2006.05.009

585 Bennie, D.T., Sullivan, C.A., Maguire, R.J., 2000. Occurrence of Chlorinated Paraffins in
586 Beluga Whales (*Delphinapterus leucas*) from the St. Lawrence River and Rainbow
587 Trout (*Oncorhynchus mykiss*) and Carp (*Cyprinus carpio*) from Lake Ontario. *Water
588 Quality Research Journal* 35, 263–282. doi:10.2166/wqrj.2000.017

589 Bentel, M.J., 2020. Degradation of Perfluoroalkyl Ether Carboxylic Acids with Hydrated
590 Electrons: Structure–Reactivity Relationships and Environmental Implications.
591 *Environ. Sci. Technol.* 54, 2489–2499. doi:10.1021/acs.est.9b05869

592 Bentel, M.J., 2019. Defluorination of Per- and Polyfluoroalkyl Substances (PFASs) with
593 Hydrated Electrons: Structural Dependence and Implications to PFAS Remediation and
594 Management. *Environ. Sci. Technol.* 53, 3718–3728. doi:10.1021/acs.est.8b06648

595 Breugem, P., van Noort, P., Velberg, S., Wondergem, E., Zijlstra, J., 1986. Steady state
596 concentrations of the phototransient hydrated electron in natural waters.
597 *Chemosphere* 15, 717–724. doi:10.1016/0045-6535(86)90037-8

598 Burns, S.E., Hassett, J.P., Rossi, M.V., 1997. Mechanistic Implications of the Intrahumic
599 Dechlorination of Mirex. *Environ. Sci. Technol.* 31, 1365–1371. doi:10.1021/es960581l

600 Burns, S.E., Hassett, J.P., Rossi, M.V., 1996. Binding Effects on Humic-Mediated
601 Photoreaction: Intrahumic Dechlorination of Mirex in Water. *Environ. Sci. Technol.* 30,
602 2934–2941. doi:10.1021/es950906i

603 Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B., 1988. Critical Review of rate

604 constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals
605 ($\cdot\text{OH}/\cdot\text{O}^-$ in Aqueous Solution. *Journal of Physical and Chemical Reference Data* 17,
606 513–886. doi:10.1063/1.555805

607 Calza, P., Pelizzetti, E., 2004. Reactivity of chloromethanes with photogenerated hydrated
608 electrons. *Journal of Photochemistry and Photobiology A: Chemistry* 162, 609–613.
609 doi:10.1016/S1010-6030(03)00427-1

610 Campbell, I., McConnell, G., 1980. Chlorinated paraffins and the environment. 1.
611 Environmental occurrence. *Environ. Sci. Technol.* 14, 1209–1214.
612 doi:10.1021/es60170a001

613 Casà, M.V., van Mourik, L.M., Weijs, L., Mueller, J., Nash, S.B., 2019. First detection of short-
614 chain chlorinated paraffins (SCCPs) in humpback whales (*Megaptera novaeangliae*)
615 foraging in Antarctic waters. *Environmental Pollution* 250, 953–959.
616 doi:10.1016/j.envpol.2019.04.103

617 Chen, X., Zhao, Q., Li, X., Wang, D., 2016. Enhanced photocatalytic activity of degrading short
618 chain chlorinated paraffins over reduced graphene oxide/CoFe2O4/Ag nanocomposite.
619 *Journal of Colloid And Interface Science* 479, 89–97. doi:10.1016/j.jcis.2016.06.053

620 CIE, 1989. Solar Spectral Irradiance. International Commission on Illumination (CIE).
621 Clark, C.D., Zika, R.G., 2000. Marine Organic Photochemistry : From the Sea Surface to
622 Marine Aerosols. *Marine Chemistry* 5, 1–33. doi:10.1007/10683826_1

623 Cui, J., Gao, P., Deng, Y., 2020. Destruction of Per- and Polyfluoroalkyl Substances (PFAS)
624 with Advanced Reduction Processes (ARPs): A Critical Review. *Environ. Sci. Technol.*
625 54, 3752–3766. doi:10.1021/acs.est.9b05565

626 Czaplicka, M., 2006. Photo-degradation of chlorophenols in the aqueous solution. *Journal of*

627 Hazardous Materials 134, 45–59. doi:10.1016/j.jhazmat.2005.10.039

628 De Bruijn, J., Busser, F., Seinen, W., Hermens, J., 1989. Determination of octanol/water
629 partition coefficients for hydrophobic organic chemicals with the “slow-stirring”
630 method. Environmental Toxicology and Chemistry 8, 499–512.
631 doi:10.1002/etc.5620080607

632 Dominguez, C.M., Oturan, N., Romero, A., Santos, A., Oturan, M.A., 2018. Optimization of
633 electro-Fenton process for effective degradation of organochlorine pesticide lindane.
634 Catalysis Today 313, 196–202. doi:10.1016/j.cattod.2017.10.028

635 Du, X., Yuan, B., Zhou, Y., Benskin, J.P., Qiu, Y., Yin, G., Zhao, J., 2018. Short-, Medium-, and
636 Long-Chain Chlorinated Paraffins in Wildlife from Paddy Fields in the Yangtze River
637 Delta. Environ. Sci. Technol. 52, 1072–1080. doi:10.1021/acs.est.7b05595

638 El-Morsi, T.M., Budakowski, W.R., Abd-El-Aziz, A.S., Friesen, K.J., 2000. Photocatalytic
639 Degradation of 1,10-Dichlorodecane in Aqueous Suspensions of TiO₂: A Reaction of
640 Adsorbed Chlorinated Alkane with Surface Hydroxyl Radicals. Environ. Sci. Technol. 34,
641 1018–1022. doi:10.1021/es9907360

642 El-Morsi, T.M., Emara, M.M., Abd El Bary, H.M.H., Abd-El-Aziz, A.S., Friesen, K.J., 2002.
643 Homogeneous degradation of 1,2,9,10-tetrachlorodecane in aqueous solutions using
644 hydrogen peroxide, iron and UV light. Chemosphere 47, 343–348. doi:10.1016/S0045-
645 6535(01)00305-8

646 EPA, 1978. Initial Report of the TSCA Interagency Testing Committee to the Administrator
647 Environmental Protection Agency 1–402.

648 European Chemicals Bureau, 2008. European Union Risk Assessment Report. OPOCE.

649 Feo, M.L., Eljarrat, E., Barceló, D., 2009. Occurrence, fate and analysis of polychlorinated n-

650 alkanes in the environment. Trends in Analytical Chemistry 28, 778–791.

651 doi:10.1016/j.trac.2009.04.009

652 Fingerling, G., Hertkorn, N., Parlar, H., 1996. Formation and Spectroscopic Investigation of

653 Two Hexachlorobornanes from Six Environmentally Relevant Toxaphene Components

654 by Reductive Dechlorination in Soil under Anaerobic Conditions †. Environ. Sci.

655 Technol. 30, 2984–2992. doi:10.1021/es950957f

656 Fisk, A.T., Tomy, G.T., Muir, D.C.G., 1999. Toxicity of C10 –, C11 –, C12 –, and C14

657 –Polychlorinated alkanes to Japanese medaka (*Oryzias latipes*) embryos.

658 Environmental Toxicology and Chemistry 18, 2894–2902.

659 doi:10.1002/etc.5620181234

660 Friedman, D., Lombardo, P., 1975. Photochemical Technique for the Elimination of

661 Chlorinated Aromatic Interferences in the Gas-Liquid Chromatographic Analysis for

662 Chlorinated Paraffins. J AOAC Int 58, 703–706. doi:10.1093/jaoac/58.4.703

663 Friesen, K.J., El-Morsi, T.M., Abd-El-Aziz, A.S., 2004. Photochemical oxidation of short-chain

664 polychlorinated n-alkane mixtures using H₂O₂/UV and the photo-Fenton reaction.

665 International Journal of Photoenergy 6, 81–88. doi:10.1155/S1110662X04000121

666 Glüge, J., Bogdal, C., Scheringer, M., Buser, A.M., Hungerbühler, K., 2013. Calculation of

667 Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins.

668 Journal of Physical and Chemical Reference Data 42, 023103–25.

669 doi:10.1063/1.4802693

670 Goss, K.-U., 2011. Predicting Equilibrium Sorption of Neutral Organic Chemicals into

671 Various Polymeric Sorbents with COSMO-RS. Anal. Chem. 83, 5304–5308.

672 doi:10.1021/ac200733v

673 Grandbois, M., Latch, D.E., McNeill, K., 2008. Microheterogeneous Concentrations of Singlet
674 Oxygen in Natural Organic Matter Isolate Solutions. Environ. Sci. Technol. 42, 9184–
675 9190. doi:10.1021/es8017094

676 Grannas, A.M., Cory, R.M., Miller, P.L., Chin, Y.-P., McKnight, D.M., 2012. The role of dissolved
677 organic matter in arctic surface waters in the photolysis of hexachlorobenzene and
678 lindane. J. Geophys. Res. 117, 77–12. doi:10.1029/2010JG001518

679 Gu, J., Ma, J., Jiang, J., Yang, L., Yang, J., Zhang, J., Chi, H., Song, Y., Sun, S., Tian, W.Q., 2017a.
680 Hydrated electron (eaq-) generation from phenol/UV: Efficiency, influencing factors,
681 and mechanism. "Applied Catalysis B, Environmental" 200, 585–593.
682 doi:10.1016/j.apcatb.2016.07.034

683 Gu, J., Yang, L., Ma, J., Jiang, J., Yang, J., Zhang, J., Chi, H., Song, Y., Sun, S., Tian, W.Q., 2017b.
684 Hydrated electron (eaq-) generation from p-benzoquinone/UV: Combined
685 experimental and theoretical study. "Applied Catalysis B, Environmental" 212, 150–
686 158. doi:10.1016/j.apcatb.2017.03.081

687 Haag, W.R., Hoigné, J., 1985. Photo-sensitized oxidation in natural water via .OH radicals.
688 Chemosphere 14, 1659–1671. doi:10.1016/0045-6535(85)90107-9

689 Haag, W.R., Yao, C.C.D., 1992. Rate constants for reaction of hydroxyl radicals with several
690 drinking water contaminants. Environ. Sci. Technol. 26, 1005–1013.
691 doi:10.1021/es00029a021

692 Hassett, J.P., 2006. Dissolved natural organic matter as a microreactor. Science 311, 1723–
693 1724. doi:10.1126/science.1123389

694 Heath, E., Brown, W.A., Jensen, S.R., Bratty, M.P., 2004. Biodegradation of chlorinated
695 alkanes and their commercial mixtures by *Pseudomonas* sp. strain 273. J IND

696 MICROBIOL BIOTECHNOL 33, 197–207. doi:10.1007/s10295-004-0186-x

697 Herbert, J.M., Coons, M.P., 2017. The Hydrated Electron. Annu. Rev. Phys. Chem. 68, 447–

698 472. doi:10.1146/annurev-physchem-052516-050816

699 Houde, M., Muir, D.C.G., Tomy, G.T., Whittle, D.M., Teixeira, C., Moore, S., 2008.

700 Bioaccumulation and Trophic Magnification of Short- and Medium-Chain Chlorinated

701 Paraffins in Food Webs from Lake Ontario and Lake Michigan. Environ. Sci. Technol. 42,

702 3893–3899. doi:10.1021/es703184s

703 Huang, L., Dong, W., Hou, H., 2007. Investigation of the reactivity of hydrated electron

704 toward perfluorinated carboxylates by laser flash photolysis. Chemical Physics Letters

705 436, 124–128. doi:10.1016/j.cplett.2007.01.037

706 International Agency for Research on Cancer, 1992. IARC Working Group on the Evaluation

707 of Carcinogenic Risks to Humans. International Agency for Research on Cancer 55, 1–

708 325.

709 Juang, L.-C., Tseng, D.-H., Lee, J.-F., 1998. Photolytic mechanism of monochlorobenzene in

710 an aqueous UV/H₂O₂ system. Chemosphere 36, 1187–1199. doi:10.1016/S0045-

711 6535(97)83100-1

712 Kharasch, M.S., Zavist, A.F., 1951. Reactions of Atoms and Free Radicals in Solution. XXIII.

713 The Peroxide-Induced Addition of Sulfuryl Chloride to 1-Alkenes. J. Am. Chem. Soc. 73,

714 964–967. doi:10.1021/ja01147a022

715 Kieber, D.J., Toole, D.A., Jankowski, J.J., Kiene, R.P., 2007. Chemical “light meters” for

716 photochemical and photobiological studies. Aquatic Sciences. doi:10.1007/s00027-

717 007-0895-0

718 Kiehl, J.T., Trenberth, K.E., 1997. Earth’s Annual Global Mean Energy Budget. Bull. Amer.

719 Meteor. Soc. 78, 197–208.

720 Kochany, J., Bolton, J.R., 1992. Mechanism of Photodegradation of Aqueous Organic
721 Pollutants. 2. Measurement of the Primary Rate Constants for Reaction of 'OH Radicals
722 with Benzene and Some Halobenzenes Using an EPR Spin-Trapping Method following
723 the Photolysis of H₂O₂ 262–265.

724 Koh, I.-O., Thiemann, W., 2001. Study of photochemical oxidation of standard chlorinated
725 paraffins and identification of degradation products. Journal of Photochemistry and
726 Photobiology A: Chemistry 139, 205–215. doi:10.1016/S1010-6030(00)00427-5

727 Kovacevic, G., Sabljic, A., 2013. Mechanisms and reaction-path dynamics of hydroxyl radical
728 reactions with aromatic hydrocarbons: The case of chlorobenzene. Chemosphere 92,
729 851–856. doi:10.1016/j.chemosphere.2013.04.041

730 Köhler, G., Getoff, N., Rotkiewicz, K., Grabowski, Z.R., 1985. Electron photoejection from
731 donor—aryl-acceptor molecules in aqueous solution. Journal of Photochemistry 28,
732 537–546. doi:10.1016/0047-2670(85)87047-7

733 Köster, R., Asmus, K.D., 1973. Reactions of fluorinated benzenes with hydrated electrons
734 and hydroxyl radicals in aqueous solutions. J. Phys. Chem. 77, 749–755.
735 doi:10.1021/j100625a004

736 Krutzler, T., Fallmann, H., Maletzky, P., Bauer, R., Malato, S., Blanco, J., 1999. Solar driven
737 degradation of 4-chlorophenol. Catalysis Today 54, 321–327. doi:10.1016/S0920-
738 5861(99)00193-5

739 Latch, D.E., McNeill, K., 2006. Microheterogeneity of singlet oxygen distributions in
740 irradiated humic acid solutions. Science 311, 1743–1747.
741 doi:10.1126/science.1121636

742 Li, C., Xie, H.-B., Chen, J., Yang, X., Zhang, Y., Qiao, X., 2014. Predicting Gaseous Reaction

743 Rates of Short Chain Chlorinated Paraffins with ·OH: Overcoming the Difficulty in

744 Experimental Determination. *Environ. Sci. Technol.* 48, 13808–13816.

745 doi:10.1021/es504339r

746 Li, H., Fu, J., Pan, W., Wang, P., Li, Y., Zhang, Q., Wang, Y., Zhang, A., Liang, Y., Jiang, G., 2017.

747 Environmental behaviour of short-chain chlorinated paraffins in aquatic and terrestrial

748 ecosystems of Ny-Ålesund and London Island, Svalbard, in the Arctic. *Science of the*

749 *Total Environment*, The 590-591, 163–170. doi:10.1016/j.scitotenv.2017.02.192

750 Li, X., Fang, J., Liu, G., Zhang, S., Pan, B., Ma, J., 2014. Kinetics and efficiency of the hydrated

751 electron-induced dehalogenation by the sulfite/UV process. *Water Research* 62, 220–

752 228. doi:10.1016/j.watres.2014.05.051

753 Lu, M., 2012. Degradation of short chain polychlorinated paraffins by a new isolate: tests in

754 pure culture and sewage sludge. *J. Chem. Technol. Biotechnol* 88, 1273–1279.

755 doi:10.1002/jctb.3971

756 Milosavljevic, B.H., LaVerne, J.A., Pimblott, S.M., 2005. Rate Coefficient Measurements of

757 Hydrated Electrons and Hydroxyl Radicals with Chlorinated Ethanes in Aqueous

758 Solutions. *J. Phys. Chem. A* 109, 7751–7756. doi:10.1021/jp051249b

759 Mopper, K., Zhou, X., 1990. Hydroxyl Radical Photoproduction in the Sea and Its Potential

760 Impact on Marine Processes. *Science* 250, 661–664. doi:10.1126/science.250.4981.661

761 Moza, P.N., Fytianos, K., Samanidou, V., Korte, F., 1988. Photodecomposition of

762 chlorophenols in aqueous medium in presence of hydrogen peroxide. *Bull. Environ.*

763 *Contam. Toxicol.* 41, 678–682. doi:10.1007/BF02021018

764 Mukherjee, A.B., 1990. The Use of Chlorinated Paraffins and their Possible Effects in the

765 Environment 1–60.

766 Nikiforov, V.A., 2010. Synthesis of Polychloroalkanes, in: Boer, J. (Ed.), Chlorinated
767 Paraffins, The Handbook of Environmental Chemistry. Springer Berlin Heidelberg,
768 Berlin, Heidelberg, pp. 41–82. doi:10.1007/698_2009_40

769 Nitoi, I., Oncescu, T., Oancea, P., 2013. Mechanism and kinetic study for the degradation of
770 lindane by photo-Fenton process. Journal of Industrial and Engineering Chemistry 19,
771 305–309. doi:10.1016/j.jiec.2012.08.016

772 Park, H., Vecitis, C.D., Cheng, J., Choi, W., Mader, B.T., Hoffmann, M.R., 2009. Reductive
773 Defluorination of Aqueous Perfluorinated Alkyl Surfactants: Effects of Ionic Headgroup
774 and Chain Length. *J. Phys. Chem. A* 113, 690–696. doi:10.1021/jp807116q

775 Raul Tenorio, J.L.X.X.A.M.C.P.H.C.E.S.A.T.J.S., 2020. Destruction of Per- and Polyfluoroalkyl
776 Substances (PFASs) in Aqueous Film-Forming Foam (AFFF) with UV-Sulfite
777 Photoreductive Treatment 1–11. doi:10.1021/acs.est.0c00961

778 Sedlak, D.L., Andren, A.W., 1991. Oxidation of chlorobenzene with Fenton's reagent.
779 *Environ. Sci. Technol.* 25, 777–782. doi:10.1021/es00016a024

780 Smith, K.E.C., Dom, N., Blust, R., Mayer, P., 2010. Controlling and maintaining exposure of
781 hydrophobic organic compounds in aquatic toxicity tests by passive dosing. *Aquat.*
782 *Toxicol.* 98, 15–24. doi:10.1016/j.aquatox.2010.01.007

783 Song, Z., Tang, H., Wang, N., Zhu, L., 2013. Reductive defluorination of perfluorooctanoic
784 acid by hydrated electrons in a sulfite-mediated UV photochemical system. *Journal of*
785 *Hazardous Materials* 262, 332–338. doi:10.1016/j.jhazmat.2013.08.059

786 Štejnarová, P., Coelhan, M., Kostrhounová, R., Parlar, H., Holoubek, I., 2005. Analysis of short-
787 chain chlorinated paraffins in sediment samples from the Czech Republic by short-

788 column GC/ECNI-MS. *Chemosphere* 58, 253–262.

789 doi:10.1016/j.chemosphere.2004.08.083

790 Thomas-Smith, T.E., Blough, N.V., 2001. Photoproduction of Hydrated Electron from

791 Constituents of Natural Waters. *Environ. Sci. Technol.* 35, 2721–2726.

792 doi:10.1021/es010552x

793 Tomy, G.T., Fisk, A.T., Westmore, J.B., Muir, D.C.G., 1998. Environmental Chemistry and

794 Toxicology of Polychlorinated N-Alkanes. *Rev Environ Contam Toxicol.* 158, 53–128.

795 Tomy, G.T., Stern, G.A., Lockhart, W.L., Muir, D.C.G., 1999. Occurrence of C 10–C

796 13Polychlorinated n-Alkanes in Canadian Midlatitude and Arctic Lake Sediments.

797 *Environ. Sci. Technol.* 33, 2858–2863. doi:10.1021/es990107q

798 Tomy, G.T., Stern, G.A., Muir, D.C.G., Fisk, A.T., Cymbalisty, C.D., Westmore, J.B., 1997.

799 Quantifying C 10–C 13Polychloroalkanes in Environmental Samples by High-Resolution

800 Gas Chromatography/Electron Capture Negative Ion High-Resolution Mass

801 Spectrometry. *Anal. Chem.* 69, 2762–2771. doi:10.1021/ac961244y

802 U.S. Environmental Protection Agency, 2009. Short-Chain Chlorinated Paraffins (SCCPs)

803 and Other Chlorinated Paraffins Action Plan.

804 U.S. EPA Environmental Protection Agency, 1995. Great Lakes Water Quality Initiative

805 Technical Support Document for the Procedure to Determine Bioaccumulation Factors

806 (No. EPA-820-B95-005).

807 UNEP, 2017. Report of the Conference of the Parties to the Stockholm Convention on

808 Persistent Organic Pollutants on the work of its eighth meeting, in: Presented at the

809 Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants

810 Eighth meeting, Geneva, pp. 1–116.

811 UNEP, 2016. Report of the Persistent Organic Pollutants Review Committee on the work of
812 its twelfth meeting. Stockholm Convention on Persistent Organic Pollutants 1–23.

813 UNEP, 2015. Report of the Persistent Organic Pollutants Review Committee on the work of
814 its eleventh meeting, Stockholm Convention on Persistent Organic Pollutants.

815 Van Hoomissen and Shubham Vyas, D.J., 2019. Early Events in the Reductive
816 Dehalogenation of Linear Perfluoroalkyl Substances 1–7.
817 doi:10.1021/acs.estlett.9b00116

818 Vaughan, P.P., Blough, N.V., 1998. Photochemical formation of hydroxyl radical by
819 constituents of natural waters. Environ. Sci. Technol. 32, 2947–2953.
820 doi:10.1021/es9710417

821 Wach, R.A., Kudoh, H., Zhai, M., Nagasawa, N., Muroya, Y., Yoshii, F., Katsumura, Y., 2004.
822 Rate constants of reactions of carboxymethylcellulose with hydrated electron, hydroxyl
823 radical and the decay of CMC macroradicals. A pulse radiolysis study. Polymer 45,
824 8165–8171. doi:10.1016/j.polymer.2004.09.086

825 Watkins, A.R., 1974. Kinetics of fluorescence quenching by inorganic anions. J. Phys. Chem.
826 78, 2555–2558. doi:10.1021/j100618a006

827 Williams, J.A., Cooper, W.J., Mezyk, S.P., Bartels, D.M., 2002. Absolute rate constants for the
828 reaction of the hydrated electron, hydroxyl radical and hydrogen atom with
829 chloroacetones in water. Radiation Physics and Chemistry 65, 327–334.
830 doi:10.1016/S0969-806X(02)00351-1

831 Yan, S., Sun, J., Sha, H., Li, Q., Nie, J., Zou, J., Chu, C., Song, W., 2021. Microheterogeneous
832 Distribution of Hydroxyl Radicals in Illuminated Dissolved Organic Matter Solutions.
833 Environ. Sci. Technol. doi:10.1021/acs.est.1c03346

834 Yuan, H., Pan, H., Shi, J., Li, H., Dong, W., 2015. Kinetics and mechanisms of reactions for
835 hydrated electron with chlorinated benzenes in aqueous solution. *Front. Environ. Sci.*
836 *Eng.* 9, 583–590. doi:10.1007/s11783-014-0691-8

837 Zacheis, G.A., Gray, K.A., Kamat, P.V., 2000. Radiolytic Reduction of Hexachlorobenzene in
838 Surfactant Solutions: A Steady-State and Pulse Radiolysis Study. *Environ. Sci. Technol.* 34,
839 3401–3407. doi:10.1021/es991098o

840 Zeng, L., Chen, R., Zhao, Z., Wang, T., Gao, Y., Li, A., Wang, Y., Jiang, G., Sun, L., 2013. Spatial
841 Distributions and Deposition Chronology of Short Chain Chlorinated Paraffins in
842 Marine Sediments across the Chinese Bohai and Yellow Seas. *Environ. Sci. Technol.* 47,
843 11449–11456. doi:10.1021/es402950q

844 Zeng, L., Lam, J.C.W., Chen, H., Du, B., Leung, K.M.Y., Lam, P.K.S., 2017a. Tracking Dietary
845 Sources of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals through
846 a Subtropical Marine Food Web. *Environ. Sci. Technol.* 51, 9543–9552.
847 doi:10.1021/acs.est.7b02210

848 Zeng, L., Lam, J.C.W., Horii, Y., Li, X., Chen, W., Qiu, J.-W., Leung, K.M.Y., Yamazaki, E.,
849 Yamashita, N., Lam, P.K.S., 2017b. Spatial and temporal trends of short- and medium-
850 chain chlorinated paraffins in sediments off the urbanized coastal zones in China and
851 Japan: A comparison study. *Environmental Pollution* 224, 357–367.
852 doi:10.1016/j.envpol.2017.02.015

853 Zeng, L., Wang, T., Ruan, T., Liu, Q., Wang, Y., Jiang, G., 2012. Levels and distribution patterns
854 of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in
855 China. *Environmental Pollution* 160, 88–94. doi:10.1016/j.envpol.2011.09.004

856 Zeng, L., Wang, T., Wang, P., Liu, Q., Han, S., Yuan, B., Zhu, N., Wang, Y., Jiang, G., 2011.

857 Distribution and Trophic Transfer of Short-Chain Chlorinated Paraffins in an Aquatic
858 Ecosystem Receiving Effluents from a Sewage Treatment Plant. Environ. Sci. Technol.
859 45, 5529–5535. doi:10.1021/es200895b

860 Zepp, R.G., Braun, A.M., Hoigne, J., Leenheer, J.A., 1987a. Photoproduction of hydrated
861 electrons from natural organic solutes in aquatic environments. Environ. Sci. Technol.
862 21, 485–490. doi:10.1021/es00159a010

863 Zepp, R.G., Hoigne, J., Bader, H., 1987b. Nitrate-Induced Photooxidation of Trace Organic
864 Chemicals in Water. Environ. Sci. Technol. 21, 443–450. doi:10.1021/es00159a004

865 Zhang, W., Gao, Y., Qin, Y., Wang, M., Wu, J., Li, G., An, T., 2019. Photochemical degradation
866 kinetics and mechanism of short-chain chlorinated paraffins in aqueous solution: A
867 case of 1-chlorodecane. Environmental Pollution 247, 362–370.
868 doi:10.1016/j.envpol.2019.01.065

869 Zona, R., Solar, S., Getoff, N., Sehested, K., Holcman, J., 2008. Reactivity of H atoms and
870 hydrated electrons with chlorobenzoic acids. Radiation Physics and Chemistry 77, 162–
871 168. doi:10.1016/j.radphyschem.2007.05.001

872