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Abstract 13 

Short-chain chlorinated paraffins (SCCPs) are a complex mixture of polychlorinated 14 

alkanes (C10-C13, chlorine content 40-70%), and have been categorized as persistent 15 

organic pollutants. However, there are knowledge gaps about their environmental 16 

degradation, particularly the effectiveness and mechanism of photochemical degradation in 17 

surface waters. Photochemically-produced hydrated electrons (e-(aq)) have been shown to 18 

degrade highly chlorinated compounds in environmentally-relevant conditions more 19 

effectively than hydroxyl radicals (·OH), which can degrade a wide range of organic 20 

pollutants. This study aimed to evaluate the potential for e-(aq) and ·OH to degrade SCCPs. 21 

To this end, the degradation of SCCP model compounds was investigated under laboratory 22 

conditions that photochemically produced e-(aq) or ·OH. Resulting SCCP degradation rate 23 
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constants for e-(aq)  were on the same order of magnitude as well-known chlorinated 24 

pesticides. Experiments in the presence of ·OH yielded similar or higher second-order rate 25 

constants. Trends in e-(aq) and ·OH degradation rate constants of the investigated SCCPs 26 

were consistent with those of other chlorinated compounds, with higher chlorine content 27 

producing in higher rate constants for e-(aq) and lower for ·OH. Above a chlorine:carbon 28 

ratio of approximately 0.6, the e-(aq) second-order rate constants were higher than rate 29 

constants for ·OH reactions. Results of this study furthermore suggest that SCCPs are likely 30 

susceptible to degradation in sunlit surface waters, facilitated by dissolved organic matter 31 

as a source of photochemically produced e-(aq) and ·OH. 32 

 33 
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Highlights 40 

 Photochemically-produced hydrated electrons and hydroxyl radicals can 41 

degrade SCCPs 42 

 Hydrated electron rate constants increase with increasing chlorine content 43 

 Hydroxyl radical rate constants decrease with increasing chlorine content 44 

 SCCP photodegradation was also facilitated by dissolved organic matter 45 

1. Introduction 46 

Short-chain chlorinated paraffins (SCCPs) are a highly complex mixture of 47 

polychlorinated n-C10 through n-C13 alkanes with thousands of congeners and a chlorine 48 

content typically between 40 and 70% (U.S. Environmental Protection Agency, 2009). They 49 

are high-volume industrial chemicals that have been used since the 1930s as additives in 50 

high-pressure lubricants and cutting fluids for metalworking, as well as flame retardants 51 

and plasticizers in a variety of products such as paints, adhesives, and sealants (Bayen et 52 

al., 2006; U.S. Environmental Protection Agency, 2009). SCCPs are compounds of concern 53 

due to their toxicity, bioaccumulation potential (Houde et al., 2008), persistence, and long-54 

range transport potential (Bayen et al., 2006; Fisk et al., 1999; Tomy et al., 1998; Zeng et al., 55 

2013; 2017a; 2017b; 2012; 2011). Due to the widespread usage and improper disposal of 56 

products containing SCCPs, they can now be found throughout the environment in surface 57 

waters, sediments, and biota (Bayen et al., 2006; Bennie et al., 2000; Campbell and 58 

McConnell, 1980; Casà et al., 2019; Du et al., 2018; Feo et al., 2009; H. Li et al., 2017; 59 

Štejnarová et al., 2005; Tomy et al., 1997; UNEP, 2016), and they have since been added to 60 

Appendix A of the Stockholm Convention on Persistent Organic Pollutants (UNEP, 2017). 61 
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Understanding the fate of SCCPs in the aquatic environment is critical to estimating 62 

their bioaccumulation and environmental risk. Although SCCPs have undergone 63 

environmental risk assessment for more than 30 years (EPA, 1978; Mukherjee, 1990; 64 

UNEP, 2015), the Persistent Organic Pollutants Review Committee (POPRC) of the 65 

Stockholm Convention concluded in 2016 that the current studies on photodegradation 66 

and biodegradation are of limited use for assessing the degradation of SCCPs in natural 67 

waters and that “there is insufficient information to conclude on the persistence of SCCPs in 68 

water” (UNEP, 2016). While studies on biodegradation found the possibility of degradation 69 

in activated sewage sludge (Heath et al., 2004; Lu, 2012) and aerobic sediments (European 70 

Chemicals Bureau, 2008; Tomy et al., 1999; UNEP, 2015), SCCPs can still be detected in 71 

sediments after more than 50 years. Besides biodegradation, the other potentially relevant 72 

environmental sink for SCCPs is photodegradation; however, there are only a few studies 73 

focusing on this process (Chen et al., 2016; El-Morsi et al., 2000; 2002; Friesen et al., 2004; 74 

Yan et al., 2021; Zhang et al., 2019). These studies leave major knowledge gaps regarding 75 

photochemical degradation under environmentally relevant conditions. To constrain the 76 

fate of SCCPs in the environment, more research into their photochemistry is necessary. 77 

 Since SCCPs do not absorb light in the wavelengths relevant on the Earth’s surface, 78 

direct photochemical degradation of SCCPs is not a viable pathway (Friedman and 79 

Lombardo, 1975). However, indirect photodegradation pathways involving reactions with 80 

photochemically produced reactive intermediates (PPRI) are possible. These 81 

intermediates, including hydroxyl radicals (·OH) and hydrated electrons (e-(aq)), can be 82 

formed in surface water following the absorption of light by constituents of natural water 83 

such as dissolved organic matter (DOM) or nitrate (Clark and Zika, 2000). Hydroxyl 84 
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radicals have been implicated in the photochemical degradation of many organic pollutants 85 

(Atkinson, 1985; Haag and Hoigné, 1985; Haag and Yao, 1992; Vaughan and Blough, 1998). 86 

While it was hypothesized that ·OH are less important in the degradation of highly 87 

chlorinated alkanes (Milosavljevic et al., 2005), recent research suggests that the ·OH-88 

mediated degradation might be relevant for the degradation of chlorinated paraffins in 89 

surface waters (Yan et al., 2021).  90 

In addition to ·OH, e-(aq) have also been shown to be important in the degradation of 91 

chlorinated pollutants, including mirex (Burns et al., 1997; 1996), hexachlorobenzene 92 

(Grannas et al., 2012), chloromethanes (Calza and Pelizzetti, 2004), chloroethanes 93 

(Milosavljevic et al., 2005), and more recently per- and polyfluoroalkyl substances (PFAS) 94 

(Bentel, 2020; 2019). While e-(aq) has been a known product of water radiolysis for more 95 

than 50 years (Herbert and Coons, 2017), it can also be produced in surface waters by the 96 

interaction of sunlight with constituents of DOM (Thomas-Smith and Blough, 2001). It 97 

appears that the lifetime of the e-(aq) in the DOM phase is sufficient for its reaction with 98 

hydrophobic compounds sorbed into the DOM phase (Breugem et al., 1986). Due to the 99 

hydrophobic nature of SCCPs, with estimated octanol-water partition coefficients (Kow) 100 

between 9×104 and 3×107 (Glüge et al., 2013), these compounds have the potential to be 101 

degraded by this mechanism. However, the reactivity of e-(aq) towards SCCPs has not yet 102 

been systematically investigated. In addition, the majority of previous research has focused 103 

on engineered systems for water treatment, not environmentally-relevant processes 104 

(Bentel, 2020; 2019; Calza and Pelizzetti, 2004; Cui et al., 2020; Huang et al., 2007; 105 

Milosavljevic et al., 2005; Song et al., 2013; Yuan et al., 2015; Zona et al., 2008). 106 
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The aim of this study was therefore to determine the reactivity of SCCPs with e-(aq) 107 

and ·OH, and to evaluate these pathways for the relevance of SCCP degradation in natural 108 

water, where degradation within the DOM phase has been hypothesized to provide a 109 

suitable environment for their degradation (Yan et al., 2021). We mainly focused on the 110 

reactivity of SCCP model compounds in DOM-free conditions, where e-(aq) are produced 111 

using an artificial photosensitizer, N,N-dimethylaniline (DMA) (Thomas-Smith and Blough, 112 

2001), and ·OH are produced by nitrate (NO3-) photolysis (Zepp et al., 1987b). 113 

Furthermore, we performed select experiments in the presence of DOM to evaluate the 114 

potential for DOM-mediated degradation of SCCPs. 115 

2. Materials and methods 116 

2.1 Chemicals 117 

Due to the lack of commercially available single compounds or simple mixtures of 118 

SCCPs in gram quantities, three model compounds were synthesized for use in 119 

photodegradation experiments. 1,2,9,10-tetrachlorodecane (TCD) (50.6 % Cl by mass), 120 

1,2,5,6,9,10-hexachlorodecane (HCD) (61.0 % Cl), and 1,2,11,12-tetrachlorododecane 121 

(TCDod) (46.0 % Cl) were chosen as representative SCCPs due to their varying degrees of 122 

chlorination and carbon chain length, as well as the commercial availability of their diene 123 

and triene precursors: 1,9-decadiene, 1,5,9-decatriene, and 1,11-dodecadiene (Combi-124 

Blocks Inc.; San Diego, CA). Chlorination of the double bonds was achieved using sulfuryl 125 

chloride (SO2Cl2; obtained from Sigma-Aldrich) as a chlorine source and 2,2’-azobis(2-126 

methylpropionitrile) (AIBN; Sigma-Aldrich) as a radical initiator (Fisk et al., 1999; 127 
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Kharasch and Zavist, 1951; Nikiforov, 2010) (Figure A1 in Appendix A). Further details on 128 

the synthesis procedure are provided in Appendix A. Analytical standards (100 μg/mL) for 129 

TCD, HCD, and TCDod were obtained from Chiron (Trondheim, Norway) to identify and 130 

quantify the synthesized SCCPs. 131 

In addition, the following chlorinated organic compounds (COCs) were included to 132 

increase the range of chlorine content studied and to facilitate comparison with literature 133 

data: 1,6-dichlorohexane (DCH), 1,10-dichlorodecane (DCD), chlorobenzene (CB), and 134 

lindane (γ-hexachlorocyclohexane) (Sigma-Aldrich). N,N-dimethylaniline (DMA) was used 135 

for hydrated electron (e-(aq)) generation (Thomas-Smith and Blough, 2001) and sodium 136 

nitrate for hydroxyl radical (·OH) generation (Sigma-Aldrich) (Zepp et al., 1987b). Both 137 

compounds were used at aqueous concentrations of 1 mM. Buffered solutions were 138 

prepared with mono- and dibasic potassium phosphate (Sigma-Aldrich). Suwannee River 139 

Natural Organic Matter (SR-NOM; International Humic Substances Society, 2R101N) was 140 

used as a source of DOM. 141 

2.2 Preparing Solutions for Experiments 142 

Experiments were conducted in reagent grade water buffered to pH 7.0 with 1 mM 143 

phosphate buffer. All glassware was soaked overnight in 1% detergent (Extran 300; Sigma-144 

Aldrich) followed by 10% hydrochloric acid to remove organic and trace metal 145 

contaminants. After rinsing with reagent grade water, the glassware was heated overnight 146 

at 450 °C to remove organic contaminants. 147 

During a first set of experiments, chlorinated compounds with low water solubility 148 

were added directly in an acetonitrile (ACN) solution. ACN was selected because it was 149 
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reported to be an inert co-solvent with minimal effect on the degradation mechanism 150 

(ASTM International, 2005; Zhang et al., 2019). 100 μL of chlorinated compound mixture in 151 

ACN was added per liter of solution to achieve desired final concentrations (approximately 152 

10x below their water solubility), and the solution was stirred for 24 hours to ensure that 153 

the compounds were fully dissolved prior to beginning an experiment. 154 

A passive dosing approach to add the COCs (Smith et al., 2010)  was then used for the 155 

experiments with the SCCP model compounds in order to avoid any possible complication 156 

due to the presence of ACN in the reaction solutions. Discs (8 mm diameter) were cut out of 157 

a sheet of polydimethylsiloxane (PDMS; 0.8 mm thickness, 50 durometer; CS Hyde, Lake 158 

Villa, IL). They were cleaned prior to use by subsequently soaking overnight in 1% 159 

detergent (Extran, Sigma Aldrich), 10% HCl, and then three portions of methanol (MeOH). 160 

The discs were loaded with COCs by equilibrating in 20 mL MeOH solutions containing the 161 

COCs (see Table A1 for details) on a shaker table for 24 h. Due to the low partitioning of 162 

COCs from MeOH onto PDMS, the depletion of COCs in MeOH after equilibration of the discs 163 

was minimal (< 1%); therefore, the same MeOH solution was reused for each experiment. 164 

Loaded PDMS discs were gently rinsed with a small amount of reagent grade water to 165 

remove MeOH immediately before use. Two loaded discs were added per liter of buffered 166 

water (pH 7.0)  and equilibrated overnight on a shaker table in glass media bottles. The 167 

concentration of chlorinated compounds needed in MeOH for desired final aqueous 168 

concentrations was estimated by predicting PDMS-MeOH and PDMS-water partition 169 

coefficients of COCs using the COSMO-RS based COSMOtherm software (Goss, 2011). After 170 

an initial test, the COC concentrations in MeOH were adjusted as needed, achieving initial 171 

aqueous COC concentrations of ~15-120 nM (Table A1). For the experiment using DOM, 172 
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PDMS chips were equilibrated directly in SR-NOM water, which was prepared in 1 mM 173 

phosphate buffer (pH 7.0) at 40 mg C L-1 and filtered to 0.2 µm. 174 

Experiments were performed with mixtures of COCs rather than single compounds, 175 

as it was assumed that the presence of multiple COCs would not significantly decrease the 176 

steady-state concentration of e-(aq) ([e-(aq)]ss). The rationale for this assumption was that O2 177 

typically acts as the primary sink of e-(aq) in aerated solution, and therefore controls [e-(aq)]ss. 178 

The second-order rate constant for oxygen’s reaction with e-(aq) (2.00×1010 M-1 s-1) (Buxton 179 

et al., 1988) is equal to or greater than expected values for the COCs studied (108-1010 M-1 s-180 

1; Table A7) (Anbar and Hart, 1964; Burns et al., 1997; Buxton et al., 1988; Milosavljevic et 181 

al., 2005). Furthermore, the oxygen concentration in air-equilibrated aqueous solutions 182 

(278 µM) was much greater than the COC concentrations used in these experiments. As a 183 

result, the predicted decrease in [e-(aq)]ss resulting from the presence of numerous COCs 184 

was expected to be less than 1%. To confirm the validity of our assumptions, we measured 185 

the degradation rate constant of lindane independently and in a mixture of three COCs. The 186 

resulting degradation rate constants were not significantly different (p = 0.36) between the 187 

two solutions. 188 

For experiments with lower oxygen concentrations, solutions were purged for 6 189 

hours prior to passive dosing and irradiation using ultrapure nitrogen flowing through a 190 

gas dispersion tube (Ace Glass, porosity B, 70-100 µm). Oxygen concentrations were 191 

measured using a PreSens Microx 4 fiber optic oxygen meter with NTH-PSt7 microsensor 192 

(PreSens Precision Sensing GmbH; Regensburg, Germany). They dropped from 2.78×10-4 M 193 

in air-saturated solution to 7.50×10-5 M, or about 26 % saturation, after purging and 194 

transferring the solution to reaction vessels. 195 
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2.3 Photodegradation Experiments 196 

A solar simulator with a 1,800 W Xe arc lamp (Q-SUN Xe-1; Q-Lab Corp., Westlake, 197 

OH) was used for photodegradation experiments. A Daylight-Q filter (Q-Lab Corp.) was 198 

chosen to provide an accurate spectral match to direct sunlight at the Earth’s surface 199 

(Figure A2). The irradiance was calibrated at 340 nm and 0.68 W m-2 using an irradiance 200 

sensor (Q-SUN Irradiance Smart Sensor; Q-Lab Corp.) to ensure that higher energy 201 

wavelengths were accurately represented. This intensity closely matches the solar 202 

maximum at the Earth’s surface (global, noon sunlight, normal incidence during summer 203 

solstice (CIE, 1989). Absolute irradiance spectra of the solar simulator and natural sunlight 204 

measured with a FLAME spectroradiometer (Ocean Insight; Orlando, FL) are shown in 205 

Figure A2, and irradiance intensities at UVB (280-320 nm), UVA (320-400 nm), and PAR 206 

(400-700 nm) wavelengths are shown in Table A2.  207 

Reaction vessels consisted of custom quartz round bottom flasks (Quartz Scientific, 208 

Inc.; Fairport Harbor, OH) with a volume of about 330 mL (86 mm diameter) and Teflon 209 

lined screw caps. Flasks were filled to minimize headspace, and eight at a time sat partially 210 

submerged in a water bath inside the solar simulator. The solar simulator was modified so 211 

that the irradiation chamber sat horizontally to accommodate the water bath. Evaporative 212 

cooling of the water bath, controlled by an internal fan coupled with a submerged 213 

temperature sensor, kept the water and samples at 25 ± 1 °C. The fill level of the water bath 214 

was kept constant with a float switch-controlled pump and water reservoir. Teflon-coated 215 

magnetic stir bars were used to homogenize solutions during the irradiations. Initial 216 

irradiations in reagent grade water (Milli-Q) and DMA lasted 24 h, before determining that 217 

6 h was sufficient to observe significant degradation. DMA concentrations dropped 12.5% 218 
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over this period. Each experiment consisted of three to five irradiation durations (i.e., time 219 

points), each performed in duplicate or triplicate. Two time points were repeated with foil-220 

wrapped samples for dark controls to account for potential non-photochemical loss of 221 

COCs. Generally, no loss was observed in the dark control samples. 222 

  Solar actinometry experiments (Kieber et al., 2007) were used to correct for 223 

variability in light intensity at the eight positions where flasks were placed within the 224 

irradiation chamber by quantifying light fluxes within the reaction vessels. The average 225 

light dose received by the sample calculated using the nitrate actinometer was 5.55 ± 0.31 226 

μE cm-2 h-1, with a 5.5% relative standard deviation between the positions. Calculating the 227 

actinic flux (outside the quartz flasks) using data collected with the FLAME 228 

spectroradiometer across the spectral bandwidth of this actinometer (307-333 nm) yielded 229 

values of 8.87, 7.27, and 6.56 μE cm-2 h-1 at the top, middle, and bottom height of the flask. 230 

This difference between actinometry and spectroradiometer-derived light fluxes highlights 231 

the importance of actinometry in accounting for the attenuation and scattering of light by 232 

the vessels and their surroundings. 233 

Irradiance in the UV range is relevant for the investigated DMA and NO3–sensitized 234 

reactions. The total UV intensity of natural sunlight at sea level is about 5% of net surface 235 

shortwave (290 – 4000 nm) surface radiation (168 W m-2) (International Agency for 236 

Research on Cancer, 1992; Kiehl and Trenberth, 1997), or about 8.4 W m-2. The total UV 237 

output by the solar simulator at the top of the reaction vessel was 69.1 W m-2, which is 238 

about 8.2 times higher than global average sunlight (mean daily irradiance averaged 239 

spatially and temporally). Therefore, a 24 h irradiation corresponded to 8.2 days of average 240 

solar radiation on Earth reaching the flask. 241 
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2.4 Analytical Methods 242 

Following irradiation experiments, the full sample volumes were extracted three 243 

times with 15, 10, and 10 mL of dichloromethane (DCM) using o-terphenyl (oTP) as a 244 

recovery standard. The extraction method was modified for samples containing DOM to 245 

improve extraction efficiency by adding 5 mL of brine (saturated NaCl) along with 35 mL 246 

DCM to the solutions. This mixture was shaken for 24 h on a shaker table before the DCM 247 

was collected, followed by an additional 10 mL extraction in a separatory funnel. The 248 

extracts were combined and dried with sodium sulfate, and the volume was reduced to ~1 249 

mL in a rotary evaporator followed by a nitrogen evaporator. 250 

COCs were analyzed by gas chromatography coupled to mass spectrometry (GC-MS) 251 

using a 7890B GC coupled to a 5977A MS (Agilent Technologies, Inc.; Santa Clara, CA) 252 

equipped with a DB-XLB column (60 m, 250 μm i.d., 0.25 μm film, Model 122-1262; Agilent 253 

Technologies). Samples were injected in splitless mode, using an injector temp of 300 °C 254 

and a transfer line temperature of 300 °C. The column temperature was 40 °C for 10 min, 255 

then ramped to 300 °C at a rate of 20 °C min-1, and was held there for 15 min. Ultra-high 256 

purity He (99.999%) was used as carrier gas with a constant flow of 1.2 mL min-1. The MS 257 

was operated in selected ion monitoring (SIM) mode using two dominant mass fragments 258 

for each compound. Quantification was performed using a 6-point calibration curve, using 259 

an internal standard (deuterated chlorobenzene, Sigma-Aldrich) to calculate relative 260 

responses. The recovery standard oTP was used to correct for losses during extraction. 261 
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2.5 Data evaluation 262 

Degradation of the COCs generally followed apparent (pseudo) first-order kinetics 263 

following the equation d[C]/dt = -k’[C], where [C] is the concentration of the COC and k’ is 264 

the apparent first-order rate constant. These kinetics rely on a steady-state concentration 265 

of a single PPRI ([PPRI]ss), where its formation and scavenging rate remain constant over 266 

time. The apparent first-order rate constant is therefore defined as k’ = kC[PPRI]ss, where kC 267 

is the second-order rate constant for the reaction between the COC and the PPRI. 268 

Degradation in this study represents the loss of the parent COC – products with lower 269 

degrees of chlorination are potentially formed and further degraded during the 270 

experiments. 271 

Apparent first-order rate constants were reported in s-1 units, but they can be 272 

converted to photon flux for comparison with other studies by dividing by the light dose 273 

(e.g., using the light dose from the nitrate actinometer, 5.55 μE cm-2 h-1 or 15.4 μE m-2 s-1). 274 

In some experiments, first-order kinetics were not followed for the entire 6 or 24 h 275 

duration, possibly indicating that the PPRI concentration was changing due to factors such 276 

as a decreasing concentration of the PPRI source, an increasing sink, or increased light 277 

attenuation due to colored byproducts of the reaction. In these cases, rate constants were 278 

calculated from the slope of the linear portion of the ln(concentration) vs. time regression. 279 

When multiple experiments were conducted with the same compound, data were pooled to 280 

calculate degradation rate constants. Prism software (GraphPad, San Diego, CA) was used 281 

to evaluate statistical differences in rate constants using their calculated standard error. 282 
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3. Results and Discussion 283 

3.1 Evaluating Direct Photodegradation of SCCPs 284 

Control experiments were conducted in pH 7 buffered Milli-Q water testing for the 285 

presence of direct photochemical degradation. No significant degradation was observed for 286 

irradiation times up to 24 h (Table A3). This is not surprising given the lack of light 287 

absorption in the range of the solar spectrum reaching the Earth’s surface (> 290 nm) for 288 

SCCPs (Friedman and Lombardo, 1975; Zhang et al., 2019). 289 

3.2 Indirect SCCP Degradation in DMA system 290 

In irradiated aqueous solutions containing the e-(aq)-producing DMA (Köhler et al., 291 

1985), degradation of all investigated COCs was observed (Figure 1). The SCCP first-order 292 

rate constants ranged from 2.5×10-5 s-1 (TCDod) to 3.9×10-5 s-1 (HCD). Dichlorinated 293 

compounds degraded more slowly than similar tetra- and hexachlorinated compounds 294 

(DCH/DCD vs. TCD/HCD; see Table A4 for statistics). These SCCP degradation rate 295 

constants were lower, but in the same order of magnitude as that of well-characterized 296 

compounds such as lindane (γ-hexachlorocyclohexane; k’ = 7.8×10-5 s-1), which has 297 

previously been investigated for its e-(aq) reactivity (Burns et al., 1997). Lindane was 298 

included in most experiments throughout this study to facilitate comparison with previous 299 

studies. 300 

 301 
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 302 

Figure 1. Apparent first and second-order rate constants for the photochemical 303 

degradation of chlorinated compounds lindane, 1,6-dichlorohexane (DCH), 1,10-304 

dichlorodecane (DCD), 1,2,9,10-tetrachlorodecane (TCD), 1,2,5,6,9,10-hexachlorodecane 305 

(HCD), and 1,2,11,12-tetrachlorododecane (TCDod) in solutions of 1 mM dimethylaniline 306 

(DMA).  307 

 308 

3.3 Confirming e-(aq) as Reactive Species 309 

To confirm that e-(aq) is responsible for the observed degradation, amendments were 310 

made to the solution by changing the type and concentration of scavengers present (Figure 311 

2). Known scavengers that affect [e-(aq)](ss) and thus k’ include hydrogen ions (H+) (Watkins, 312 

1974), oxygen (O2) (Buxton et al., 1988), and halogenated compounds such as 2-313 

chloroethanol (ClEtOH) (Zepp et al., 1987a).  314 
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First, the effect of increased H+ concentration was tested. At pH 3, the degradation 315 

rate constant of both TCD and lindane significantly decreased compared to a pH 7 solution 316 

(Figure 2, Table A5). This result supports the hypothesis that e-(aq) is responsible for their 317 

degradation, as H+ is known to react with it at a diffusion-controlled rate (Burns et al., 318 

1997; Watkins, 1974). Our observations are consistent with that of Burns et al. (1997), who 319 

also observed a decrease in COC (mirex) degradation at low pH. 320 

Second, we varied the dissolved oxygen in the solution. With its rapid reaction with 321 

e-(aq), O2 is an important scavenger of e-(aq) in aqueous solutions. In solutions purged with N2, 322 

lindane, TCD, and HCD degraded significantly faster than in oxygen-saturated solution 323 

(Figure 2, Table A5). While TCDod also degraded more quickly, the increase in rate 324 

constant was not significant (p = 0.142). The observed increase in k’ with decreasing O2 325 

concentrations are consistent with e-(aq) as the reactive species, and rule out oxygen-based 326 

PPRI such as singlet oxygen and superoxide. Thereby, O2 is either a scavenger of e-(aq), or it 327 

quenches excited states that are e-(aq) precursors. 328 

Last, we added ClEtOH, which has been reported to be an effective probe for e-(aq) 329 

(Zepp et al., 1987a). The addition of 0.05 M ClEtOH to a 1 mM DMA solution resulted in 330 

significantly slower degradation of lindane, TCD, and HCD (Figure 2, Table A5). Again, 331 

TCDod followed the same trend, but the change was not significant (p = 0.145).  332 

To further evaluate the role of e-(aq) in the observed reactions, we calculated its 333 

steady-state concentration ([e-(aq)]ss) using the previously published second-order rate 334 

constant for the reaction between lindane and e-(aq) of 6.05×108 M-1 s-1 (Burns et al., 1997), 335 

along with our measured k’ value for lindane. The resulting [e-(aq)]ss was 1.29×10-13 M.  336 

Assuming that dissolved O2 is the primary sink for e-(aq) and thus controls its steady-state 337 
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concentration, the production rate of e-(aq)  (re-prod) can be estimated from re-prod = ke-[e-338 

(aq)]ss[O2]. With an O2 concentration in our air-saturated solution of 2.78×10-4 M and a rate 339 

constant for the reaction of e-(aq) with O2 of 2×1010 M-1 s-1(Burns et al., 1997; Buxton et al., 340 

1988), a e-(aq) production rate of 7.15×10-7 M-1 s-1 was determined. With an added ClEtOH 341 

concentration of 0.05 M and a reported rate constant for its reaction with e-(aq) of 4.1×108 342 

M-1 s-1(Anbar and Hart, 1965), a new [e-(aq)]ss was calculated using the previously 343 

determined production rate of e-(aq). The predicted decrease in [e-(aq)]ss of 72 % was in close 344 

agreement with the observed 67 % decrease. It is noteworthy to point out that despite our 345 

evidence supporting O2 as the primary e-(aq) scavenger, the O2 concentration only dropped 346 

21.5% during a 6-hour experiment (after remaining near 100% saturation for the first 2 347 

hours) despite a predicted initial rate of disappearance of about 0.7 µM s-1. This result 348 

suggests either a regeneration pathway for O2 (e.g., through disproportionation of 349 

superoxide), the ability of O2 to quench e-(aq) precursors, or alternative e-(aq) scavengers 350 

present in the solution. 351 

 352 
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 353 

Figure 2. Effect of pH, deoxygenation, and addition of 2-chloroethanol on the apparent 354 

first-order rate constant for lindane, 1,2,9,10-tetrachlorodecane (TCD), 1,2,5,6,9,10-355 

hexachlorodecane (HCD), and 1,2,11,12-tetrachlorododecane (TCDod) compounds relative 356 

to their rate constants in oxygenated, pH 7, 1 mM dimethylaniline (DMA) solution. Error 357 

bars represent the propagated 95% confidence intervals from the ratio of k’ to k’pH 7. 358 

 359 

3.4 Comparison of e-(aq) with •OH-Mediated SCCP Degradation 360 

In addition to e-(aq), ·OH can also degrade many COCs. To compare the reaction rate 361 

of our investigated compounds with e-(aq) and ·OH, we performed experiments where ·OH is 362 

produced using NO3- as a photosensitizer (Zepp et al., 1987b). Figure 3 shows the 363 
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photochemical degradation of SCCPs in 1 mM DMA (source of e-(aq)) and 1 mM NO3- (source 364 

of ·OH) solutions. Loss of SCCPs was not observed in dark controls. While apparent first-365 

order rate constants were higher for degradation in DMA solution, second-order rate 366 

constants for the reaction between SCCPs and PPRIs are dependent on the actual 367 

concentration of PPRIs in solution. As mentioned above, [e-(aq)]ss was calculated using the 368 

published second-order rate constant for the reaction of lindane with e-(aq). Similarly, the 369 

second-order rate constant for the reaction of CB and ·OH (4.3×109 M-1 s-1) (Kochany and 370 

Bolton, 1992) was used to calculate a [·OH]ss of 6.84×10-15 M in our NO3- containing system. 371 

Using this concentration, second-order rate constants for our investigated COCs were 372 

calculated. These rate constants were generally higher for ·OH than e-(aq) for the 373 

investigated SCCPs (Table 1, statistics in Table A6), but the difference was only significant 374 

(p < 0.05) for DCD due to experimental variability. The faster reaction of lower substituted 375 

SCCPs with ·OH could indicate a H-abstraction pathway (Haag and Yao, 1992), which would 376 

be hindered by higher numbers of Cl atoms. While no specific congeners overlap with this 377 

study, Yan et al. (2021) reported similar rate constants for the reaction of SCCPs with ·OH 378 

(e.g., 2.0×109 M-1 s-1 for pentachlorododecane versus 2.3×109 M-1 s-1 for 379 

tetrachlorododecane in this study). 380 
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 381 

Figure 3. Fractional loss of 1,2,9,10-tetrachlorodecane (TCD), 1,2,5,6,9,10-382 

hexachlorodecane (HCD), and 1,2,11,12-tetrachlorododecane (TCDod) during 383 

photodegradation experiments in solutions containing 1mM dimethylaniline (DMA; red 384 

triangles) or 1mM nitrate (NO3-; blue circles). Irradiated samples are indicated by open 385 

symbols, while dark controls are indicated by shaded symbols. 386 

 387 

Table 1. Apparent first and second-order rate constants for the degradation of 1,10-388 

dichlorodecane, 1,2,9,10-tetrachlorodecane (TCD), 1,2,5,6,9,10-hexachlorodecane (HCD), 389 

and 1,2,11,12-tetrachlorododecane (TCDod) in NO3- and DMA solutions. Error represents 390 

95% confidence intervals. 391 

 First-order (×10-6 s-1) Second-order (×108 M-1 s-1) 

  NO3-/∙OH DMA/ e-(aq) NO3-/∙OH DMA/ e-(aq) 

DCD 40 ± 8 11 ± 5 59 ± 27 0.8 ± 0.4 

TCD 19 ± 5 35 ± 9 28 ± 14 2.7 ± 0.7 

HCD 3 ± 7 39 ± 5 5 ± 14 3.0 ± 0.4 

TCDod 16 ± 8 25 ± 10 23± 14 2.0 ± 0.8 
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3.5 Review of Degradation of Other COCs by •OH and e-(aq) 392 

To put our obtained results for SCCPs in context with the degradation of other COCs, 393 

we reviewed reported ·OH and e-(aq) mediated degradation of a large range of COCs. Many 394 

previous studies have shown ·OH to be capable of degrading a wide range of COCs. 1,2,9,10-395 

tetrachlorodecane was degraded (dechlorinated) in the presence of ·OH during the 396 

photolysis of hydrogen peroxide (H2O2) and Fenton’s reagent (Fe2+/H2O2), as well as the 397 

modified Fenton reaction (Fe3+/H2O2/UV) (El-Morsi et al., 2002; Friesen et al., 2004). The 398 

hydroxyl radical was also shown to be important for the degradation of 1-chlorodecane 399 

(CD) by 254 nm UV radiation. H-abstraction pathways were determined to be an 400 

exothermic reaction, as opposed to endothermic Cl-abstraction, making Cl-abstraction an 401 

unlikely pathway for CD degradation (Zhang et al., 2019). Surface bound ·OH in aqueous 402 

suspensions of TiO2 have been used to degrade 1,10-dichlorodecane (El-Morsi et al., 2000), 403 

and other UV/H2O2 catalyzed processes have degraded SCCPs (Koh and Thiemann, 2001). 404 

Gaseous SCCP degradation by ·OH in the atmosphere has also been modeled (C. Li et al., 405 

2014). Lindane has been degraded by photo- and electro-Fenton processes involving ·OH 406 

(Dominguez et al., 2018; Nitoi et al., 2013). Nitoi et al. (2013) found that dechlorination did 407 

not happen simultaneously with ·OH attack, but rather chlorinated intermediates were 408 

formed first. While these studies are generally aimed at engineered systems designed for 409 

remediation of contaminated water rather than understanding natural processes, they still 410 

indicate the possibility of a ·OH pathway occurring in the environment. 411 
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Besides chlorinated alkanes, other types of COCs can also be degraded by ·OH, 412 

including chloroaromatics (Czaplicka, 2006) and chloroacetones (Williams et al., 2002). 413 

Haag and Yao (1992) found ·OH to be relatively nonselective with C-H bonds, but it was 414 

least reactive with aliphatic polyhalogenated compounds. On the other hand, it reacted at 415 

nearly diffusion-controlled rates with olefins and aromatics. Chlorobenzene (CB) can also 416 

be degraded with Fenton’s reagent and UV/H2O2 systems (Juang et al., 1998), with 417 

products identified including chlorophenol, chlorobenzoquinone, and dichlorobiphenyls 418 

(Kovacevic and Sabljic, 2013; Sedlak and Andren, 1991). The position of chlorine atoms on 419 

chlorophenols has also been shown to affect degradation rates (Krutzler et al., 1999; Moza 420 

et al., 1988). Addition of ·OH to an aromatic ring has also been observed with fluorinated 421 

benzenes (Köster and Asmus, 1973). 422 

There are also a number of studies describing the degradation of chlorinated and 423 

fluorinated organic compounds by e-(aq). Reductive dehalogenation involving e-(aq) is a 424 

known pathway used to degrade halogenated organic compounds (X. Li et al., 2014). Anbar 425 

and Hart (1965) showed that neighboring electron-withdrawing groups enhanced 426 

dehalogenation. Compounds including chloromethanes (Calza and Pelizzetti, 2004), 427 

chloroacetones (Williams et al., 2002), and substituted aromatics such as chlorobenzene 428 

(Anbar and Hart, 1964; Yuan et al., 2015), chlorobenzoic acids (Zona et al., 2008), and 429 

fluorinated benzenes (Köster and Asmus, 1973) have all been shown to react with e-(aq). 430 

PFAS, which are considered especially resistant to degradation, also react with e-(aq) at 431 

varying rates depending on the length of fluoroalkyl chain and functional group present 432 

(Bentel, 2020; 2019; Huang et al., 2007; Park et al., 2009). 433 

 434 
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 435 

Figure 4. Compiled second-order rate constants for the reaction of chlorinated alkanes 436 

with hydrated electrons (blue diamonds) and hydroxyl radicals (red squares) vs. the 437 

chlorine content (number of chlorine atoms normalized to the number of carbon atoms per 438 

molecule). Data from this study are shown by solid symbols. 439 

 440 

3.6 Trends in •OH and e-(aq) Degradation Rates for SCCPs in Comparison to Other COCs 441 

To understand how our investigated SCCP degradation rates compared to other 442 

halogenated compounds, we compiled second-order rate constants from the literature for 443 

their reaction with ·OH and e-(aq) (Figure 4, Table A7). Analysis of the data revealed a 444 
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correlation between rate constants and degree of chlorination (# Cl atoms normalized to # 445 

C atoms). For similar compounds (e.g., chloroethanes), the relationship could be simplified 446 

to the number of chlorine atoms (Milosavljevic et al., 2005). An increasing Cl:C ratio 447 

represents a greater relative amount of Cl atoms available to capture e-(aq), resulting in 448 

higher rates of dechlorination. For example, e-(aq) rate constants increased from 1.7×108 to 449 

1.6×1010 M-1 s-1 with the number of chlorine atoms increasing from monochloroethane 450 

(Cl:C 0.5) to pentachloroethane (Cl:C 2.5) (Milosavljevic et al., 2005). Values for mirex (Cl:C 451 

1.2) and lindane (Cl:C 1.0) fell in between at 8.71×108 M-1 s-1 and 6.05×108 M-1 s-1, 452 

respectively (Burns et al., 1997). Note that geminal dihalides (with both halogens on the 453 

same carbon) were noted to be more easily reduced than isolated halides (Burns et al., 454 

1997; Fingerling et al., 1996), potentially explaining some of the deviations from the trend 455 

in Figure 4.  456 

The trend for ·OH rate constants was opposite to that of e-(aq). Instead, increasing 457 

Cl:C resulted in decreasing rate constants. This trend supports a H-abstraction pathway for 458 

degradation by ·OH, where a higher Cl:C means a lower availability of H atoms. Additional 459 

Cl atoms could also sterically hinder the reaction. Milosavljevic et al. (2005) observed that 460 

rate constants for ·OH with chloroethanes dropped by 1-2 orders of magnitude when no H 461 

atoms were present on a carbon atom. The type of C-H bond had a significant effect on the 462 

H-abstraction reaction rate. For example, 1,1,1,2-tetrachloroethane had a rate constant of 463 

1.0×107 M-1 s-1 while 1,1,2,2-tetrachloroethane was 2.5×108 M-1 s-1, despite them both 464 

having a Cl:C ratio of 2.0. Also, 1,1,1-trichloroethane, which contains three primary C-H 465 

bonds, had a rate constant of 5.0×106 M-1 s-1, while 1,1,2-trichloroethane had a value of 466 

3.0×108 M-1 s-1 (both Cl:C 1.5). Its two secondary and one tertiary C-H bonds are more 467 
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reactive with ·OH than the primary C-H bonds of 1,1,1-trichloroethane. Other compounds 468 

with fully chlorinated carbons also fell below the ·OH trendline in Figure 4 (e.g., carbon 469 

tetrachloride Cl:C 4.0, 2.00×106 M-1 s-1) (Haag and Yao, 1992).  470 

Trendlines for the two PPRI (·OH and e-(aq)) cross at ~0.6 Cl:C. Rate constants for 471 

both PPRI ranged from 1×106 to 1×1010 M-1 s-1. Compounds in this study had Cl:C values on 472 

the lower end of data from the literature, but their rate constants appeared to follow 473 

similar trends as other compounds from the literature. Complex mixtures of SCCPs, which 474 

typically are 40-70% Cl by mass (Cl:C ~ 0.25-0.85) (U.S. Environmental Protection Agency, 475 

2009), are expected to follow the same trends shown in Figure 4. This pattern is also 476 

supported by the results of Yan et al. (2021), who reported rate constants with ·OH of 0.94-477 

2.20×109 M-1 s-1, with higher values at lower degrees of chlorination. The trends for other 478 

classes of halogenated organic compounds were less robust (Figure A3). For example, 479 

chlorinated aromatics tended to degrade faster than similar non-aromatic compounds. For 480 

their reaction with e-(aq), hexachlorobenzene (HCB, Cl:C 1) had a rate constant of 1.10×109 481 

M-1 s-1 (Zacheis et al., 2000), while lindane (also Cl:C 1) was 6.05×108 M-1 s-1 (Burns et al., 482 

1997). Similarly for reaction with ·OH, lindane had a rate constant of 8.00×108 M-1 s-1 while 483 

various chlorobenzenes, which can react by addition of ·OH to double bonds rather than H-484 

abstraction, had values of 4.00×109 M-1 s-1 (Haag and Yao, 1992). 485 

3.7 Environmental Significance: DOM-mediated SCCP degradation 486 

The results of this study can be used to improve our understanding of the fate of 487 

SCCPs in surface waters. The presented experimental rate constants are consistent with e-488 

(aq) as well as ·OH being capable of degrading SCCPs. The relative importance of these PPRI 489 
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will depend on their concentrations as well as the SCCP properties (degree of chlorination, 490 

hydrophobicity/partitioning). Based on our determined second-order rate constants, the 491 

investigated SCCPs would have half-lives of minutes in engineered systems (with typical 492 

·OH concentrations of 10-12 M). However, half-lives of days to years would be expected in 493 

natural surface waters, where typical ·OH concentrations range from 10-15 to 10-18 M 494 

(Mopper and Zhou, 1990; Zepp et al., 1987b). For reactions with e-(aq), similar SCCP half-495 

lives would be expected if the reaction occurred in the bulk water phase, in which e-(aq) 496 

concentrations between 10-13 M to 10-17 M (Breugem et al., 1986; Zepp et al., 1987a) have 497 

been reported.  498 

In the environment, the degradation of hydrophobic SCCPs is likely a function of 499 

their reactivity as well as their partitioning into DOM, where microheterogeneous 500 

distributions of PPRI have been measured (Grandbois et al., 2008; Latch and McNeill, 2006; 501 

Yan et al., 2021). DOM is expected to facilitate SCCP photodegradation since the lifetimes of 502 

PPRI such as e-(aq) and ·OH have been shown to be much longer in a DOM 503 

microenvironment with different characteristics (e.g., lower O2) than the bulk aqueous 504 

solution (Grandbois et al., 2008; Hassett, 2006). Such DOM-sensitized photolysis is known 505 

to be an important pathway for the degradation of organic contaminants with a high 506 

affinity for DOM. For example, HCB with its second-order rate constant with e-(aq) of 507 

1.1×109 M-1 s-1 (Zacheis et al., 2000) would have an estimated half-life of approximately 508 

two months to two years in natural waters with a bulk [e-(aq)] of 10-16 to 10-17 M. However, 509 

in the presence of 6 mg C L-1 DOM, a half-life of only 14 h was obtained by Grannas et al. 510 

(2012), suggesting a 100 to 1,000 times higher [e-(aq)] in the DOM phase. Furthermore, 511 

lindane has a similar second-order rate constant to HCB, but a DOM-water partition 512 
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coefficient about five times lower. No significant lindane degradation was observed over a 513 

24 h irradiation in the presence of DOM, presumably due to its predicted negligible affinity 514 

for the DOM phase (Burns et al., 1997). Under the same conditions, the more hydrophobic 515 

pesticide mirex degraded with a half-life of about 10 h. These results indicate that e-(aq) is 516 

quickly scavenged outside the DOM matrix, resulting in compounds in the bulk dissolved 517 

phase not having access to bound-phase reactivity.  518 

Similar to e-(aq), ·OH has also been suggested to have a higher concentration within 519 

DOM than in the bulk aqueous phase. While our data suggest that both e-(aq) and ·OH are 520 

capable of degrading SCCPs, Yan et al. (2021) concluded that ·OH was more relevant than 521 

other PPRI including e-(aq) in oxygenated DOM solutions, with ·OH concentrations two to 522 

three orders of magnitude higher within the DOM microenvironment versus the bulk 523 

aqueous phase. 524 

Because SCCPs are hydrophobic compounds, with estimated log(Kow) values 525 

between 5.2 to 7.5 (Glüge et al., 2013), similar to that of HCB (5.7) (De Bruijn et al., 1989) 526 

and mirex (6.9) (U.S. EPA Environmental Protection Agency, 1995), they are expected to 527 

sorb to DOM in natural waters. We therefore expect DOM-sensitized photochemical 528 

degradation to be a relevant sink for SCCPs in surface waters. To test this hypothesis, we 529 

performed a preliminary experiment using 40 mg C-1 SR-NOM and observed 530 

photodegradation of all three SCCPs. At this concentration, 50% of a SCCP with a log DOM 531 

partition coefficient (KDOM) of 4.4 would be in the DOM “phase”. First-order rate constants 532 

for TCD, HCD, and TCDod were 2.6 ± 0.6 × 10-6 s-1, 0.7 ± 0.5 × 10-6 s-1, and 4 ± 1 × 10-6 s-1, 533 

respectively. The most hydrophobic SCCP tested, TCDod, degraded the fastest. This was 534 

expected since this compound likely also has the highest partitioning into the DOM phase, 535 
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where the degradation reaction occurs. The slower degradation of HCD compared to TCD 536 

aligns better with our trend for ·OH rate constants, which decrease with increasing chlorine 537 

content, than for our e-(aq) rate constants (which increase with increasing chlorine content). 538 

This result is in line with the results from Yan et al. (2021) and supports the hypothesis 539 

that the DOM phase is relevant for the photochemical degradation of SCCPs. 540 

Our study also contributes to the available data of e-(aq) mediated degradation of 541 

COCs. While the potential of e-(aq) to degrade persistent organic pollutants (POPs) in 542 

aqueous environments has been investigated for more than three decades (Herbert and 543 

Coons, 2017), there are still relatively few published studies about this process available. 544 

Besides its relevance in natural water, e-(aq) are also relevant in engineered systems, where 545 

high concentrations of e-(aq) are produced using photosensitizers (generally paired with 546 

strong UV-C irradiation) or by radiolysis (Anbar and Hart, 1965; Gu et al., 2017a; 2017b; 547 

Wach et al., 2004). In this context, e-(aq) have received renewed attention with the report of 548 

e-(aq) mediated degradation of the emerging PFAS (Bentel, 2020; 2019; Cui et al., 2020; Raul 549 

Tenorio, 2020; Van Hoomissen and Shubham Vyas, 2019). Our study implies that 550 

engineered systems that generate e-(aq) for water treatment could be effective for degrading 551 

SCCPs, and demonstrates the versatility of e-(aq) as a relevant PPRI for the degradation of 552 

persistent organic pollutants (POPs).  553 

 554 

Appendix A. Supplementary information 555 

Supporting details describing the SCCP synthesis; Supporting figures showing the 556 

postulated chlorination mechanisms, spectrum of the solar simulator (Xe arc lamp), and 557 

plots of literature degradation rate constants for the e-(aq) and ·OH mediated degradation of 558 
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halogenated compounds; Supporting tables with details for the passive dosing approach, 559 

the measured irradiance during the experiments, results from the statistical tests for the 560 

determined degradation rate constants described, and a compilation of literature 561 

degradation rate constants for the e-(aq) and ·OH mediated degradation of halogenated 562 

compounds. 563 
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