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Abstract

We propose a novel, time adaptive, strongly-coupled partitioned method for the interaction between a viscous, incompressible
uid and a thin elastic structure. The time integration is based on the refactorized Cauchy’s one-legged ‘θ−like’ method, which

consists of a backward Euler method using a θτn-time step and a forward Euler method using a (1− θ )τn-time step. The bulk
of the computation is done by the backward Euler method, as the forward Euler step is equivalent to (and implemented as)
a linear extrapolation. The variable τn-time step integration scheme is combined with the partitioned, kinematically coupled
β−scheme, used to decouple the fluid and structure sub-problems. In the backward Euler step, the two sub-problems are
solved in a partitioned sequential manner, and iterated until convergence. Then, the fluid and structure sub-problems are post-
processed/extrapolated in the forward Euler step, and finally the τn-time step is adapted. The refactorized Cauchy’s one-legged
‘θ−like’ method used in the development of the proposed method is equivalent to the midpoint rule when θ =

1
2 , in which case

he method is non-dissipative and second-order accurate. We prove that the sub-iterative process of our algorithm is linearly
onvergent, and that the method is unconditionally stable when θ ≥

1
2 . The numerical examples explore the properties of the

method when both fixed and variable time steps are used, and in both cases shown an excellent agreement with the reference
solution.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

In realistic flow problems described by partial differential equations (PDEs), where the dynamics are not known,
r in which the variables are changing rapidly, the robust, adaptive time-stepping is central to accurately and
fficiently predict the long-term behavior of the solution. This is especially important in the coupled flow problems,
uch as the fluid–structure interaction (FSI), which often exhibit complex dynamic behavior. While the adaptive
patial mesh refinement techniques are well established and widely used, the adaptive time-stepping methods
or PDEs are less mature, needing delicate synchronization steps which involve interpolation, extrapolation or
rojection. These operations can have adverse effects on the stability, and can destroy important geometric properties
f the scheme (e.g. the conservation of invariants). Even in the case of the ordinary differential equations, most

∗ Corresponding author.
E-mail address: mbukac@nd.edu (M. Bukač).
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inear multistep methods [1,2], when considered with variable time steps, do not preserve the zero-stability or
-stability properties of the constant time step versions. For example, the trapezoidal (Crank–Nicolson) method in

he constant step case is A-stable but not B-stable [3]. However, the variable step version of the trapezoidal method
s unstable [1,4–6]. Similarly, the second-order backward differentiation formula loses zero-stability and A-stability
hen used with a variable step size.
Recently, the midpoint rule was considered in an alternative, backward Euler (BE)-forward Euler (FE) formula-

ion, and was proved to be B-stable when applied with a variable time step [7]. The same was shown for a θ−like
generalization of the midpoint rule, referred to as the refactorized Cauchy’s one-legged ‘θ−like’ method [7]. In this
work, this method is applied together with a partitioning approach to approximate the solution of the interaction
between an incompressible, viscous fluid and a thin elastic structure. To best of our knowledge, this is the first
unconditionally stable, second-order accurate, adaptive, partitioned method for FSI problems.

Adaptive time-stepping methods for FSI problems have received limited attention in the literature, especially
from the analytical perspective. A novel, adaptive time-stepping method for a monolithic FSI problem based on
the a posteriori error estimation was proposed in [8]. The error of the fully implicit scheme is estimated with the
help of an auxiliary explicit scheme. The proposed method is tested on several numerical examples. The authors
in [9] considered a nonlinear FSI problem based on the arbitrary Lagrangian–Eulerian approach and solved the
equations using an adaptive Fractional-Step-theta scheme method applied to the monolithic system. They based the
time adaptivity process on a rigorous derivation of dual-weighted sensitivity measures and heuristic truncation-
based time step control. In order to apply the dual-weighted residual method, a Galerkin interpretation of the
Fractional-Step-theta scheme was considered. The proposed methodology was tested on several numerical examples.
In [10], the interaction between a viscous fluid and a rigid body under turbulent flow was studied. The authors
combined the large eddy simulation based on implicit turbulence modeling with time–space adaptive techniques
in arbitrary Lagrangian–Eulerian framework. We also mention the work in [11,12] where a time-adaptive fluid–
structure interaction method for thermal coupling is used to model the cooling processes in heat treatment of steel.
In particular, the authors consider the surface coupling of the compressible Navier–Stokes equations bordering at
one part of the surface with the heat equation in a solid region. The fluid and the heat equation are solved in parallel
in a partitioned manner. The resulting method was empirically shown to be second-order accurate, which was used
to implement a simple time step control.

While the methods listed above have been extensively numerically verified, they have not been analyzed
numerically. Furthermore, in case of the interaction between an incompressible, viscous fluid and an elastic structure,
only monolithic adaptive methods have been considered, while many different partitioned methods have been
proposed when the time step is fixed [13–24].

In this work, we propose a novel, adaptive, partitioned algorithm for the interaction between an incompressible,
viscous fluid and a thin, elastic structure. The time discretization in the proposed method is based on the refactorized
Cauchy’s one-legged ‘θ−like’ scheme [7], which is equivalent to the midpoint rule (and, therefore, second-order
accurate) when θ =

1
2 . This method is combined with a partitioned strategy, based on the kinematically coupled

−scheme [21,25], used to separate the fluid and structure sub-problems. However, since the straightforward
pplication of both methods results in instabilities, in the proposed approach significant modifications are made in
rder to obtain unconditional stability. Unlike the kinematically coupled β−scheme, the proposed adaptive method

is strongly coupled. The fluid and structure sub-problems are solved sequentially and iterated until convergence.
Then, the converged solutions of the two sub-problems are post-processed using an extrapolation (equivalent to the
FE scheme), and the time step is adapted. To adapt the time step, we use a local truncation error estimator based
on the solution obtained using the Adams–Bashforth two-step (AB2) method. To discretize the problem in space,
we use the finite element method. As commonly done in the literature in order to simplify numerical analysis, we
assume that the fluid is modeled using the Stokes equations, that the structure displacement is infinitesimal and that
the FSI problem is linear [17,25–27]. Using these assumptions, we prove that the sub-iterative process converges
linearly, and that the proposed method is unconditionally energy bounded, hence stable, when θ ≥

1
2 . An extension

to moving domain FSI problems is discussed in Section 5.4.
We note that the proposed method is novel even when considered with a fixed time step, in which case it can be

seen as a second-order extension (when θ =
1
2 ) of the kinematically coupled β−scheme. Hence, in the numerical

examples we investigate the convergence rates of the proposed method when a fixed time step is used, as well
as the accuracy properties of both fixed and variable time-stepping versions. The results are compared with the
2
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Fig. 1. Fluid domain Ω . The lateral boundary Γ represents an elastic structure.

kinematically coupled β−scheme, which has been shown to be first-order accurate when β = 1. Our computational
study indicates an excellent agreement between the reference solution and the results obtained using the proposed
method with both fixed and variable time steps, and provide an insight in the selection of parameters used in the
adaptive process to exploit the benefits of time step adaptivity.

While our numerical simulations are based on the finite element method, other spatial discretization techniques
can be considered. Furthermore, the refactorized Cauchy’s one-legged ‘θ−like’ method with a variable time step
can be applied to monolithic problems arising from other formulations. In particular, the time integration in [28,29]
is similar to the time discretization of the monolithic system considered in this work. Hence, the proposed method
could be combined with isogeometric analysis and space–time methods for FSI.

The rest of this paper is organized as follows. The FSI problem is outlined in Section 2. The numerical
method, together with the convergence and stability analysis, is presented in Section 3. The computation of the
local truncation error is shown in Section 4, and the numerical examples are presented in Section 5. Finally, the
conclusions are drawn in Section 6.

2. Description of the problem

Let Ω ⊂ Rd , d = 2, 3 be an open, smooth set, occupied by an incompressible, viscous, Newtonian fluid, such
that ∂Ω̄ = Γ ∪ Γin ∪ Γout , where Γ represents the elastic structure, Γin represents the inlet and Γout represents the
utlet (see Fig. 1). We assume that the flow is laminar, that the structure undergoes infinitesimal displacements and
hat the fluid–structure interaction is linear. These are common assumptions in the analysis of partitioned schemes
or FSI problems [17,25–27]. Extensions to the moving domain problems are discussed in Section 5.4.

We model the fluid using the time-dependent Stokes equations in a fixed domain Ω , given by

ρ f ∂t u = ∇ · σ (u, p) + f f in Ω × (0, T ), (2.1a)

∇ · u = 0 in Ω × (0, T ), (2.1b)

σ (u, p)n = −pin(t)n on Γin × (0, T ), (2.1c)

σ (u, p)n = −pout (t)n on Γout × (0, T ), (2.1d)

u(., 0) = u0 in Ω , (2.1e)

where u = (ui )i=1,...,d is the fluid velocity, p is the fluid pressure, ρ f is the fluid density and σ (u, p) =

p I + 2µD(u) is the fluid stress tensor, where D(u) = (∇u + (∇u)T )/2 is the strain rate tensor and µ is the
uid viscosity. The volume forcing term acting on the fluid is denoted by f f . At the inlet and outlet boundaries,
eumann boundary conditions Eqs. (2.1c)–(2.1d) are prescribed, where n denotes the outward normal to the fluid
omain boundary, and pin and pout are the prescribed inflow and outflow forces, respectively. Initially, the fluid is
ssumed to be at rest, as prescribed in (2.1e).

To describe the structure elastodynamics, we use a linearly elastic, lower-dimensional model, given by

ρsh∂t tη + Lsη = fs on Γ × (0, T ), (2.2a)

η = 0 on ∂Γ × (0, T ), (2.2b)

η(., 0) = η0, ∂tη(., 0) = η0
v on Γ , (2.2c)

where η = (ηi )i=1,...,d denotes the displacement, ρs denotes the density, h denotes the structure thickness and fs is a

vector of surface density of the force applied to the structure. Operator Ls describes the structure’s elastic behavior.

3
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pecific choices of Ls are detailed in Section 5. We assume that the structure is pinned at the edges (2.2b) and
initially at rest, with zero displacement from the initial configuration (2.2c).

We define an inner-product and a norm associated with the structure operator, given by

as(η, ζ ) = ⟨Lsη, ζ ⟩, ∥η∥2
S = as(η, η),

where ⟨·, ·⟩ denotes the H−1
× H 1

0 duality pairing. We assume that the operator Ls : D(Ls) ⊂ H 1
0 (Γ ) → H−1(Γ )

is a maximal monotone operator [30] , such that a Poincaré type inequality holds

∥η∥L2(Γ ) ≤ CP,S∥η∥S,

and the norm ∥ · ∥S is equivalent to the H 1(Γ ) norm. One example of such operator is the one associated with the
linearly elastic Koiter shell model used in [31].

To couple the fluid and the structure, we prescribe the kinematic and dynamic coupling conditions. The kinematic
coupling condition (no-slip condition) enforces the continuity of velocities at the fluid–structure interface, given by

u = ∂tη on Γ × (0, T ). (2.3)

The dynamic coupling condition enforces the conservation of momentum, given by

fs = −σ (u, p)n on Γ × (0, T ). (2.4)

Eqs. (2.1a)–(2.4) define a linear fluid–structure interaction problem, which has a well-defined energy [20,25].

. Numerical scheme

The proposed method is based on the kinematically coupled β-scheme proposed in [21,25], combined with
the refactorized Cauchy’s one-legged ‘θ-like’ method [7]. To present the main steps of the proposed method, we
consider a general evolution equation given by

y′(t) = f (t, y(t)), t ∈ (a, b].

To solve this problem numerically with an adaptive time step, we apply the Cauchy’s one-legged ‘θ -like’
method [32], given as follows

yn+1
− yn

τ n
= f (tn+θn , yn+θn ) for θn ∈ [0, 1], (3.1)

here {tn
}0≤n≤N are mesh points based on a variable time step τ n such that tn+1

= tn
+ τ n , and tn+θn =

n
+ θnτ

n . Furthermore, yn denotes the approximation of a time-dependent function y at time level tn , and
yn+θn = θn yn+1

+ (1 − θn)yn . We note that (3.1) differs from the classical linear multistep θ−method [33]. As
hown in [7], problem (3.1) can be solved in a BE–FE fashion as

BE:
yn+θn − yn

θnτn
= f (tn+θn , yn+θn ), (3.2)

FE:
yn+1

− yn+θn

(1 − θn)τn
= f (tn+θn , yn+θn ). (3.3)

Using the first equation in the second equation, the FE problem can also be written as a linear extrapolation (which
acts as post-processing), given by

yn+1
=

1
θn

yn+θn −

(
1
θn

− 1
)

yn.

e note that when θ =
1
2 , problem (3.2)–(3.3) is equivalent to the midpoint rule [34–38], hence conserving

all quadratic Hamiltonians (e.g., mass and energy) [39,40]. Therefore, in that case, (3.2)–(3.3) is an implicit,
onservative, second-order B-stable time-stepping method. The scheme remains unconditionally B-stable for θ ∈
1
2 , 1]. We note that the midpoint rule coincides with the trapezoidal rule when f is linear. However, the methods
iffer for nonlinear f , and hence exhibit different stability properties.
4
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We start by rewriting the coupled FSI problem. Introducing the displacement velocity ξ = ∂tη, the coupled
roblem can be reformulated in the following way: Find u, p, η and ξ such that

ρ f ∂t u = ∇ · σ (u, p) in Ω × (0, T ), (3.4a)

∇ · u = 0 in Ω × (0, T ), (3.4b)

ρsh∂tξ + Lsη = −σ (u, p)n on Γ × (0, T ), (3.4c)

u = ξ = ∂tη on Γ × (0, T ), (3.4d)

with the boundary and initial conditions specified in the previous section. Following the approach in [21,25], we
dd and subtract the fluid stress in (3.4c). Those two terms will be evaluated at the previous time step when we
iscretize in time. Using the operator-splitting, we separate the structure equation in two parts. One part is used to
pproximate the structure elastodynamics, while the other part is used as a Robin boundary condition in the fluid
roblem. We note that this gives us different Robin conditions than the ones used in [15,16], in part because we
o not introduce combination parameters. The partitioned method is then combined with the refactorized Cauchy’s
ne-legged ‘θ -like’ method (3.2)–(3.3). The proposed numerical scheme is given as follows.

lgorithm 1. Let τ n be the variable time step and tn+θ
= tn

+ θnτ
n , for any θn ∈ [ 1

2 , 1], and for all n ≥ 0. Given
u0 in Ω , and η0, ξ 0

= u|0Γ on Γ , we first need to compute pθ0
, p1+θ1

, u1, u2 in Ω , and η1, η2, ξ 1, ξ 2 on Γ with
a second-order method. A monolithic method or one of the loosely coupled methods proposed in [20,22] could be
used, among others. Then for all n ≥ 2 compute the following:

STEP 1. Set the initial guesses as the linearly extrapolated values:

η
n+θn
(0) =

(
1 +

θnτ
n

τ n−1

)
ηn

−
θnτ

n

τ n−1 ηn−1,

and similarly for ξ
n+θn
(0) , un+θn

(0) . The pressure initial guess is defined as

pn+θn
(0) =

1 + θnτ
n
+ τ n−1

− θn−2τ
n−2

1 + θn−1τ n−1 − θn−2τ n−2 pn−1+θn−1 −
(1 − θn−1)τ n−1

+ θnτ
n

1 + θn−1τ n−1 − θn−2τ n−2 pn−2+θn−2 .

or κ ≥ 0, compute until convergence the backward Euler partitioned problem:

Solid:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

η
n+θn
(κ+1) − ηn

θnτ n
= ξ

n+θn
(κ+1) on Γ , (a)

ρsh
ξ

n+θn
(κ+1) − ξ n

θnτ n
+ Lsη

n+θn
(κ+1) = −σ (un+θn

(κ) , pn+θn
(κ) )n on Γ , (b)

η
n+θn
(κ+1) = 0 on ∂Γ , (c)

(3.5)

Fluid:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f
un+θn

(κ+1) − un

θnτ n
−∇ · σ (un+θn

(κ+1), pn+θn
(κ+1)) = f f (tn+θn ) in Ω , (a)

∇ · un+θn
(κ+1) = 0 in Ω , (b)

ρsh
un+θn

(κ+1) − ξ
n+θn
(κ+1)

θnτ n
= −σ (un+θn

(κ+1), pn+θn
(κ+1))n + σ (un+θn

(κ) , pn+θn
(κ) )n on Γ . (c)

σ (un+θn
(κ+1), pn+θn

(κ+1))n = −pin(tn+θn )n on Γin, (d)

σ (un+θn
(κ+1), pn+θn

(κ+1))n = −pout (tn+θn )n on Γout . (e)

(3.6)

he converged solutions

n+θn n+θn n+θn n+θn κ→∞ n+θn n+θn n+θn n+θn
η(κ) , ξ (κ) , u(κ) , p(κ) −−−→ η , ξ , u , p ,

5
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Solid:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ηn+θn − ηn

θnτ n
= ξ n+θn on Γ , (a)

ρsh
ξ n+θn − ξ n

θnτ n
+ Lsη

n+θn = −σ (un+θn , pn+θn )n on Γ , (b)

ηn+θn = 0 on ∂Γ , (c)

(3.7)

Fluid:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ f
un+θn − un

θnτ n
−∇ · σ (un+θn , pn+θn ) = f f (tn+θn ) in Ω , (a)

∇ · un+θn = 0 in Ω , (b)

un+θn = ξ n+θn on Γ . (c)

σ (un+θn , pn+θn )n = −pin(tn+θn )n on Γin, (d)

σ (un+θn , pn+θn )n = −pout (tn+θn )n on Γout . (e)

(3.8)

STEP 2. Now evaluate the following (equivalent to solving forward Euler problems):

Solid:

⎧⎪⎪⎨⎪⎪⎩
ηn+1

=
1
θn

ηn+θn −
1 − θn

θn
ηn on Γ , (a)

ξ n+1
=

1
θn

ξ n+θn −
1 − θn

θn
ξ n on Γ , (b)

(3.9)

Fluid:
{

un+1
=

1
θn

un+θn −
1 − θn

θn
un in Ω . (3.10)

STEP 3. Compute the local truncation error, T̂ n+1 (for details, see Section 4), and given a tolerance, δ, and parameters

min, rmax and s, adapt the time step:

τ new
= τ n min

{
rmax , max

{
rmin, s

(
δ

∥T̂ n+1∥

) 1
3
}}

. (3.11)

If ∥T̂ n+1
∥ ≤ δ, set τ n+1

= τ new, chose θn+1 ∈ [ 1
2 , 1], and evolve the time interval tn+2

= tn+1
+θn+1τ

n+1. Otherwise,
et τ n

= τ new and go back to Step 1.

emark 3.1. The formula used to adapt the time step is based on the elementary stepsize selection algorithm (cf.
GARNIER, Mémorial de l’Artillerie Française, 1929) commonly used in locally adaptive time-stepping [37,41,42]:

τ new
= τ n

(
δ

∥T̂ n+1∥

) 1
3
.

umbers rmin and rmax in (3.11) are added so that the ratio of τ new and τ n stays between these values. This type of
restriction guarantees the zero-stability of general one-leg variable step size methods (see e.g., [42–46]), and helps
to keep the time step from changing too rapidly, which is especially important in stiff problems. The coefficient
s ∈ [ 1

2 , 1) is a ‘safety’ parameter, routinely used to reduce the number of rejected time steps in the adaptive
algorithm.

Remark 3.2. We note that for θn = 1/2 +O(τ n) the method is second-order accurate.

emark 3.3. We also note that the linear extrapolations in (3.9)–(3.10) can be written as forward Euler problems.
While linear extrapolations are more desirable from the implementational point of view, in stability analysis we
6
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Solid:

⎧⎪⎪⎨⎪⎪⎩
ηn+1

− ηn+θn

(1 − θn)τ n
= ξ n+θn on Γ , (a)

ρsh
ξ n+1

− ξ n+θn

(1 − θn)τ n
+ Lsη

n+θn = −σ (un+θn , pn+θn )n in Γ , (b)
(3.12)

Fluid:
{
ρ f

un+1
− un+θn

(1 − θn)τ n
−∇ · σ (un+θn , pn+θn ) = f F (tn+θn ). in Ω . (a) (3.13)

Remark 3.4. While this method is based on the kinematically coupled β−scheme, there are still significant
differences between the two methods. The kinematically coupled β scheme is a loosely-coupled method, and hence
no subiterations are used between the fluid and the structure problems. As such, the method is unconditionally stable
and first-order accurate when β = 1. To achieve the second-order accuracy, adding the linear extrapolation steps
3.9)–(3.10) directly to the kinematically coupled β−scheme would not produce a stable method. This is due to the
plitting between the fluid and structure problems. Hence, in the proposed work, the fluid and structure problems are
teratively solved. Moreover, in the kinematically coupled β scheme, the solid problem contains the fluid velocity
rom the previous time step in the inertial term, which is not present in Algorithm 1.

.1. Convergence of the partitioned iterative scheme

In the following, we will use the polarized identity, given by

2(a − c)b = a2
− c2

− (a − b)2
+ (b − c)2. (3.14)

heorem 1. The sequences un+θn
(κ) , η

n+θn
(κ) , ξ

n+θn
(κ) generated by iterations (3.5)–(3.6) converge as κ → ∞:

un+θn
(κ) −→ un+θn in H 1(Ω ) ∩ L2(Γ ),

η
n+θn
(κ) −→ ηn+θn in H 1(Γ ), ξ

n+θn
(κ) −→ ξ n+θn in L2(Γ ).

roof. We begin by subtracting (3.5)–(3.6) from Eqs. (3.7)–(3.8). Using notation

δ
η

κ+1 = ηn+θn − η
n+θn
(κ+1), δ

ξ

κ+1 = ξ n+θn − ξ
n+θn
(κ+1),

δu
κ+1 = un+θn − un+θn

(κ+1), δ
p
κ+1 = pn+θn − pn+θn

(κ+1),

e obtain the following:

Solid:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ

η

κ+1

θnτ n
= δ

ξ

κ+1 on Γ , (a)

ρsh
δ

ξ

κ+1

θnτ n
+ Ls

(
δ

η

κ+1

)
= −σ (δu

κ , pn+θn
(κ) )n on Γ , (b)

(3.15)

Fluid:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ f

δu
κ+1

θnτ n
−∇ · σ (δu

κ+1, δ
p
κ+1) = 0 in Ω , (a)

∇ · δu
κ+1 = 0 in Ω , (b)

ρsh
δu

κ+1 − δ
ξ

κ+1

θnτ n
= σ (δu

κ , δ
p
κ )n − σ (δu

κ+1, δ
p
κ+1)n on Γ . (c)

(3.16)

e note that in this case, the structure equations (3.15) are complemented with homogeneous Dirichlet boundary
onditions (2.2b), and the fluid equations (3.16) are complemented with the homogeneous Neumann boundary
onditions. We multiply (3.15)(a) by Ls(δη

κ+1) and (3.15)(b) by δ
ξ

κ+1, integrate over Γ , and add to obtain

0 =
1

∥δ
η

κ+1∥
2
S +

ρsh
∥δ

ξ

κ+1∥
2
L2(Γ ) +

∫
σ (δu

κ , δ
p
κ )n · δ

ξ

κ+1.
θnτ n θnτ n
Γ

7
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F
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T

E

w

or the fluid part, we multiply (3.16)(a) by δu
κ+1 and (3.16)(b) by δ

p
κ+1. Integrating over Ω , and using (3.16)(c) and

he polarized identity (3.14), we obtain

0 =
ρ f

θnτ n
∥δu

κ+1∥
2
L2(Ω) + 2µ∥D(δu

κ+1)∥2
L2(Ω) +

ρsh
2θnτ n

(
∥δu

κ+1∥
2
L2(Γ ) − ∥δ

ξ

κ+1∥
2
L2(Γ )

)
+

ρsh
2θnτ n

∥δu
κ+1 − δ

ξ

κ+1∥
2
L2(Γ ) −

∫
Γ

σ (δu
κ , δ

p
κ )n · δu

κ+1.

herefore, the structure and fluid estimates combine to give

0 =
1

θnτ n
∥δ

η

κ+1∥
2
S +

ρ f

θnτ n
∥δu

κ+1∥
2
L2(Ω) + 2µ∥D(δu

κ+1)∥2
L2(Ω) +

ρsh
2θnτ n

(
∥δu

κ+1∥
2
L2(Γ ) + ∥δ

ξ

κ+1∥
2
L2(Γ )

)
+

ρsh
2θnτ n

∥δu
κ+1 − δ

ξ

κ+1∥
2
L2(Γ ) +

∫
Γ

σ (δu
κ , δ

p
κ )n · (δξ

κ+1 − δu
κ+1).

Using again the boundary condition (3.16)(c) and the polarized identity (3.14), we have that∫
Γ

σ (δu
κ , δ

p
κ )n · (δξ

κ+1 − δu
κ+1)

=
θnτ

n

2ρsh

(σ (δu
κ+1, δ

p
κ+1)n

2
L2(Γ ) −

σ (δu
κ , δ

p
κ )n

2
L2(Γ )

)
−

ρsh
2θnτ n

δξ

κ+1 − δu
κ+1

2

L2(Γ )
,

and therefore,

0 =
1

θnτ n
∥δ

η

κ+1∥
2
S +

ρ f

θnτ n
∥δu

κ+1∥
2
L2(Ω) + 2µ∥D(δu

κ+1)∥2
L2(Ω) +

ρsh
2θnτ n

(
∥δu

κ+1∥
2
L2(Γ ) + ∥δ

ξ

κ+1∥
2
L2(Γ )

)
+

θnτ
n

2ρsh

(σ (δu
κ+1, δ

p
κ+1)n

2
L2(Γ ) −

σ (δu
κ , δ

p
κ )n

2
L2(Γ )

)
.

quivalently this can be written as

∥δ
η

κ+1∥
2
S + ρ f ∥δ

u
κ+1∥

2
L2(Ω) + 2µθnτ

n
∥D(δu

κ+1)∥2
L2(Ω) +

ρsh
2

(
∥δu

κ+1∥
2
L2(Γ ) + ∥δ

ξ

κ+1∥
2
L2(Γ )

)
+

|θnτ
n
|
2

2ρsh

σ (δu
κ+1, δ

p
κ+1)n

2
L2(Γ ) =

|θnτ
n
|
2

2ρsh

σ (δu
κ , δ

p
κ )n

2
L2(Γ ) , (3.17)

hich yields that, as κ ↗ ∞, the sequences of iterations un+θn
(κ) , η

n+θn
(κ) , ξ

n+θn
(κ) converge linearly to un+θn , ηn+θn , ξ n+θn ,

respectively, in the strong topologies of H 1(Ω ) ∩ L2(Γ ), H 1(Γ ) and L2(Γ ). □

Remark 3.5. By multiplying (3.17) through by ρsh/|θnτ
n
|
2, we can observe that the convergence slows down as

ρs or h decrease, and speeds up if ρ f ≪ ρs . Furthermore, the speed of convergence can be improved by decreasing
the time step. These observations agree with our numerical results presented in Section 5.

3.2. Stability-energy estimates

Denote by EN is the sum of the elastic energy of the structure, kinetic energy of the structure and kinetic energy
of the fluid

EN
=

1
2
∥ηN

∥
2
S +

ρsh
2

∥ξ N
∥

2
L2(Γ ) +

ρ f

2
∥uN

∥
2
L2(Ω),

and by DN the fluid viscous dissipation

DN
= 2µ

N−1∑
n=2

τ n
∥D(un+θn )∥2

L2(Ω).

The stability of the scheme presented in Algorithm 1 is given in the following theorem.

Theorem 2. Let {(ξ n, ηn, un, pn)}2≤n≤N be the solution of Algorithm 1, assuming that the system is isolated,
i.e., f = 0, p = 0 and p = 0. Then, for θ ≥

1 , the method is unconditionally energy stable, and the following
f in out n 2

8
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a

w

P

H

U

w

H

priori energy equality holds

EN
+DN

+N N
= E2,

here N N denotes the numerical dissipation

N N
=

N−1∑
n=2

(τ n)2(2θn − 1)
2

∥ξ n+θn∥
2
S +

ρsh
2

N−1∑
n=2

(2θn − 1)∥ξ n+1
− ξ n

∥
2
L2(Γ )

+
ρ f

2

N−1∑
n=2

(2θn − 1)∥un+1
− un

∥
2
L2(Ω).

roof. We multiply (3.7)(a) by θnLsη
n+θn and (3.7)(b) by θnξ

n+θn , integrate over Γ , add and apply (3.14) to obtain

0 =
1

2τ n

(
∥ηn+θn∥

2
S − ∥ηn

∥
2
S + ∥ηn+θn − ηn

∥
2
S

)
+

ρsh
2τ n

(
∥ξ n+θn∥

2
L2(Γ ) − ∥ξ n

∥
2
L2(Γ ) + ∥ξ n+θn − ξ n

∥
2
L2(Γ )

)
+ θn

∫
Γ

σ (un+θn , pn+θn )n · ξ n+θn .

Similarly, multiplying (3.12)(a) by (1 − θn)Lsη
n+θn and (3.12)(b) by (1 − θn)ξ n+θn , we derive

0 =
1

2τ n

(
∥ηn+1

∥
2
S − ∥ηn+θn∥

2
S − ∥ηn+1

− ηn+θn∥
2
S

)
+

ρsh
2τ n

(
∥ξ n+1

∥
2
L2(Γ ) − ∥ξ n+θn∥

2
L2(Γ ) − ∥ξ n+1

− ξ n+θn∥
2
L2(Γ )

)
+ (1 − θn)

∫
Γ

σ (un+θn , pn+θn )n · ξ n+θn .

ence, from the structure part, we have

0 =
1

2τ n

(
∥ηn+1

∥
2
S − ∥ηn

∥
2
S − ∥ηn+1

− ηn+θn∥
2
S + ∥ηn+θn − ηn

∥
2
S

)
+

ρsh
2τ n

(
∥ξ n+1

∥
2
L2(Γ ) − ∥ξ n

∥
2
L2(Γ ) − ∥ξ n+1

− ξ n+θn∥
2
L2(Γ ) + ∥ξ n+θn − ξ n

∥
2
L2(Γ )

)
+

∫
Γ

σ (un+θn , pn+θn )n · ξ n+θn .

sing again the displacement equations (3.12)(a) and (3.7)(a), we have

−∥ηn+1
− ηn+θn∥

2
S + ∥ηn+θn − ηn

∥
2
S = (τ n)2(2θn − 1)∥ξ n+θn∥

2
S,

hile the velocity equation (3.9)(b) yields

−∥ξ n+1
− ξ n+θn∥

2
L2(Γ ) + ∥ξ n+θn − ξ n

∥
2
L2(Γ ) = (2θn − 1)∥ξ n+1

− ξ n
∥

2
L2(Γ ).

ence the energy estimate of the structure part gives

0 =
1

2τ n

(
∥ηn+1

∥
2
S − ∥ηn

∥
2
S

)
+

ρsh
2τ n

(
∥ξ n+1

∥
2
L2(Γ ) − ∥ξ n

∥
2
L2(Γ )

)
+

τ n(2θn − 1)
2

∥ξ n+θn∥
2
S

+
ρsh(2θn − 1)

2τ n
∥ξ n+1

− ξ n
∥

2
L2(Γ ) +

∫
Γ

σ (un+θn , pn+θn )n · ξ n+θn . (3.18)

For the fluid part, we multiply (3.8)(a) by θnun+θn and (3.8)(b) by θn pn+ 1
2 . Integrating over Ω , adding, and

using (3.8)(c) and the homogeneous Neumann boundary conditions, we obtain

0 =
ρ f

2τ n

(
∥un+1

∥
2
L2(Ω) − ∥un

∥
2
L2(Ω) − ∥un+1

− un+θn∥
2
L2(Ω) + ∥un+θn − un

∥
2
L2(Ω)

)
+ 2µ∥D(un+θn )∥2

L2(Ω) −

∫
σ (un+θn , pn+θn )n · ξ n+θn .
Γ

9
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aking into account the flow equation (3.10), we have

−∥un+1
− un+θn∥

2
L2(Ω) + ∥un+θn − un

∥
2
L2(Ω) = (2θn − 1)∥un+1

− un
∥

2
L2(Ω).

ence, the fluid part of the energy estimates gives

0 =
ρ f

2τ n

(
∥un+1

∥
2
L2(Ω) − ∥un

∥
2
L2(Ω)

)
+

ρ f (2θn − 1)
2τ n

∥un+1
− un

∥
2
L2(Ω) + 2µ∥D(un+θn )∥2

L2(Ω)

−

∫
Γ

σ (un+θn , pn+θn )n · ξ n+θn . (3.19)

The structure (3.18) and fluid (3.19) estimates combine to give

0 =
1

2τ n

(
∥ηn+1

∥
2
S − ∥ηn

∥
2
S

)
+

ρsh
2τ n

(
∥ξ n+1

∥
2
L2(Γ ) − ∥ξ n

∥
2
L2(Γ )

)
+

τ n(2θn − 1)
2

∥ξ n+θn∥
2
S

+
ρsh(2θn − 1)

2τ n
∥ξ n+1

− ξ n
∥

2
L2(Γ ) +

ρ f

2τ n

(
∥un+1

∥
2
L2(Ω) − ∥un

∥
2
L2(Ω)

)
+

ρ f (2θn − 1)
2τ n

∥un+1
− un

∥
2
L2(Ω) + 2µ∥D(un+θn )∥2

L2(Ω). (3.20)

ummation from n = 2 to N − 1 and multiplication by τ n yields the desired estimate. □

emark 3.6. We note that when θn =
1
2 , for all n, we have N N

= 0, and the method is conservative.

Corollary 1. Let {(ξ n, ηn, un, pn)}2≤n≤N be the solution of Algorithm 1, assuming non-zero volume and boundary
orcing. Then, for θn ≥

1
2 , the method is unconditionally energy stable, and the following a priori energy inequality

olds

EN
+

1
2
DN

+N N
≤ E2

+ F N ,

where F N denotes the forcing terms

F N
=

C1

µ
∥f f (tn+θn )∥2

L2(Ω) +
C2

µ
∥pin(tn+θn )∥2

L2(Γin ) +
C2

µ
∥pout (tn+θn )∥2

L2(Γout ).

roof. The main steps of the proof are the same as in Theorem 2. We estimate the additional terms due to non-zero
olume and boundary forcing as follows. Using the Cauchy–Schwarz, trace, Poincaré and Korn inequalities [31],
e have∫

Ω

f f (tn+θn ) · un+θn −

∫
Γin

pin(tn+θn )un+θn · n −

∫
Γout

pout (tn+θn )un+θn · n

≤
C1

µ
∥f f (tn+θn )∥2

L2(Ω) +
C2

µ
∥pin(tn+θn )∥2

L2(Γin ) +
C2

µ
∥pout (tn+θn )∥2

L2(Γout )

+ µ∥D(un+θn )∥2
L2(Ω). (3.21)

Combining (3.21) with (3.20), summing from n = 2 to N − 1 and multiplying by τ n proves the Corollary. □

4. Computing the local truncation error

The time step adaptivity can be implemented in numerous ways (see e.g. [47]). In this work, we compute the local
truncation error using the Milne’s device [48–50], i.e., the difference between the second-order midpoint solution,
denoted by yn+1

midpoint , and a second-order approximation given by a formula similar to the explicit Adams–Bashforth
two-step (AB2) method, denoted by yn+1

AB2. The difference between this method and the classical AB2 formula is that
the function values are evaluated at half-times, as described in [7]. The solution obtained using the AB2 method is
computed as

yn+1
AB2 = yn (τ n

+ τ n−1)(τ n
+ τ n−1

+ τ n−2)
− yn−1 τ n(τ n

+ τ n−1
+ τ n−2)

+ yn−2 τ n(τ n
+ τ n−1)

.

τ n−1(τ n−1 + τ n−2) τ n−1τ n−2 τ n−2(τ n−1 + τ n−2)

10
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T

U

Γ

µ

he local truncation error for the AB2 method, under localization assumption [47,51], can be written as

T n+1
AB2 = (τ n)3 y′′′(tn+ 1

2 )Rn, where Rn
=

1
24

+
1
8

(
1 +

τ n−1

τ n

)(
1 + 2

τ n−1

τ n
+

τ n−2

τ n

)
. (4.1)

The local truncation error for the midpoint method, as well as the ‘θ-like’ method for θn =
1
2 +

1
2 (τ n)2, is given by

T̂ n+1
=

1
24

(τ n)3 y′′′(tn+ 1
2 ) +O((τ n)5).

sing (4.1), the local truncation error of the midpoint method can be written as

T̂ n+1
=

(
yn+1

midpoint − yn+1
AB2

) 1
1 − 1/(24Rn)

. (4.2)

This relation will be used to compute the local truncation error in Step 3 of Algorithm 1.

5. Numerical examples

For the spatial discretization of Algorithm 1, we use the finite element method with uniform, conforming meshes.
The problem is implemented in the finite element solver FreeFem++ [52]. We investigate the performance of the
proposed method in four numerical examples. In the first example, we study the convergence rates of Algorithm 1
when used with a fixed time step on a benchmark problem based on the method of manufactured solutions. We
also compare the average number of iterations in the sub-iterative process needed by Algorithm 1 and two other
strongly-coupled schemes commonly used in the literature. In the second example, the adaptive time-stepping is
applied on the same benchmark problem. In the third example we consider a benchmark problem describing pressure
propagation in a two-dimensional channel commonly used to test FSI solvers, and compare different fixed and the
variable time-stepping approaches. Finally, in the fourth example, we consider a moving domain, lid driven cavity
with a flexible bottom, and present an extension of Algorithm 1 to moving domain FSI problems.

5.1. Example 1

In this example, we assume that the time step is fixed, and study the convergence rates of Algorithm 1. For this
purpose, we use the method of manufactured solution. The fluid domain is defined as Ω = (−0.5, 0.5)× (0, 1), and

= (−0.5, 0.5) × {1} represent the structure domain.
We model the structure using a thin wall model defined on Γ , which is based on the elastic Koiter shell

model [21], where the 4th order derivative is neglected. The model accounts for both tangential (horizontal) and
transverse (vertical) displacements ηx and ηy , and is given by

ρsh∂t tηx − C2∂xηy − C3∂xxηx = fs,x , (5.1)

ρsh∂t tηy + C0ηy − C1∂xxηy + C2∂xηx = fs,y . (5.2)

We note that due to the fluid–structure coupling, we have fs = −σ n. The exact solutions are given by

ηre f
= (ηre f

x , ηre f
y )T

=

⎡⎣ 10−3et sin(πx) sin(πy)

−10−3 et cos(πx)
π (C2 − µ)

(
ρsh sin(πy) + C3π

2 sin(πy) + µπ cos(πy)
)⎤⎦ ,

ure f
= (ure f

x , ure f
y )T

=

⎡⎣ 10−3et sin(πx) sin(πy)

−10−3 et cos(πx)
π (C2 − µ)

(
ρsh sin(πy) + C3π

2 sin(πy) + µπ cos(πy)
)⎤⎦ ,

pre f
= (ρsh + C0)ure f

y − C1
∂2ure f

y

∂x2 + C2
∂ure f

x

∂x
+ 2µ

∂ure f
y

∂y
,

using which the forcing term f f is computed. We note that the exact solutions satisfy the coupling conditions
Eqs. (2.3)–(2.4). Based on the exact solution, we impose Dirichlet boundary conditions on the bottom of the
fluid domain, and Neumann boundary conditions on the sides. We also impose homogeneous Dirichlet boundary
conditions for the structure. The parameters used in this problem are ρ f = ρs = h = C0 = C1 = C2 = C3 = 1 and

= 0.5. The problem is solved until the final time T = 10 is reached.

11
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o
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θ

Fig. 2. Relative errors for the structure displacement (top-left), structure velocity (top-right), and fluid velocity (bottom) obtained using
= 10−4.

To discretize the problem in space, we use P2 elements for the fluid velocity and solid displacement and velocity,
and P1 elements for the pressure. In order to compute the rates of convergence of our scheme, we first define the
errors for the solid displacement and velocity, and fluid velocity, respectively, as follows

ere f
η =

η − ηre f
2

Sηre f
2

S

, ere f
ξ =

ξ − ξ re f 
L2(Γ )ξ re f 

L2(Γ )

, ere f
u =

u − ure f


L2(Ω)ure f


L2(Ω)

, (5.3)

where

∥η∥2
S = C2∥∂xηx + ηy∥

2
L2(Γ ) + (C3 − C2)∥∂xηx∥

2
L2(Γ ) + (C0 − C2)∥ηy∥

2
L2(Γ ) + C1∥∂xηy∥

2
L2(Γ ).

The sub-iterative portion of Algorithm 1, defined by Eqs. (3.5)–(3.6), is computed until the relative errors between
two consecutive approximations for the fluid velocity, structure velocity and displacement are less than a given
tolerance, ϵ. In the first test, we set ϵ = 10−4 and use the following set of discretization parameters

{τ,∆x} =
{

0.02
2i

,
0.25
2i

}3

i=0
,

where ∆x is the mesh size. Fig. 2 shows the convergence rates obtained using different values of θ . We note that
the second-order convergence is expected when θ =

1
2 , because in this case the refactorized Cauchy’s method

orresponds to the midpoint rule. For θ =
1
2 , we observe a second-order convergence for all the variables when

the values of τ are large. However, for the smallest value of τ used in this example, sub-optimal convergence is
bserved in the fluid and solid velocities, while the structure displacement even exceeds the convergence rate of
. As θ begins to increase, the rates start to deteriorate, approaching first-order convergence. We note that when
= 0.5, the errors are the smallest, which is especially apparent in the structure velocity.
12
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Fig. 3. Relative errors for the structure displacement (top-left), structure velocity (top-right), and fluid velocity (bottom) obtained using by
decreasing ϵ at the same rate as τ .

Fig. 4. Average number of sub-iterations obtained for different values of θ when ϵ = 10−4 (left) and when ϵ is changing at the same rate
as τ (right).

To improve the sub-optimality observed in Fig. 2, we repeat the previous simulations, but this time we decrease
the tolerance ϵ at the same rate at τ . In particular, we use the following set of parameters

{τ,∆x, ϵ} =

{
0.02
2i

,
0.25
2i

,
10−4

2i

}3

i=0
.

Fig. 3 shows the convergence rates across different values of θ . We note when θ = 0.6, 0.7, 0.8 and 0.9, the errors
for all the variables are almost identical to those in Fig. 2. The errors also stay similar when θ = 0.5 and τ is
large. However, in this case smaller errors are obtained when θ = 0.5 and τ = 3.125 · 10−3, yielding the expected
second-order accuracy for all the variables.

While computing the rates of convergence, we also calculated the average number of sub-iterations needed in
−4
the iterative part of our method. Fig. 4 shows the results obtained using ϵ = 10 (left), and the dynamic update

13
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Table 1
Example 1: The number of iterations required by the proposed method (Algorithm 1), the
Robin–Neumann (RN) method and the Robin–Robin (RR) method [16] for different parameter
values.

τ ∆x ρF ρS ϵ RN RR Algorithm 1

1.25 · 10−1 10−1 1 1 10−4 9 5 5.2
6.25 · 10−2 10−1 1 1 10−4 6 5 4.1
1.25 · 10−1 5 · 10−2 1 1 10−4 12.9 6 4.2
1.25 · 10−1 10−1 10 1 10−4 9 9 5.2
6.25 · 10−2 10−1 1 10 10−4 4 4 3.1
6.25 · 10−2 10−1 1 1 10−3 7 4 4

of ϵ, where ϵ is decreased at the same rate as τ . We note that in both cases, the average number of sub-iterations
decreases with τ . For the smallest value of τ , the number of sub-iterations averages around 3 when ϵ is fixed, and
4 when ϵ is changing, for all values of θ . We also note that the number of sub-iterations increases with θ , leaving
= 0.5 an excellent choice since it features the smallest number of sub-iterations, as well as the best accuracy.
cross all values of θ , a slightly larger number of sub-iterations is needed when ϵ is dynamically changing.
We compared the average number of iterations needed by Algorithm 1 and other commonly used strongly-coupled

chemes in the literature. In particular, we considered the Robin–Neumann method and the Robin–Robin method
escribed in [15,16]. The comparison of the results across different parameter values is shown in Table 1. We note
hat θ = 0.5 was used in Algorithm 1. For most values considered in Table 1, a smaller number of sub-iterations
s required by Algorithm 1 than by the Robin–Neumann and Robin–Robin methods.

5.2. Example 2

In this example, we consider the same setting as in Example 1, but we adapt the time step dynamically throughout
the simulation instead of taking a fixed value. To adapt the time step, we compute the local truncation error for the
fluid velocity, u, and the structure displacement, η, according to formula (4.2). In particular, the local truncation
error is computed for ux , u y, ηx and ηy . The norm of the local truncation error is then computed in the L2-sense,
separately for the velocity and displacement. In particular, we compute

∥T̂ n+1
u ∥ =

(∫
Ω

(T̂ n+1
ux

)2
+ (T̂ n+1

uy
)2
) 1

2
, ∥T̂ n+1

η ∥ =

(∫
Γ

(T̂ n+1
ηx

)2
+ (T̂ n+1

ηy
)2
) 1

2
. (5.4)

We first test the performance of the method by defining the local truncation error as

∥T̂ n+1
∥ = max{∥T̂ n+1

u ∥, ∥T̂ n+1
η ∥}.

he initial time step is τ 0
= 10−1 and tolerance δ = 10−4 is used. As in the previous example, T = 10. We take

= 10−4,∆x = 0.025, s = 0.95, rmin = 0.2, rmax = 1.5 and θ =
1
2 , and start the time adaptation process after

10 iterations. The parameter values are the same as in Example 1. Fig. 5 shows the evolution of ∥T̂u∥ (top-left)
and ∥T̂η∥ (bottom-left), as well as the evolution of the time step (top-right) and the number of trials needed at each
iteration (bottom-right). To better illustrate the behavior of the local truncation error, ∥T̂u∥ and ∥T̂η∥ are shown on
the interval [1.45, 1.57]. Due to the slow decrease of ∥T̂u∥, the time step rapidly drops, and at time t = 1.57 is
equal to 5.68 · 10−33. In the next iteration, the time step keeps decreasing and the algorithm stops when it becomes
oo close to zero. Before the simulation breaks, seven trials are needed on average at each time step in order to
btain ∥T̂ n+1

∥ < δ. In contrast to ∥T̂u∥, ∥T̂η∥ exhibits much faster convergence to zero.
Since the ∥T̂ n+1

u ∥ dominates ∥T̂ n+1
η ∥, a similar dynamics is also observed when the local truncation error is

defined as

∥T̂ n+1
∥ =

(
∥T̂ n+1

u ∥
2
+ ∥T̂ n+1

η ∥
2
) 1

2
.

Hence, we define the local truncation error as

∥T̂ n+1
∥ = ∥T̂ n+1

∥,
η

14



M. Bukač and C. Trenchea Computer Methods in Applied Mechanics and Engineering 393 (2022) 114847

t
∥

t
∥

Fig. 5. Left: The local truncation errors for the fluid velocity (top) and the structure displacement (bottom). Right: Time evolution of the
ime step (top) and the number of trials in each time interval (bottom). The results were obtained defining the local truncation error as
T̂ n+1

∥ = ∥T̂ n+1
u ∥.

Fig. 6. Left: The local truncation errors for the fluid velocity (top) and the structure displacement (bottom). Right: Time evolution of the
ime step (top) and the number of trials in each time interval (bottom). The results were obtained defining the local truncation error as
T̂ n+1

∥ = ∥T̂ n+1
η ∥.

and perform numerical simulations using parameters τ 0
= 10−1, s = 0.95, rmin = 0.2, rmax = 1.5, δ = 2 · 10−5,

ϵ = 10−4,∆x = 0.025, and θ =
1
2 . As in the previous example, T = 10, and the time adaptation starts after 10

iterations. We note that a smaller value of δ is used here compared to the previous case because ∥T̂ n+1
η ∥ is smaller

than ∥T̂ n+1
u ∥, as shown in Fig. 5.

The local truncation errors ∥T̂ n+1
u ∥ and ∥T̂ n+1

η ∥ obtained with this choice of ∥T̂n+1∥, as well as the evolution of
the time-step and the number of trials are shown in Fig. 6. Looking at the left panel, we observe that both ∥T̂ n+1

u ∥

and ∥T̂ n+1
∥ remain bounded, even though ∥T̂ n+1

∥ was not included in the computation of ∥T̂ n+1
∥. The number
η u
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Table 2
Relative errors ere f

u , ere f
ξ , ere f

η,L2(Γ )
and ere f

η obtained using the kinematically coupled β−scheme [21,25],
Algorithm 1 with a fixed time step, Algorithm 1 with a variable time step and fixed ϵ and Algorithm 1 with a
variable time step and variable ϵ.

δ = 2 · 10−3 ere f
u ere f

ξ ere f
η,L2(Γ )

ere f
η

Kinematically coupled β−scheme 9.51 · 10−3 8.62 · 10−2 3.14 · 10−2 3.24 · 10−2

Algorithm 1 w/fixed time-step 1.63 · 10−3 2.49 · 10−3 1.35 · 10−3 1.37 · 10−3

Algorithm 1 w/adaptive time-step and fixed ϵ 2.65 · 10−4 2.87 · 10−4 3.16 · 10−4 5.47 · 10−4

Algorithm 1 w/adaptive time-step and ϵ 2.65 · 10−4 2.86 · 10−4 3.16 · 10−4 5.47 · 10−4

δ = 2 · 10−5 ere f
u ere f

ξ ere f
η,L2(Γ )

ere f
η

Kinematically coupled β−scheme 7.16 · 10−4 1.70 · 10−2 5.14 · 10−4 1.04 · 10−3

Algorithm 1 w/fixed time-step 1.47 · 10−4 2.90 · 10−4 2.44 · 10−4 5.14 · 10−4

Algorithm 1 w/adaptive time-step and fixed ϵ 3.98 · 10−5 2.52 · 10−4 2.46 · 10−4 5.29 · 10−4

Algorithm 1 w/adaptive time-step and ϵ 3.98 · 10−5 2.52 · 10−4 2.46 · 10−4 5.29 · 10−4

of trials is greater than one only three times in the first part of the simulation, as shown in the bottom-right panel.
After that, only one trial is needed for the rest of the simulation. The time step, shown in the top-right panel, is
decreasing throughout the simulation, albeit slowly toward the end. The time step at the end of the simulation is
equal to 10−2. Since both ∥T̂ n+1

u ∥ and ∥T̂ n+1
η ∥ remain bounded in this example, the time step evolution is reasonable

and the number of trials is low, we use ∥T̂ n+1
∥ = ∥T̂ n+1

η ∥ in the remainder of the paper.
Since it was shown in Section 5.1 that the tolerance, ϵ, used in the sub-iterative part of the algorithm needs to be

varied together with the time step in order to retain a second-order convergence rate, we also test the performance
of the method using the same parameters as in the previous case, but this time adapting ϵ together with the time
step. However, we set an upper bound on ϵ to preserve the accuracy of the sub-iterative solution. In particular, we
set

ϵnew
= min

{
ϵn min

{
rmax , max

{
rmin, s

(
δ

∥T̂ n+1∥

) 1
3
}}

, ϵ0

}
, (5.5)

and adapt it together with the time step. We perform numerical simulations by using both fixed and adaptive values
of ϵ, and the adaptivity tolerances δ = 2 · 10−5 and 2 · 10−3. In each case, we count the total number of trials
needed in the adaptive algorithm, and then perform simulations using Algorithm 1 with a fixed time step obtained
by dividing the final time by the total number of trials. Using the same time step, we also perform simulations
using the kinematically coupled β−scheme [21,25]. At the end of each simulation, we compute the relative error
between the approximated and the exact solution. For this purpose, in addition to errors defined in (5.3), we also
introduce the L2

−error for the structure displacement, defined as

ere f
η,L2(Γ )

=

η − ηre f
2

L2(Γ )ηre f
2

L2(Γ )

.

Table 2 shows a comparison of the relative errors obtained using the kinematically coupled β−scheme,
Algorithm 1 with a fixed time step, Algorithm 1 with a variable time step and fixed ϵ, and Algorithm 1 with a
variable time step and variable ϵ. When δ = 2 · 10−3, the errors obtained using the adaptive time-stepping are by
an order of magnitude smaller than the errors obtained with methods that use a fixed time step. For a smaller value
of δ, the adaptive time-stepping still gives better approximations of the fluid and solid velocities. However, errors
for the displacement obtained using Algorithm 1 with fixed and variable time-stepping are comparable, but still
significantly smaller than the ones obtained by the kinematically coupled β−scheme. We also note that for both
values of δ, the errors obtained using the adaptive algorithm with fixed and variable ϵ are nearly identical.

5.3. Example 3

In this example, we consider a classical benchmark problem describing the flow in a two-dimensional channel

with a deformable wall. The fluid domain is Ω = (0, L) × (0, R), where L = 5 cm and R = 0.5 cm. We assume

16
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s

Table 3
Fluid and structure parameters used in Example 3.

Parameters Values Parameters Values

Fluid density ρ f (g/cm3) 1 Dyn. viscosity µ (dyn s/cm2) 0.035
Wall density ρs (g/cm3) 1.1 Wall thickness hs (cm) 0.1
Young’s mod. E (dyn/cm2) 0.75 × 106 Poisson’s ratio ν 0.5

that the top boundary is deformable, allowing only deformation in the radial direction. Hence, η = (0, ηy), and the
structure dynamics is described by

ρsh∂t tηy + C0ηy − C1∂xxηy = fs,y,

where

C0 =
hE

R2(1 − ν2)
, C1 =

hE
2(1 + ν)

,

and E and ν denote the Young’s modulus and Poisson’s ratio, respectively. We assume that the structure is fixed at
the edges. At the bottom fluid boundary we prescribe symmetry boundary conditions, given by

u y = 0, ∂yux = 0.

The flow is driven by prescribing a time-dependent pressure drop at the inlet and outlet sections, as defined in
(2.1c)–(2.1d), where

pin(t) =

⎧⎨⎩
pmax

2

[
1 − cos

(
2π t
tmax

)]
, if t ≤ tmax

0, if t > tmax

, pout = 0, (5.6)

for all t ∈ (0, T ). The pressure pulse is in effect for tmax = 0.003 s with maximum pressure pmax = 1.333 × 104

dyn/cm2. The final time is T = 10 ms. The fluid and structure parameters, which are within physiologically realistic
values of blood flow in compliant arteries, are given in Table 3. In this example, we set θ =

1
2 and initial tolerance

ϵ0
= 10−4, which is afterwards updated dynamically according to (5.5).
We use P2 − P1 elements for the fluid velocity and pressure, respectively, and P2 elements for the structure

velocity and displacement on a mesh containing 16,000 elements in the fluid domain and 400 elements in
the structure domain. The problem is solved using Algorithm 1 with both fixed and adaptive time steps and
the kinematically coupled β−scheme [21,25]. The results are compared to the reference data, obtained using a
econd-order monolithic scheme.

We first solve the problem using Algorithm 1 with an adaptive time step. We use δ = 4 · 10−4, s = 0.95, rmin =

0.2, rmax = 1.5, and the initial time step of τ 0
= 2 · 10−4, resulting in 46 trials. Dividing the final time

(T = 0.0101922) with the number of trials, we get the time step of 2.216 · 10−4, which is used in the fixed
time-stepping version of Algorithm 1 and the kinematically coupled β−scheme. For the monolithic method, the
time step is obtained by dividing the final time by 1000. The evolution of the variable time step, compared to the
value of the fixed time step obtained using this process, is shown in the top-left panel of Fig. 7. We observe that due
to the number of rejected trials, the value of the constant time step is smaller than the values of the variable time
step during most of the simulation. Therefore, to reduce the number of rejected trials, and to decrease the range of
the possible ratios between two consecutive time steps (which is more appropriate for stiff problems such as this
benchmark), we repeat the simulation using δ = 4 · 10−4, s = 0.85, rmin = 0.5, rmax = 1.2, starting from the same
initial time step of τ 0

= 2 · 10−4. The comparison of the time step evolution of the variable time step and the fixed
time step, shown in the top-right panel of Fig. 7, indicates that in this case, the variable time step is initially larger
than the fixed time step, but as the inlet pressure reduces to zero, the variable time step becomes smaller than the
fixed one.

The structure displacement, and pressure and axial velocity at the bottom boundary, at the end of the simulation,
are shown in Fig. 8. The values obtained using s = 0.95, rmin = 0.2, rmax = 1.5 are shown in the left panel and
the values obtained using s = 0.85, rmin = 0.5, rmax = 1.2 are shown in the right panel. In the case shown in the

left panel, the fixed time step is smaller than the variable time step most of the time, so the results obtained using

17
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Fig. 7. Comparison of the variable and fixed time steps obtained using s = 0.95, rmin = 0.2, rmax = 1.5 (left) and s = 0.85, rmin =

0.5, rmax = 1.2 (right). The top row is obtained with tolerance δ = 4 · 10−4, and the bottom row with δ = 10−5.

the fixed time-stepping version of Algorithm 1 are slightly closer to the monolithic results than the ones obtained
using the variable time-stepping. When parameters s = 0.85, rmin = 0.5, rmax = 1.2 are used, the results obtained
using the variable time-stepping are improved, providing a slightly better agreement with the monolithic method
than the ones obtained using the fixed time step. In both cases shown in Fig. 7, the results obtained using the fixed
and variable time-stepping versions of Algorithm 1 only slightly differ, and are very close to the monolithic ones
even though relatively large time steps are used. Furthermore, they provide a significantly better agreement than the
ones obtained using the kinematically coupled β−scheme.

We repeat the tests performed in this example by taking a smaller tolerance, δ = 10−5, and starting from a smaller
initial time-step, τ 0

= 5 · 10−5. As in the previous example, parameter sets s = 0.95, rmin = 0.2, rmax = 1.5 and
s = 0.85, rmin = 0.5, rmax = 1.2 are used. The time evolution of the variable time step is shown in the bottom panel
of Fig. 7. The comparison of the structure displacement, and pressure and axial velocity at the bottom boundary
obtained using the two parameter sets are shown in Fig. 9. We observe that the results obtained using Algorithm 1
provide an excellent agreement with the monolithic scheme. Even though there are instances where the fixed or
variable versions of Algorithm 1 give slightly better approximation, overall both approaches are very close together
or both sets of parameters.

.4. Example 4

In this example, we consider a moving domain, lid driven cavity with a flexible bottom. A similar problem, but
ith a different structural model, was previously studied in [53]. The fluid domain is a square with dimensions
00 cm ×100 cm. At the top boundary, a periodic velocity is prescribed by

ux = 100
(

1 − cos
(

2π t
5

))
cm/s, u y = 0.

t each side, the first five nodes from the top are unconstrained to allow free inflow and outflow of fluid, so that the
tructural displacement is not constrained by the fluid’s incompressibility [54]. At the remaining nodes on the left
18
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Fig. 8. Comparison of the structure displacement (top), pressure at the bottom boundary (middle) and axial velocity at the bottom
boundary (bottom) obtained using Algorithm 1 with a variable time-step, Algorithm 1 with a fixed time-step, the kinematically coupled
β scheme [21,25], and a monolithic scheme. Algorithm 1 with a variable time-step was solved using s = 0.95, rmin = 0.2, rmax = 1.5 (left)
and s = 0.85, rmin = 0.5, rmax = 1.2 (right). In both cases, tolerance δ = 4 · 10−4 is used.

and right sides, the no-slip boundary conditions are imposed. The bottom boundary represents an elastic structure
which deforms only in the vertical direction, i.e., η = (0, ηy), modeled by

ρsh∂t tηy − C1∂xxηy = fs,y,

where

C1 =
hE

2(1 + ν)
,

and E and ν denote the Young’s modulus and Poisson’s ratio, respectively. We assume that the structure is fixed at
the edges. To model the fluid flow, we use the Navier–Stokes equations. The parameters used in this example are
given in Table 4.
The fluid velocity and pressure are discretized using P2 −P1 elements, while P2 elements are used for the structure.

he problem is solved on a uniform 50 × 50 element mesh. The final time is T = 32 s. For the time adaptivity, we
se s = 0.85, rmin = 0.5, rmax = 1.2 and δ = 2 · 10−6. The fluid and structure subproblems are iteratively solved in
he BE part of the algorithm until the tolerance of ϵ = 10−4 is reached. The problem is solved using θ = 0.5.

To deal with the motion of the fluid domain, we use the Arbitrary Lagrangian–Eulerian approach. The extension
f Algorithm 1 to moving domain problems is outlined in Fig. 10.
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Fig. 9. Comparison of the structure displacement (top), pressure at the bottom boundary (middle) and axial velocity at the bottom
boundary (bottom) obtained using Algorithm 1 with a variable time-step, Algorithm 1 with a fixed time-step, the kinematically coupled
β scheme [21,25], and a monolithic scheme. Algorithm 1 with a variable time-step was solved using s = 0.95, rmin = 0.2, rmax = 1.5 (left)
and s = 0.85, rmin = 0.5, rmax = 1.2 (right). In both cases, tolerance δ = 10−5 is used.

Fig. 10. The extension of Algorithm 1 to moving domain problems.

Fig. 11 shows the structure displacement in the center of the domain over time. One can see that the periodic
egime is quickly reached. The solution obtained using Algorithm 1 with an adaptive time step is compared to the
olution obtained using Algorithm 1 with a fixed time step. An excellent agreements is observed.

The evolution of the time step is shown in Fig. 12. We note that the time step also reaches an almost periodic
egime, allowing the time step to oscillate between 0.0065 and 0.0292. With these values, the number of trials
emains low, as shown in Fig. 13. In particular, in most cases, one trial is enough to advance in time, while
ccasionally two trials are needed, resulting in the average number of trials equal to 1.017.
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Table 4
Fluid and structure parameters used in Example 4.

Parameters Values Parameters Values

Fluid density ρ f (g/cm3) 10−3 Dyn. viscosity µ (dyn s/cm2) 0.1
Wall density ρs (g/cm3) 0.5 Wall thickness hs (cm) 0.2
Young’s mod. E (dyn/cm2) 2.5 × 104 Poisson’s ratio ν 0.4

Fig. 11. The displacement at the center of the domain over time obtained using Algorithm 1 with variable (solid red line) and fixed (dashed
lue line) time stepping. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 12. The evolution of the time step versus time.

Fig. 13. The number of trials versus time.

6. Conclusions

We proposed a novel, adaptive, strongly-coupled partitioned method for the interaction between an incompress-
ible, viscous fluid and a thin elastic structure. The proposed method is based on the refactorized Cauchy’s one-legged
‘θ−like’ method and the kinematically coupled β−scheme. The fluid and structure sub-problems are first solved
sub-iteratively until convergence, and then linearly extrapolated. This process yields a second-order convergence rate
when θ =

1
2 . We proved that the sub-iterative process is linearly convergent, and that the method is unconditionally

nergy bounded/stable provided θ ≥
1
2 .

The algorithm is computationally tested on four numerical examples. We note that the proposed method is novel
even when it is considered with a fixed time step, in which case it can be seen as a second-order extension of
the kinematically coupled β−scheme when β = 1. Therefore, in the first example, we studied the accuracy of the
21
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lgorithm used with a fixed time step on a benchmark problem based on the method of manufactured solutions.
e confirmed a second-order convergence rate when θ =

1
2 and the tolerance used in the sub-iterative process is

changed dynamically with the time step. We also showed that the average number of sub-iterations between the
fluid and structure sub-problems is smaller than the one obtained by other strongly-coupled methods commonly
used in the literature for most of cases considered in this study.

In the other examples, we applied the proposed algorithm using both fixed and adaptive time steps, and the
proposed algorithm is extended to model a moving domain FSI problem in the last example. Our results indicate
that the variable time-stepping approach can have a significant advantage over a fixed time-stepping when larger
adaptivity tolerances are used, yielding larger time steps, especially in less stiff benchmark problems. In stiff
problems, to obtain a better performance, the parameters used in the adaptivity process need to be changed to reduce
the ratio between two consecutive time steps, as well as the number of rejected trials. In all examples considered in
this study, the approximations obtained using fixed and variable time-stepping versions of Algorithm 1 are nearly
indistinguishable when the adaptivity tolerance is small, and provide an excellent agreement when compared to the
reference data.
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