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Abstract—The Space-Weather ANalytics for Solar Flares
(SWAN-SF) is a multivariate time series benchmark dataset
recently created to serve the heliophysics community as a
testbed for solar flare forecasting models. SWAN-SF contains
54 unique features, with 24 quantitative features computed from
the photospheric magnetic field maps of active regions, describing
their precedent flare activity. In this study, for the first time, we
systematically attacked the problem of quantifying the relevance
of these features to the ambitious task of flare forecasting. We
implemented an end-to-end pipeline for preprocessing, feature
selection, and evaluation phases. We incorporated 24 Feature
Subset Selection (FSS) algorithms, including multivariate and
univariate, supervised and unsupervised, wrappers and filters.
We methodologically compared the results of different FSS
algorithms, both on the multivariate time series and vectorized
formats, and tested their correlation and reliability, to the extent
possible, by using the selected features for flare forecasting
on unseen data, in univariate and multivariate fashions. We
concluded our investigation with a report of the best FSS methods
in terms of their top-k features, and the analysis of the findings.
We wish the reproducibility of our study and the availability
of the data allow the future attempts be comparable with our
findings and themselves.

Index Terms—feature selection, feature ranking, multivariate
time series, supervised, unsupervised

I. INTRODUCTION

With rapid advances in machine learning and its unprece-
dented success across various domains, in recent years, inter-
disciplinary researchers have shown growing interest in using
such tools and techniques for space-weather analytics and
forecast. Extreme space-weather events are somewhat similar
to extreme terrestrial events. The difference is that the main
creating source of all space-weather events is the Sun. The
solar flares triggered in the solar active regions can initiate
Coronal Mass Ejections (CMEs) and enhance the flux of Solar
Energetic Particles (SEP), both directly affecting the terrestrial
environment.

Extreme space-weather events can have severe economic
and collateral impact on us and our interconnected technolo-
gies here on Earth, as well as in space, due to the growing
number of satellites [1]. This includes Earth climate, aviation
and space radiation environment, electric power grid, GPS
systems, HF radio communications, satellite communications,
and everything that depends on these systems to function

properly. In 2008, the direct economic impact of an extreme
space-weather event was estimated (by the National Research
Council) to be $1 − 2 trillion for the United States, during
the first year alone [2]. In realization of such a natural
threat, several agencies have been directly studying or funding
research in this area, to name a few in the United States alone,
the National Science Foundation (NSF), the National Aeronau-
tical and Space Administration (NASA), the National Oceanic
and Atmospheric Administration (NOAA), the Department
of Defense (DoD), and the Federal Aviation Administration
(FAA).

Solar flares are one of such events. They are sudden bright-
ness increases on the Sun visible in the wide wavelength range,
from radio to gamma, representing the release of the free
magnetic energy in the active region in the form of radiation,
heat, kinetic energy of plasma, and accelerated particles. Since
1974, NOAA GOES satellites have been detecting X-ray flares
and labeling them based on their peak 1-8 Å soft X-ray flux.
From weakest to strongest flares are classified logarithmi-
cally as A (10−8 to 10−7W/m2), B (10−7 to 10−6W/m2),
C (10−6 to 10−5W/m2), M(10−5 to 10−4W/m2), and X
(> 10−4W/m2), meaning that an X-class flare is 10 times
stronger than an M-class flare, and 100 times stronger than a
C-class flare. Often in flare forecasting/prediction studies, the
magnitude or the probability of occurrence of different classes
of flares in an h-hour prediction window is of interest, e.g.,
[3]–[5].

The vast majority of the implemented approaches in fore-
casting the occurrence of a strong flare (typically, an M-class
flare or larger) utilize properties computed from the photo-
spheric vector or line-of-sight magnetic field maps of solar
active regions [4]–[6]. The SWAN-SF data set [7] described
in Section IV contains these characteristics carefully computed
for May, 2010 — December, 2018 time period. Utilization of
SWAN-SF for the considered problem of feature ranking in
flare forecasting is appropriate and allows to mostly avoid an
exhausting data preparation phase.

The main contribution of this paper is the initiation of a
series of comparable feature selection strategies for the ambi-
tious task of flare forecasting. Because the existing attempts
were carried out on different datasets with different collection
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strategies, imbalance ratios, and post-processing steps, a fair
comparison between the discovered ranks is not possible.
Using the flare forecasting benchmark dataset, SWAN-SF,
we initiate this attempt that allows future feature selection,
ranking, and extraction investigations to be comparable with
our findings and with themselves. To help achieve this goal,
we do our best to present a reproducible study by extensively
explaining the details of data preparation, feature selection,
and evaluation strategies and releasing our code 1 for further
investigation and reusability. This highlights the importance
and novelty of the current work.

This paper is structured as follows: Section II describes
the work related to feature ranking, including the attempts
for ranking in flare forecasting. Section III summarizes the
feature ranking methods utilized in this work. The data and
prediction metrics are described in Section IV. Sections V and
VI highlight the feature ranking and evaluation methodology.
The results of the investigation are described in Section VII
and are followed by conclusions in Section VIII.

II. RELATED WORK

Feature subset selection (FSS) methods are often catego-
rized by their selection strategy from different perspectives. An
FSS method is called a filter if it searches for an optimal subset
based on the general patterns in data regardless of a particular
learning model’s performance. In contrast, wrapper methods
utilize a greedy technique to search the space of all possible
subset features by using a machine learning algorithm at its
core [8]. When an FSS method combines these two strategies,
it is then called embedded [9]. The FSS methods which rely
on learners can be further divided into two sub-categories:
supervised and unsupervised. The former takes advantage of
the class labels of the data to find the most relevant features,
while the latter group primarily employs clustering algorithms
to do so [10]. From a different angle, an FSS method may
consider multiple features at once to determine their collective
relevance, in contrast to single-feature assessment. With this
criterion, FSS methods can be classified into univariate or mul-
tivariate groups. Another category of distinction between the
FSS methods is the vectorized and MTS-based algorithms. The
former utilizes the descriptive statistics from the multivariate
time series data as its input, whereas the latter employs the
MTS data in its original format.

Supervised FSS methods employ various supervised ma-
chine learning algorithms (also called estimators or base
learners in this context) to identify an optimal subset of the
original features by considering the class labels and removing
the redundant features (with a minimal or negative impact
on the discrimination task) with the a priori knowledge. For
example, Support Vector Channel Selection for brain-computer
interface (BCI) dataset [11] combines Recursive Feature Elim-
ination (RFE) [12] and Fisher Criterion (FC) [13] along with
Support Vector Machines (SVMs). This supervised wrapper
approach established a reliable and intuitive ranking method

1https://bitbucket.org/gsudmlab/featuresubsetselection on swan-sf/

and quickly became the state-of-the-art FSS method for the
proceeding traditional FSS methods. This method however,
loses the correlation information as it utilizes a univariate
selection. Understanding this shortcoming gave birth to a new
family of wrapper methods that let classifiers process some
statistical interpretation of data instead of the original data.
Corona [14] is an example of such a family. It preserves the
correlation information by employing correlation coefficients
as features. Due to the general limits of supervised FSS
methods [15], unsupervised methods are equally useful, or
perhaps even more, given that most of the available data are
unlabeled. Unsupervised FSS methods, in their simplest form,
compute the similarity between the features and then reduce
the redundancy in data by dropping the similar features. For
example, CLeVer [16] selects an optimal subset of features by
means of clustering on the loadings obtained by running PCA
on the original data.

Univariate FSS methods, as mentioned before, take into
account only one feature at a time to identify their relevance
to the class label. The Relief algorithm [17] is a popular
example of this group. Relief is a wrapper, supervised method
that determines the relevance of a feature by examining each
instance’s values with respect to the values of its neighboring
instances of the same class. Derived from Relief, a large family
of FSS methods has been introduced that particularly attracted
the attention in bioinformatics [18]. Equally popular, but in
the multivariate category of FSS methods, is the Minimum-
Redundancy Maximum-Relevance (mRMR) algorithm that
was originally applied to microarray data [19]. The name is
inspired by the core idea behind the algorithm, searching for
a subset of features by maximizing their correlation with the
class labels and minimizing their correlation with one another.
Similar to the Relief algorithm, mRMR also inspired numerous
FSS methods [20], especially in gene selection studies [21],
even mixed with Relief [22].

Among the wrapper methods, the Support Vector Channel
Selection algorithm (that we mentioned earlier) is perhaps
the most popular one. This FSS method ranks features by
training an SVM on the labeled data and assigning scores
to features based on the concept of margin maximization
[12], and was originally applied for the selection of electroen-
cephalogram (EEG) channels. Among the filter FSS methods,
the F-score [23], mutual information [24], and information
gain [25] methods laid out the basic selection ideas that
feed many complex filter methods. The Fast Correlation-Based
Filter (FCBF) method [26] is another popular method in this
category.

Although not widely used, the application of feature ranking
methods for flare forecasting is definitely not a new idea. One
of the most frequently used feature ranking techniques is the
univariate F-score [4], [5], [27]. Another popular FSS method-
ology mentioned in the research papers employing a Random
Forest algorithm [28] for flare forecasting are a selection of
features based on Gini importance or the Mean Decrease
Gini [29]. Other examples are the use of unsupervised feature
extraction/selection from the magnetic Polarity Inversion Line

https://bitbucket.org/gsudmlab/featuresubsetselection_on_swan-sf/


(PIL) masks based on kernel PCA [30], and the employment of
CBF- and mRMR-like FSS methods [31]. Nevertheless, to the
best of our knowledge, the effectiveness of a variety of other
FSS methods on flare forecasting datasets was never examined.
Our objective is to study the efficacy of a larger number of
methods, but more importantly, to introduce a framework of
comparability for future attempts.

It is worth noting that in the literature, some times the
terms selection, ranking, and extraction are used loosely and
even interchangeably. To avoid confusion, we clarify our
understanding of these terms here before we move on to the
next section. Feature extraction is specific to the algorithms
which create (extract) new features by combining the original
ones. The objective in this family of methods is to find a
new feature space such that it has a lower dimension than
the original space, and at the same time, allows a better
separability of classes. PCA [32] is the typical example of a
feature extraction method. Each new feature extracted by PCA
is a linear combination of all the original features (possibly
with close-to-zero coefficients for some of them). While this
approach provides more flexibility as it is not limited to the
original feature space, for problems where the importance of
the existing features is of interest, it is not useful. This is where
feature selection methods come into play. These methods aim
at finding an optimal subset of the original features in such a
way that the selected features carry most of the information
about the distribution of data while excluding the redundant
features, i.e., highly correlated or noisy features. The term
feature subset selection (FSS) is sometimes used to emphasize
this difference between selection and extraction. A sub-family
of this group of methods additionally assign a score to each
feature and find the optimal subset by means of thresholding.
They are known as the feature ranking methods.

III. BACKGROUND

A summary of the methods we employed in this study,
in order to gain insight into the relevance of the SWAN-
SF’s features, is given in Table. I. In our list, there are
filters and wrappers, supervised and unsupervised methods,
univariate and multivariate approaches, and vectorized-based
and Multivariate Time Series-based (MTS-based) strategies. In
this section, we briefly review their implementations.
Recursive Feature Elimination (RFE) [12] is a feature
selection method that fits data using a base learner such
as Random Forest or Logistic Regression, and removes the
weakest feature(s) recursively until the stipulated number of
features is reached. Either the model’s coefficients or the
feature importance attributes are used to rank the features.
Recursively eliminating features, RFE attempts to eliminate
dependencies and collinearity in the model (if any).
Correlation as Features (Corona) [14] operates by com-
puting the correlation coefficients matrix C for each MTS
instance. The feature selection takes place on the upper
triangular of C. Using RFE with SVM as the estimator, each
feature is assigned a weight. The weights are then used to rank
the features in ascending order to generate a rank vector RV .

A symmetric matrix SM is generated by shaping RV as the
lower and upper triangular matrix with diagonals as zero. To
obtain ranks of original features, the column-wise summation
is applied to SM .
Relief [17] gauges the quality of each feature by estimating
the separability it provides for distinguishing the neighboring
instances of different classes. The algorithm randomly selects
an instance R and finds its nearest neighbors H from the same
class (i.e., hit) and M from the opposite class (i.e., miss).
The feature score for an arbitrary feature f is initialized with
zero and updated by W [f ] := W [f ] − df (Ri,H)

m +
df (Ri,M)

m ,
where df is the Manhattan distance between the feature f
of two instances, and m is the longest distance in the space
and is used for the normalization purpose. It can be observed
that the feature score is (a) penalized for long distances
between instances of similar class, and (b) incentivized for
long distances between opposite class. This approach claims
to have contextual awareness and performs well in problems
with strong dependencies between the features.
Minimum Redundancy Maximum Relevance (mRMR) [19]
finds an optimal subset of feature by iteratively adding features
with maximum relevance with the class labels while having
minimum redundancy with other already-selected features.
The relevance is determined using ANOVA test with respect
to the class labels, and the redundancy is determined by mean
Pearson correlation in accordance with the selected features.
For every i-th iteration, mRMR selects the feature having the
highest score determined by scorei(f) = F (f,class)∑

s∈S |r(f,s)|/(i−1)
.

In this formula, f is an arbitrary feature, F is the F -statistic,
r denotes the Pearson correlation, and S is the set of all
features selected prior to fi. This approach is known to be
computationally efficient and robust to different downstream
classification models [34].
Select k-Best [35] is a simple univariate feature selection
approach that utilizes a scoring function passed as a parameter.
Various statistical tests such as ANOVA test and Chi-Square
test, and mutual information can be used to quantify the
scoring function. The scoring function must return an array of
scores corresponding to all features. Select k-Best then retains
the top k features with the highest scores.
Select From Model [35] determines the feature importance
based on the estimators’ optimization weights, e.g., the coef-
ficients in Logistic Regression or mean reduction in the Gini
index. The ones with scores lesser than a pre-set threshold
parameter are excluded and considered unimportant. The top
k features are those which obtained the highest scores.
CLeVer [16] is a family of unsupervised FSS methods for
MTS data based on descriptive common principal component
analysis (DCPC). DCPCs are obtained by bisecting the angles
between their principal components after each MTS instance
undergoes PCA. The correlation matrix of each MTS instance
is passed as an input to obtain its correlation information.
The CLeVer algorithm comprises three phases: (1) Computing
the Principal Components for each MTS instance by applying
Singular Value Decomposition on the correlation matrix; (2)
Computing the DCPDs which depict the common direction of



Abbreviation FSS Algorithm Estimator/Method

Supervised

U
nsupervised

M
ultivariate

U
nivariate

Vectorized

M
T

S

E
m

bedded

W
rapper

Filter

1 SFM Logistic

Select From Model

Logistic Regression X X X X
2 SFM SVC SVM X X X X
3 SFM RF Random Forest X X X X
4 SFM ADA Ada Boost X X X X
5 SFM Gb Gradient Boosting X X X X

6 SFM BAG Bagging Trees X X X X
7 SFM XT Extremely Randomized Trees X X X X

8 RFE RF

Recursive Feature Elimination

Random Forest X X X X
9 RFE ADA Ada Boost X X X X
10 RGE Gb Gradient Boosting X X X X

11 RFE BAG Bagging Trees X X X X
12 RFE XT Extremely Randomized Trees X X X X
13 RFE SVC SVM X X X X
14 RFE logistic Logistic Regression X X X X

15 SKB MI
Select k-Best

Mutual Information X X X X
16 SKB FVAL F-statistic X X X X
17 SKB CHI Chi Square X X X X

18 mRMR Min Redundancy Max Relevance F-statistic / Pearson Correlation X X X X

19 Relief Relief F-statistic / Pearson Correlation X X X X

20 Corona Correlation as Features SVM X X X X

21 Clever CLeVer k-means / PCA X X X X

22 PIE PIE Normalized Mutual Information X X X X

23 CSFS CSFS Pairwise Mutual Information X X X X

24 FCBF FCBF Mutual Information X X X X

TABLE I
LIST OF ALL FSS METHODS USED IN THIS STUDY, WITH THEIR SPECIFICATIONS FOR REFERENCE

the maximum variance of all MTS instances; (3) Ranking of
the features by their contribution to the DCPC model features.
The last step is carried out by applying the `2-norm on the
DCPCs (CLeVer-Rank), which is followed by running the k-
means clustering algorithm to eliminate the redundant features
(CLeVer-Cluster).
Fast Correlation-Based Filter (FCBF) [26], instead of a
traditional linear correlation, employs Symmetric Uncertainty
(SU), which involves entropy-based information gain (aka
mutual information). To recap, the entropy of a random vari-
able in information theory is the average level of uncertainty
information inherent in the variable’s possible outcomes. As
a result, the amount by which a feature’s entropy decreases
reflects additional information about features provided by
the label and is referred to as information gain. Since this
information gain is biased in favor of features with more
values, the data must be normalized beforehand. In FCBF,
this normalization is accomplished by the Symmetrical Un-
certainty, by first determining the probability distribution of
each feature, and then its entropy corresponding to its class
label. FCBF compiles a list of relevant features based on a
given threshold and sorts them by their Symmetric Uncertainty
values in descending order.
Power Iteration Embedding (PIE) [36] ranks the features
to compute the similarity graph for all features (time series)
across all time segments. Dynamic Time Warping (DTW)
is used to calculate the distance between time series [37].

The largest eigenvector of the normalized adjacency matrix
of the graph is computed to determine the cluster structure of
these segments. Features’ relevance score is evaluated using
Normalized Mutual Information [38] between the eigenvector
and the ground truth labels. Since the ranks of features with
high correlation tend to be similar, to avoid redundancy, a
subset selection algorithm is employed. The first step in the
subset selection algorithm is to calculate the adjacency matrix
of each sensor and then find a linear combination of these
matrices that approximates the similarity matrix of the labels
while using a small number of minimally redundant sensors.
Class Separability Feature Selection (CSFS) [39] relies on
Mutual Information (MI) which measures both linear and non-
linear correlations between the features. Since the pairwise MI
matrix is symmetric, an MTS instance is vectorized to build
new features using the upper triangular matrix. To rank these
features, the ratio of the between-class scatter matrix to the
within-class scatter matrix is considered, which is computed
over the MI matrix. To avoid redundancy, the between-feature
scatter matrix, which reflects the relation between features in
terms of class labels, is produced. The larger the matrix value,
the lesser the redundancy between its features.

IV. DATA AND METRICS

A. Data

The Space-Weather ANalytics for Solar Flares (SWAN-
SF) benchmark dataset [7] comprises multivariate time series



data in five classes, namely X, M, C, B, and a non-flaring
class denoted by FQ (flare quiet). The dataset is broken down
into five temporally non-overlapping partitions such that each
partition has the same number of X- and M-class flares.
The various time series parameters of the dataset are derived
from the solar photospheric magnetograms and NOAA’s flare
history. Magnetograms and their metadata are provided by the
Solar Dynamics Observatory’s HMI Active Region Patches
(HARP) data product. To explore the details of collection,
integration, and curation of the SWAN-SF benchmark dataset,
as well as the definitions of the physical parameters we
aim to rank in this study, we encourage the reader to see
the corresponding publication. The dataset is also publicly
available on the Harvard Dataverse repository [40].

B. Metrics

In this paper, the metrics utilized as performance measures
are the True Skill Statistic (TSS) [41] and the updated Heidke
Skill Score (HSS) [42] (sometimes denoted as HSS2). These
are the two metrics that domain experts found appropriate
for the task of flare forecasting to provide a meaningful
evaluation of models given the scarcity of strong flares [43],
[44]. TSS measures the difference between the true positive
rate (detection) and the false positive rate (false alarm). In
other words, TSS = tp

p −
fp
n ; where p = tp + fn and

n = fp + tn. It ranges from -1 to +1, with -1 indicating
that the model makes all the wrong predictions/classifications,
0 implying that the model possesses no skill (random-guess),
and +1 representing a model that assigns correct class labels
to all the instances. TSS is not sensitive to class imbalance [4],
[45]. This allows comparison of models which are trained on
subsets of data with different imbalance ratios. HSS measures
the performance of a model by comparing it to a random-
guess model. It is formulated as 2((tp·tn)−(fn·fp))

p(fn+tn)+n(tp+fp) . HSS2
ranges from -1 to +1, where 0 intimates no difference between
the model’s performance and random-guess. The magnitude
of the negative value is directly proportional to the number of
misclassified samples. The positive values quantify how much
the model performs better than the random-guess model.

V. FEATURE SELECTION METHODOLOGY

The list of all FSS methods we utilize in this study,
along with their specifications, is given in Table I. We set
up two feature selection pipelines, one for vectorized-based
FSS methods and the other for MTS-based methods. In this
section, we provide a general overview of the pre-processing
steps, as well as the strategies adopted in our feature ranking
methodology. Fig. 1 is provided to aid in the following of
these steps.

A. Data Preparation

The first 24 physical parameters of SWAN-SF are quantita-
tive features describing the magnetic fields in active regions,
and we limit our study only to them. To prepare our data for
both the ranking and evaluation, first, we impute the missing
values, which account for ≤ 0.01% of the entire data. We

linearly interpolate the missing values using their neighboring
values. For the boundary values, we use backward and forward
fill, i.e., propagating the last valid values forward or backward.

As majority of the FSS methods we utilize are designed for
tabular data (as opposed to MTS data), we need to create a
vectorized version of SWAN-SF as well. To do so, we compute
7 descriptive statistics for each physical parameter, yielding
168 statistical features. These statistics are min, max, median,
standard deviation, skewness, kurtosis, and last value which is
simply the last value of each time series. These basic statistics
have been used before in several studies working on SWAN-
SF to simplify the problem [45]–[47].

As mentioned in Section IV, SWAN-SF is a collection of
5 different flare types. For simplification of the problem, we
group the stronger flares (X- and M-class flares) and weaker
flares (C- and B-class flares, plus FQ class) and create a
dichotomized dataset.

B. Rank Aggregation for Vectorized Data

Since the features in the vectorized data are the descriptive
statistics and not the original SWAN-SF features, in order to be
able to transfer the obtained ranks back to the original feature
space, we assign each feature the average scores obtained
across all 7 statistics corresponding to that features. This way,
we obtain a single score per (original) feature. We use this
score, similar to the scores MTS-based FSS methods return,
to rank the features.

For the preparation of data, extraction of statistical features,
and model fitting we used the pandas and scikit-learn [35],
MVTS Data Toolkit [48], and tslearn [49] packages, respec-
tively.

VI. EVALUATION METHODOLOGY

A common way to validate the selected features is through
domain knowledge and expertise. However, such knowledge
does not always exist, and more often than not, it happens
that experts have contrasting opinions. In this section, we
investigate the reliability of the obtained rankings from three
different angles; using an independently trained and tested
classifier in a univariate and multivariate fashion, and by
looking at the correlations of the rankings across all the 24
FSS methods we employed.

A. Pre-Evaluation: Sampling and Balancing

A dataset is class imbalanced when the frequency of sam-
ples of one or more data classes are significantly smaller than
those of the majority classes. This is known as the class-
imbalance issue [50] and results in superficial performance
if not treated properly. The SWAN-SF benchmark dataset
[7] exhibits a severe case of class imbalance across all the
partitions. To remedy this issue, we employ the climatology-
preserving undersampling method as suggested in [45]. This
is a stratified undersampling (of all 5 flare classes) where the
obtained samples constitute a 1:1 ratio between the strong and
weak flares, i.e., the total number of X and M instances is the
same as the total number of C, B, and FQ instances. Using
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Fig. 1. The schematic diagram illustrating the 3 main components of our study: data preprocessing, feature selection, and evaluation. Each part is explained in
details in their corresponding sections. The dashed lines indicate the process that is only applicable to vectorized data. The usage of SWAN-SF’s 5 partitions
is also shown on the top-left area.

this strategy, the subclass ratios will be preserved, hence the
name. Note that this strategy is only used for the evaluation
phase and only during the model training, and not for testing,
i.e., the test set is not balanced. Also, the FSS methods had
access to the entire Partition 1 and not subsets of it.

Training and testing on the same partition of SWAN-
SF results in unreliable performance because of the auto-
correlation of the temporally neighboring data points within
the partition, and hence it breaks the underlying assumption
that random variables need to be independent for models. [45]
studied this notion on SWAN-SF and defined it as temporal
coherence of data. Following their suggestion, as shown in
Fig. 1, we avoid mixing partitions for different purposes.
Partition 1 is used only to compute the FSS ranks; Partition 2
is reserved for training SVM on the ranked features; a 3-fold
cross-validation, each fold being repeated 5 times to generate
different undersampled versions of the training partition. The
uncertainties are thus computed using the 15 scores. Partitions
3, 4, and 5 are assigned to testing the efficacy of the obtained
ranked using SVM.

B. Univariate Ranking Evaluation
Our univariate evaluation pipeline is designed to assess

the quality of ranking of features individually, regardless of
the ranking methodology (univariate or multivariate). This
pipeline functions as follows: it create a subset of SWAN-
SF, that contains only one feature and the class labels. It uses
Partition 2 of this subset as the training set, and Partitions 3,
4, and 5 as the test set. Note that for obtaining the ranked
features, only Partition 1 was used. Next, as shown in Fig. 1
(the evaluation branch), it carries out a 3-fold cross-validation
(repeating each trial 5 times) during which we train SVM on
subsets of Partition 2 and test it on the test set. This subset
is obtained at each iteration, using the climatology-preserving
undersampling method discussed in Section VI-A. The model
performance is reported in terms of the average TSS and HSS,
with the variability being reported by their standard deviation.

The pipeline repeats this procedure for the remaining features
and reports the results similarly.

C. Multivariate Ranking Evaluation

Our multivariate evaluation methodology is implemented to
examine the collective contribution of the selected features,
regardless of the ranking methodology (univariate or multi-
variate). The pipeline is very similar to that of the univariate,
with one difference that instead of a single feature, a collection
of the features is examined at each iteration, starting with one
single feature (the best one according to a given FSS method),
and iteratively appending the next best feature (according to
the same FSS method) to the collection. Since there are 224

possible subsets, unlike the univariate pipeline, this has to be
repeated for each FSS method’s returned ranks separately.

D. Cross Comparison of Ranked Features

To study the degree of which all the employed FSS methods
agree with each other’s rankings, we compare all returned
rankings and measure their Pearson correlation coefficient.
Higher positive correlations indicate that the features are
similarly ranked by the compared methods, and conversely,
the higher negative correlations indicate the opposite order of
relevance. Values closer to zero should be interpreted as no
(linear) correlation. While some degree of positive correlation
is expected, it is important to note that such a comparative
analysis on its own is not indicative of the efficacy of the
obtained rankings.

Note that, although we have two groups of FSS methods,
namely vectorized-based and MTS-based, in our evaluation
pipeline, we only use MTS data (without vectorization). This
decision is made for two reasons: (1) to guarantee the com-
parability of the algorithms and their rankings, and (2) to test
rankings’ efficacy on the raw time series, since the statistics
chosen for vectorization of the MTS data can change from one
study to another. Also, for the sake of completeness, we run
all of our training experiments once with the rbf kernel and



Fig. 2. Univariate comparison of the ranked features: On the x-axis the 24
SWAN-SF features are listed and sorted by their aggregated ranks across all
FSS methods. The green bars represent features’ frequency of occurrence, and
their position shows their overall ranks across all 24 FSS methods. TSS and
HSS are reported as models’ performance.

then with the linear kernel. We do not use gak kernel however,
because (1) we did not observe any significant improvement
(compared to the other two) in our studies on subsets of the
data, despite the theoretical support that the gak might be
more appropriate for the high-dimensional data such as ours.
Also, (2) it is extremely resource hungry due to its reliance
on the optimization needed for DTW. We suspect that the
ineffectiveness of the gak kernel on SWAN-SF might be rooted
in the noisiness of the data. Smoothing the SWAN-SF’s time
series requires a rigorous and comprehensive analysis that we
consider out of the scope of this work.

VII. RESULTS

In this section, we analyze the output of the pipelines
illustrated in Fig. 1, through multiple lenses. For description
of the SWAN-SF feature names and their physical meaning,
please see Table 1 in [7].

The result of our univariate evaluation is illustrated in
Fig. 2. The bar at the i-th position represents how often
the corresponding feature was ranked as the i-th feature. For
example, TOTBSQ is the 4th most relevant feature as it was
overall ranked 5 times (highest) as the 4th feature. While there
seems to be a decreasing trend in terms of TSS and HSS, the
high fluctuations prevent us from drawing any conclusions in
terms of the reliability of the ranking. The first seven features
(ABSNJZH, SAVNCPP, TOTUSJH, TOTBSQ, TOTUSJZ, R-
VALUE, and USFLUX) correspond to the highest individual
TSS values, with HSS values being among the highest. On
the other hand, even features from the bottom of the list,
e.g., MEANSHR and EPSX, achieve very high TSS values,
although accompanied by low HSS values. We know that a
good flare forecast performance corresponds to comparable
TSS and HSS values [45]. Also, it is interesting to note
that features like TOTPOT and MEANPOT which correspond
to near-zero TSS and HSS, are ranked individually higher
than other features such as TOTFX which corresponds to a
much higher TSS (∼ 0.7) value. This suggests that while
some features (e.g., TOTPOT) may not be found relevant
individually, when combined with others they might help
better discriminate the strong and weak flares. This is why
multivariate selection strategies are often preferred over the

Fig. 3. Multivariate comparison of the ranked features: The x-axis represents
k in the top-k features of SWAN-SF ranked by the mean rank of different
MTS- and vectorized-based methods. The y-axis represents the mean TSS
and mean HSS across all 24 methods. The linear kernel is used for this set
of experiments.

Fig. 4. Multivariate comparison of the ranked features: This is similar to
Fig. 3, except that the rbf kernel is used (instead of linear) for this set of
experiments.

univariate ones, given their limitations. Interestingly, the top-
10 SWAN-SF features according to their aggregated ranks
across all FSS methods correspond to the top-11 features for
flare prediction mentioned by [4] according to the F-score (the
authors also had the AREA ACR within the top-11 features
which is not a part of SWAN-SF).

The results of our multivariate evaluation are illustrated
in Figs. 3 and 4 for SVM with the linear and rbf kernels,
respectively. Looking at Fig. 3, it is evident that utilizing the
linear kernel results in consistent performance in terms of TSS
and HSS, with any k in the top-k features. The insignificant
fluctuations and the non-descending pattern in TSS and HSS
demonstrate that the linear kernel does not distinguish between
different features’ effectiveness, whether using the vectorized-
based nor MTS-based FSS methods. Using the rbf kernel
(Fig. 4), on the other hand, the performances are very distinct.
The performance of the vectorized-based FSS methods drops
drastically by adding the 7th feature. MTS-based methods,
however, demonstrate higher tolerance for a larger number of
top features. This observation might be of interest from the
domain experts’ point of view, as it allows a larger number of
features to be picked for further investigations. An observation
can also be made in favor of the vectorized-based methods;
using those methods, with very few features (3 to 5) one
can get similar or marginally better performance than using
MTS-based methods with any (large or small) combination
of the features. This is particularly important for operational
forecast modules as they must take into account the factor of
computation time. A model can perform faster on data with
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Fig. 5. Cross comparison of the 24 FSS methods: each cell of the heatmaps
(except those on the diagonal) represents the Pearson correlation of two
rankings. The diagonal cells compares a ranking with that of SVM (univariate)
using a linear or rbf kernel. The rankings of vectorized-based and MTS-based
FSS methods are separated for a better visibility.

lower dimensionality.
The result of our cross comparison evaluation, is illustrated

through the heatmaps in Fig. 5. Looking at the heatmaps, it is
not difficult to see that the distribution of the correlations is
negatively skewed (i.e., in favor of the positive values). Using
the Kolmogorov-Smirnov test [51], we assess whether the
distribution of correlations is different from the uniform noise
or not. With the test statistic of ∼ 0.48 associated with the
very small p-value of 4.1e−122, we confidently reject the null
hypothesis that the two distributions are similar. Therefore, the
FSS methods, with the overall average correlation (using rbf )
of ∼ 0.60 for vectorized-based and ∼ 0.39 for MTS-based
methods (non-diagonal cells), agree with each other much
more than they disagree. On the degree of this agreement, the
theoretical expectation might be to have a near-perfect average
(linear) correlation.

In a closer look, for vectorized-based FSS methods (the
larger heatmap) a strong correlation (∼ 90%) is observed
between methods with the same estimator irrespective of their
different selection strategies. For example, rfe logistic and
sfm logistic both use Logistic Regression as their estimator,
but the former uses Recursive Feature Elimination (RFE)
as its selection strategy while the latter uses Select From
Model (SFM). While the computational complexity of RFE
is significantly higher than that of SFM, on the SWAN-SF
dataset they return similar feature rankings. This observation
is not unique to those two methods only. A good correlation
(60%-80%) between strategies having tree-based estimators is
also observed, e.g., Random Forest (RF), Extra Trees (XT),
Gradient Boosting (GB), Ada Boosting (ADA), and Bagging
Trees (bag). We believe the main reason behind this similarity
is their similar heuristics, and this should not be confused with
the reliability of their results.

For MTS-Based methods none of the utilized FSS methods
demonstrate strong correlation within themselves. This can

top-3
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Fig. 6. Performance of the top-k features per FSS method, reported in terms of
TSS, using SVM with rbf kernel. The x-axis represents the 24 FSS methods
and their corresponding top-k features based on TSS score. The FSS methods
on the x-axis are sorted by the TSS report of their top-3 features.
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Fig. 7. Performance of the top-k features per FSS method, reported in terms
of HSS using SVM with rbf kernel. The x-axis represents the 24 FSS methods
and their corresponding top-k features based on HSS score. The FSS methods
on the x-axis are sorted by the TSS (not HSS) report of their top-3 features.

also be attributed to the inherent differences in the algorithmic
approaches across all the MTS-based methods. That said,
such FSS methods might be good candidates for making an
ensemble feature selection model. This, however, is just a
hypothesis yet to be investigated.

Looking at the diagonals of the heatmaps, the average
correlations with the SVM’s rankings (using rbf ) are 0.31
and 0.30 for the vectorized-based and MTS-based methods,
respectively. Interestingly, most of the FSS methods whose
rankings are much more similar to those obtained by SVM
are in fact filter methods, such as mRMR, Relief, Select k-
Best (with different estimators), and FBCF. CLeVer which is
an embedded FSS method also correlates very strongly with
the SVM’s ranking.

Another way to assess the collective relevance of the fea-
tures is by looking at the performance SVM can achieve using
the top-k features. As illustrated in Figs. 6 and 7, most of the
methods’ top-3 features (first 11 ones) perform relatively well,
in terms of TSS and HSS. But when more features are used
together, i.e., top-17, most of the RFE-based methods (e.g.,
rfe ada, rfe gb, rfe logistic) perform significantly worse. In
contrast, (yet again) the filter methods seem to have selected
their large set of features very well, as manifested by the
TSS and HSS obtained by the top-17 features selected by
skb chi, skb fval, and mRMR. The top-17 features of the
CLeVer method achieve the highest TSS and HSS compared to



other methods in this group. CLeVer utilizes an unsupervised
estimator (k-means) to drop the redundant features, which
might be the reason for its selection to maintain such a high
performance. The outperforming FSS methods with their top-
8 features are also mainly filters, e.g., skb fval, mRMR, CSFS,
and PIE.

It is also interesting to note that although previously Corona
did not show a high correlation with any of the other
vectorized-based FSS methods (see Fig. 5), neither had it
any correlation with the rankings obtained by SVM, its top-3
selection outperforms (in terms of TSS) all other top-k features
of all FSS methods. This does not hold true however, when
HSS is used for evaluation.

VIII. CONCLUSION

In summary, our FSS investigation on SWAN-SF dataset
brings us to the following conclusions:

• Although different FSS methods rank SWAN-SF’s features
differently, we statistically showed that overall these meth-
ods agree with each other’s rankings much more than
they disagree. To avoid presenting an unreliable ranking of
the features, we presented the FSS methods whose top-k
features performed better than others (see Figs. 6 and 7).

• The high correlations between FSS methods’ returned rank-
ings are often rooted in the similarities in their strategies and
not necessarily the methods’ confidence in their rankings.
These similarities can be looked for in (1) the estimators (for
wrapper and embedded methods), the statistical inference
(for filter methods), and the embedded selection algorithms.

• In the absence of domain knowledge, the reliability of
the ranked features cannot be trusted on its own, and it
should be further tested by (1) cross-verification with the
rankings obtained by other methods made up of non-similar
components; (2) being verified by the same verification
metrics that will be used for evaluation of the main problem.
In this study, we used SVM as our control classifier, and TSS
and HSS to keep track of its performance.

• Ambiguities in correlations between different FSS methods
indicate that the performance of a solar flare forecast model
(trained on SWAN-SF) may depend on the choice of the
FSS method. Therefore, further investigation on a more
appropriate FSS method is warranted.

• We observed that the top-k features returned by FSS meth-
ods may perform differently, depending on the size of k.
Those which work better with smaller values of k are
useful particularly for situations where the time and space
complexity matters, whereas others can find a larger number
of features without adding too much of redundancy. These
are often more useful when the objective is to obtain domain
insight into the features and their importance.

• All FSS methods (except Clever) utilized in this study
are supervised methods, partially because there is a large
emphasis on this group of methods in the literature. It was
interesting, however, to observer that Clever outperformed
most of the supervised methods. This hints at the importance

of such methods and invites further investigation in that
direction on SWAN-SF features.
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