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Abstract

The goals of this study were to predict the genes associated with the biodegradation of organic contaminants and to examine
microbial community structure in samples from two contaminated sites. The approach involved a predictive bioinformatics
tool (PICRUSt2) targeting genes from twelve KEGG xenobiotic biodegradation pathways (benzoate, chloroalkane and chlo-
roalkene, chlorocyclohexane and chlorobenzene, toluene, xylene, nitrotoluene, ethylbenzene, styrene, dioxin, naphthalene,
polycyclic aromatic hydrocarbons, and metabolism of xenobiotics by cytochrome P450). Further, the predicted phylotypes
associated with functional genes early in each pathway were determined. Phylogenetic analysis indicated a greater diversity
in the sediment compared to the groundwater samples. The most abundant genera for sediments/microcosms included Pseu-
domonas, Methylotenera, Rhodococcus, Stenotrophomonas, and Brevundimonas, and the most abundant for the groundwater/
microcosms included Pseudomonas, Cupriavidus, Azospira, Rhodococcus, and unclassified Burkholderiaceae. Genes from
all twelve of the KEGG pathways were predicted to occur. Seven pathways contained less than twenty-five genes. The pre-
dicted genes were lowest for xenobiotics metabolism by cytochrome P450 and ethylbenzene biodegradation and highest for
benzoate biodegradation. Notable trends include the occurrence of the first genes for trinitrotoluene and 2,4-dinitrotoluene
degradation. Also, the complete path from toluene to benzoyl-CoA was predicted. Twenty-two of the dioxin pathway genes
were predicted, including genes within the first steps. The following phylotypes were associated with the greatest number
of pathways: unclassified Burkholderiaceae, Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Rhodococcus,
unclassified Betaproteobacteria, and Polaromonas. This work illustrates the value of PICRUSt2 for predicting biodegrada-
tion potential and suggests that a subset of phylotypes could be important for the breakdown of organic contaminants or
their metabolites.

Key points

e The approach is a low-cost alternative to shotgun sequencing.

o The genes and phylotypes encoding for xenobiotic degradation were predicted.

e A subset of phylotypes were associated with many pathways.

Keywords Xenobiotic - PICRUSt2 - Nitrotoluene - Toluene - RDX

Introduction

Bioremediation is a widely used remediation approach for
contaminated sites that greatly relies on microbial degrada-
tion. To determine the feasibility of this method, groundwa-
ter or sediment samples can be subject to quantitative PCR
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(qPCR) targeting the microorganisms and functional genes
of interest (Fuller et al. 2010; Richards et al. 2019; Wil-
son and Cupples 2016). However, unless high-throughput
gPCR is utilized, only a limited number of genes can be
investigated. Another approach commonly adopted is 16S
rRNA gene amplicon sequencing, providing information on
which microorganisms are present (Dang and Cupples 2021;
Ramalingam and Cupples 2020a; Wilson et al. 2016), with
no information on which functional genes are present. Alter-
natively, shotgun sequencing provides both phylogenetic and
functional information for site samples (Dang et al. 2018;
Ramalingam and Cupples 2020b). Yet, shotgun sequencing
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is expensive and requires more advanced bioinformatics
skills for data analysis.

In 2013, researchers developed the bioinformatics soft-
ware package PICRUSt (Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States) to
expand the investigative abilities of 16S rRNA gene ampli-
con sequencing (Langille et al. 2013). Specifically, the tool
predicts functional profiles of microbial communities based
on marker gene (16S rRNA gene) data. The tool was recently
(2020) updated (PICRUSt2) and, according to the authors,
contains an updated and larger database, provides interop-
erability with any operational taxonomic unit-picking or
denoising algorithm, and supports phenotype predictions
(Douglas et al. 2020). The authors validated their predictions
using seven datasets generated from 16S rRNA gene and
shotgun metagenomic sequencing (Douglas et al. 2020). One
option for PICRUSt2 predictions includes the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) orthologs (KO)
(Kanehisa and Goto 2000), with the total number of KOs
in PICRUSt2 being 10,543 (Douglas et al. 2020). For those
interested in the biodegradation of environmental contami-
nants, the KEGG pathways on xenobiotic biodegradation
are particularly useful. For example, researchers have used
PICRUSt or PICRUSt2 to make predictions on the xenobi-
otic degrading pathways from alkaline hot springs in India
(Choure et al. 2021), sediment from contaminated and pris-
tine locations from the Yucatan Peninsula (Navarrete-Euan
et al. 2021), heavy-metal-contaminated soil from Korea (Hur
and Park 2019), agricultural soils from Michigan exposed
to pharmaceuticals and personal care products (Thelusmond
et al. 2018), as well as soil and sediment samples from rivers
and a site contaminated by hospital waste in Northeast India
(DeMandal et al. 2019).

The current work expands on the use of PICRUSt2,
adopting this method to examine groundwater and sedi-
ment from two contaminated sites. The work targets a sub-
set of the KEGG xenobiotic degradation pathways using
16S rRNA gene sequencing data from a previous study that
involved sequencing DNA from sediments, groundwater,
and microcosms from two naval sites (Wilson and Cupples
2016). The previous study primarily focused on qPCR for
the functional genes involved in RDX biodegradation with
only a brief analysis of 16S rRNA gene data (phylotypes that
increased in abundance in microcosms amended with RDX).
Here, the overall composition of the microbial communities
is examined. More importantly, PICRUSt2 (Douglas et al.
2020) was used to predict the abundance of genes in a subset
of the KEGG xenobiotic biodegradation pathways (benzo-
ate, chloroalkane and chloroalkene, chlorocyclohexane and
chlorobenzene, toluene, xylene, nitrotoluene, ethylbenzene,
styrene, dioxin, naphthalene, polycyclic aromatic hydro-
carbons, and metabolism of xenobiotics by cytochrome
P450) (Kanehisa and Goto 2000). Additionally, also using
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PICRUSt2, the current study predicted the phylotypes asso-
ciated with the functional genes early in each pathway, as
these are typically critical genes for the initiation of con-
taminant removal.

The current work determined the occurrence of these
genes in sediment at different depths, in groundwater
(upstream and downstream of a biobarrier), and in micro-
cosms incubated over time (with or without RDX). Although
the xenobiotic degrading pathways have previously been
examined for various environmental samples, this work is
novel because it is the first to provide a detailed analysis
of the phylotypes linked to key pathway genes. Further, to
our knowledge, this is the first attempt to use PICRUSt2 to
examine these pathways in sediment over a range of depths
at a contaminated site or in contaminated site groundwa-
ter. We hypothesize that certain phylotypes will be associ-
ated with multiple genes and will likely be good biomark-
ers for contaminant biodegradation potential. Additionally,
it is likely that some pathways (e.g., benzoate) will have
numerous genes detected and others will have less (e.g.,
dioxin), and this will vary over depth. An overall goal is to
provide data to improve our understanding of biodegrada-
tion potential in sediment and groundwater at contaminated
sites. As many contaminated sites contain a large number
of co-contaminants, our aim was to understand the diversity
of microorganisms and functional genes in situ regarding a
wide number of contaminants.

Methods
Sites and samples

Previously, DNA was extracted and sequenced from sedi-
ment, groundwater, and laboratory microcosms (Wilson
and Cupples 2016). For that study, sediment samples were
collected from Naval Base Kitsap (RDX-contaminated site,
Washington). The samples originated from two wells located
on the site, hereafter called wells 58 and 61. Samples at five
different depths (5, 10, 20, 25, and 30 ft deep) were col-
lected from well 58, while samples at three different depths
(5, 10, and 20 feet deep) were collected from well 61. The
groundwater samples were collected from another RDX-
contaminated naval site, the US Department of Defense
explosives testing range in Virginia. Samples originated
from a location 2.5 ft downstream, well 1 (hereafter called
downstream well), and 10 ft upstream, well 10 (hereafter
called upstream well), of a 100-ft installed buffered emulsi-
fied biobarrier. Microcosms were inoculated with groundwa-
ter and sediments, with or without the addition of RDX, and
DNA was extracted at different times. Details on both sites,
the microcosm studies, DNA extraction, and 16S rRNA gene
amplicon sequencing were previously provided (Wilson and
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Cupples 2016). The decision to use these samples was based
on the availability of both groundwater and sediment from
two contaminated sites.

R packages

In the current study, data analyses and the generation of all
figures were achieved using the following R packages in R
(version 4.0.4) (R Core Team 2018) within RStudio (ver-
sion 1.1.456) (RStudio Team 2020): microbiome (version
1.10.0) (Lahti and Shetty 2017), phyloseq (version 1.32.0)
(McMurdie and Holmes 2013), ampvis2 (version 2.6.5)
(Andersen et al. 2018), ggplot2 (version 3.3.2) (Wickham
2016), ggpubr (version 0.4.0) (Kassambara 2020), vegan
(version 2.5-7) (Oksanen et al. 2020), colourpicker (version
1.1.0.9000) (Attali 2021), readx] (version 1.3.1) (Wickham
and Bryan 2019), rstatix (version 0.7.0) (Kassambara 2021),
forcats (version 0.5.1) (Wickham 2021a), data.table (version
1.14.0) (Dowle and Srinivasan 2021), dplyr (version 1.0.6)
(Wickham et al. 2021a, b), patchwork (version 1.1.1) (Ped-
ersen 2020), tidyr (version 1.1.3) (Wickham 2021b), ran-
domcoloR (version 1.1.0.1) (Ammar 2019), RColorBrewer
(version 1.1-2) (Neuwirth 2014), circlize (version 0.4.13)
(Gu et al. 2014), ComplexHeatmap (version 2.8.0) (Gu et al.
2016), and tidyverse (version 1.3.1) (Wickham et al. 2019).
The R package versions and citations are not shown in the
following text to improve clarity.

Microbial community analysis

In the current work, the amplicon sequencing data in the
fastq file format was re-analyzed with Mothur (version
1.44.2) (Schloss 2009; Schloss et al. 2009) using the MiSeq
Standard Operating Procedure (Kozich et al. 2013). The
procedure included trimming the raw sequences and qual-
ity control. The database used for alignment was SILVA
bacteria database (Release 138) for the V4 region (Pruesse
et al. 2007). Chimeras, mitochondrial, and chloroplast line-
age sequences were removed. Two Mothur generated files
(shared file and taxonomy file) were combined with a meta-
data file using the package microbiome. The packages phy-
loseq and ggplot2 were used to rarefy the data and create
the principle component analysis plots. Vegan was used to
test for differences between microbial communities (between
wells, treatments, time, depth) for the sediment and ground-
water samples with Permutational Multivariate Analysis of
Variance (PERMANOVA). Phyloseq was used to transform
the rarified data to relative abundance values for plotting the
bar charts by class. Bar charts were created separately for
each well for both the sediment samples and the groundwa-
ter samples. The package ampvis2 was used to generate the
heatmaps illustrating the most abundant phylotypes for each

well. In each case, the package patchwork combined plots
created a common legend and letter annotations.

PICRUSt2 analysis

PICRUSt2 (Douglas et al. 2020) was used to analyze Mothur
generated files on the High Performance Computing Clus-
ter (HPCC) at the Michigan State University. PICRUSt2
was applied with EPA-NG (Barbera et al. 2019) and gappa
(Czech et al. 2020) for phylogenetic placement of reads, cas-
tor (Louca and Doebeli 2018) for hidden state prediction,
and MinPath (Ye and Doak 2009) for pathway inference.
The PICRUSt2 generated files for the KEGG genes (pred_
metagenome_unstrat.tsv and pred_metagenome_contrib.tsv
within the folder KO_metagenome_out) were examined for
the presence of genes and phylotypes associated with the
biodegradation of a group of xenobiotics. For this, data was
first collected on a subset of KEGG xenobiotic degradation
pathways (Kanehisa and Goto 2000) from the KEGG web-
site (https://www.genome.jp/kegg/pathway.html). Specifi-
cally, gene numbers and descriptions were obtained from the
following twelve pathways: benzoate, chloroalkane and chlo-
roalkene, chlorocyclohexane and chlorobenzene, toluene,
xylene, nitrotoluene, ethylbenzene, styrene, dioxin, naphtha-
lene, polycyclic aromatic hydrocarbons, and metabolism of
xenobiotics by cytochrome P450. Additionally, genes associ-
ated with methane and propane metabolism were selectively
obtained from the KEGG website. The PICRUSt2 files were
examined for the genes and associated phylotypes using R
(version 4.0.4) (R Core Team 2018) with R studio (version
1.1.456) (RStudio Team 2020) and a number of R packages,
as described below.

Heatmap and KEGG maps

The genes present in the sediment, groundwater, and micro-
cosm samples were determined for each KEGG pathway. For
this, the PICRUSt2 output file pred_metagenome_unstrat.
tsv was unzipped and then combined with the appropriate
KEGG file using the function inner_join (from dplyr). The
R package ComplexHeatmap was then used to generate heat-
maps of the 25 most abundant genes for each pathway for
both the sediment and groundwater samples. For the cases
when less than 25 genes were present for a pathway, all genes
were included in the heatmaps. The package readx] was used
to import the appropriate metafiles and dplyr (slice_max)
was utilized to determine which genes had the highest mean
value of the samples examined. Heatmap colors and break
values were selected using the R package circlize. In addi-
tion, various annotations were added to each heatmap using
the function HeatmapAnnotation from ComplexHeatmap.
Following copyright permission, three pathways (nitrotolu-
ene, toluene, dioxin) were selected for the creation of KEGG

@ Springer


https://www.genome.jp/kegg/pathway.html

Applied Microbiology and Biotechnology

map figures, with each displaying all genes present as well
as the genes selected for phylotype examination (see below).
During the generation of the heatmaps, a list of all the genes
present beyond the 25 most abundant within each sample
was compiled for each pathway.

Phylotypes associated with xenobiotic degrading
genes

RStudio on the HPCC was used to generate a file that con-
tained which genes and phylotypes were present using
the PICRUSt2 output file pred_metagenome_contrib.tsv
(unzipped). The approach involved combining this file with
the KEGG pathway files and a taxonomy file (from Mothur),
using the R packages data.table, dplyr, tidyr, ggplot2, and
patchwork. The analysis involved only the sediment samples
and sediment-inoculated microcosms. Only genes at the start
of each pathway were selected for this analysis, as these are
often the most important genes for contaminant biodegra-
dation. For each pathway, four genes were selected for the
creation of bar charts, faceted (in ggplot2) to illustrate the
data over two wells, at different DNA extraction times and
at different depths.

Genes enriched in RDX-amended microcosms

The final analysis involved determining if any genes were
statistically significantly enriched in the RDX-amended
microcosms compared to the no RDX-amended controls.
For each pathway, the relative abundance of each gene was
determined for each sample, and the data were combined
with metadata (e.g., well number, depth, DNA extraction
time, replicate). The Wilcoxon rank test was used to deter-
mine genes statistically more significant (higher relative
abundance) in the RDX-amended microcosms compared
to the microcosms not amended with RDX. Only the eight
most abundant are shown for each pathway (if eight were
statistically significantly different). If less than eight were
significant, then all were included in the box and whisker
plots. The plots were faceted (in ggplot2) to illustrate the
data from different wells at different depths. The following
packages were utilized for data manipulation and the crea-
tion of the plots: tidyverse, ggpubr, rstatix, forcats, readxl,
forcats, colourpicker, and patchwork.

Results

The dominant microbial class in the majority of the sediment
and groundwater microbial communities was Gammaproteo-
bacteria (Figs. 1 and 2). This trend was particularly apparent
in the groundwater samples, with eight of the ten communi-
ties being dominated by this class (Fig. 2). In the sediment
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samples, other important classes included Actinobacteria,
Bacteroidia, Alphaproteobacteria, Bacilli, and Clostridia
(Fig. 1). For well 58, no clear trends were observable by
incubation time, treatment, or depth (Fig. 1A). Overall,
the communities from well 61 microcosms illustrated less
Gammaproteobacteria (Fig. 1B), for example, four of the
five communities from 10 ft deep were dominated by Bacte-
roidia, Bacilli, or Actinobacteria. For well 61, there was also
a trend of a larger percentage of Bacilli in the RDX amended
samples from the Time 1 communities (but not Time 2).
The upstream well-groundwater communities before incu-
bation (Time 0) exhibited a number of dominant classes
(Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidia,
Deltaproteobacteria, and Gammaproteobacteria) (Fig. 2A).
In contrast, the downstream well community before incuba-
tion (Time 0) was dominated only by Gammaproteobacte-
ria (Fig. 2B). For both the upstream and downstream wells,
when glucose was added, the classes observed were simi-
lar. When RDX was added with no glucose to the upstream
well, the community became dominated by Bacteroidia and
Deltaproteobacteria (Fig. 2A). However, this trend did not
occur for the downstream well. Comparing all of the sedi-
ment to all of the groundwater microbial communities visu-
ally, one clear trend is a greater diversity in dominant classes
in the sediment samples.

Principle component analysis (PCA) of the microbial
communities indicated a separation of communities between
the sediments and sediment-inoculated microcosms between
the two wells (Fig. 3A), between different time points for
the two wells (Fig. 3B), and between treatments (Fig. 3A
and B). Separations were also noted individually for each
well over depth (Fig. 3C and D), over time (Fig. 3E and F),
and over treatment (Fig. 3C, D, E, and F). The differences
between communities were confirmed with PERMANOVA
(Table S1). Similarly, differences were observed via PCA
and confirmed with PERMANOVA for the groundwater
wells by well, treatment, and time (Fig. 4 and Table S2). The
most abundant phylotypes across the samples and micro-
cosms for sediments/microcosms for both wells 58 and 61
included Pseudomonas, Methylotenera, Rhodococcus,
Stenotrophomonas, and Brevundimonas (Fig. 5). The most
abundant for the groundwater/microcosms for both wells
included Pseudomonas, Cupriavidus, Azospira, Rhodococ-
cus, and unclassified Burkholderiaceae (Fig. 6).

All predicted genes (Tables S3 and S4), along with the
twenty-five most abundant predicted genes, were determined
for each pathway (Tables S3 and S4, Figs. 7 and 8). The
heatmaps all illustrate a distinction between the most abun-
dant compared to the rest. For example, the most abundant
predicted genes from the benzoate biodegradation pathway
included those encoding for acetyl-CoA C-acetyltrans-
ferase, enoyl-CoA hydratase, 3-hydroxybutyryl-CoA dehy-
drogenase, 4-oxalocrotonate tautomerase, glutaryl-CoA
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Fig.1 Bar charts illustrating the microbial community composition
(by class) over different sampling times and treatments for the sedi-
ment samples and microcosms from well 58 (A) and well 61 (B). For

dehydrogenase, and 4-carboxymuconolactone decarboxylase
(Fig. 7A). Many of these predicted genes are part of the
lower degradation pathway for benzoyl-CoA. The enzymes
associated with the gene numbers shown in the heatmaps
have been summarized (Tables S3 and S4). Seven pathways
contained less than 25 predicted genes (Fig. 7B, D, E, and
F and Fig. 8A, C, and E). The number of predicted genes
was lowest for xenobiotics degradation by cytochrome P450
(Fig. 8E) and ethylbenzene degradation (Fig. 7D) and high-
est for degradation of benzoate (Tables S3 and S4). Overall,
the trends between both wells and at different depths were
similar. The heatmaps for the groundwater samples and
microcosms are also shown (Figures S1 and S2).
Permission was granted to include three KEGG pathways
(nitrotoluene, toluene, and dioxin degradation) in this publi-
cation (KEGG Copyright Permission 210,692) (Fig. 9). The
nitrotoluene pathway was selected because of similarities
in structure to RDX (a contaminant at both sites). Eighteen

well 58, the results are from sediment at day 0 and from microcosms
at days 90 and 130. For well 61, the results are from sediment at day
0 and from microcosms at days 45 and 90

genes from the nitrotoluene pathway were predicted to be
present (shown in pink and red; some boxes represent more
than one gene, Fig. 9A). Notably, genes for the entire degra-
dation pathway were not predicted to be present, indicating
complete degradation of nitrotoluene may not occur. How-
ever, the first genes in the pathways of both trinitrotoluene
and 2,4-dinitrotoluene were present, suggesting partial deg-
radation of the parent contaminants is potentially feasible.
More than thirty of the toluene degradation pathway genes
were predicted to be present (Tables S3 and S4), includ-
ing many of the genes in the first steps of the pathway
(Fig. 9B). The complete path from toluene to benzoyl-CoA
was predicted to occur, suggesting this contaminant would
be susceptible to biodegradation. Twenty-two of the genes
within the dioxin degradation pathway were predicted in
the samples analyzed (Tables S3 and S4), including many
of the genes encoding for the enzymes within the first steps
(Fig. 9C).
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Fig.2 Bar charts illustrating the microbial community composi-
tion (by class) over different sampling times and treatments for the
groundwater samples and microcosms from the upstream well (A)
and the downstream well (B). For the upstream well, the results

The PICRUSt2 generated files also enabled the iden-
tification of the phylotypes associated with the predicted
genes. This analysis also involved the genes associated with
methane and propane biodegradation (Figures S3 and S4), as
these genes have been linked to the degradation of other con-
taminants (such as trichloroethene and 1,4-dioxane). Unclas-
sified Betaproteobacteria, unclassified Burkholderiaceae,
unclassified Galliellales, and Rhodococcus were primarily
associated with propane 2-monooxygenase large subunit
(Figures S3A, S4A). Mycobacterium was responsible for
the detection of mmoX methane monooxygenase component
A alpha chain (Figures S4B and S5B). Methane/ammonia
monooxygenase subunit A was associated with Roseiarcus
and unclassified Betaproteobacteria (Figures S3C, S4C).

The phylotype analyses for the other degradation path-
ways only focused on the early genes, as these are critical
for initiating the removal of the parent contaminant. While
a number of microorganisms were associated with these
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are from sediment at day 0 and from microcosms at day 67. For the
downstream well, the results are from sediment at day 0 and from
microcosms at day 100

genes in each case, the following discussion highlights only
those that were dominant. For each pathway, the trends of
these phylotypes for each gene varied over time, depth, and
between wells (Figs. 10, S5-S13). For nitrotoluene, unclas-
sified Enterobacteriaceae, unclassified Rhodocyclaceae,
unclassified Burkholderiaceae, Burkholderia-Caballeronia-
Paraburkholderia (hereafter called Burk-Caball-Paraburk),
Polaromonas, Pseudomonas, and Achromobacter were
important (Fig. 10A). For toluene, Geobacter, unclassified
Burkholderiaceae, unclassified Rhodocyclaceae, Cupriavi-
dus, Nevskia, unclassified Cellulomonadaceae, and Pseu-
domonas were dominant (Fig. 10B). For the dioxin early
genes, unclassified Betaproteobacteria, unclassified Gam-
maproteobacteria, Rhodococcus, unclassified Bacteria,
Burk-Caball-Paraburk, and unclassified Burkholderiaceae
were important (Fig. 10C).

For ethylbenzene biodegradation, the phylotypes
JG30-KF-CM66 (from Chloroflexi), Sphingomonas,
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Fig.3 Principle component analysis of the microbial communities
from the sediments and sediment-inoculated microcosms over differ-
ent sampling times and treatments for wells 58 and 61. For well 58,

unclassified Sphingomonadaceae, unclassified Nocar-
diaceae, unclassified Corynebacteriales, and Rho-
dococcus were important (Figure S5). For xylene,
Pseudomonas, unclassified Gammaproteobacteria,
unclassified Betaproteobacteria, unclassified Burk-
holderiaceae, unclassified Nocardiaceae, Rhodococ-
cus, Stenotrophomonas, and Burk-Caball-Paraburk
were associated with the first four genes (Figure S6).
For styrene, unclassified Betaproteobacteria, unclas-
sified Gammaproteobacteria, unclassified Burkholde-
riaceae, unclassified Sphingomonadaceae, Sphingob-
ium, Nocardioides, unclassified Microbacteriaceae, and
Pseudomonas were the key phylotypes (Figure S7). For
the chloroalkane and chloroalkene pathway, unclassified
Galliellales, Rhodococcus, Xanthomonas, unclassified
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the results are from sediment at day 0 and from microcosms at days
90 and 130. For well 61, the results are from sediment at day 0 and
from microcosms at days 45 and 90

Xanthomonadaceae, unclassified Xanthobacteraceae,
unclassified Burkholderiaceae, Pseudomonas, unclassi-
fied Rhodocyclaceae, Subgroup_6, unclassified Betapro-
teobacteria, Methylotenera, and Methylophilus were
associated with the early pathway genes (Figures S8).
For benzoate, Acinetobacter, Burk-Caball-Paraburk,
unclassified Betaproteobacteria, Pseudomonas, Ral-
stonia, unclassified Burkholderiaceae, and unclassified
Xanthobacteraceae were important for the first genes
(Figure S9). Phylotypes linked to the early PAH genes
included Polaromonas, unclassified Microbacteriaceae,
Achromobacter, and unclassified Burkholderiaceae (Fig-
ure S10). For the chlorocyclohexane and chlorobenzene
early genes, unclassified Galliellales, Rhodococcus, Xan-
thomonas, unclassified Xanthomonadaceae, unclassified
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Fig.4 Principle component analysis of the microbial communities
from the groundwater and groundwater-inoculated microcosms over
different sampling times and treatments for the upstream and down-

Burkholderiaceae, Stenotrophomonas, unclassified
Rhodocyclaceae, Burk-Caball-Paraburk, and unclas-
sified Betaproteobacteria were dominant (Fig. 11S).
The pathway involving the degradation of xenobiotics
by cytochrome P450 primarily involved unclassified
Burkholderiaceae, Burk-Caball-Paraburk, unclassified
Bacteria, unclassified Rhizobiaceae, and Rhodococcus
(Figure S12). Finally, for naphthalene, Achromobacter,
unclassified Burkholderiaceae, Polaromonas, unclassi-
fied Betaproteobacteria, Duganella, and Novosphingo-
bium were important (Figure S13). Considering all of
the twelve KEGG pathways examined here together, the
following phylotypes were associated with the great-
est number of pathways (the number of pathways are
in parenthesis), unclassified Burkholderiaceae (eleven),
Burkholderia-Caballeronia-Paraburkholderia (six),
Pseudomonas (six), Rhodococcus (six), unclassified
Betaproteobacteria (five), and Polaromonas (three).

RDX positively impacted the relative abundance of
some genes in each pathway (Figures S14-S17). For the
nitrotoluene pathway, nemA, N-ethylmaleimide reduc-
tase (K10680) exhibited the highest relative abundance
of the genes predicted to be statistically significantly
positively impacted (Figure S17A). For toluene, the
predicted abundance of carboxymethylenebutenolidase
(K01061) was particularly higher in RDX-amended
samples compared to those not amended with RDX
(Figure S17B). For the dioxin pathway, two genes were
predicted to be markedly more abundant (acetaldehyde
dehydrogenase [K04073] and 2-oxo-3-hexenedioate
decarboxylase [K0O1617]) in the RDX-amended samples
compared to the no RDX microcosms (Figure S17C).
The statistically significantly impacted genes in the
other nine pathways are shown in the supplementary
section (Figures S14-S16).
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stream wells. For the upstream well, the results are from sediment at
day 0 and from microcosms at day 67. For the downstream well, the
results are from sediment at day O and from microcosms at day 100

Discussion

The current work utilized a newly updated bioinformatics
tool (PICRUSt2) (Douglas et al. 2020) to examine the func-
tional genes involved in organic contaminant biodegradation
and their associated phylotypes in contaminated site sam-
ples and microcosms. Genes from each of the twelve KEGG
xenobiotic degradation pathways investigated were predicted
to be present, although not all of the genes for each pathway
were predicted. The approach offers a low-cost alternative
to shotgun sequencing for examining the potential for the
biodegradation of organic contaminants in environmental
samples. The data generated are novel as this is the first
report predicting genes from these pathways over a range of
sediment depths at a contaminated site. Further, the research
provides an in-depth analysis of the phylotypes associated
with the first genes in each of the twelve pathways for each
depth and well investigated.

It is important to note that others have also examined
the KEGG xenobiotic degradation pathways using other
approaches. For example, a metatranscriptome shotgun
sequencing study of wheat rhizosphere reported transcripts
of sixteen different enzymes from six xenobiotic degra-
dation pathways (chlorocyclohexane and chlorobenzene,
benzoate, aminobenzoate, nitrotoluene, styrene, and cap-
rolactam) (Singh et al. 2018). Another metatranscriptome
project reported a larger number (twenty-one) of the KEGG
xenobiotic biodegradation pathways in soil samples from a
wastewater-contaminated mangrove, with the most abundant
being benzoate degradation, chloroalkane and chloroalkene
degradation, drug metabolism—other enzymes, and naph-
thalene degradation (Isaza et al. 2021). The main genera
associated with the most abundant genes were Exiguobac-
terium, Bacillus, Rhodopseudomonas, Amphibacillus, and
Nocardioides.
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Others have adopted metagenomics approaches to exam-
ine KEGG xenobiotic degradation pathways. For example,
twenty-one pathways were detected in a semi-arid mangrove
in Colombia (Munoz-Garcia et al. 2019). The researchers
reported that sixteen of these pathways were influenced by
salinity. Comparing the abundance of each pathway, the
degradation of benzoate showed the highest abundance, fol-
lowed by the drug metabolism and the degradation of chlo-
roalkanes and chloroalkenes. Another shotgun metagenomic
sequencing study (from cave soil samples) detected genes
from twenty-six pathways classifying as xenobiotics biodeg-
radation and metabolism, among them, benzoate degradation

via CoA ligation being the most abundant (Wiseschart et al.
2019). Further, seventeen KEGG xenobiotic degrading path-
ways were identified during a metagenomic analysis of a
commercial scale biofilter (Li et al. 2019). Another paper
reported eighteen KEGG xenobiotic degradation pathways
in bacterial communities in a soda lake in India before and
after monsoon using shotgun sequencing and reported nitro-
toluene and benzoate degradation pathway as being predom-
inant (Chakraborty et al. 2021).

Previously, our group used shotgun sequencing to exam-
ine the most abundant phylotypes associated with a subset
of xenobiotic degrading KEGG pathways in four agricultural
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soils (Thelusmond et al. 2019) using the first version of PIC-
RUSt (Langille et al. 2013). In that work, the most abun-
dant phylotypes encoding for the genes involved in benzoate
degradation were Rhodopseudomonas, Polaromonas, Cupri-
avidus, Bradyrhizobium, Burkholderia, Pseudomonas, and
Ralstonia. These results are partially consistent with the
current study, which documented the importance of Bur-
kholderia, Pseudomonas, Ralstonia, and Cupriavidus for
the genes early in the benzoate degradation pathway. Pre-
viously, for the chlorocyclohexane and chlorobenzene bio-
degradation pathway genes, three phylotypes (Bradyrhizo-
bium, Candidatus Solibacter, and Burkholderia) dominated
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(Thelusmond et al. 2019). Overlapping phylotypes for this
pathway between the previous and current study include
Burkholderia and Rhodococcus. In the previous study, the
phylotypes associated with dioxin biodegradation primarily
involved Bradyrhizobium, Polaromonas, Aromatoleum, and
Rhizobium (Thelusmond et al. 2019). In the current study,
for this pathway, unclassified Betaproteobacteria, unclas-
sified Gammaproteobacteria, Rhodococcus, unclassified
Bacteria, Burk-Caball-Paraburk, and unclassified Burk-
holderiaceae were important. Notably, Rhodococcus and
Burkholderia were also associated with the dioxin pathway
genes in the previous study (to a lesser extent that the four
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Fig.7 Heatmaps of the most abundant genes present in each pathway for the microcosms inoculated with sediment for well 58 or well 61 incu-
bated with (solid bar) and without RDX (white bar). Data are shown for triplicate samples
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Fig.9 A Genes present (pink) in all samples and those analyzed for
phylotypes (red) for the KEGG nitrotoluene degradation pathway
(used with permission [KEGG Copyright Permission] 210,692). B
Genes present (pink) in all samples and those analyzed for phylotypes
(red) for the KEGG toluene degradation pathway (used with permis-

Permission] 210,692)

in all samples and those analyzed for phylotypes (red) for the KEGG
dioxin degradation pathway (used with permission [KEGG Copyright
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noted above). The fourth common pathway between the pre-
vious and current study was for nitrotoluene. In our previous
work, Cupriavidus, Candidatus Solibacter, Mycobacterium,
Streptomyces, Rhodococcus, Methylobacillus, and Frankia
were the dominant phylotypes for that pathway (Thelus-
mond et al. 2019). While in the current study, for nitro-
toluene, unclassified Enterobacteriaceae, Rhodocyclaceae,
Burkholderiaceae, Burk-Caball-Paraburk, Polaromonas,
Pseudomonas, and Achromobacter were important. Differ-
ences between the results of the two studies for these four
pathways could be attributed to the data analysis approach
(considering all genes, instead of only four), the sequencing/
analysis approach (shotgun vs. 16S rRNA gene/PICRUSt2),
the version of PICRUS, or the samples themselves (agricul-
tural soil vs. contaminated site sediments).

The current study detected more genes compared to the
previous shotgun sequencing study (Thelusmond et al. 2019)
for each of the four common KEGG pathways examined.
Previously, forty-two genes associated with the benzoate
degradation pathway were detected (Thelusmond et al.
2019), compared to eighty-eight in the current work. Previ-
ously, only three genes (biphenyl 2,3-dioxygenase subunit
alpha, cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase,
salicylate hydroxylase) associated with dioxin biodegrada-
tion were detected (Thelusmond et al. 2019), and in current
study, twenty-two were detected (including the three just

@ Springer

listed). Similarly, fifteen and twenty-four genes were asso-
ciated with chlorocyclohexane and chlorobenzene metab-
olism, in previous (Thelusmond et al. 2019) and current
work, respectively. Both projects detected the gene encod-
ing carboxymethylenebutenolidase as being the most abun-
dant. Only six genes were previously detected as part of the
nitrotoluene degradation pathway (Thelusmond et al. 2019)
compared to eighteen in the current study. The top three
genes detected from both projects were the same (hyaB,
hybC; hydrogenase large subunit, iyaA, hybO; hydrogenase
small subunit, nemA; N-ethylmaleimide reductase). The dif-
ferences in genes detected are likely a result of the different
sequencing and analysis techniques (shotgun vs. 16S rRNA
gene/PICRUSt2).

As discussed above, others have used PICRUSt or PIC-
RUSK2 to investigate the importance of xenobiotic degrad-
ing pathways (Choure et al. 2021; Hur and Park 2019; Nav-
arrete-Euan et al. 2021; Thelusmond et al. 2018). To our
knowledge, only limited efforts have been made to identify
the phylotypes associated with the specific pathway genes.
One such example examined soil and sediment samples from
three rivers and one dumping site contaminated by hospital
domestic waste in Northeast India using 16S rRNA gene
amplicon sequencing (DeMandal et al. 2019) and the first
PICRUSt release tool (Langille et al. 2013). They found a
smaller number of xenobiotic degradation genes for each
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microcosms at days 90 and 130. For well 61, the results are from sed-
iment at day O and from microcosms at days 45 and 90. For well 61,
sediment was only collected and examined from 5, 10, and 20 ft. C
Predicted taxon functional relative abundance for four early genes in
the KEGG dioxin degradation pathway for sediment and microcosms
inoculated with sediment from two wells at different depths. For well
58, the results are from sediment at day 0 and from microcosms at
days 90 and 130. For well 61, the results are from sediment at day O
and from microcosms at days 45 and 90. For well 61, sediment was
only collected and examined from 5, 10, and 20 ft

toluene (eight), in the soil and sediment samples (DeMan-
dal et al. 2019). The lower number of genes may be related
to the version of PICRUSt used (version 1, compared to

Fig.10 A Predicted taxon functional relative abundance for four
early genes in the KEGG nitrotoluene degradation pathway for sedi-
ment and microcosms inoculated with sediment from two wells at
different depths. For well 58, the results are from sediment at day
0 and from microcosms at days 90 and 130. For well 61, the results
are from sediment at day 0 and from microcosms at days 45 and 90.
For well 61, sediment was only collected and examined from 5, 10,
and 20 ft. B Predicted taxon functional relative abundance for four
early genes in the KEGG toluene degradation pathway for sediment
and microcosms inoculated with sediment from two wells at different
depths. For well 58, the results are from sediment at day 0 and from
pathway, as follows: benzoate (eight), naphthalene (twelve),
chloroalkane and chloroalkene (twelve), chlorocyclohexane
and chlorobenzene (eight), and nitrotoluene (twelve), and
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In the current study, for the first four genes examined for
benzoate degradation, from these, only Acinetobacter and
Geobacter were detected. They also associated the following

In summary, this work predicted the occurrence of
genes involved in the biodegradation of a range of organic

with naphthalene degradation: Arthrobacter, Comamonas,
genes examined for naphthalene degradation, from these,

Comamonas, Diaphorobacter, Geobacter, Novispirillum,
Phenylobacterium, Pseudoxanthomonas, and Rhodoplanes.
Diaphorobacter, Geobacter, Klebsiella, Leptothrix, and
Novosphingobium. In the current study, for the first four
only Novosphingobium was detected.

of ~280,000 compared to ~ 500,000 reads). The research-
pringer

ers listed the phylotypes associated with the genes involved

in the following KEGG xenobiotic degradation pathways:
current study for benzoate and naphthalene biodegradation

Mothur (Schloss 2009) or the sequencing depth (averages
benzoate, aminobenzoate, naphthalene, and fluorobenzo-
ate degradation. We can only compare the results from the
pathways, as these are the only two common pathways.
In their study, the following phylotypes were associated
with benzoate degradation: Acinetobacter, Arthrobacter,

PICRUSt2 in the current study), the sequencing analy-
sis approach (QIIME (Caporaso et al. 2010) compared to

Fig. 10 (continued)
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K15750 bphAb, bphA2, bphE; biphenyl 2,3-dioxygenase

subunit beta

tary material available at https://doi.org/10.1007/s00253-021-11756-3.

Mandy Michalsen (USACE, Seattle District) for providing the sedi-

to David Liu (Naval Facilities Engineering Command Northwest) and
ment samples.

specific phylotypes at contaminated sites for these pathways,
the work fills a key knowledge gap in the current literature.
Supplementary Information The online version contains supplemen-
Acknowledgements Thanks to Mark E. Fuller and Paul Hatzinger
(CB&I Federal Services) for providing groundwater samples. Thanks
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investigating genes associated with contaminant biodegra-

dation and could be adopted for any site investigation. How-
ever, it is important to note that the results of this approach

contaminants. The approach is a low-cost alternative for
are only predictions and will therefore not be as robust as
the results from a metatranscriptomics study. Nevertheless,
the research provides key insights as to which microorgan-
isms may be the most important for in situ bioremediation of

Fig. 10 (continued)

this set of contaminants and/or their degradation products
Given the lack of previous research linking specific genes to
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