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Abstract 
The goals of this study were to predict the genes associated with the biodegradation of organic contaminants and to examine 
microbial community structure in samples from two contaminated sites. The approach involved a predictive bioinformatics 
tool (PICRUSt2) targeting genes from twelve KEGG xenobiotic biodegradation pathways (benzoate, chloroalkane and chlo-
roalkene, chlorocyclohexane and chlorobenzene, toluene, xylene, nitrotoluene, ethylbenzene, styrene, dioxin, naphthalene, 
polycyclic aromatic hydrocarbons, and metabolism of xenobiotics by cytochrome P450). Further, the predicted phylotypes 
associated with functional genes early in each pathway were determined. Phylogenetic analysis indicated a greater diversity 
in the sediment compared to the groundwater samples. The most abundant genera for sediments/microcosms included Pseu-
domonas, Methylotenera, Rhodococcus, Stenotrophomonas, and Brevundimonas, and the most abundant for the groundwater/
microcosms included Pseudomonas, Cupriavidus, Azospira, Rhodococcus, and unclassified Burkholderiaceae. Genes from 
all twelve of the KEGG pathways were predicted to occur. Seven pathways contained less than twenty-five genes. The pre-
dicted genes were lowest for xenobiotics metabolism by cytochrome P450 and ethylbenzene biodegradation and highest for 
benzoate biodegradation. Notable trends include the occurrence of the first genes for trinitrotoluene and 2,4-dinitrotoluene 
degradation. Also, the complete path from toluene to benzoyl-CoA was predicted. Twenty-two of the dioxin pathway genes 
were predicted, including genes within the first steps. The following phylotypes were associated with the greatest number 
of pathways: unclassified Burkholderiaceae, Burkholderia-Caballeronia-Paraburkholderia, Pseudomonas, Rhodococcus, 
unclassified Betaproteobacteria, and Polaromonas. This work illustrates the value of PICRUSt2 for predicting biodegrada-
tion potential and suggests that a subset of phylotypes could be important for the breakdown of organic contaminants or 
their metabolites.
Key points 
• The approach is a low-cost alternative to shotgun sequencing.
• The genes and phylotypes encoding for xenobiotic degradation were predicted.
• A subset of phylotypes were associated with many pathways.
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Introduction

Bioremediation is a widely used remediation approach for 
contaminated sites that greatly relies on microbial degrada-
tion. To determine the feasibility of this method, groundwa-
ter or sediment samples can be subject to quantitative PCR 

(qPCR) targeting the microorganisms and functional genes 
of interest (Fuller et al. 2010; Richards et al. 2019; Wil-
son and Cupples 2016). However, unless high-throughput 
qPCR is utilized, only a limited number of genes can be 
investigated. Another approach commonly adopted is 16S 
rRNA gene amplicon sequencing, providing information on 
which microorganisms are present (Dang and Cupples 2021; 
Ramalingam and Cupples 2020a; Wilson et al. 2016), with 
no information on which functional genes are present. Alter-
natively, shotgun sequencing provides both phylogenetic and 
functional information for site samples (Dang et al. 2018; 
Ramalingam and Cupples 2020b). Yet, shotgun sequencing 

 *	 Alison M. Cupples 
	 cupplesa@egr.msu.edu

1	 Department of Civil and Environmental Engineering, 
Michigan State University, A135, 1449 Engineering 
Research Court, East Lansing, MI 48824, USA

http://orcid.org/0000-0003-3248-7688
http://crossmark.crossref.org/dialog/?doi=10.1007/s00253-021-11756-3&domain=pdf


	 Applied Microbiology and Biotechnology

1 3

is expensive and requires more advanced bioinformatics 
skills for data analysis.

In 2013, researchers developed the bioinformatics soft-
ware package PICRUSt (Phylogenetic Investigation of 
Communities by Reconstruction of Unobserved States) to 
expand the investigative abilities of 16S rRNA gene ampli-
con sequencing (Langille et al. 2013). Specifically, the tool 
predicts functional profiles of microbial communities based 
on marker gene (16S rRNA gene) data. The tool was recently 
(2020) updated (PICRUSt2) and, according to the authors, 
contains an updated and larger database, provides interop-
erability with any operational taxonomic unit-picking or 
denoising algorithm, and supports phenotype predictions 
(Douglas et al. 2020). The authors validated their predictions 
using seven datasets generated from 16S rRNA gene and 
shotgun metagenomic sequencing (Douglas et al. 2020). One 
option for PICRUSt2 predictions includes the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) orthologs (KO) 
(Kanehisa and Goto 2000), with the total number of KOs 
in PICRUSt2 being 10,543 (Douglas et al. 2020). For those 
interested in the biodegradation of environmental contami-
nants, the KEGG pathways on xenobiotic biodegradation 
are particularly useful. For example, researchers have used 
PICRUSt or PICRUSt2 to make predictions on the xenobi-
otic degrading pathways from alkaline hot springs in India 
(Choure et al. 2021), sediment from contaminated and pris-
tine locations from the Yucatan Peninsula (Navarrete-Euan 
et al. 2021), heavy-metal-contaminated soil from Korea (Hur 
and Park 2019), agricultural soils from Michigan exposed 
to pharmaceuticals and personal care products (Thelusmond 
et al. 2018), as well as soil and sediment samples from rivers 
and a site contaminated by hospital waste in Northeast India 
(DeMandal et al. 2019).

The current work expands on the use of PICRUSt2, 
adopting this method to examine groundwater and sedi-
ment from two contaminated sites. The work targets a sub-
set of the KEGG xenobiotic degradation pathways using 
16S rRNA gene sequencing data from a previous study that 
involved sequencing DNA from sediments, groundwater, 
and microcosms from two naval sites (Wilson and Cupples 
2016). The previous study primarily focused on qPCR for 
the functional genes involved in RDX biodegradation with 
only a brief analysis of 16S rRNA gene data (phylotypes that 
increased in abundance in microcosms amended with RDX). 
Here, the overall composition of the microbial communities 
is examined. More importantly, PICRUSt2 (Douglas et al. 
2020) was used to predict the abundance of genes in a subset 
of the KEGG xenobiotic biodegradation pathways (benzo-
ate, chloroalkane and chloroalkene, chlorocyclohexane and 
chlorobenzene, toluene, xylene, nitrotoluene, ethylbenzene, 
styrene, dioxin, naphthalene, polycyclic aromatic hydro-
carbons, and metabolism of xenobiotics by cytochrome 
P450) (Kanehisa and Goto 2000). Additionally, also using 

PICRUSt2, the current study predicted the phylotypes asso-
ciated with the functional genes early in each pathway, as 
these are typically critical genes for the initiation of con-
taminant removal.

The current work determined the occurrence of these 
genes in sediment at different depths, in groundwater 
(upstream and downstream of a biobarrier), and in micro-
cosms incubated over time (with or without RDX). Although 
the xenobiotic degrading pathways have previously been 
examined for various environmental samples, this work is 
novel because it is the first to provide a detailed analysis 
of the phylotypes linked to key pathway genes. Further, to 
our knowledge, this is the first attempt to use PICRUSt2 to 
examine these pathways in sediment over a range of depths 
at a contaminated site or in contaminated site groundwa-
ter. We hypothesize that certain phylotypes will be associ-
ated with multiple genes and will likely be good biomark-
ers for contaminant biodegradation potential. Additionally, 
it is likely that some pathways (e.g., benzoate) will have 
numerous genes detected and others will have less (e.g., 
dioxin), and this will vary over depth. An overall goal is to 
provide data to improve our understanding of biodegrada-
tion potential in sediment and groundwater at contaminated 
sites. As many contaminated sites contain a large number 
of co-contaminants, our aim was to understand the diversity 
of microorganisms and functional genes in situ regarding a 
wide number of contaminants.

Methods

Sites and samples

Previously, DNA was extracted and sequenced from sedi-
ment, groundwater, and laboratory microcosms (Wilson 
and Cupples 2016). For that study, sediment samples were 
collected from Naval Base Kitsap (RDX-contaminated site, 
Washington). The samples originated from two wells located 
on the site, hereafter called wells 58 and 61. Samples at five 
different depths (5, 10, 20, 25, and 30 ft deep) were col-
lected from well 58, while samples at three different depths 
(5, 10, and 20 feet deep) were collected from well 61. The 
groundwater samples were collected from another RDX-
contaminated naval site, the US Department of Defense 
explosives testing range in Virginia. Samples originated 
from a location 2.5 ft downstream, well 1 (hereafter called 
downstream well), and 10 ft upstream, well 10 (hereafter 
called upstream well), of a 100-ft installed buffered emulsi-
fied biobarrier. Microcosms were inoculated with groundwa-
ter and sediments, with or without the addition of RDX, and 
DNA was extracted at different times. Details on both sites, 
the microcosm studies, DNA extraction, and 16S rRNA gene 
amplicon sequencing were previously provided (Wilson and 
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Cupples 2016). The decision to use these samples was based 
on the availability of both groundwater and sediment from 
two contaminated sites.

R packages

In the current study, data analyses and the generation of all 
figures were achieved using the following R packages in R 
(version 4.0.4) (R Core Team 2018) within RStudio (ver-
sion 1.1.456) (RStudio Team 2020): microbiome (version 
1.10.0) (Lahti and Shetty 2017), phyloseq (version 1.32.0) 
(McMurdie and Holmes 2013), ampvis2 (version 2.6.5) 
(Andersen et al. 2018), ggplot2 (version 3.3.2) (Wickham 
2016), ggpubr (version 0.4.0) (Kassambara 2020), vegan 
(version 2.5–7) (Oksanen et al. 2020), colourpicker (version 
1.1.0.9000) (Attali 2021), readxl (version 1.3.1) (Wickham 
and Bryan 2019), rstatix (version 0.7.0) (Kassambara 2021), 
forcats (version 0.5.1) (Wickham 2021a), data.table (version 
1.14.0) (Dowle and Srinivasan 2021), dplyr (version 1.0.6) 
(Wickham et al. 2021a, b), patchwork (version 1.1.1) (Ped-
ersen 2020), tidyr (version 1.1.3) (Wickham 2021b), ran-
domcoloR (version 1.1.0.1) (Ammar 2019), RColorBrewer 
(version 1.1–2) (Neuwirth 2014), circlize (version 0.4.13) 
(Gu et al. 2014), ComplexHeatmap (version 2.8.0) (Gu et al. 
2016), and tidyverse (version 1.3.1) (Wickham et al. 2019). 
The R package versions and citations are not shown in the 
following text to improve clarity.

Microbial community analysis

In the current work, the amplicon sequencing data in the 
fastq file format was re-analyzed with Mothur (version 
1.44.2) (Schloss 2009; Schloss et al. 2009) using the MiSeq 
Standard Operating Procedure (Kozich et al. 2013). The 
procedure included trimming the raw sequences and qual-
ity control. The database used for alignment was SILVA 
bacteria database (Release 138) for the V4 region (Pruesse 
et al. 2007). Chimeras, mitochondrial, and chloroplast line-
age sequences were removed. Two Mothur generated files 
(shared file and taxonomy file) were combined with a meta-
data file using the package microbiome. The packages phy-
loseq and ggplot2 were used to rarefy the data and create 
the principle component analysis plots. Vegan was used to 
test for differences between microbial communities (between 
wells, treatments, time, depth) for the sediment and ground-
water samples with Permutational Multivariate Analysis of 
Variance (PERMANOVA). Phyloseq was used to transform 
the rarified data to relative abundance values for plotting the 
bar charts by class. Bar charts were created separately for 
each well for both the sediment samples and the groundwa-
ter samples. The package ampvis2 was used to generate the 
heatmaps illustrating the most abundant phylotypes for each 

well. In each case, the package patchwork combined plots 
created a common legend and letter annotations.

PICRUSt2 analysis

PICRUSt2 (Douglas et al. 2020) was used to analyze Mothur 
generated files on the High Performance Computing Clus-
ter (HPCC) at the Michigan State University. PICRUSt2 
was applied with EPA-NG (Barbera et al. 2019) and gappa 
(Czech et al. 2020) for phylogenetic placement of reads, cas-
tor (Louca and Doebeli 2018) for hidden state prediction, 
and MinPath (Ye and Doak 2009) for pathway inference. 
The PICRUSt2 generated files for the KEGG genes (pred_
metagenome_unstrat.tsv and pred_metagenome_contrib.tsv 
within the folder KO_metagenome_out) were examined for 
the presence of genes and phylotypes associated with the 
biodegradation of a group of xenobiotics. For this, data was 
first collected on a subset of KEGG xenobiotic degradation 
pathways (Kanehisa and Goto 2000) from the KEGG web-
site (https://​www.​genome.​jp/​kegg/​pathw​ay.​html). Specifi-
cally, gene numbers and descriptions were obtained from the 
following twelve pathways: benzoate, chloroalkane and chlo-
roalkene, chlorocyclohexane and chlorobenzene, toluene, 
xylene, nitrotoluene, ethylbenzene, styrene, dioxin, naphtha-
lene, polycyclic aromatic hydrocarbons, and metabolism of 
xenobiotics by cytochrome P450. Additionally, genes associ-
ated with methane and propane metabolism were selectively 
obtained from the KEGG website. The PICRUSt2 files were 
examined for the genes and associated phylotypes using R 
(version 4.0.4) (R Core Team 2018) with R studio (version 
1.1.456) (RStudio Team 2020) and a number of R packages, 
as described below.

Heatmap and KEGG maps

The genes present in the sediment, groundwater, and micro-
cosm samples were determined for each KEGG pathway. For 
this, the PICRUSt2 output file pred_metagenome_unstrat.
tsv was unzipped and then combined with the appropriate 
KEGG file using the function inner_join (from dplyr). The 
R package ComplexHeatmap was then used to generate heat-
maps of the 25 most abundant genes for each pathway for 
both the sediment and groundwater samples. For the cases 
when less than 25 genes were present for a pathway, all genes 
were included in the heatmaps. The package readxl was used 
to import the appropriate metafiles and dplyr (slice_max) 
was utilized to determine which genes had the highest mean 
value of the samples examined. Heatmap colors and break 
values were selected using the R package circlize. In addi-
tion, various annotations were added to each heatmap using 
the function HeatmapAnnotation from ComplexHeatmap. 
Following copyright permission, three pathways (nitrotolu-
ene, toluene, dioxin) were selected for the creation of KEGG 
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map figures, with each displaying all genes present as well 
as the genes selected for phylotype examination (see below). 
During the generation of the heatmaps, a list of all the genes 
present beyond the 25 most abundant within each sample 
was compiled for each pathway.

Phylotypes associated with xenobiotic degrading 
genes

RStudio on the HPCC was used to generate a file that con-
tained which genes and phylotypes were present using 
the PICRUSt2 output file pred_metagenome_contrib.tsv 
(unzipped). The approach involved combining this file with 
the KEGG pathway files and a taxonomy file (from Mothur), 
using the R packages data.table, dplyr, tidyr, ggplot2, and 
patchwork. The analysis involved only the sediment samples 
and sediment-inoculated microcosms. Only genes at the start 
of each pathway were selected for this analysis, as these are 
often the most important genes for contaminant biodegra-
dation. For each pathway, four genes were selected for the 
creation of bar charts, faceted (in ggplot2) to illustrate the 
data over two wells, at different DNA extraction times and 
at different depths.

Genes enriched in RDX‑amended microcosms

The final analysis involved determining if any genes were 
statistically significantly enriched in the RDX-amended 
microcosms compared to the no RDX-amended controls. 
For each pathway, the relative abundance of each gene was 
determined for each sample, and the data were combined 
with metadata (e.g., well number, depth, DNA extraction 
time, replicate). The Wilcoxon rank test was used to deter-
mine genes statistically more significant (higher relative 
abundance) in the RDX-amended microcosms compared 
to the microcosms not amended with RDX. Only the eight 
most abundant are shown for each pathway (if eight were 
statistically significantly different). If less than eight were 
significant, then all were included in the box and whisker 
plots. The plots were faceted (in ggplot2) to illustrate the 
data from different wells at different depths. The following 
packages were utilized for data manipulation and the crea-
tion of the plots: tidyverse, ggpubr, rstatix, forcats, readxl, 
forcats, colourpicker, and patchwork.

Results

The dominant microbial class in the majority of the sediment 
and groundwater microbial communities was Gammaproteo-
bacteria (Figs. 1 and 2). This trend was particularly apparent 
in the groundwater samples, with eight of the ten communi-
ties being dominated by this class (Fig. 2). In the sediment 

samples, other important classes included Actinobacteria, 
Bacteroidia, Alphaproteobacteria, Bacilli, and Clostridia 
(Fig. 1). For well 58, no clear trends were observable by 
incubation time, treatment, or depth (Fig. 1A). Overall, 
the communities from well 61 microcosms illustrated less 
Gammaproteobacteria (Fig. 1B), for example, four of the 
five communities from 10 ft deep were dominated by Bacte-
roidia, Bacilli, or Actinobacteria. For well 61, there was also 
a trend of a larger percentage of Bacilli in the RDX amended 
samples from the Time 1 communities (but not Time 2). 
The upstream well-groundwater communities before incu-
bation (Time 0) exhibited a number of dominant classes 
(Actinobacteria, Alphaproteobacteria, Bacilli, Bacteroidia, 
Deltaproteobacteria, and Gammaproteobacteria) (Fig. 2A). 
In contrast, the downstream well community before incuba-
tion (Time 0) was dominated only by Gammaproteobacte-
ria (Fig. 2B). For both the upstream and downstream wells, 
when glucose was added, the classes observed were simi-
lar. When RDX was added with no glucose to the upstream 
well, the community became dominated by Bacteroidia and 
Deltaproteobacteria (Fig. 2A). However, this trend did not 
occur for the downstream well. Comparing all of the sedi-
ment to all of the groundwater microbial communities visu-
ally, one clear trend is a greater diversity in dominant classes 
in the sediment samples.

Principle component analysis (PCA) of the microbial 
communities indicated a separation of communities between 
the sediments and sediment-inoculated microcosms between 
the two wells (Fig. 3A), between different time points for 
the two wells (Fig. 3B), and between treatments (Fig. 3A 
and B). Separations were also noted individually for each 
well over depth (Fig. 3C and D), over time (Fig. 3E and F), 
and over treatment (Fig. 3C, D, E, and F). The differences 
between communities were confirmed with PERMANOVA 
(Table S1). Similarly, differences were observed via PCA 
and confirmed with PERMANOVA for the groundwater 
wells by well, treatment, and time (Fig. 4 and Table S2). The 
most abundant phylotypes across the samples and micro-
cosms for sediments/microcosms for both wells 58 and 61 
included Pseudomonas, Methylotenera, Rhodococcus, 
Stenotrophomonas, and Brevundimonas (Fig. 5). The most 
abundant for the groundwater/microcosms for both wells 
included Pseudomonas, Cupriavidus, Azospira, Rhodococ-
cus, and unclassified Burkholderiaceae (Fig. 6).

All predicted genes (Tables S3 and S4), along with the 
twenty-five most abundant predicted genes, were determined 
for each pathway (Tables S3 and S4, Figs. 7 and 8). The 
heatmaps all illustrate a distinction between the most abun-
dant compared to the rest. For example, the most abundant 
predicted genes from the benzoate biodegradation pathway 
included those encoding for acetyl-CoA C-acetyltrans-
ferase, enoyl-CoA hydratase, 3-hydroxybutyryl-CoA dehy-
drogenase, 4-oxalocrotonate tautomerase, glutaryl-CoA 
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dehydrogenase, and 4-carboxymuconolactone decarboxylase 
(Fig. 7A). Many of these predicted genes are part of the 
lower degradation pathway for benzoyl-CoA. The enzymes 
associated with the gene numbers shown in the heatmaps 
have been summarized (Tables S3 and S4). Seven pathways 
contained less than 25 predicted genes (Fig. 7B, D, E, and 
F and Fig. 8A, C, and E). The number of predicted genes 
was lowest for xenobiotics degradation by cytochrome P450 
(Fig. 8E) and ethylbenzene degradation (Fig. 7D) and high-
est for degradation of benzoate (Tables S3 and S4). Overall, 
the trends between both wells and at different depths were 
similar. The heatmaps for the groundwater samples and 
microcosms are also shown (Figures S1 and S2).

Permission was granted to include three KEGG pathways 
(nitrotoluene, toluene, and dioxin degradation) in this publi-
cation (KEGG Copyright Permission 210,692) (Fig. 9). The 
nitrotoluene pathway was selected because of similarities 
in structure to RDX (a contaminant at both sites). Eighteen 

genes from the nitrotoluene pathway were predicted to be 
present (shown in pink and red; some boxes represent more 
than one gene, Fig. 9A). Notably, genes for the entire degra-
dation pathway were not predicted to be present, indicating 
complete degradation of nitrotoluene may not occur. How-
ever, the first genes in the pathways of both trinitrotoluene 
and 2,4-dinitrotoluene were present, suggesting partial deg-
radation of the parent contaminants is potentially feasible. 
More than thirty of the toluene degradation pathway genes 
were predicted to be present (Tables S3 and S4), includ-
ing many of the genes in the first steps of the pathway 
(Fig. 9B). The complete path from toluene to benzoyl-CoA 
was predicted to occur, suggesting this contaminant would 
be susceptible to biodegradation. Twenty-two of the genes 
within the dioxin degradation pathway were predicted in 
the samples analyzed (Tables S3 and S4), including many 
of the genes encoding for the enzymes within the first steps 
(Fig. 9C).

Fig. 1   Bar charts illustrating the microbial community composition 
(by class) over different sampling times and treatments for the sedi-
ment samples and microcosms from well 58 (A) and well 61 (B). For 

well 58, the results are from sediment at day 0 and from microcosms 
at days 90 and 130. For well 61, the results are from sediment at day 
0 and from microcosms at days 45 and 90
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The PICRUSt2 generated files also enabled the iden-
tification of the phylotypes associated with the predicted 
genes. This analysis also involved the genes associated with 
methane and propane biodegradation (Figures S3 and S4), as 
these genes have been linked to the degradation of other con-
taminants (such as trichloroethene and 1,4-dioxane). Unclas-
sified Betaproteobacteria, unclassified Burkholderiaceae, 
unclassified Galliellales, and Rhodococcus were primarily 
associated with propane 2-monooxygenase large subunit 
(Figures S3A, S4A). Mycobacterium was responsible for 
the detection of mmoX methane monooxygenase component 
A alpha chain (Figures S4B and S5B). Methane/ammonia 
monooxygenase subunit A was associated with Roseiarcus 
and unclassified Betaproteobacteria (Figures S3C, S4C).

The phylotype analyses for the other degradation path-
ways only focused on the early genes, as these are critical 
for initiating the removal of the parent contaminant. While 
a number of microorganisms were associated with these 

genes in each case, the following discussion highlights only 
those that were dominant. For each pathway, the trends of 
these phylotypes for each gene varied over time, depth, and 
between wells (Figs. 10, S5–S13). For nitrotoluene, unclas-
sified Enterobacteriaceae, unclassified Rhodocyclaceae, 
unclassified Burkholderiaceae, Burkholderia-Caballeronia-
Paraburkholderia (hereafter called Burk-Caball-Paraburk), 
Polaromonas, Pseudomonas, and Achromobacter were 
important (Fig. 10A). For toluene, Geobacter, unclassified 
Burkholderiaceae, unclassified Rhodocyclaceae, Cupriavi-
dus, Nevskia, unclassified Cellulomonadaceae, and Pseu-
domonas were dominant (Fig. 10B). For the dioxin early 
genes, unclassified Betaproteobacteria, unclassified Gam-
maproteobacteria, Rhodococcus, unclassified Bacteria, 
Burk-Caball-Paraburk, and unclassified Burkholderiaceae 
were important (Fig. 10C).

For ethylbenzene biodegradation, the phylotypes 
JG30-KF-CM66 (from Chlorof lexi), Sphingomonas, 

Fig. 2   Bar charts illustrating the microbial community composi-
tion (by class) over different sampling times and treatments for the 
groundwater samples and microcosms from the upstream well (A) 
and the downstream well (B). For the upstream well, the results 

are from sediment at day 0 and from microcosms at day 67. For the 
downstream well, the results are from sediment at day 0 and from 
microcosms at day 100
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unclassified Sphingomonadaceae, unclassified Nocar-
diaceae, unclassified Corynebacteriales, and Rho-
dococcus were important (Figure  S5). For xylene, 
Pseudomonas, unclassified Gammaproteobacteria, 
unclassified Betaproteobacteria, unclassified Burk-
holderiaceae, unclassified Nocardiaceae, Rhodococ-
cus, Stenotrophomonas, and Burk-Caball-Paraburk 
were associated with the first four genes (Figure S6). 
For styrene, unclassified Betaproteobacteria, unclas-
sified Gammaproteobacteria, unclassified Burkholde-
riaceae, unclassified Sphingomonadaceae, Sphingob-
ium, Nocardioides, unclassified Microbacteriaceae, and 
Pseudomonas were the key phylotypes (Figure S7). For 
the chloroalkane and chloroalkene pathway, unclassified 
Galliellales, Rhodococcus, Xanthomonas, unclassified 

Xanthomonadaceae, unclassified Xanthobacteraceae, 
unclassified Burkholderiaceae, Pseudomonas, unclassi-
fied Rhodocyclaceae, Subgroup_6, unclassified Betapro-
teobacteria, Methylotenera, and Methylophilus were 
associated with the early pathway genes (Figures S8). 
For benzoate, Acinetobacter, Burk-Caball-Paraburk, 
unclassified Betaproteobacteria, Pseudomonas, Ral-
stonia, unclassified Burkholderiaceae, and unclassified 
Xanthobacteraceae were important for the first genes 
(Figure S9). Phylotypes linked to the early PAH genes 
included Polaromonas, unclassified Microbacteriaceae, 
Achromobacter, and unclassified Burkholderiaceae (Fig-
ure S10). For the chlorocyclohexane and chlorobenzene 
early genes, unclassified Galliellales, Rhodococcus, Xan-
thomonas, unclassified Xanthomonadaceae, unclassified 

Fig. 3   Principle component analysis of the microbial communities 
from the sediments and sediment-inoculated microcosms over differ-
ent sampling times and treatments for wells 58 and 61. For well 58, 

the results are from sediment at day 0 and from microcosms at days 
90 and 130. For well 61, the results are from sediment at day 0 and 
from microcosms at days 45 and 90



	 Applied Microbiology and Biotechnology

1 3

Burkholderiaceae, Stenotrophomonas, unclassified 
Rhodocyclaceae, Burk-Caball-Paraburk, and unclas-
sified Betaproteobacteria were dominant (Fig.  11S). 
The pathway involving the degradation of xenobiotics 
by cytochrome P450 primarily involved unclassified 
Burkholderiaceae, Burk-Caball-Paraburk, unclassified 
Bacteria, unclassified Rhizobiaceae, and Rhodococcus 
(Figure S12). Finally, for naphthalene, Achromobacter, 
unclassified Burkholderiaceae, Polaromonas, unclassi-
fied Betaproteobacteria, Duganella, and Novosphingo-
bium were important (Figure S13). Considering all of 
the twelve KEGG pathways examined here together, the 
following phylotypes were associated with the great-
est number of pathways (the number of pathways are 
in parenthesis), unclassified Burkholderiaceae (eleven), 
Burkholderia-Caballeronia-Paraburkholderia (six), 
Pseudomonas (six), Rhodococcus (six), unclassified 
Betaproteobacteria (five), and Polaromonas (three).

RDX positively impacted the relative abundance of 
some genes in each pathway (Figures S14–S17). For the 
nitrotoluene pathway, nemA, N-ethylmaleimide reduc-
tase (K10680) exhibited the highest relative abundance 
of the genes predicted to be statistically significantly 
positively impacted (Figure  S17A). For toluene, the 
predicted abundance of carboxymethylenebutenolidase 
(K01061) was particularly higher in RDX-amended 
samples compared to those not amended with RDX 
(Figure S17B). For the dioxin pathway, two genes were 
predicted to be markedly more abundant (acetaldehyde 
dehydrogenase [K04073] and 2-oxo-3-hexenedioate 
decarboxylase [K01617]) in the RDX-amended samples 
compared to the no RDX microcosms (Figure S17C). 
The statistically significantly impacted genes in the 
other nine pathways are shown in the supplementary 
section (Figures S14–S16).

Discussion

The current work utilized a newly updated bioinformatics 
tool (PICRUSt2) (Douglas et al. 2020) to examine the func-
tional genes involved in organic contaminant biodegradation 
and their associated phylotypes in contaminated site sam-
ples and microcosms. Genes from each of the twelve KEGG 
xenobiotic degradation pathways investigated were predicted 
to be present, although not all of the genes for each pathway 
were predicted. The approach offers a low-cost alternative 
to shotgun sequencing for examining the potential for the 
biodegradation of organic contaminants in environmental 
samples. The data generated are novel as this is the first 
report predicting genes from these pathways over a range of 
sediment depths at a contaminated site. Further, the research 
provides an in-depth analysis of the phylotypes associated 
with the first genes in each of the twelve pathways for each 
depth and well investigated.

It is important to note that others have also examined 
the KEGG xenobiotic degradation pathways using other 
approaches. For example, a metatranscriptome shotgun 
sequencing study of wheat rhizosphere reported transcripts 
of sixteen different enzymes from six xenobiotic degra-
dation pathways (chlorocyclohexane and chlorobenzene, 
benzoate, aminobenzoate, nitrotoluene, styrene, and cap-
rolactam) (Singh et al. 2018). Another metatranscriptome 
project reported a larger number (twenty-one) of the KEGG 
xenobiotic biodegradation pathways in soil samples from a 
wastewater-contaminated mangrove, with the most abundant 
being benzoate degradation, chloroalkane and chloroalkene 
degradation, drug metabolism—other enzymes, and naph-
thalene degradation (Isaza et al. 2021). The main genera 
associated with the most abundant genes were Exiguobac-
terium, Bacillus, Rhodopseudomonas, Amphibacillus, and 
Nocardioides.

Fig. 4   Principle component analysis of the microbial communities 
from the groundwater and groundwater-inoculated microcosms over 
different sampling times and treatments for the upstream and down-

stream wells. For the upstream well, the results are from sediment at 
day 0 and from microcosms at day 67. For the downstream well, the 
results are from sediment at day 0 and from microcosms at day 100
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Others have adopted metagenomics approaches to exam-
ine KEGG xenobiotic degradation pathways. For example, 
twenty-one pathways were detected in a semi-arid mangrove 
in Colombia (Munoz-Garcia et al. 2019). The researchers 
reported that sixteen of these pathways were influenced by 
salinity. Comparing the abundance of each pathway, the 
degradation of benzoate showed the highest abundance, fol-
lowed by the drug metabolism and the degradation of chlo-
roalkanes and chloroalkenes. Another shotgun metagenomic 
sequencing study (from cave soil samples) detected genes 
from twenty-six pathways classifying as xenobiotics biodeg-
radation and metabolism, among them, benzoate degradation 

via CoA ligation being the most abundant (Wiseschart et al. 
2019). Further, seventeen KEGG xenobiotic degrading path-
ways were identified during a metagenomic analysis of a 
commercial scale biofilter (Li et al. 2019). Another paper 
reported eighteen KEGG xenobiotic degradation pathways 
in bacterial communities in a soda lake in India before and 
after monsoon using shotgun sequencing and reported nitro-
toluene and benzoate degradation pathway as being predom-
inant (Chakraborty et al. 2021).

Previously, our group used shotgun sequencing to exam-
ine the most abundant phylotypes associated with a subset 
of xenobiotic degrading KEGG pathways in four agricultural 

Fig. 5   Heatmaps of the most 
abundant genera across samples 
from well 58 (A) and well 61 
(B) over different sampling 
times and treatments. The 
phylum for each genus is also 
shown. For well 58, the results 
are from sediment at day 0 and 
from microcosms at days 90 
and 130. For well 61, the results 
are from sediment at day 0 and 
from microcosms at days 45 
and 90
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soils (Thelusmond et al. 2019) using the first version of PIC-
RUSt (Langille et al. 2013). In that work, the most abun-
dant phylotypes encoding for the genes involved in benzoate 
degradation were Rhodopseudomonas, Polaromonas, Cupri-
avidus, Bradyrhizobium, Burkholderia, Pseudomonas, and 
Ralstonia. These results are partially consistent with the 
current study, which documented the importance of Bur-
kholderia, Pseudomonas, Ralstonia, and Cupriavidus for 
the genes early in the benzoate degradation pathway. Pre-
viously, for the chlorocyclohexane and chlorobenzene bio-
degradation pathway genes, three phylotypes (Bradyrhizo-
bium, Candidatus Solibacter, and Burkholderia) dominated 

(Thelusmond et al. 2019). Overlapping phylotypes for this 
pathway between the previous and current study include 
Burkholderia and Rhodococcus. In the previous study, the 
phylotypes associated with dioxin biodegradation primarily 
involved Bradyrhizobium, Polaromonas, Aromatoleum, and 
Rhizobium (Thelusmond et al. 2019). In the current study, 
for this pathway, unclassified Betaproteobacteria, unclas-
sified Gammaproteobacteria, Rhodococcus, unclassified 
Bacteria, Burk-Caball-Paraburk, and unclassified Burk-
holderiaceae were important. Notably, Rhodococcus and 
Burkholderia were also associated with the dioxin pathway 
genes in the previous study (to a lesser extent that the four 

Fig. 6   Heatmaps of the most 
abundant genera across samples 
from the groundwater upstream 
well (A) and downstream well 
(B) over different sampling 
times and treatments. The 
phylum for each genus is also 
shown. For the upstream well, 
the results are from sediment 
at day 0 and from microcosms 
at day 67. For the downstream 
well, the results are from 
sediment at day 0 and from 
microcosms at day 100
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A  Benzoatet B  Chloroalkane & Chloroalkene

C  Chlorocyclohexane & Chlorobenzene D  Ethylbenzene

E  Dioxin F  Naphthalene

Fig. 7   Heatmaps of the most abundant genes present in each pathway for the microcosms inoculated with sediment for well 58 or well 61 incu-
bated with (solid bar) and without RDX (white bar). Data are shown for triplicate samples
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A  Nitrotoluene B  Polycyclic aromatic hydrocarbons

C  Styrene D Toluene

E  Xenobiotics by Cytochrome P450 F  Xylene

Fig. 8   Heatmaps of the most abundant genes present in each pathway for the microcosms inoculated with sediment for well 58 or well 61 incu-
bated with (solid bar) and without RDX (white bar). Data are shown for triplicate samples
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Fig. 9   A Genes present (pink) in all samples and those analyzed for 
phylotypes (red) for the KEGG nitrotoluene degradation pathway 
(used with permission [KEGG  Copyright Permission] 210,692). B 
Genes present (pink) in all samples and those analyzed for phylotypes 
(red) for the KEGG toluene degradation pathway (used with permis-

sion [KEGG Copyright Permission] 210,692). C Genes present (pink) 
in all samples and those analyzed for phylotypes (red) for the KEGG 
dioxin degradation pathway (used with permission [KEGG Copyright 
Permission] 210,692)
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noted above). The fourth common pathway between the pre-
vious and current study was for nitrotoluene. In our previous 
work, Cupriavidus, Candidatus Solibacter, Mycobacterium, 
Streptomyces, Rhodococcus, Methylobacillus, and Frankia 
were the dominant phylotypes for that pathway (Thelus-
mond et al. 2019). While in the current study, for nitro-
toluene, unclassified Enterobacteriaceae, Rhodocyclaceae, 
Burkholderiaceae, Burk-Caball-Paraburk, Polaromonas, 
Pseudomonas, and Achromobacter were important. Differ-
ences between the results of the two studies for these four 
pathways could be attributed to the data analysis approach 
(considering all genes, instead of only four), the sequencing/
analysis approach (shotgun vs. 16S rRNA gene/PICRUSt2), 
the version of PICRUSt, or the samples themselves (agricul-
tural soil vs. contaminated site sediments).

The current study detected more genes compared to the 
previous shotgun sequencing study (Thelusmond et al. 2019) 
for each of the four common KEGG pathways examined. 
Previously, forty-two genes associated with the benzoate 
degradation pathway were detected (Thelusmond et  al. 
2019), compared to eighty-eight in the current work. Previ-
ously, only three genes (biphenyl 2,3-dioxygenase subunit 
alpha, cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase, 
salicylate hydroxylase) associated with dioxin biodegrada-
tion were detected (Thelusmond et al. 2019), and in current 
study, twenty-two were detected (including the three just 

listed). Similarly, fifteen and twenty-four genes were asso-
ciated with chlorocyclohexane and chlorobenzene metab-
olism, in previous (Thelusmond et al. 2019) and current 
work, respectively. Both projects detected the gene encod-
ing carboxymethylenebutenolidase as being the most abun-
dant. Only six genes were previously detected as part of the 
nitrotoluene degradation pathway (Thelusmond et al. 2019) 
compared to eighteen in the current study. The top three 
genes detected from both projects were the same (hyaB, 
hybC; hydrogenase large subunit, hyaA, hybO; hydrogenase 
small subunit, nemA; N-ethylmaleimide reductase). The dif-
ferences in genes detected are likely a result of the different 
sequencing and analysis techniques (shotgun vs. 16S rRNA 
gene/PICRUSt2).

As discussed above, others have used PICRUSt or PIC-
RUSt2 to investigate the importance of xenobiotic degrad-
ing pathways (Choure et al. 2021; Hur and Park 2019; Nav-
arrete-Euan et al. 2021; Thelusmond et al. 2018). To our 
knowledge, only limited efforts have been made to identify 
the phylotypes associated with the specific pathway genes. 
One such example examined soil and sediment samples from 
three rivers and one dumping site contaminated by hospital 
domestic waste in Northeast India using 16S rRNA gene 
amplicon sequencing (DeMandal et al. 2019) and the first 
PICRUSt release tool (Langille et al. 2013). They found a 
smaller number of xenobiotic degradation genes for each 

Fig. 9   (continued)
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pathway, as follows: benzoate (eight), naphthalene (twelve), 
chloroalkane and chloroalkene (twelve), chlorocyclohexane 
and chlorobenzene (eight), and nitrotoluene (twelve), and 

toluene (eight), in the soil and sediment samples (DeMan-
dal et al. 2019). The lower number of genes may be related 
to the version of PICRUSt used (version 1, compared to 

A

Ta
xo

n 
Fu

nc
tio

na
l R

el
at

iv
e 

A
bu

nd
an

ce

Fig. 10   A Predicted taxon functional relative abundance for four 
early genes in the KEGG nitrotoluene degradation pathway for sedi-
ment and microcosms inoculated with sediment from two wells at 
different depths. For well 58, the results are from sediment at day 
0 and from microcosms at days 90 and 130. For well 61, the results 
are from sediment at day 0 and from microcosms at days 45 and 90. 
For well 61, sediment was only collected and examined from 5, 10, 
and 20 ft. B Predicted taxon functional relative abundance for four 
early genes in the KEGG toluene degradation pathway for sediment 
and microcosms inoculated with sediment from two wells at different 
depths. For well 58, the results are from sediment at day 0 and from 

microcosms at days 90 and 130. For well 61, the results are from sed-
iment at day 0 and from microcosms at days 45 and 90. For well 61, 
sediment was only collected and examined from 5, 10, and 20 ft. C 
Predicted taxon functional relative abundance for four early genes in 
the KEGG dioxin degradation pathway for sediment and microcosms 
inoculated with sediment from two wells at different depths. For well 
58, the results are from sediment at day 0 and from microcosms at 
days 90 and 130. For well 61, the results are from sediment at day 0 
and from microcosms at days 45 and 90. For well 61, sediment was 
only collected and examined from 5, 10, and 20 ft
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PICRUSt2 in the current study), the sequencing analy-
sis approach (QIIME (Caporaso et al. 2010) compared to 
Mothur (Schloss 2009) or the sequencing depth (averages 
of ~ 280,000 compared to ~ 500,000 reads). The research-
ers listed the phylotypes associated with the genes involved 
in the following KEGG xenobiotic degradation pathways: 
benzoate, aminobenzoate, naphthalene, and fluorobenzo-
ate degradation. We can only compare the results from the 
current study for benzoate and naphthalene biodegradation 
pathways, as these are the only two common pathways. 
In their study, the following phylotypes were associated 
with benzoate degradation: Acinetobacter, Arthrobacter, 

Comamonas, Diaphorobacter, Geobacter, Novispirillum, 
Phenylobacterium, Pseudoxanthomonas, and Rhodoplanes. 
In the current study, for the first four genes examined for 
benzoate degradation, from these, only Acinetobacter and 
Geobacter were detected. They also associated the following 
with naphthalene degradation: Arthrobacter, Comamonas, 
Diaphorobacter, Geobacter, Klebsiella, Leptothrix, and 
Novosphingobium. In the current study, for the first four 
genes examined for naphthalene degradation, from these, 
only Novosphingobium was detected.

In summary, this work predicted the occurrence of 
genes involved in the biodegradation of a range of organic 
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Fig. 10   (continued)



Applied Microbiology and Biotechnology	

1 3

contaminants. The approach is a low-cost alternative for 
investigating genes associated with contaminant biodegra-
dation and could be adopted for any site investigation. How-
ever, it is important to note that the results of this approach 
are only predictions and will therefore not be as robust as 
the results from a metatranscriptomics study. Nevertheless, 
the research provides key insights as to which microorgan-
isms may be the most important for in situ bioremediation of 
this set of contaminants and/or their degradation products. 
Given the lack of previous research linking specific genes to 

specific phylotypes at contaminated sites for these pathways, 
the work fills a key knowledge gap in the current literature.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00253-​021-​11756-3.
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