

Numerical Simulation of the effect of high confining pressure on the drainage behavior of liquefiable clean sand

El-Sekelly, W., M. ASCE¹, Dobry, R., M. ASCE², Abdoun, T., M. ASCE³, and Ni, M., S. M. ASCE⁴

Abstract

8 This article presents numerical simulations investigating pore pressure buildup of a sand layer with
9 a free drainage boundary at the top, under both low and high overburden pressures and subjected
10 to earthquake base excitation. The numerical runs simulate two centrifuge experiments previously
11 conducted and reported by the authors. In these tests, a 5m layer of clean Ottawa sand with relative
12 density, $D_r = 45\%$, was tested under overburden pressures of 1 atm and 6 atm. The simulations were
13 performed using Dmod2000, a non-linear effective stress numerical 1D site response analysis code.
14 The tests had revealed that the response was partially drained rather than undrained, with much
15 more partial drainage at 6 atm compared to 1 atm. The simulations correctly modeled this behavior,
16 with very good agreement between simulated and measured centrifuge excess pore pressures. A
17 key aspect of this good accord in the simulations was the correct selection in the simulations of the
18 1D drained volumetric stiffness of the sand, $M' = 1/m_v$, as the coefficient of consolidation, c_v , is
19 proportional to M' . Both c_v and M' were 2.5 to 3 times greater at 6 atm than at 1 atm in both
20 centrifuge tests and simulations. Any future simulation of pore pressure response of sand under
21 field drainage conditions needs to consider this large increase in volumetric stiffness at high

¹ Lecturer, Dept. of Structural Eng., Mansoura University, Mansoura, Egypt and Research Scientist at New York University Abu Dhabi, Abu Dhabi, United Arab Emirates

² Institute Professor, Dept. of Civil and Environmental Eng., Rensselaer Polytechnic Institute, 110 8th Street, JEC 4049, Troy, NY 12180

³ Iovino Chair Professor, Dept. of Civil and Environmental Eng., Rensselaer Polytechnic Institute, 1108th Street, JEC 4049, Troy, NY 12180

⁴ Graduate Research Assistant, Dept. of Civil and Environmental Eng., Rensselaer Polytechnic Institute, 110 8th Street, JEC 4049, Troy, NY 12180

22 overburden pressure. Good agreement was found between values of M' back figured from the
23 centrifuge tests and from a consolidometer test on a different sand reported by Martin et al. (1975).
24 The value of M' seems to increase approximately with the root square of the overburden pressure,
25 and future simulations for high overburden and realistic field drainage conditions should account
26 for this increase. The proper high pressure correction factor, K_σ , to be used in conjunction with
27 liquefaction charts may be higher than one for some realistic field drainage conditions, due to this
28 substantial decrease of sand compressibility under high overburden pressure.

29 **Introduction**

30 Earthquake-induced liquefaction effects can be damaging to a wide range of structures as well as
31 dams and embankments. In order to assess the liquefaction potential of saturated cohesionless
32 deposits, most engineers rely on the Simplified Method proposed by Seed and Idriss (1971). Based
33 on this procedure, several liquefaction triggering charts have been developed that use either field
34 measurements of shear wave velocity (V_s), or field penetration tools such as standard penetration
35 (SPT) and cone penetration (CPT). Figure 1a shows a compilation of some of the most commonly
36 used CPT-based liquefaction charts (Idriss and Boulanger 2008), while Fig. 1b presents the Andrus
37 and Stokoe (2000) V_s - based liquefaction chart. Both charts in Fig. 1 are for clean sands, and the
38 curves in Fig. 1a have been normalized to a field effective overburden pressure, $\sigma'_{v0} = 1$ atm. The
39 original data points (case histories) used to generate the charts in Fig. 1 have been omitted for
40 clarity. Two parameters are plotted in both Figs. 1a and 1b along the abscissa axis representing
41 either the Cyclic Resistance Ratio, CRR which is the liquefaction resistance, or the Cyclic Stress
42 Ratio, CSR, that represents the earthquake demand. The CRR corresponds to the curves in Figs. 1a

43 and b, while the CSR is applied to the case histories and to the project where liquefaction is being
44 evaluated. The data points and arrows in Fig. 1b are associated with CSR.

45 All case histories used to generate the liquefaction charts in Fig. 1 come from relatively
46 shallow sites (less than 20 m) with $\sigma'_{v0} < 2$ atm (Idriss and Boulanger 2008). This makes the charts
47 reliable tools for liquefaction assessment in most cases. However, in some important projects
48 involving, for example, tall earth embankment dams, the critical liquefiable soil in the embankment
49 or foundation soil may be subjected to σ'_{v0} much greater than 2 atm; up to or even higher than 10
50 atm (Gillette 2013).

51 The current state of practice for dealing with cohesionless deposits under such high
52 overburden pressure is based on a proposal by Seed (1983). Undrained cyclic stress-controlled
53 triaxial or simple shear tests at both 1 atm as well as the high $\sigma'_{v0} > 1$ atm, are conducted in order
54 to generate a correction factor for that high pressure, $K_\sigma = (CRR)_{\sigma'_{v0}} / (CRR)_1$, where $(CRR)_{\sigma'_{v0}}$ and
55 $(CRR)_1$ are the cyclic resistance ratios at the high pressure σ'_{v0} and at 1 atm, respectively. The CRR
56 is the same parameter plotted for the curves along the abscissa axes in Fig. 1. The K_σ can be used
57 either to multiply the CRR of the curves in Fig. 1, or, more conveniently, to divide the CSR of the
58 case history or site under consideration. The latter method is adopted in this paper. A value of $K_\sigma <$
59 1.0 will move the data point of the case history or project under consideration upward, while $K_\sigma >$
60 1.0 will move the data point downward, as indicated by the arrows in Fig. 1b. As seen later herein,
61 the current state of practice invariably recommends values of $K_\sigma < 1.0$ at high pressures, so the
62 arrow in Fig. 1b always point upwards for $\sigma'_{v0} > 1$ atm.

63 In many projects, engineers rely on published state of practice K_σ charts rather than
64 performing cyclic undrained tests at low and high pressures. Current state of practice is based on

65 the sets of curves of K_σ versus relative density in Fig. 2, proposed by Youd et al. (2001) and Idriss
66 and Boulanger (2008) for relative densities, D_r , between 40% and 80%, with K_σ ranging
67 approximately between 0.5 and 0.85 at $\sigma'_{v0} = 6$ atm. Important publications with work on K_σ based
68 on undrained testing, are: Seed and Harder (1990); Vaid and Thomas (1995); Hynes et al. (1999);
69 Youd et al. (2001); Boulanger (2003); Boulanger and Idriss (2004); Idriss and Boulanger (2006;
70 2008); Montgomery et al. (2012) and Dobry and Abdoun (2015). In addition to the curves using
71 relative density of Fig. 2, Idriss and Boulanger (2008) generated K_σ charts based on the CPT tip
72 resistance, which generally follow the same trend of decreasing K_σ with confining pressure and are
73 widely used in practice.

74 Ni et al. (2020) and Abdoun et al. (2020) recently performed a series of centrifuge
75 experiments supplemented by extensive data analysis, aimed at examining the values of K_σ under
76 simulated field conditions (field K_σ). Parallel regular undrained, stress-controlled cyclic triaxial
77 tests were also conducted to obtain values of K_σ similar to those reported in the literature (laboratory
78 undrained K_σ). In the centrifuge tests, 5m-thick clean Ottawa F65 sand layers with D_r ranging from
79 45% to 80% under either $\sigma'_{v0} = 1$ atm or $\sigma'_{v0} = 6$ atm – in both cases with a free draining boundary
80 at the top – were subjected to 1D base earthquake shaking and developed similar high excess pore
81 pressure ratios. This allowed determination of the field K_σ for $\sigma'_{v0} = 6$ atm. It was found that this
82 field $K_\sigma > 1.0$, while the laboratory undrained K_σ from the undrained triaxial tests was 0.85, smaller
83 than unity and consistent with the state of practice (Table 1). The discrepancy between field and
84 laboratory undrained K_σ in Table 1 was attributed to the partially drained behavior of the sand layer
85 under idealized field conditions in the centrifuge. This partial drainage behavior was more
86 pronounced at 6 atm as compared with 1 atm, due to the decreased compressibility of the sand at

87 the higher confining pressure. Abdoun et al. (2020) concluded that the current state of practice may
88 be too conservative for some realistic field conditions, with a potential for significant savings in
89 unnecessary liquefaction mitigation of tall embankment dams. They suggested additional
90 experimental and numerical work to better understand the liquefaction behavior in the field under
91 high confining pressure.

92 **Scope of the paper**

93 The main purpose of this paper is to calibrate and validate the nonlinear effective stress numerical
94 code Dmod2000 (Matasovic 1993), for liquefaction evaluation at low and high effective overburden
95 pressures. This is achieved by simulation of the two Ni et al. (2020) centrifuge experiments for the
96 case of the sand layer having a $D_r = 45\%$, for which soil laboratory tests are also available to provide
97 key input parameters. Most of these parameters used as input to the code were experimentally
98 obtained, either back figuring them from the centrifuge experimental results (shear stiffness and
99 compressibility), or calibrating them from the available laboratory cyclic triaxial testing (relation
100 between excess pore pressure, cyclic shear strain and number of cycles in undrained condition).
101 The permeability used in the code was also based on available small sample 1g tests on the same
102 sand using constant head permeability tests.

103 The results of the two numerical simulations are compared to that of the centrifuge
104 experiments conducted at $\sigma'_{v0} = 1$ atm and $\sigma'_{v0} = 6$ atm. The effect of partial drainage on the pore
105 pressure behavior is further investigated by running additional hypothetical numerical simulations
106 at 1 and 6 atm with perfect undrained condition at all elevations within the sand layer. Table 2 lists
107 the four Dmod2000 runs discussed in the paper.

108 The following section summarizes the results of the centrifuge experiments as well as the
109 strain-controlled undrained cyclic triaxial tests reported by Ni et al. (2020) and Abdoun et al.
110 (2020); with the rest of the paper discussing the numerical simulations.

111 **Centrifuge Experiments**

112 Two centrifuge experiments were conducted in the 1-D laminar container and shaker of the
113 geotechnical centrifuge facility at Rensselaer Polytechnic Institute (RPI). Figure 3 shows the
114 centrifuge model configuration and setup used in Tests 45-1 and 45-6. Ottawa F65 sand, deposited
115 by dry pluviation and having a relative density, $D_r = 45\%$, was used to build the liquefiable sand
116 layer in both tests. The models were instrumented with accelerometers, pore pressure transducers,
117 vertical LVDTs and bender elements, as shown in the figure. The names of the two experiments
118 indicates the combination relative density of the sand (D_r) - effective overburden stress (σ'_{v0}) at the
119 middle of the liquefiable sand layer in atm (e.g., in Test 45-1, $D_r = 45\%$ and $\sigma'_{v0} = 1$ atm). The
120 prototype thickness of the liquefiable sand layer in both tests was about 5 m, with the layer having
121 a free drainage boundary at the top. Additional details of the two tests as well as analyses and
122 interpretations are presented by Ni et al. (2020) and Abdoun et al. (2020).

123 ***Centrifuge Experimental Results***

124 Figures 4-7 show the time histories of acceleration, stress ratio (shear stress (τ) / σ'_{v0}), shear strain
125 and excess pore pressure, measured in Tests 45-1 and 45-6, all in prototype units and reported by
126 Ni et al. (2020). The input acceleration time histories in both experiments consisted of a 10-cycle
127 uniform sinusoidal motion having a prototype frequency of 2 Hz. In both tests, the pore pressure
128 ratio in the sand reached a maximum excess pore pressure ratio, $r_u = (r_u)_{max}$, of about 0.8 (Table 3).
129 While the shape, frequency and duration of the input acceleration were the same in both tests, the

130 acceleration amplitude was about an order of magnitude higher in Test 45–6, in order to achieve
131 similar maximum pore pressure ratios.

132 Figure 8 shows the measured profiles of excess pore pressure, u , versus depth, z , for the
133 instant at the end of shaking, when $u = u_{\max}$ in the deepest pore pressure sensor. The depth, z , in
134 Fig. 8 as well as subsequent figures, is measured from the top of the 5 m sand layer. As can be seen
135 in Fig. 8, u increases with depth in both Tests 45-1 and 45-6, reaching the maximum $u = u_{\max}$ at the
136 deepest elevation. The slopes of the curves in Fig. 8 relate to the hydraulic gradients at the time of
137 u_{\max} , with steeper slopes corresponding to smaller gradients. The hydraulic gradient points upward
138 in both tests, as expected, indicating that the pore fluid was flowing up toward the drainage
139 boundary located at the top of the layer. Figure 9 shows the corresponding profiles of the pore
140 pressure ratio, $r_u = u/\sigma' v_0$, also measured at the end of shaking. Figure 9 indicates that the maximum
141 value of $r_u = (r_u)_{\max}$ also occurred at the deepest elevation in both Tests 45-1 and 45-6. Table 3
142 includes the depths of the corresponding sensors as well as the values of $(r_u)_{\max}$ measured by them
143 in the two experiments. The System Identification analyses performed by Ni et al. (2020) indicated
144 that for both tests the stress ratio and shear strain did not change much with depth within the layer,
145 as illustrated by Figs. 5 and 6. Therefore, the variation of u and r_u with depth in the profiles of Figs.
146 8 and 9 is not due to differences in cyclic loading, as the cyclic loading varied little with depth
147 within the sand layer during shaking.

148 **Roles of cyclic triaxial stress-controlled and strain-controlled tests**

149 Separate series of stress-controlled and strain-controlled cyclic triaxial undrained tests were
150 conducted by Gecomp Corp on the same Ottawa sand used in the centrifuge experiments, at a
151 similar relative density, and on soil specimens isotropically consolidated to effective confining

152 pressures of 1 and 6 atm (Ni et al. 2020; Abdoun et al. 2020). The stress-controlled tests were
153 mentioned earlier when discussing the laboratory undrained K_σ of Table 1. The strain-controlled
154 tests are discussed in the following heading. It is important to note that the two series played two
155 important but different roles:

156 • The stress-controlled tests were used to determine the conventional laboratory undrained
157 value of K_σ for our sand in our Table 1, reproduced from Ni et al. (2020). This is consistent
158 with the undrained testing approach used to produce the State-of-Practice recommendations
159 of Fig. 2 (Youd et al. 2001; Idriss and Boulanger 2008).

160 • As discussed in the next heading, the strain-controlled tests were used to obtain the
161 undrained pore pressure buildup model needed for the Dmod2000 numerical simulations
162 (Fig. 10 and Table 4). Pore pressure buildup is determined more uniquely by cyclic strain
163 than by cyclic stress, and use of strain-controlled tests result in additional insights and
164 improved numerical modeling (Dobry and Abdoun 2015).

165 **Strain-controlled cyclic triaxial tests**

166 Two series of isotropically consolidated, cyclic triaxial strain-controlled cyclic tests were conducted
167 in order to calibrate the undrained pore pressure model needed as input to Dmod2000. All triaxial
168 tests were done by Geocomp Corp (Ni et al. 2020; Abdoun et al. 2020).

169 In these strain-controlled tests, samples of the same Ottawa F65 sand with a similar relative
170 density (40%), were subjected to different levels of cyclic strain under 1 and 6 atm isotropic
171 consolidation pressures. The excess pore pressure ratio, r_u , was recorded versus number of cycles
172 up to full liquefaction ($r_u = 1.0$). A fresh sample was used for each cyclic shear strain level (γ_c),
173 with γ_c ranging from 0.003% to 0.3%. Figure 10 displays the relations between γ_c and pore pressure

174 ratio, r_u , after 10 loading cycles for the two confining pressures. The plot shows that the 6 atm
175 samples required a higher cyclic strain to reach the same level of r_u , as expected. The figure includes
176 the best fit curves for these results at 1 atm and 6 atm confining pressures. These curves were used
177 to generate the parameters for the pore pressure model in Dmod2000, as explained later herein. The
178 figure also includes the range of undrained cyclic triaxial strain-controlled results compiled from
179 the literature by Dobry in the 1980s and reproduced by Dobry and Abdoun (2015), for a number of
180 clean and silty sands at confining pressures between 0.3 and 2 atm. Finally, Fig. 10 also includes
181 the curve measured by Bhatia (1982) using cyclic direct simple shear tests (CDSS) and $\sigma'_{v0} \approx 2$ atm
182 for their Ottawa sand.

183 **Numerical simulations using Dmod2000**

184 Several researchers have developed sophisticated constitutive soil models that aim at capturing the
185 soil contractive and dilative behavior in 1D and 2D systems (Prevost 1977; Li et al. 1993; Mckenna
186 and Fenves 2001; Elgamal et al. 2003; Dafalias and Manzari 2004; Gerolymos and Gazetas 2005).
187 These models often require tens of parameters that are not typically available to practicing
188 engineers. Alternative simplified non-linear 1D analysis codes, require less parameters and are
189 easier to use, like Desra2 (Lee and Finn 1978), Dmod2000 (Matasovic 1993), and Deepsoil
190 (Hashash 2009). Over the past few decades, significant efforts have been made toward validation
191 and calibration of numerical codes simulating soil liquefaction in the free field and under structures.
192 These efforts include VELACS (Arulanandan and Scott 1993) and the ongoing project LEAP
193 (Manzari et al. 2017). The authors have participated in both efforts in various capacities.

194 In this paper, Dmod2000 was used to simulate both Tests 45-1 and 45-6 in order to calibrate
195 and validate the software, as well as to gain additional insight into the pore pressure response of

196 sand under a high overburden pressure. The authors took advantage of their experience in achieving
197 successful Dmod2000 simulations of other RPI liquefaction centrifuge tests (Dobry et al. 2018).
198 The Dmod2000 simulations of Tests 45-1 and 45-6 included in this paper are Type C predictions
199 as defined in VELACS and LEAP, because the predictions were done after the events. That is, the
200 centrifuge results were already available and were systematically used to calibrate the software. As
201 listed in Table 2, four Dmod2000 runs were performed in this research (Run 45-1, Run 45-6, Run
202 45-1U, and Run 45-6U). Run 45-1 and Run 45-6 are Type C simulations of Tests 45-1 and 45-6.
203 The two additional runs (Run 45-1U and Run 45-6U), used the same input parameters of Runs 45-
204 1 and 45-6, except for the drainage condition. That is, in Runs 45-1U and 45-6U the drainage was
205 turned off, in order to study the effect of drainage/no-drainage on the liquefaction behavior of sand
206 under low and high effective overburden pressures. No-drainage is equivalent to have a
207 permeability in the sand layer, $k \approx 0$.

208 The following headings discuss the main constitutive parameters needed to run these 1D
209 Dmod2000 free field simulations. The parameters and key equations are summarized in Table 4. A
210 special emphasis is placed on the correct modeling of compressibility at low and high overburden
211 pressures, following Abdoun et al.'s (2020) conclusion that the lower sand compressibility at 6 atm
212 compared to 1 atm, was the main reason for the increased partial drainage during shaking at 6 atm
213 observed in the centrifuge tests.

214 ***Shear stiffness and constitutive law***

215 Bender element measurements in the centrifuge tests provided the shear wave velocity of the sand,
216 V_s , which in turn allowed obtaining the initial shear modulus of the sand at very small strains, G_{max}
217 $= \rho V_s^2$ (ρ = saturated total density of the soil). The constitutive shear stress-strain law assigned to

218 each layer (backbone curve), follows the modified Kondner and Zelasko (1963) hyperbolic model
219 (Matasovic 1993):

220

$$\tau = \frac{G_{max} \cdot \gamma}{1 + \beta \left(\frac{G_{max}}{\tau_{mo}} \cdot \gamma \right)^s} \quad (1)$$

221 where τ is the shear stress corresponding to a shear strain, γ , τ_{mo} is shear strength, and β and s
222 are constants estimated by fitting the secant shear modulus reduction curve (G/G_{max} vs. cyclic shear
223 strain, γ_c), to that provided in Ni et al. (2020) based on the centrifuge results. Equation 1 is the
224 initial, undegraded backbone stress-strain curve, which is degraded as excess pore water pressure
225 increases in the layer, with G_{max} replaced by G_{mt} and τ_{mo} replaced by τ_{mt} , as shown in Table 4.

226 ***Pore water pressure buildup behavior due to undrained cyclic loading***

227 The excess pore water pressure model implemented in Dmod2000 is based on the cyclic strain-
228 based approach for undrained loading originally developed by Dobry et al. (1985) for sands, and
229 updated by Vucetic and Dobry (1986, 1988) as follows:

230

$$r_u = \frac{P * f * N_c * F * (\gamma_c - \gamma_{tv})^{sp}}{1 + f * N_c * F * (\gamma_c - \gamma_{tv})^{sp}} \quad (2)$$

231 where P , F , f and s_p are fitting parameters that depend on the sand material and fabric. The strain
232 variables, γ_c and γ_{tv} , are the uniform cyclic shear strain and the volumetric threshold shear
233 strain, respectively. The results of the undrained cyclic strain-controlled triaxial tests performed by
234 Geocomp at 1 and 6 atm (Ni et al. 2020 and Abdoun et al. 2020) were used to calibrate the pore
235 pressure model in Eq. 2. Figure 10 shows the data points from the triaxial tests as well as the best
236 fit curves based on the pore pressure model of Eq. 2, while Table 4 lists the numerical input
237 parameters selected.

238 ***Roles of compressibility and permeability***

239 Dmod2000 calculates the increase and decrease of excess pore pressures within the general
240 framework of the classical Theory of Consolidation, originally developed for clays (e.g., Lambe
241 and Whitman 1969). Specifically, the rate of change at a given elevation of the excess pore
242 pressure, u , with time, t , is obtained as the sum of two terms:

243
$$\frac{\partial u}{\partial t} = (\frac{\partial u}{\partial t})_{\text{undrained}} + c_v (\frac{\partial^2 u}{\partial z^2}) \quad (3)$$

244 where $(\frac{\partial u}{\partial t})_{\text{undrained}}$ is obtained from the undrained pore pressure model (Eq. 2), and the second
245 term, $c_v (\frac{\partial^2 u}{\partial z^2})$, reflects the pore water flow at that elevation due to positive or negative
246 volume changes throughout the sand layer (consolidation). During dissipation after the shaking,
247 the first term of Eq. 3 is zero, and the equation becomes the familiar clay consolidation basic
248 equation, where the excess pore pressure dissipation is completely controlled by the coefficient of
249 consolidation, c_v , as well as by the drainage boundary conditions:

250
$$\frac{\partial u}{\partial t} = c_v (\frac{\partial^2 u}{\partial z^2}) \quad (4)$$

251 There could be some problems in applying Eqs. 3-4 to a sand layer which liquefies in part or all
252 of its thickness, due to the presence of sand grains that are “floating” in the water and not in
253 contact with each other, and hence settle (sediment) with time in a way that is different from that
254 reflected in Eqs. 3-4 (Florin and Ivanov 1961; Scott 1986; Sharp and Dobry 2002). However, the
255 condition $r_u = 1.0$ corresponding to liquefaction was not reached in the two centrifuge tests
256 analyzed herein, and thus the application of Eqs. 3-4 used in Dmod2000 is clearly a valid
257 approximation.

258 The coefficient of consolidation, c_v , is related to other soil parameters by the expression:

259
$$c_v = \frac{k}{\gamma_w m_v} \quad (5)$$

260 where γ_w = unit weight of water, k = permeability, and m_v = coefficient of volume change =
261 $\partial\epsilon_{vc}/\partial\sigma'_{v}$. In this expression for m_v , $\epsilon_{vc} = s_{vc} / H$ is the consolidation vertical volumetric strain of
262 the sand layer after shaking at a given time during dissipation; H = thickness of sand layer; and
263 $\sigma'_{v} = \sigma'_{v0} - u$ is the effective overburden pressure. That is, m_v is a measure of the compressibility
264 of the soil skeleton. For the Dmod2000 simulations, it is more convenient to work with the
265 reciprocal of m_v , the constrained modulus, $M' = 1/m_v = \partial\sigma'_{v} / \partial\epsilon_{vc}$. Therefore, c_v is redefined as:

266

$$c_v = \frac{k M'}{\gamma_w} \quad (6)$$

267 The volumetric stiffness M' is the parameter used in Dmod2000, with Table 4 including the
268 corresponding expression, where M' is a function of both σ'_{v0} and $\sigma'_{v} = \sigma'_{v0} - u$.

269 An important conclusion from Eqs. 3-4 and 6 is that from the viewpoint of excess pore
270 pressure buildup and dissipation, neither the permeability, k , nor the volumetric stiffness, M' ,
271 matter independently, but only through their effect on the coefficient of consolidation c_v , which is
272 in turn proportional to the product $k M'$.

273 The next two headings discuss, respectively, the parameters M' and k used as input to the
274 Dmod2000 simulations reported herein. The discussion related to sand compressibility is
275 relatively involved due to its importance in partial drainage, especially because the Martin et al.
276 (1975) formulation used by Dmod2000 and other numerical codes is not clearly explained
277 elsewhere.

278 ***Sand compressibility***

279 Assignment of the proper sand compressibility in the Dmod2000 runs is critical to a correct
280 numerical simulation of the centrifuge tests. As discussed by Abdoun et al. (2020), pore pressure

281 dissipation after shaking was much faster in Test 45-6 than in Test 45-1 (Fig. 7), and also much
282 more partially drained during shaking in Test 45-6 (Figs. 8-9). This was correlated to the decreased
283 compressibility of the sand in Test 45-6, associated with its 6 atm overburden pressure compared
284 to the 1 atm applied in Test 45-1. As shown by Table 5 and by the two data points in Fig. 11, the
285 volumetric stiffness modulus, $M' = u_{ave} / (\varepsilon_{vc})_{max}$, obtained from dissipation phase measurements,
286 was 2.7 times greater in the 6 atm centrifuge test compared to the 1 atm test (Ni et al. 2020 and
287 Abdoun et al. 2020). In Table 5 and Fig. 11, u_{ave} is the average excess pore pressure measured at
288 the end of shaking throughout the sand layer, and $(\varepsilon_{vc})_{max}$ is the total volumetric strain starting from
289 the end of shaking until the end of the excess pore pressure dissipation.

290 Martin et al. (1975) showed that the excess pore pressure during undrained cyclic loading,
291 is related to the tendency to densification measured during drained cyclic loading on the same sand
292 (see also Bhatia, 1982). A key aspect of this relationship is the volumetric stiffness modulus, \bar{E}_r ,
293 associated in first approximation to the unloading curve in 1D drained consolidometer tests. While
294 Dmod2000 does not use Martin's model for pore pressure buildup, it retains the expression for \bar{E}_r
295 to relate pore pressure and volume changes during and after shaking (Table 4). Therefore, in
296 principle, the volumetric stiffness M' obtained in centrifuge tests (Table 5), is the same parameter
297 as \bar{E}_r defined by Martin et al. (Table 4), $M' = \bar{E}_r = \Delta\sigma'_v / \Delta\varepsilon_v$.

298 It is useful to clarify in more detail the exact relation between \bar{E}_r and M' , as well as their
299 law of variation with the effective overburden pressures σ'_{v0} and σ'_v , reflected in the expression for
300 \bar{E}_r of Table 4. For example, $\bar{E}_r = M' = d\sigma'_v / d\varepsilon_v$ - defined in Table 4 and used in Dmod2000 - is a
301 tangent modulus associated with very small changes in σ'_v and ε_v with time at a given elevation.
302 On the other hand, $M' = u_{ave} / (\varepsilon_{vc})_{max}$ calculated in Table 5 is a secant modulus associated with the

303 total changes in u_{ave} and ϵ_{vc} calculated for the whole sand layer during the whole time of dissipation
304 in the centrifuge tests.

305 Figure 12a shows typical experimental results of a 1D consolidation test in dry sand
306 involving initial loading as well as unloading and reloading curves (Seaman et al., 1963; Lambe
307 and Whitman, 1969). Of interest to the discussion here are the first monotonic loading curve, OA,
308 as well as the first unloading curve, AB, and subsequent reloading curve, BC. All three curves are
309 concave upwards. Important observations related to each of the three curves are (Figs. 12 a, b & c):

- 310 • The initial loading curve OA has an equation of the form, $\sigma'_v = C (\epsilon_v)^p$, with $p > 1$. Generally
311 for sands it is $p \approx 2$ (Lambe and Whitman, 1969). This results in a tangent modulus, $d\sigma'_v /$
312 $d\epsilon_v$, proportional to $\sqrt{\sigma'_v}$. This square root law of variation of 1D modulus during initial
313 monotonic loading is widely accepted and used for sands (Lambe and Whitman, 1969).
- 314 • The first unloading curve AB in Figs. 12a and 12b is the basis for the Martin et al. (1975)
315 model for pore pressure buildup. The equation for the tangent $\bar{E}_r = d\sigma'_v / d\epsilon_v$ in Table 4 was
316 developed for such unloading curve.
- 317 • The first reloading curve BC in Fig. 12a is the most appropriate to the situation during the
318 dissipation phase of centrifuge tests such as those simulated here, captured by the
319 calculation of M' in Table 5. The increased pore pressure u_{ave} and corresponding decreased
320 effective stress $\sigma'_v = \sigma'_{v0} - u_{ave}$ at the end of shaking (Table 5), corresponds in first
321 approximation to Point B in the figure before dissipation starts. During dissipation, the pore
322 pressure is reduced from u_{ave} to zero, with σ'_v increasing back to its initial value σ'_{v0} (Point
323 C of Fig. 12a). That is, the dissipation corresponds to reloading. During the shaking phase
324 before dissipation, either unloading or reloading may take place at different times and

325 locations within the sand layer due to partial drainage, depending if the soil is locally
326 decreasing or increasing in volume with time. Therefore, both unloading curve AB and
327 reloading curve BC in Fig. 12a may be needed. Fortunately, as illustrated by Fig. 12a, the
328 two curves are very similar in most of their trajectory. In Dmod2000, the same expression
329 for the tangent modulus $M' = \bar{E}_r = \Delta\sigma'_v / \Delta\epsilon_v$ shown in Table 4, is used irrespective of the
330 soil being unloaded (pore pressure increasing) or reloaded (pore pressure decreasing). This
331 seems reasonable in light of the measured behavior in Fig. 12a. In the rest of this paper, and
332 in accordance with the way $M' = \bar{E}_r$ is used in Dmod2000, no difference will be made
333 between the unloading and reloading value of this parameter.

334 The sketches in Figs. 12b and 12c illustrate the basic concept of the model proposed by Martin et
335 al. (1975) for their unloading curve in sand during 1D drained confined compression, interpreted
336 in Dmod2000 to be valid for both unloading and reloading. Curve OA of equation $\epsilon_v = F (\sigma'_v)^{0.5}$
337 in Fig. 12b corresponds to initial loading. Curve AB in the same figure corresponds to unloading
338 back from $\sigma'_v = \sigma'_{v0}$ to $\sigma'_v = 0$.

339 Curve OA' in Fig. 12b, passing by the origin, is identical and parallel to curve OA in the
340 same Fig. 12b. That is, OA' is the unloading curve but with the permanent or slipping strain, ϵ_{vs0} ,
341 removed so the analysis can focus on the relation between σ'_v and the recoverable strain, ϵ_{vr} .
342 During unloading from A' to O in Fig. 12b, σ'_v decreases from σ'_{v0} to zero, and ϵ_{vr} decreases
343 from ϵ_{vr0} to zero.

344 This unloading curve, OA', is repeated in Fig. 12c, together with similar curves OA'',
345 OA''', etc., corresponding to different values of σ'_{v0} and ϵ_{vr0} . In Fig. 12c, the “pseudo initial

346 loading" curve OA'A''A''', is simply the locus of all points A', A'', A''', etc., corresponding to
 347 different values of σ'_{v0} and ε_{vr0} . Martin et al. defined the following set of expressions for the
 348 pseudo initial loading and unloading curves (see also Bhatia, 1982):

349 Pseudo initial loading curve:

$$350 \quad \varepsilon_{vr0} = k_2 (\sigma'_{v0})^n \quad (7)$$

351 Unloading curve:

$$352 \quad \varepsilon_{vr} = \varepsilon_{vr0} (\sigma'_{v} / \sigma'_{v0})^m \quad (8)$$

353 Figure 12d presents the original set of curves for ε_{vr0} and ε_{vr} originally presented by Martin et al.
 354 (1975), see also Bhatia (1982). The curves in Fig. 12d correspond to actual consolidometer
 355 experimental data on Crystal silica sand, with values of $k_2 = 0.0025$, $n = 0.62$ and $m = 0.43$
 356 (stresses in psf, strains in percent). Note that in this consolidometer test, the maximum applied
 357 pressure was $\sigma'_{v0} = 4000$ psf ≈ 2 atm, significantly smaller than the maximum $\sigma'_{v0} = 6$ atm
 358 associated with our centrifuge tests and numerical simulations.

359 The expression for the tangent modulus $M' = \bar{E}_r$ along the unloading curve OA' of Fig.
 360 12c was derived by Martin et al. (1975) from Eqs. 7-8:

$$361 \quad \bar{E}_r = M' = \frac{(\sigma'_v)^{1-m}}{m k_2 (\sigma'_{v0})^{n-m}} \quad (9)$$

362 which is the same expression used by Dmod2000 and listed in Table 4. It is useful to convert Eq.
 363 9 in terms of excess pore pressure, more directly relevant to the centrifuge tests and
 364 corresponding Dmod2000 simulations. In these, σ'_{v0} is the initial effective confining pressure
 365 before shaking starts, and $\sigma'_{v} = \sigma'_{v0} - u$ at any time during shaking and dissipation where $u =$

366 excess pore pressure. Even more conveniently, $\sigma'_{v0} = \sigma'_{v0} (1 - r_u)$, where $r_u = u/\sigma'_{v0}$ = excess pore
367 pressure ratio. Therefore:

368

$$M' = \frac{(1-r_u)^{1-n}}{m k_2} (\sigma'_{v0})^{1-n} \quad (10)$$

369 For $r_u = 0$, M' is proportional to $(\sigma'_{v0})^{1-n}$. For the Crystal silica sand oedometer tests in Fig. 12d, n
370 = 0.62, $1-n = 0.38$, and for $r_u = 0$, M' is proportional to $(\sigma'_{v0})^{0.38}$. The initial tangent modulus
371 corresponding to very small unloading or reloading increments, is also usually defined as the
372 constrained modulus associated with compressional wave propagation (P-wave), generally
373 accepted to be proportional to the root square of σ'_{v0} in sands (Lambe and Whitman 1969). This
374 would suggest that in many sands, $1-n = 0.5$, with n being closer to 0.5 than to 0.62.

375 In the Dmod2000 simulations presented herein, the exponent n was taken to be 0.5, and the
376 parameters m and k_2 were best fitted to the experimental data points $(u)_{ave}$ and $(\epsilon_{vc})_{max}$ in Table 5.
377 The best fit corresponds to the solid curves of Fig. 11. As seen in Fig. 11, the slopes of the curves
378 show a significantly higher M' at 6 atm as compared to 1 atm. Therefore, it was possible to fit to
379 the 1 and 6 atm centrifuge results during dissipation (Table 5, data points in Fig. 11), a single set of
380 parameters in Martin's equation that completely define the variation of M' for the Dmod2000 runs
381 ($m = 0.4$, $n = 0.5$, and $k_2 = 0.006$; strain in percent and stresses in psf). These three parameters used
382 in our simulations are listed in Table 4. The parameters $m = 0.43$, $n = 0.62$ and $k_2 = 0.0025$ obtained
383 experimentally by Martin et al. from oedometer testing for Crystal silica sand (Fig. 12d) were also
384 used to predict the compressibility curves in Fig. 11 (dashed lines). The figure shows that the two
385 sets of curves are in remarkably good agreement, especially at 1 atm. This good agreement occurs
386 despite the fact that the data correspond to two different sands tested using two different techniques

387 (consolidometer and centrifuge tests). Furthermore, the dashed line for $\sigma'_{v0} = 6$ atm in Fig. 11
388 involves significant extrapolation, as the Martin's consolidometer results in Fig. 12d only cover up
389 to about 2 atm. Figure 11 may open the door toward defining unique compressibility characteristics
390 for a range of different clean sands deposited by dry pluviation, that could potentially be used by
391 practitioners for numerical modeling in their projects, with these unique compressibility
392 characteristics perhaps based on simple loading-unloading-reloading consolidometer experiments.

393 ***Sand permeability***

394 The permeability, $k = 1.2 \text{ E-4 m/sec}$, of Ottawa F65 sand with $D_r = 45 \text{ \%}$, was measured in a
395 constant head test reported by El Ghoraiby et al. (2017). This value was used in the Dmod2000
396 Runs 45-1 and 45-6 reported herein, and is included in Table 4. Abdoun et al. (2020) studied the
397 effect of effective confining pressure between 1 and 6 atm on the permeability of Ottawa F65 sand
398 using a flexible wall permeability test in a triaxial cell, and concluded that the effect is negligible
399 for practical purposes. This justifies using the same value of k for both 1 and 6 atm simulations, as
400 shown in Table 4.

401 As discussed later herein, the authors found that this value of $k = 1.2 \text{ E-4 m/sec}$, measured
402 in the laboratory in regular permeability tests done at 1g, yields reasonable pore pressure response
403 predictions for the two centrifuge tests when used without modification in Dmod2000. This is
404 different from the findings of other researchers in the past including the authors, who reported that
405 the permeability measured in the laboratory in permeability tests, had to be increased by a factor
406 ranging from 4 to 25 in order to achieve successful simulations of centrifuge liquefaction tests
407 (Ishihara 1993; Shahir et al. 2012; Dobry et al. 2018). Dobry et al. (2018) attributed this increased
408 permeability during shaking and liquefaction to the lack of contact between particles due to the pore

409 pressure generation. It may also be influenced by the opening of vertical drainage paths of much
410 higher permeability by the upward flow of water.

411 The fact that no such permeability increase was necessary for the simulation herein of the
412 centrifuge tests by the authors may be perhaps related to the following factors:

413 1. As mentioned before, from the viewpoint of the excess pore pressure buildup and dissipation
414 calculated by Dmod2000, neither the permeability, k , nor the volumetric stiffness, M' ,
415 matter independently, but only through their effect on the coefficient of consolidation c_v ,
416 which is proportional to the product $k M'$ (Eq. 6). In the paper by Dobry et al. (2018), the
417 total settlement during both shaking and dissipation was used to evaluate the value of M' ,
418 instead of the more correct dissipation settlement only, as used now in Table 5 and Fig. 11.
419 The use of a settlement value that was too large by Dobry et al. (2018), decreased the M' ,
420 and thus required increasing the value of k to keep the product $k M'$ and c_v at their correct
421 levels.

422 2. No initial liquefaction (defined by a pore pressure ratio, $r_u = 1.0$), occurred in centrifuge
423 Tests 45-1 and 45-6 discussed herein, with maximum values of $r_u \approx 0.8$ in both experiments
424 (Table 3). This, together with the fact that in our tests the top of the sand layer was not the
425 ground surface, may have minimized or eliminated the effects of loss of contact between
426 particles and opening of vertical paths by piping. This is different from the previous
427 centrifuge tests discussed above where k had to be increased, including VELACS and Dobry
428 et al. (2018), where liquefaction did occur and the top of the sand layer coincided with the
429 ground surface.

430 **Numerical simulations and comparison with experimental results**

431 Figures 4-7 show comparisons of time histories of several parameters, between those measured in
432 the two centrifuge experiments and their corresponding Dmod2000 simulations. The figures
433 include: accelerations, stress ratios, shear strains, and excess pore pressure ratios, r_u . The plots of
434 pore pressure ratio in Fig. 7 include comparisons through both shaking and dissipation. Figures 4-
435 7 show generally a very good match between time histories measured in the centrifuge, as
436 previously reported by Ni et al. (2020), and those simulated by Dmod2000. Figures 8-9 present
437 similar comparisons for the profiles of excess pore pressure and pore pressure ratio at the end of
438 shaking. Table 3 lists the maximum pore pressure ratios, $(r_u)_{max}$, measured in Tests 45-1 and 45-6
439 as well as the corresponding r_u calculated at the same depth by the Dmod2000 runs. More details
440 about these comparisons are discussed in the following subheadings.

441 *Acceleration time histories*

442 As shown in Fig. 4, there is a very good match between measured and computed acceleration
443 histories, especially at the deeper elevations, which this being valid at both 1 and 6 atm. The
444 computed accelerations start to deviate from the measured accelerations later in the shaking,
445 especially at shallow elevations. This deviation may be related to the differences between measured
446 and computed pore pressures during shaking at shallow elevations in Fig. 7.

447 *Shear stress ratio and strain time histories*

448 As shown in Figs. 5a and 6a, there is an excellent match between measured and computed shear
449 stresses and strains at all elevations at 1 atm. It must be noted that the measured strains do not
450 exceed about 0.1 to 0.15%, within the range of strains where the hyperbolic model used by
451 Dmod2000 captures well the soil stress-strain response. The comparison at 6 atm is very good for
452 shear stresses (Fig. 5b) and fair for shear strains (Fig. 6b). The reason for this deviation seems to

453 be the higher pore pressure predicted by the numerical model compared to the experimental data
454 (Fig. 7b).

455 Pore pressure time histories during and after shaking and pore pressure profiles at end of shaking
456 As shown in Fig. 7, there is a very good match between measured and computed pore pressure
457 histories during the buildup phase, especially at deeper elevations, with the match deteriorating
458 somewhat at shallower depths. Afterwards, during dissipation, the computed pore pressure is
459 somewhat higher, dissipating more slowly than the measured excess pore pressure, especially at 1
460 atm. Figures 8 and 9, respectively, show the profiles of excess pore pressure and excess pore
461 pressure ratio at the end of shaking. These profiles also exhibit a very good match, both in terms of
462 values and trends, with $(r_u)_{\max}$ occurring at the bottom in both measured and computed profiles.

463 ***Settlement after shaking***

464 The vertical settlement time histories of the sand deposits in centrifuge Tests 45-1 and 45-6 were
465 measured by vertical LVDTs placed at the surface of the sand layer, with the results reported by Ni
466 et al. (2020). Figure 13 presents the time histories of the consolidation vertical volumetric strain of
467 the sand layer after end of shaking, ϵ_{vc} , measured in Tests 45-1 and 45-6, growing from zero to their
468 final values, $(\epsilon_{vc})_{\max}$. Each ϵ_{vc} was obtained by dividing the settlement measured by the LVDT at a
469 given time after shaking on top of the sand layer, by the thickness of the layer.

470 Although the Dmod2000 code does not compute the settlement of the deposit, a procedure
471 was adopted by the authors to predict consolidation settlement based on the pore pressure
472 dissipation and the Theory of Consolidation (Dobry et al. 2018). For the purpose of this numerical
473 simulation of the settlement, the 5m sand layer was divided into a number of sublayers. The

474 contribution of each sublayer i to the total settlement of the layer, for a given small time period
475 during dissipation is ΔH_i , given by the expression:

476
$$\Delta H_i = m_{vi} \Delta \sigma'_i H_i \quad (11)$$

477 where m_{vi} is the compressibility coefficient of layer i during the time increment, H_i is the thickness
478 of sublayer i , and $\Delta \sigma'_i$ is the change in vertical effective stress at mid-depth of the sublayer i . $\Delta \sigma'_i$
479 is equal (with opposite sign) to Δu , which is the excess pore pressure increment at the same depth,
480 with Δu available in the output files of every Dmod2000 run for each sublayer i . By integrating
481 (adding up) the values of ΔH_i for all sublayers within the sand layer, as well as over time during
482 the dissipation phase, it was possible to extract the predicted settlement time histories shown in Fig.
483 13 for Runs 45-1 and 45-6. Additional details on the application of Eq. 11 can be found in Dobry
484 et al. (2018).

485 These simulated time histories of vertical settlement strain after the end of shaking are
486 compared in Fig. 13 with those measured in the centrifuge tests by the LVDTs. There is very good
487 agreement between measured and calculated settlement time histories for Test 45-1 in Fig. 13a.
488 However, there is a significant difference between measured and simulated records for Test 45-6,
489 with Run 45-6 predicting 35% larger settlement (Fig. 13b). This is probably because the excess
490 pore pressures at the beginning of dissipation predicted by the simulation are greater than for the
491 experiment (Figs. 8b & 9b). It is not clear to the authors why there is more discrepancy between
492 measured and computed pore pressure at 6 atm as compared to 1 atm.

493 ***Coefficient of consolidation (c_v) time history***

494 The coefficient of consolidation, c_v , in the Theory of Consolidation was defined before in Eq. 6 in
495 terms of the volumetric stiffness, M' , with Eq. 9 providing the expression for M' fitted to the
496 centrifuge data in Fig. 11 and used in the Dmod2000 runs.

497 Given the fact that k and γ_w in Eq. 6 are essentially constant with confining pressure, c_v
498 is directly proportional to M' . Since $M'_{6\text{ atm}}$ is significantly higher than $M'_{1\text{ atm}}$ in the centrifuge
499 tests (Table 5 and Fig. 11) - with this difference also reflected in the dependence of M' on σ'_{v0} in
500 Eq. 9 used in the Dmod2000 simulations – it is expected that $c_{v6\text{ atm}}$ should also be significantly
501 higher than $c_{v1\text{ atm}}$.

502 Equation 6 ($c_v = k M' / \gamma_w$), together with Eq. 9, were used in Runs 45-1 and 45-6 in
503 conjunction with the calculated excess pore pressures, to compute the predicted time histories of c_v
504 at different elevations within the sand layer. The results are shown by the curves in Fig. 14. The
505 figure also includes the data points of the average experimental c_v for the whole layer during
506 dissipation, backfigured by Abdoun et al. (2020) from centrifuge Tests 45-1 and 45-6. These c_v
507 were calculated from the measured pore pressures using the basic consolidation formulation of Eq.
508 4 [$c_v = \partial u / \partial t / (\partial^2 u / \partial z^2)$]. Figure 14 demonstrates remarkable agreement between experimental and
509 numerical simulations, enhancing the credibility of both sets of results.

510 Two trends in Fig. 14 deserve additional mention. The *first* is that for small excess pore
511 pressures (at the beginning of shaking and end of dissipation), the numerical simulations indicate
512 that $c_{v6\text{ atm}}$ is almost three times greater than $c_{v1\text{ atm}}$. This difference is a direct result of the much
513 higher volumetric stiffness, M' , in the sand at the higher pressure (Fig. 11), and explains both the
514 greater partial drainage during shaking and faster dissipation at 6 atm, revealed by Figs. 7-9. This

515 higher c_v at 6 atm is also present in the experimental data points of Fig. 14, as discussed by Abdoun
516 et al. (2020). The *second* trend in Fig. 14 is the tendency for c_v to decrease during shaking as the
517 excess pore pressures and r_u increase. This is a consequence of the reduction in M' as r_u increases,
518 shown by Fig. 11 in which M' is the slope of the curves and also reflected in Eq. 10. That is, as the
519 pore pressure builds up during shaking and approaches liquefaction, the sand becomes more
520 compressible.

521 **Undrained Numerical Simulations (Runs 45-1U and 45-6U)**

522 The numerical simulations of Tests 45-1 and 45-6 were repeated using the same exact parameters
523 of Runs 45-1 and 45-6, except for the drainage conditions, which were set to no-drainage. These
524 were labeled Runs 45-1U and 45-6U (Table 2). Physically, it means that in these runs the
525 permeability of the sand layer, $k \approx 0$. Therefore, as per Eq. 6, $c_v \approx 0$ also. The purpose of these two
526 undrained runs was to compare the behavior of the actual partially drained deposit conditions to the
527 idealized undrained conditions. That is, this allows to examine how “partially drained” the sand
528 layers actually were during shaking in centrifuge Tests 45-1 and 45-6, as well as in their numerical
529 counterparts, Runs 45-1 and 45-6. The excess pore pressure time histories and profiles calculated
530 in these undrained simulations are included in Figs. 7-9, while the calculated values of r_u at the
531 depths at which $(r_u)_{\max}$ was measured in the centrifuge tests are listed in Table 3. The plots as well
532 as Table 3 indicate that at the bottom of the sand layer, Runs 45-1U and 45-6U predict pore
533 pressures slightly higher than, but very similar to those computed by Runs 45-1 and 45-6. This
534 suggests that the pore pressure response up to the end of shaking in Runs 45-1 and 45-6 was close
535 to undrained at the bottom of the layer, where the impervious boundary is located. As the elevation
536 becomes shallower, the pore pressures in Runs 45-1 and 45-6 increasingly deviate from those of

537 the undrained Runs 45-1U and 45-6U, demonstrating the significance of partial drainage in Runs
538 45-1 and 45-6, as well as in their corresponding experimental counterparts. It can be noted from
539 Figs. 7-9 that this deviation from undrained is much more pronounced for Run 45-6 than for Run
540 45-1, indicating a more partially drained behavior at the higher overburden pressure. This confirms
541 the previous conclusion that Test 45-6 was much more drained than Test 45-1, as also indicated by
542 the higher c_v for Test 45-6 in Fig. 14.

543 **Discussion of pore pressure response in Dmod2000 simulations**

544 The discussion presented in this section focuses on the comparison between numerically predicted
545 pore pressure response for the simulated field conditions (Runs 45-1 and 45-6), and assumed
546 perfectly undrained conditions (Runs 45-1U and 45-6U). The discussion is also largely applicable
547 to the experimental results of Tests 45-1 and 45-6, due to the good agreement already discussed
548 between numerical and experimental excess pore pressure, presented in Table 3 and Figs. 7-9.
549 Figure 8 includes the excess pore pressure profiles at the end of shaking, while Fig. 9 shows the
550 corresponding pore pressure ratio profiles.

551 As shown in Fig. 8, the excess pore pressure profile for Run 45-6 has much greater hydraulic
552 gradients than in the corresponding profile for Run 45-1, indicating that there is significantly higher
553 upward water flow at $\sigma'_{v0} = 6$ atm than that at $\sigma'_{v0} = 1$ atm.

554 In Fig. 9, the excess pore pressure ratio profile for Run 45-1 is about constant, with $r_u =$
555 $(r_u)_{max} \approx 0.7-0.8$ in the lower half of the sand layer (about 2.5 m), that is near liquefaction but not
556 yet at liquefaction, which would correspond to $r_u = 1.0$. Run 45-1U shows a profile of r_u slightly
557 higher than 0.8 in the bottom 2.5 m, showing that Run 45-1 is close to, but not completely undrained
558 in the lower half of the sand layer. Figure 9 also indicates that in Run 45-6, which also reached

559 $(r_u)_{\max} \approx 0.8$ at the bottom of the layer, the sand thickness having this high pore pressure ratio was
560 much less than 1 m at the very bottom of the layer. This is, despite the fact that Run 45-6U showed
561 $r_u \approx 0.8$ or more throughout the whole layer thickness, meaning that Run 45-6 corresponded
562 approximately to undrained loading only for a fraction of 1 m at the bottom of the deposit.

563 In summary, in both Runs 45-1 and 45-6, the sand reached high pore pressure ratios close
564 to, but slightly short of their undrained values at the bottom of the layer by end of shaking. However,
565 in Run 45-6 the sand layer was draining and dissipating excess pore pressures significantly more
566 than in Run 45-1 at higher elevations above the bottom. This resulted in a thickness of sand having
567 a high pore pressure ratio ($r_u \approx 0.8$) at the bottom of the layer, that was significantly smaller in Run
568 45-6 than in Run 45-1. These conclusions are largely valid too for centrifuge Tests 45-1 and 45-6,
569 also plotted in Figs. 8-9.

570 This difference in pore pressure responses between Run 45-6/Test 45-6 and Run 45-1/Test
571 45-1, seems to be explained by the higher c_v value at 6 atm compared to 1 atm, discussed earlier
572 herein (Fig. 14). As discussed by Ni et al. (2020) and Abdoun et al. (2020), this higher c_v at 6 atm
573 tended to make the sand layer deposit less prone to liquefaction in the 6 atm tests, resulting in the
574 value of $K_\sigma > 1$ (Table 1), in a way that cannot be captured by cyclic undrained laboratory tests or
575 undrained numerical simulations.

576 **Overburden pressure factor, K_σ (Ni et al. 2020 and Abdoun et al. 2020)**

577 As mentioned at the beginning of the paper, the current state of practice to evaluate liquefaction
578 resistance at a high effective overburden pressure, $\sigma'_{v0} > 1$ atm, is based on the factor $K_\sigma = (CRR)_{\sigma'_{v0}}$
579 / $(CRR)_1$, where $(CRR)_{\sigma'_{v0}}$ and $(CRR)_1$ are the cyclic resistance ratios, CRR, in the critical
580 liquefiable layer under σ'_{v0} and 1 atm, respectively. This equation was developed assuming the

581 same number of cycles to liquefaction failure ($r_u = 1.0$). The CRRs are typically obtained from
582 cyclic undrained cyclic triaxial or simple shear tests. Using this approach invariably results in a
583 laboratory undrained $K_\sigma < 1.0$ (Fig. 2).

584 Abdoun et al. (2020) tested different sand samples of Ottawa sand of $D_r = 45\%$ consolidated
585 to isotropic consolidation pressures, σ'_c , of 1 atm and 6 atm in undrained cyclic triaxial stress-
586 controlled tests. The excess pore pressure ratio, r_u , was recorded versus time and number of stress
587 cycles. The tests resulted in $K_\sigma = 0.85$ for $\sigma'_c = 6$ atm and ten cycles to failure defined by $r_u = 1.0$.
588 An almost identical $K_\sigma = 0.84$ was obtained when failure was defined by $r_u = 0.8$. Both values of
589 this laboratory undrained K_σ are listed in Table 1.

590 A similar procedure was used to calculate the field K_σ from centrifuge experiments -where
591 partial drainage may occur during shaking - by Ni et al. (2020) and Abdoun et al. (2020). That is,
592 in the newly defined field K_σ , the restriction to purely undrained loading is removed. In the
593 centrifuge tests, $r_u = (r_u)_{\max} = 0.8$ after ten cycles of shaking rather than $r_u = 1.0$ was used as failure
594 criteria for CRR, because of the difficulty of reaching $r_u = 1.0$ in exactly ten cycles of shaking in
595 these experiments. This was justified and verified based on the K_σ from the undrained tests, which
596 is rather insensitive to the exact value of r_u being 0.8 or 1.0 (Table 1).

597 For each of the centrifuge Tests 45-1 and 45-6, the median CSR value of the cycles before
598 start of stress-strain degradation due to increased excess pore pressure, was used to calculate the
599 field K_σ at $\sigma'_{v0} = 6$ atm. This field K_σ corresponds to $\sigma'_{v0} = 6$ atm, with number of cycles, $N = 10$
600 cycles, and $r_u = (r_u)_{\max} = 0.8$, as this was the maximum value of r_u reached in the two centrifuge
601 tests. Using this approach, Ni et al. (2020) and Abdoun et al. (2020) obtained a field $K_\sigma = 1.28$ for
602 $\sigma'_c = 6$ atm at $r_u = 0.8$, as listed in Table 1.

603 By definition, centrifuge experiments are a better representation than undrained testing of
604 the pore pressure response for the specific set of field conditions modeled by them. Therefore, the
605 field $K_\sigma = 1.28$ of Table 1 also represents better the situation for the field conditions modeled in the
606 centrifuge, than the laboratory undrained $K_\sigma = 0.84$ or 0.85 . It is important to clarify the reason for
607 the discrepancy. The discussion in previous sections already provided considerable insight into the
608 reason for the difference: increased partial drainage, and hence deviation at high overburden
609 pressure from the undrained loading condition assumed by the State of Practice (SoP). This
610 increased partial drainage is in turn related to the increased volumetric stiffness and increased
611 coefficient of consolidation at a high overburden pressure, compared with the situation for an
612 overburden pressure of 1 atm (Table 5 and Fig. 11).

613 **Andrus and Stokoe (2000) Field Liquefaction Charts**

614 A main objective of this section is to link the State of Practice with the centrifuge and numerical
615 results at 1 atm and 6 atm discussed in previous sections. The field liquefaction triggering chart
616 developed by Andrus and Stokoe (2000) using the soil shear wave velocity, V_s , was selected for
617 this purpose (Fig. 1b). This chart could be used because V_s was actually measured by bender
618 elements in the sand layer in both centrifuge Tests 45-1 and 45-6. Also, previous work has shown
619 that the Andrus and Stokoe (2000) chart does an excellent job in separating liquefaction and no
620 liquefaction of recent uncompacted clean and silty sandy fills, both in the centrifuge and in the field
621 during actual earthquakes (Dobry et al., 2013; Abdoun et al. 2019).

622 Figure 15 is an enlargement of a small part of the Andrus and Stokoe (2000) chart of Fig.
623 1b, with the data points of centrifuge Tests 45-1 and 45-6 and Dmod2000 Runs 45-1 and 45-6

624 plotted on the chart as four data points. Following usual convention, they are open data points,
625 because in all cases there was no liquefaction ($r = (r_u)_{max} \approx 0.8 < 1.0$, see Table 3). Table 6 lists the
626 values of V_{s1} and $(CSR)_{7.5}$ needed to plot these four data points. The V_{s1} for the sand layer were
627 obtained from the bender element measurements in the two centrifuge tests before the shaking, as
628 previously listed in Table 4. The values of cyclic stress ratios, CSR, for both the centrifuge and
629 Dmod2000, were obtained as the median of the undegraded stress ratio history peaks, at the
630 beginning of the four stress ratio time histories of Fig. 5. This follows the general approach
631 implemented for centrifuge tests by Abdoun et al. (2013) and Dobry et al. (2013). All shakings had
632 a duration of 10 cycles, corresponding approximately to an earthquake moment magnitude, $M_w =$
633 7. Therefore, in order to bring each CSR to a magnitude, $M_w = 7.5$, the Magnitude Scaling Factor,
634 MSF, specified by Andrus and Stokoe 2000 was applied:

635
$$(CSR)_{7.5} = CSR/MSF \quad (14)$$

636 where $MSF = (M_w / 7.5)^{-2.56}$. That is, for $M_w = 7.0$, $MSF = (7/7.5)^{-2.56} = 1.19$, and $(CSR)_{7.5} =$
637 $CSR/1.19$. The $(CSR)_{7.5}$ was further reduced by 10% to account for the 1D shaking in the centrifuge
638 experiments, as compared to the 2D shaking in the field case histories used to generate liquefaction
639 curves such as those in Figs. 1b and 15 (Seed, 1979; Dobry et al., 2013)

640 The $(CSR)_{7.5}$ and V_{s1} obtained this way in Table 6, were used to plot the data points of Fig.
641 15. It is important to note that no K_σ correction factor was applied to any of these data points of Fig.
642 15. The plot indicates that Test 45-1 and Run 45-1 plot very close to each other, as expected given
643 the very good comparison between measured and simulated responses in Figs. 4-7. Test 45-6 and

644 Run 45-6 also plot reasonably close to each other, confirming the good comparison between
645 measured and simulated responses in Figs. 4-7.

646 A *first* observation from Fig. 15 relates to the location with respect to the Andrus and Stokoe
647 curve, of the two data points for Test 45-1/Run 45-1. All field case histories of liquefaction and no
648 liquefaction from actual earthquakes originally used to calibrate the curve of Fig. 15, were
649 associated with effective overburden pressures less than 2 atm, so the curve is directly applicable
650 to Test 45-1/Run 45-1, corresponding to $\sigma'_{v0} = 1$ atm. The two data points for Test 45-1/Run 45-1,
651 plot at some distance below the curve, correctly as they are associated with $r_u = 0.8$, compared with
652 $r_u = 1.0$ on the curve. This comparison confirms again the validity of the Andrus and Stokoe chart
653 for recent uncompacted fills in the field and centrifuge.

654 A *second* observation for Fig. 15 is that the two points for Test 45-6/Run 45-6 plot above
655 the points for Test 45-1/Run 45-1, suggesting the need for a $K_\sigma > 1.0$ in order to lower these 6 atm
656 data points to the same level of the 1 atm data points (since they have about the same r_u). This is
657 consistent with $K_\sigma = 1.28 > 1.0$ obtained by Abdoun et al. (2020) and Ni et al. (2020), and listed in
658 Table 1 for the 6 atm centrifuge simulation!

659 *Finally*, the locations of the data points in Fig. 15 relative to each other and to the curve,
660 suggest that calibrated 1D numerical simulations - in conjunction with existing field liquefaction
661 charts - have the potential to become useful practical tools in projects involving high overburden
662 pressures. This calibration includes proper accounting of the decrease of sand compressibility as
663 the overburden increases.

664 **Summary and Conclusions**

665 The paper presents numerical simulations of two centrifuge tests performed at high ($\sigma'_{v0} = 6$ atm)
666 and low ($\sigma'_{v0} = 1$ atm) effective overburden pressures testing the effect of overburden pressure on
667 the pore pressure buildup and liquefaction response of a sand layer due to base shaking. The 5m-
668 thick layer had a free drainage boundary at the top. The simulations was performed using
669 Dmod2000, a non-linear effective stress 1D site response analysis code. Hypothetical undrained
670 simulations were also conducted at 1 and 6 atm to gain additional insight on the degree of partial
671 drainage in the centrifuge tests. The simulations were Class C predictions, as the results of the
672 centrifuge tests were used to backfigure some of the input soil parameters.

673 The main conclusions of the paper are:

- 674 • The soil response was partially drained rather than undrained, with much more partial drainage
675 at 6 atm compared to 1 atm. The simulations correctly modeled this behavior, with very good
676 agreement between simulated and centrifuge excess pore pressures. Very good accord was also
677 found for other parameters such as soil accelerations, shear stress ratios and shear strains. The
678 undrained simulations revealed that for both 1 and 6 atm, the pore pressures at the bottom of
679 the layer in the centrifuge was close to undrained, with this response becoming much more
680 partially drained at shallower elevations in the 6 atm compared with the 1 atm test.
- 681 • It was found that the key soil property, that needed to be modeled correctly to achieve this
682 good agreement, was the 1D drained volumetric stiffness of the soil for unloading/reloading,
683 $M' = 1/m_v$, as the coefficient of consolidation of the sand, c_v , is proportional to M' . Good
684 agreement was found between M' results, backfigured from the centrifuge tests and those from
685 a consolidometer test on a different sand reported by Martin et al. (1975).

686 • Both c_v and M' were 2.5 to 3 times greater at 6 atm than at 1 atm in centrifuge tests and
687 simulations, with this consistency between experimental and simulation compressibility
688 parameters paving the road towards explaining the success of the simulations. Future
689 simulations of pore pressure response of sand under field drainage conditions should consider
690 this large increase in volumetric stiffness at high overburden pressure.

691 • The value of M' for a given excess pore pressure ratio seems to be approximately proportional
692 to $\sqrt{\sigma'_{v0}}$. This was substantiated for two sands by: (i) the centrifuge settlement measurements
693 after shaking; and (ii) results of a consolidometer test including unloading by Martin et al.
694 (1975).

695 • The proper K_σ at high σ'_{v0} to be used in field liquefaction design charts, may be greater than
696 one for some realistic field drainage conditions, due to this lower compressibility and higher
697 c_v at high overburden. As shown in this paper, one example of such field condition is a
698 liquefiable soil layer underlain by impervious clay or bedrock, and overlain by a pervious non-
699 liquefiable soil layer such as an engineered filter. In this respect, the Dmod2000 simulations
700 confirmed the conclusion obtained directly from the centrifuge experiments by Ni et al. (2020)
701 and Abdoun et al. (2020).

702 • Properly calibrated 1D numerical simulations, in conjunction with field liquefaction charts,
703 have the potential to become useful practical tools in projects involving high overburden
704 pressures.

705

706 **Data Availability Statement**

707 Some or all data, models, or code that support the findings of this study are available from the
708 corresponding author upon reasonable request.

709 **ACKNOWLEDGMENTS**

710 The authors would like to thank Dr. Neven Matasovic from Geomotions for providing the
711 Dmod2000 software used in the research. The authors would also like to thank Dr. Allen Marr and
712 Dr. Kaveh Zehtab from Geocomp Corp. for the cyclic triaxial test results. The research was
713 supported by the National Science Foundation under Grants No. 1545026 & 1904313 and NYU Abu
714 Dhabi; this support is gratefully acknowledged.

715

716 **REFERENCES**

717 Abdoun, T., Gonzalez, M. A., Thevanayagam, S., Dobry, R., Elgamal, A., Zeghal, M., Mercado,
718 V. M., and El Shamy, U. (2013). "Centrifuge and large scale modeling of seismic pore
719 pressures in sands: a cyclic strain interpretation." *Journal of Geotechnical and*
720 *Geoenvironmental Engineering, ASCE*, 139(8), pp. 1215-1234

721 Abdoun, T., El-Sekelly, W., & Dobry, R. (2019). "Investigation of Vs-based liquefaction charts
722 using a heavily preshaken silty sand centrifuge deposit." *Soil Dynamics and Earthquake*
723 *Engineering*, 122, 39-52.

724 Abdoun, T., Ni, M. Dobry, R., Marr, A., Zehtab, K., and , El-Sekelly, W. (2020). "Pore Pressure
725 and $K\sigma$ Evaluation at High Overburden Pressure under Field Drainage Conditions.: (II)
726 additional interpretation and analysis." *Journal of Geotechnical and Geoenvironmental*
727 *Engineering, ASCE*, in press.

728 Arulanandan, K., and Scott, R. F.(1993). "Project VELACS—control test results." *J. Geotech.*
729 *Engrg., ASCE*, 119(8), 1276–1292

730 Andrus, R. D., and Stokoe, K. H., II (2000). "Liquefaction resistance of soils from shear-wave
731 velocity." *J. Geotech. Geoenvir. Eng.*, 10.1061/(ASCE)1090-0241(2000)126:11(1015),
732 1015–1025.

733 Bhatia, S. (1982). "The verification of relationships for effective stress method to evaluate
734 liquefaction potential of saturated sands," PhD Thesis, Dept. of Civil Engineering,
735 University of British Columbia, Canada.

736 Boulanger, R. W. (2003). "High overburden stress effects in liquefaction analyses." *Journal of*
737 *geotechnical and geoenvironmental engineering*, ASCE, 129(12), 1071-1082.

738 Boulanger, R. W., and Idriss, I. M. (2004). "State normalization of penetration resistance and the
739 effect of overburden stress on liquefaction resistance." *Proceedings 11th SDEE and 3rd*
740 *ICEGE*, University of California, Berkeley, CA.

741 Dafalias, Y.F. and Manzari, M.T. (2004). "Simple plasticity sand model accounting for fabric
742 change effects." *Journal of Engineering Mechanics*, 130(6), pp. 622-634.

743 Dobry, R., El-Sekelly, W. and Abdoun, T. (2018). "Calibration of non-linear effective stress code
744 for seismic analysis of excess pore pressures and liquefaction in the free field." *Soil*
745 *Dynamics and Earthquake Engineering*, 107, 374-389.

746 Dobry, R. and Abdoun, T. (2015). "Cyclic shear strain needed for liquefaction triggering and
747 assessment of overburden pressure factor K_o ." *J. Geotech. Geoenvir. Eng.*,
748 10.1061/(ASCE)GT.1943-5606.0001342, 04015047.

749 Dobry, R., Abdoun, T., Thevanayagam, S., El-Ganainy, H., and Mercado, V. (2013). "Case
750 histories in loose sand fills during the 1989 Loma Prieta earthquake: comparison with
751 large scale and centrifuge shaking tests." *Proc. 7th Int'l. Conf. on Case Histories in*
752 *Geotechnical Engineering* (S. Prakash, ed.), April 29-May 4, Chicago, Paper No. 4.15a,
753 12 pages.

754 Dobry, R., Pierce, W.G., Dyvik, R., Thomas, G.E. and Ladd, R.S. (1985). "Pore pressure model for
755 cyclic straining of sand." Research Report, Dept. of Civil Engineering, Rensselaer
756 Polytechnic Institute, Troy, NY, 56 pages.

757 Elgamal, A. W., Zeghal, M., Tang, H. T., and Stepp, J. C. (1995). "Lotung downhole array. I:
758 evaluation of site dynamic properties." *Journal of geotechnical and geoenvironmental*
759 *engineering*, ASCE, 121(4), 350-362.

760 Elgamal A., Yang Z., Parra E. and Ragheb A. (2003) "Modeling of cyclic mobility in saturated
761 cohesionless soils." *Int. J. Plasticity*, 19, (6), 883-905.

762 El Ghoraiby, M.A., Park, H., and Manzari, M.T. (2017). "LEAP 2017: soil characterization and
763 element tests for Ottawa F65 sand." The George Washington University, Washington, DC.

764 Florin, V., and Ivanov, P. (1961). "Liquefaction of saturated sandy soils." Proc. 5th Intl.. Conf. on
765 Soil Mech. And Found. Eng., Paris, 1, 107-111.

766 Gillette, D. (2013). "Liquefaction issues for dam safety – Bureau of Reclamation." *Presentation in*
767 *One-Day Workshop*, Committee on State of the Art and Practice in Earthquake Induced Soil
768 Liquefaction Assessment, National Research Council of the National Academies,
769 Washington, DC, November 12.

770 Gerolymos, N., and Gazetas, G. (2005). "Constitutive model for 1-D cyclic soil behavior applied
771 to seismic analysis of layered deposits." *Soils and Foundation*, 45(3), 147-159.

772 Hashash, Y. M. A. (2009). "DEEPSOIL V 3.7, Tutorial and User Manual. 2002-2009." University
773 of Illinois at Urbana-Champaign, Urbana, Illinois.

774 Hynes, M. E., Olsen, R. S., and Yule, D. E. (1999). "Influence of confining stress on Liquefaction
775 Resistance." *Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction*, Balkema,
776 Rotterdam, The Netherlands, 145–152.

777 Idriss, I. M., and Boulanger R. W. (2006). "Semi-empirical procedures for evaluating liquefaction
778 potential during earthquakes." *Soil Dynamics and Earthquake Engineering*, 26(2-4), 115-
779 130.

780 Idriss, I.M., and Boulanger, R.W. (2008). "Soil liquefaction during earthquakes." *Monograph*
781 *MNO-12*, Earthquake Engineering Research Institute. Oakland, CA.

782 Ishihara, K. (1993). "Review of the predictions for Model 1 in the VELACS program." Verification
783 of numerical procedures for the analysis of soil liquefaction problems (VELACS).
784 Arulanandan K. and Scott R.F., editors. Rotterdam: A.A. Balkema; 1353–68.

785 Kondner, R. L., and Zelasko, J. S. (1963) "Hyperbolic stress-strain formulation of sands." *Second*
786 *Pan American Conference on Soil Mechanics and Foundation Engineering*, Sao Paulo,
787 Brazil, 289-324.

788 Lee, M. K., and Finn, W. D. (1978). "DESRA-2, Dynamic effective stress response analysis of soil
789 deposits with energy transmitting boundary including assessment of liquefaction potential."
790 Soil Mechanics Series, No. 36, Department of Civil Engineering, University of British
791 Columbia, Vancouver, Canada.

792 Lambe, T. and Whitman, R. (1969). *Soil Mechanics*. Wiley, New York, N.Y. (1969).

793 Li, X., Wang, Z. L., and Shen, C. K. (1993). "SUMDES. A nonlinear procedure for response
794 analysis of horizontally layered sites subjected to multidirectional earthquake loading."
795 Department of Civil Engineering, University of California at Davis.

796 Manzari, M.T., Ghoraiiby, M.E., Kutter, B.L., Zeghal, M., Abdoun, T., Arduino, P., Armstrong,
797 M.J., Beaty, M., Carey, T., Chen, Y., Ghofrani, A., Gutierrez, D., Goswami, M., Haigh,
798 S.K., Hung, W.-Y., Iai, S., Kokkali, P., Lee, C.-J., Madabhushi, S.P.G., Mejia, L., Sharp,
799 M., Tobita, T., Ueda, K., Zhou, Y., and Ziotopoulou, K. (2017). "Liquefaction Experiment
800 and Analysis Projects (LEAP): summary of observations from the planning phase." LEAP
801 Special Issue, *Journal of Soil Dynamics and Earthquake Engineering* (in press).

802 Martin, G.R., Finn, W.D. Liam, and Seed, H. B. (1975). "Fundamentals of liquefaction under cyclic
803 loading." *Journal of the Geotechnical Engineering Division, ASCE*, Vol. 101, No. GT5,
804 May, pp. 423-438.

805 Matasovic, N. (1993). "Seismic response of composite horizontally-layered soil deposits." Ph.D.
806 Thesis, University of California, Los Angeles.

807 McKenna, F., and Fenves, G. L. (2001). "The OpenSees Command Language Manual: version
808 1.2." PEER Center, University of California at Berkeley.

809 Montgomery, J., Boulanger, R. W., and Harder, L. F., Jr. (2012). "Examination of the K_{σ}
810 overburden correction factor on liquefaction resistance." *Report No. UCD/CGM-12-02*,
811 Center for Geotechnical Modeling, Department of Civil and Environmental Engineering,
812 University of California, Davis, CA.

813 Ni, M., Abdoun, T., Dobry, R., Marr, A., Zehtab, K., and El-Sekelly, W. (2020) "Pore Pressure and
814 K_{σ} Evaluation at High Overburden Pressure under Field Drainage Conditions. (I)
815 Centrifuge Experiments," *Journal of Geotechnical and Geoenvironmental Engineering*, in
816 press

817 Prevost, J. H. (1977). "Mathematical modeling of monotonic and cyclic undrained clay behavior."
818 *International Journal of Numerical and Analytical Methods in Geomechanics*, 1(2), 195-
819 216.

820 Scott, R. F. (1986). "Solidification and Consolidation of a Liquefied Sand Column," *Soils and*
821 *Foundations*, Vol. 26, No.4, 23-31, December.

822 Seaman, L., Bycroft, G.N., Kriebel, H.W., (1963) "Stress propagation in soils-Part III," Report by
823 Stanford Research Institute to Defense atomic Support Agency, DASA-1266-3

824 Seed, R. B., and Harder Jr., L. F. (1990). "SPT-based analysis of cyclic pore pressure generation
825 and undrained residual strength. " *Proc. H. Bolton Seed Memorial Symposium*, University
826 of California, Berkeley, California.

827 Seed, H. B. (1983). "Earthquake-resistant design of earth dams. " *Proc. Seismic Design of Earth*
828 *Dams and Caverns*, ASCE, Philadelphia, Pennsylvania, May 16-20.

829 Seed, H. B. (1979). "Soil liquefaction and cyclic mobility evaluation for level ground during
830 earthquakes." *Journal of the Geotechnical Engineering Division, ASCE*, Vol. 105, No. GT2,
831 February, pp. 201-255.

832 Seed, H.B. and Idriss, I.M. (1971). "Simplified Procedure for Evaluating Soil Liquefaction
833 Potential." *Journal of the Soil Mechanics and Foundations Division*, 97, 1249-1273.

834 Shahir, H., Pak, A, Taibeat, M., and Jeremic B. (2012). "Evaluation of variation of permeability
835 in liquefiable soil under earthquake loading." *Computers and Geotechnics*, 40, 74–88.

836 Sharp, M. K. and Dobry, R. (2002). Sliding Block Analysis of Lateral Spreading Based on
837 Centrifuge Results," *Intl. Journal of Physical Modelling in Geotechnics*, V. 2, No. 22, pp.
838 13-32, June.

839 Vaid, Y. P., and Thomas, J. (1995). "Liquefaction and postliquefaction behavior of sand." *Journal*
840 *of Geotechnical Engineering*, 121(2), 163-173.

841 Vucetic, M., and Dobry R. (1986). "Pore pressure build-up and liquefaction at level sandy sites
842 during earthquakes." *Rensselaer Polytechnic Institute Res. Rept. CE-86-3*.

843 Vucetic M., and Dobry R. (1988). "Degradation of marine clays under cyclic loading." *Journal of*
844 *Geotechnical Engineering*, ASCE, 114(2): 133-149

845 Youd, T. L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn,
846 W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C., Marcuson III,
847 W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B.
848 and Stokoe II, K.H. (2001). Liquefaction Resistance of Soils: Summary Report from the
849 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance
850 of Soils. *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, 127(10), 817-
851 833.

852 Zeghal, M., Elgamal, A. W., Tang, H. T. and Stepp, J. C. (1995). "Lotung downhole seismic
853 array: evaluation of soil nonlinear properties." Journal of Geotechnical Engineering,
854 ASCE, Vol. 121, No. 4, pp. 363-378.
855

857 **Table 1 Values of $K_\sigma = (CRR)_6 / (CRR)_1$ at 6 atm measured in cyclic triaxial and centrifuge**
 858 **tests on Ottawa sand of $D_r = 40-45\%$, and values proposed in SoP charts (Ni et al. 2020)**

Experimental Method	Pore Pressure Ratio, r_u , after 10 cycles	CRR_6 / CRR_1	K_σ from Experiments	SoP K_σ proposed by Youd et al. (2001), Fig. 2	SoP K_σ proposed by Idriss and Boulanger (2008), Fig. 2
Stress-controlled undrained cyclic triaxial tests at $\sigma'_c = 1$ and 6 atm	0.8	0.172/0.204	0.84	0.70	0.85
	1.0	0.174/0.206	0.85		
Centrifuge model tests at $\sigma'_{v0} = 1$ and 6 atm	0.8 ^(*)	0.114/ 0.089	1.28		

859 ^(*) $r_u = (r_u)_{max} = 0.8$ measured at the bottom of the sand layer at the end of shaking in centrifuge

860 Tests 45-1 and 45-6

Table 2 Simulations using nonlinear effective stress code Dmod2000

Run	σ'_{v0} (atm)	Excess pore pressure calculated?	Drainage allowed?	Soil stress-strain properties allowed to degrade as pore pressure builds up
45-1	1	yes	yes	yes
45-1U	1	yes	no	yes
45-6	6	yes	yes	yes
45-6U	6	yes	no	yes

Table 3 Measured maximum pore pressure ratios, $(r_u)_{max}$, in centrifuge Tests 45-1 and 45-6, and calculated r_u at similar depth and time in Dmod2000 runs [$r_u = (r_u)_{max}$ for Tests 45-1 and 45-6 from Ni et al., 2020]

Centrifuge experiment or Dmod2000 numerical simulation	σ'_{v0} (atm)	Depth, z (m)	r_u
Test 45-1	1	3.88	0.80
Run 45-1	1	3.96	0.80
Run 45-1 U	1	3.96	0.88
Test 45-6	6	4.88	0.76
Run 45-6	6	4.35	0.78
Run 45-6 U	6	4.35	0.82

Table 4. Summary of analytical models and input parameters used in numerical simulation: Run 45-1 and Run 45-1U as well as Run 45-6 and Run 45-6U

Parameters	Experiment	
	Run 45-1/ Run 45-1U	Run 45-6/ Run 45-6U
Average vertical stress at the middle of the layer	1 atm	6 atm
Average normalized shear wave velocity, V_{s1}	166 m/sec	167 m/sec
Rayleigh damping		0.5%
Constitutive stress-strain model (initial, undegraded stress-strain backbone curve)	$\tau = \frac{G_{max} \cdot \gamma}{1 + \beta \left(\frac{G_{max}}{\tau_{mo}} \cdot \gamma \right)^s}$ $\beta = 2.55, s = 0.6$	
Stress-strain degradation model due to increased pore pressure	$\tau = \frac{G_{mt} \cdot \gamma}{1 + \beta \left(\frac{G_{mt}}{\tau_{mt}} \cdot \gamma \right)^s}$ $G_{mt} = G_{max} * \sqrt{1 - r_u}, \tau_{mt} = \tau_{mo} * (1 - r_u)^v$ $v = 1 \quad v = 10$	
Unit weight	19.5 kN/m ³	19.5 kN/m ³
Pore pressure model under undrained cyclic loading	$r_u = \frac{P \cdot f \cdot N_c \cdot F \cdot (\gamma_c - \gamma_{tv})^{sp}}{1 + f \cdot N_c \cdot F \cdot (\gamma_c - \gamma_{tv})^{sp}}$ $P = 1.3, \quad f = 1 \quad P = 1.1, \quad f = 1.5$ $F = 2 \quad \gamma_{tv} = 10 E - 4 = 0.01\%, \quad F = 2.1$ $sp = 1 \quad \gamma_{tv} = 10 E - 4 = 0.01\%, \quad sp = 1.6$	
Compressibility during and after shaking	$\bar{E}_r = M' = \frac{1}{m_v} = \frac{(\sigma'_v)^{1-m}}{m k_2 (\sigma'_{v0})^{n-m}}$ $m = 0.4, \quad k_2 = 0.006$ $n = 0.5$ <p>(stresses in psf; as strains in in/in are assumed by Dmod2000, $k_2 = 0.00006$ actually used. When strains are in %, $k_2 = 0.006$).</p>	
Coefficient of permeability, k , during and after shaking	1.2 E -4 m/sec in Runs 45-1 & 45-6 Zero in Runs 45-1U & 45-6U	

Table 5 Volumetric stiffness during dissipation phase in centrifuge tests (Abdoun et al. 2020)

Test number	σ'_{v0} (kPa)	$(u)_{ave}$ (kPa)	$(r_u)_{ave} = (u)_{ave} / \sigma'_{v0}$	$(\epsilon_{vc})_{max}$ (%)	Secant $M' = u_{ave} / (\epsilon_{vc})_{max}$ (Mpa)	M'_6 / M'_1
Test 45-1	98.6	64.03	0.65	0.085	75.3	2.7
Test 45-6	600.4	223.5	0.37	0.110	203.2	

Table 6 Values of CSR and Vs1 used for data points in the field liquefaction chart of Fig. 15

Effective overburden pressure,	Test/Run	V _{s1} (m/s)	CSR ⁽¹⁾	(CSR) _{7.5} = 0.756 CSR ⁽²⁾
1 atm	Test 45-1	166	0.089	0.067
	Run 45-1	166	0.082	0.062
6 atm	Test 45-6	167	0.114	0.086
	Run 45-6	167	0.103	0.078

⁽¹⁾ CSR = τ_c / σ'_{v0} in the experiment, where σ'_{v0} is the effective overburden vertical pressure before shaking, and τ_c is the representative cyclic shear stress.

⁽²⁾ (CSR)_{7.5} = (0.9/1.19) CSR = 0.756 (CSR)_{7.5}, with (CSR)_{7.5} including a 10% reduction in CSR due to the 2D character of the shaking in the field.