

Effect of field drainage on seismic pore pressure buildup and K_s under high overburden pressure

Ni, M., S. M. ASCE¹, Abdoun, T., M. ASCE², Dobry, R., M. ASCE³, and El-Sekelly, W., M. ASCE⁴

Abstract

6 The paper studies the effect of a high effective overburden pressure ($\sigma'_{v0} = 6$ atm) under two
7 drainage conditions, on the field liquefaction behavior of saturated Ottawa sand. A series of eight
8 centrifuge experiments with relative density, $D_r = 45\%$ and 80% and base shaking are considered
9 that include a 5-m saturated sand layer under a pressure of either $\sigma'_{v0} = 1$ or 6 atm (~ 100 and 600
10 kPa). Four of the tests had single drainage at the top of the layer (SD), while the other four tests
11 had double drainage (DD) at top and bottom. The four SD test results had been reported before,
12 while the four DD tests are new. A novel centrifuge technique was developed to achieve the double
13 drainage boundary condition of two pervious boundaries at the top and bottom of the sand layer,
14 using geocomposite at the bottom. Measured responses are compared at the same σ'_{v0} between SD
15 and DD tests having the same input acceleration, and also between SD and DD tests where the
16 shaking induced a similar maximum excess pore pressure ratio, $(r_u)_{max} \approx 0.8$. These comparisons
17 include acceleration time histories, excess pore pressure time histories and profiles during and after
18 shaking, and stress ratio and shear strain time histories. Comparisons between corresponding tests

¹ Software development engineer at Amazon Development Center, P. O. Box 81226 Seattle, WA, 98105

² Iovino Chair Professor, Dept. of Civil and Environmental Eng., Rensselaer Polytechnic Institute, 1108th Street, JEC 4049, Troy, NY 12180 and Global Distinguish Professor, New York University Abu Dhabi, P.O.Box 129188 Abu Dhabi, UAE

³ Institute Professor, Dept. of Civil and Environmental Eng., Rensselaer Polytechnic Institute, 110 8th Street, JEC 4049, Troy, NY 12180

⁴ Lecturer, Dept. of Structural Eng., Mansoura University, Mansoura, Egypt and Research Scientist, New York University Abu Dhabi, P.O.Box 129188 Abu Dhabi, UAE

19 at 1 and 6 atm revealed significantly more partial drainage at 6 atm than at 1 atm, with even more
20 significant variation in excess pore pressures in the DD than in the SD tests. Best estimates of field
21 overburden pressure correction factors at 6 atm, $K_\sigma = (CRR)_6 / (CRR)_1$, were obtained from the
22 centrifuge results with two independent methods for a failure criterion of $(r_u)_{max} = 0.8$. Those K_σ
23 = 1.2 to 1.3 > 1.0 for both SD and DD drainage conditions, due to the significantly lower
24 compressibility of the sand at 6 atm. These results further emphasize the important role partial
25 drainage may play in the field during shaking at high σ'_{v0} on the excess pore pressures and values
26 of K_σ .

27 **Introduction**

28 Liquefaction of saturated sand continues to be a main research topic in geotechnical engineering,
29 as liquefaction and related soil failure cause enormous damage during earthquakes. The main
30 procedure used in practice to evaluate liquefaction potential is the Simplified Method, originally
31 proposed by Seed and Idriss (1971). In the current state of practice (SOP), liquefaction triggering
32 is evaluated with field liquefaction charts based on the Simplified Method. These charts estimate
33 the soil liquefaction resistance from the field penetration resistance, using either the Standard
34 Penetration Test (SPT), or cone penetration test (CPT), or, alternatively, from field shear wave
35 velocity measurements (V_s). The charts have been typically calibrated by earthquake case histories
36 with or without liquefaction. A number of these charts have been proposed by Robertson and
37 Wride (1998); Andrus and Stokoe (2000); Youd et al. (2001); Cetin et al. (2004); Idriss and
38 Boulanger (2006, 2008, 2010); Boulanger and Idriss (2012); Dobry and Abdoun (2017); and
39 Zimmaro et al. (2019).

40 An example is the liquefaction chart of Fig. 1 for clean sands, based on the CPT and
41 normalized to an effective overburden pressure, $\sigma'_{v0} = 1$ atm (~100 kPa), developed by Idriss and

42 Boulanger (2008). Figure 1 and similar charts have been calibrated by earthquake case histories
43 where the liquefiable sand layer was under an effective overburden pressure less than or around 2
44 atm (~200 kPa) (Dobry and Abdoun 2015). On the other hand, there are field projects like tall
45 embankment dams and other impoundments, where the effective overburden pressure may be
46 significantly larger than 2 atm, with $\sigma'_{v0} \approx 6$ or 8 atm, or even 10 atm (Gillette 2013).

47 Cyclic undrained laboratory tests show that the liquefaction resistance needs to be
48 corrected to account for the effect of overburden pressure (Seed and Idriss 1981). Seed (1983)
49 defined the overburden pressure factor (K_σ) as the ratio between cyclic resistance ratio (CRR) at a
50 high confining pressure, σ'_{v0} , to the CRR at $\sigma'_{v0} = 1$ atm, and proposed using this factor to correct
51 the CRR at 1 atm. That is:

$$52 K_\sigma = \frac{(CRR)_{\sigma'_{v0}}}{(CRR)_1} \quad (1)$$

53 where $(CRR)_{\sigma'_{v0}}$ and $(CRR)_1$ are the cyclic resistance ratios in the critical liquefiable layer under
54 $\sigma'_{v0} > 1$ atm and $\sigma'_{v0} = 1$ atm, respectively. Seed (1983) also showed that in cyclic undrained
55 laboratory tests, K_σ decreases when the consolidation pressure increases.

56 After 1983, a number of researchers proposed K_σ curves of K_σ versus σ'_{v0} based on
57 undrained cyclic results (Harder 1988; Seed and Harder 1990; Vaid and Thomas 1995; Vaid and
58 Sivathayalan 1996; Hynes et al. 1999; Youd et al. 2001; Boulanger 2003; Boulanger and Idriss
59 2004; Idriss and Boulanger 2008; Montgomery et al. 2012; Dobry and Abdoun 2015). Currently,
60 the two most popular State-of-Practice (SoP) methods for K_σ estimation are those of Youd et al.
61 (2001) and Boulanger and Idriss (2008). Invariably, all undrained results as well as the Youd et al.
62 (2001) and Boulanger and Idriss (2008) curves give values of $K_\sigma < 1$ for $\sigma'_{v0} > 1$ atm and $K_\sigma > 1$
63 for $\sigma'_{v0} < 1$ atm, with K_σ decreasing as σ'_{v0} increases. The K_σ curves from Youd et al. (2001) and
64 Boulanger and Idriss (2008) are quite different at high confining pressures (Abdoun et al. 2020).

65 The National Research Council of the National Academies (NRC) recently stated that “*Some*
66 *adjustment factors are not well constrained over the entire range of engineering interest by the*
67 *empirical data (e.g., the stress magnitude adjustment factor, K_o)... and these adjustment factors*
68 *should be developed using experimental data (including centrifuge and shaking table experiments)*
69 *and engineering mechanics principles...Additional data and research are needed to allow better*
70 *understanding of these effects.*” (National Academies 2017). The National Academy is not
71 restricting their interpretation of K_o to purely undrained conditions but defining it as a correction
72 factor to extend the use of the field liquefaction charts to high overburden pressures, including the
73 possibility of partial drainage in the field during shaking.

74 Considering the wide variation between the K_o curves used in the SoP, as well as the NRC
75 recommendation of additional research, Ni et al. (2020) conducted a series of four centrifuge
76 models of idealized field conditions at Rensselaer Polytechnic Institute (RPI), under both low and
77 high overburden pressures (1 and 6 atm). In these centrifuge experiments, a 5 m sand prototype
78 layer with a free drainage boundary at the top, having two different relative densities ($Dr = 45\%$
79 and 80%), was subjected to base shaking (Table 1). Ni et al. (2020) analyzed the pore pressure
80 responses of the sand layer under different conditions (effective overburden pressure and relative
81 density) and also calculated the field overburden pressure factors, $K_o = 1.28$ for loose sand and
82 $K_o > 1.15$ for dense sand. These values are in conflict with the SoP K_o less than 1.0. Abdoun et al.
83 (2020) analyzed the reasons for these higher K_o values in the centrifuge tests, and found that much
84 more significant and faster drainage had occurred in the 6 atm tests compared with 1 atm, both
85 during and after shaking. The coefficient of consolidation, c_v , during the dissipation phase after
86 shaking, was further evaluated with three different methods that used the pore pressure and
87 settlement records. Both the c_v and drained constrained volumetric stiffness of the sand, M' , values

88 at 6 atm were found to be 2~4 times greater than at 1 atm. Moreover, these results together with
89 other information from the literature, suggested that c_v and M' may increase proportionally to $\sqrt{\sigma'_{v0}}$.
90 To validate further the conclusions by Ni et al. (2020) and Abdoun et al. (2020), a second set of
91 four centrifuge models were conducted at RPI at 1 and 6 atm to simulate the same 5m prototype
92 sand layer of Ottawa sand, having a relative density of 45%, but changing the drainage conditions.
93 The previous four centrifuge models corresponded to single free drainage at the top of the sand
94 and an impervious base (SD). The new four centrifuge models were performed under double
95 drainage conditions (DD), with free drainage at both the top and bottom of the sand layer (Table
96 2).
97

98 **Experimental Program**

99 A new series of four centrifuge tests were conducted at Rensselaer Polytechnic Institute (RPI),
100 under low and high effective overburden pressures of 1 and 6 atm, and the same relative density
101 of 45%. The centrifuge test configurations were similar in every respect to the original four tests
102 in Table 1, except for the drainage boundaries. In these new centrifuge experiments – listed in
103 Table 2 - all models had free drainage boundaries at both the top and bottom of the sand layer
104 (DD), as compared to bottom impervious boundary and a top free boundary (SD) in the four
105 centrifuge tests of Table 1. The detailed model configurations of the new DD models are shown in
106 Fig. 2.

107 **Model layout**

108 The new centrifuge models had four distinct layers. From bottom to top: geocomposite layer at the
109 base, saturated liquefiable sand layer, saturated transition coarse sand thin layer, and top dry lead
110 shot layer. The only difference from the previous centrifuge models reported by Ni et al. (2020)
111 was the additional geocomposite layer underneath, connected to vertical geonet strips placed
112 around the sand layer to achieve double drainage. All other three horizontal layers on top of the
113 geocomposite (sand, transition and lead shot), were exactly the same as before, with the same
114 materials, functionalities and building methodologies described by Ni et al. (2020). Therefore, it
115 is only necessary to discuss here the details of the new geocomposite layer and vertical geonet
116 strips, as detailed under the next heading.

117 The building of the centrifuge models consisted of the following five general steps: (i)
118 assemblage of the circular laminar box; (ii) placement of the circular rubber membrane inside the
119 laminar box; (iii) placement and saturation of the bottom circular geotextile layer and attached

120 vertical rectangular geonet strips; (iv) placement and saturation of the sand and transition layers;
121 and (v) placement of dry lead shot layer.

122 **Geocomposite Layer**

123 The geocomposite layer was built with GSE DuraFlow 330 Geocomposite from Solmax (Houston,
124 TX). This layer functioned as a free drainage boundary at the bottom of the saturated sand layer
125 during earthquake shaking. The chosen geocomposite is composed of 8.4 mm-thick DuraFlow
126 geonet and nonwoven needle-punched geotextile on one side (Fig. 3a).

127

128 **Design logic of Geocomposite**

129 **i) Retention criteria**

130 Retention criteria ensures that the geotextile voids are small enough to prevent the migration of
131 the sand into the geocomposite by retaining the sand particles. The Retention ability of geotextile
132 is checked by a representative size of soil particles and the apparent opening size of geotextile,
133 given by Eq. 2 (Reddi 2003):

134
$$AOS \leq BD_{85(soil)} \quad (2)$$

135 where B is a function of the filtered soil properties (soil type, density, uniformity etc.), geotextile
136 properties and flow conditions. B is a dimensionless factor in the range between 0.5 and 2. Based
137 on the recommended values for B in different situations from Reddi (2003), B = 1.0 was chosen
138 for the project; AOS is the Apparent Opening Size of the geotextile, and AOS = 0.212 for the
139 selected geocomposite product (GSE Environmental 2015). D_{85} is particle size of the filtered soil
140 at which 85% of the particles are finer, about 0.3 mm for the Ottawa F65 sand (El-Ghoraiuby et al.
141 2017). Based on the above, the retention criterion was achieved for the selected GSE DuraFlow
142 330.

ii) Permeability Criteria

144 To enable the pore fluid to drain vertically down from the saturated sand to the geocomposite
145 without significant buildup of excess pore pressures at the boundary and in the geocomposite layer,
146 the geocomposite should have a significantly higher permeability than the filtered soil, as specified
147 by Eq. 3 (Reddi 2003).

$$k_{geo} \geq C k_{soil} \quad (3)$$

149 where k_{geo} is the permeability of the geocomposite, which is 1.26 cm/sec for the GSE DuraFlow
 150 330 (GSE Environmental 2015); k_{soil} is the permeability of the sand layer, which is 0.012 cm/sec
 151 for a relative density of 45% (EI-Ghoraiiby et al. 2017); and C is a dimensionless coefficient in the
 152 range from 1 to 10 based on the importance and severity of the problem. For the selected
 153 geocomposite product, the permeability criterion was met even when considering the upper limit
 154 of $C = 10$, as the permeability of the geocomposite is much higher than that of the Ottawa sand
 155 ($1.26 > 10 * 0.012 = 0.12$).

iii) Transmissivity requirements

157 Based on our centrifuge model configuration, the excess pore fluid first drains down vertically
158 from the sand to the geocomposite layer, then flows horizontally inside the geocomposite to the
159 vertical geonet strips, and then flows up vertically inside these vertical strips. The horizontal fluid
160 flowing velocity in the geocomposite layer is controlled by transmissivity. The higher the
161 transmissivity value of the geocomposite is, the better the bottom drainage will be.

162 In some of the centrifuge tests, the geocomposite layer had to play this role under a high
163 overburden pressure somewhat in excess of 6 atm. Given that the transmissivity generally
164 decreases with increase in overburden pressure, the geocomposite selected had to have a high

165 transmissivity under high normal load. The selected GSE DuraFlow 330 has a transmissivity of 50
166 cm²/sec under 720 kPa (\approx 7 atm), as per GSE Environmental (2015).

167 **Bottom drainage construction**

168 The previous section described the design concepts related to the geocomposite selection. This
169 section presents additional details on how a freely draining horizontal geocomposite layer and
170 attached vertical geonet strips were built at the bottom of, and around the sand layer.

171 Figure 3 presents the detailed design of the bottom drainage using geocomposite and geonet
172 strips. Figure 3a shows the piece of geocomposite with circular shape that constituted the bottom
173 drainage layer. Figure 3b shows an example rectangular geonet strip, placed vertically and evenly
174 all around the laminar container body to provide the vertical drainage path up from the bottom
175 geocomposite layer. These rectangular geonet strips were covered with tapes to prevent any
176 horizontal drainage directly between the sand and the surrounding strips. Figure 3b shows
177 rectangular geonet pieces before and after covering with tapes. Figure 3c presents the assembling
178 of the bottom circular geocomposite pieces and the vertical geonet pieces. The bottom circular
179 pieces of geocomposite were thoroughly saturated with the viscous fluid of 20cp or 45cp,
180 depending on the test, with this fluid viscosity being consistent with that of the viscous pore fluid
181 used later for sand saturation after the sand pluviation. Figure 3d shows the assembled bottom
182 geocomposite drainage layer after saturation, and after connecting it to the vertical geonet strips.

183 After placing and assembling the geocomposite at the bottom and all around the container,
184 the other three distinct layers (sand layer, transition layer and the leadshot layer), were built in the
185 same way described by Ni et al. (2020) for the single drainage experiments. Also, the sand layer
186 and the transition layer were saturated following the same procedure described by Ni et al. (2020).
187 Finally, the completed centrifuge models were subjected to 1-D shaking sinusoidal base shakings.

188 **Experimental results for $D_r = 45\%$ and comparisons between single**
189 **drainage and double drainage tests at 1 and 6 atm**

190 The eight centrifuge tests listed in Tables 1 and 2 include six experiments of relative density, $D_r =$
191 45% , with $\sigma'_{v0} = 1$ and 6 atm, having either SD or DD conditions. Those six tests are the focus of
192 this section, and they are grouped together in Table 3, where the input motions listed correspond
193 to the input peak base acceleration measured inside the container. The maximum excess pore
194 pressure ratio, $(r_u)_{max}$, in all DD tests were obtained at the mid-depth of sand layer, while the $(r_u)_{max}$
195 in the SD tests were measured at the bottom depth, as expected based on their different drainage
196 conditions. The six experiments of Table 3 provide the opportunity to conduct additional
197 comparisons and discussions on the combined effect of σ'_{v0} and drainage conditions on the results.
198 This is done systematically throughout this section. In all tests of Table 3, the original intent was
199 to reach in each test a target maximum pore pressure ratio, $(r_u)_{max} \approx 0.8$, so that values of K_σ
200 associated with this failure criterion, $(r_u)_{max} = 0.8$, could be obtained directly from comparable 1
201 and 6 atm tests. However, when the same input motion previously used in the SD test was applied
202 to the corresponding DD model, the measured value of $(r_u)_{max}$ in the DD test was much less than
203 0.8 due to the increased partial drainage during shaking. This was the case for Tests 45-1 (DD) –
204 0.045g and 45-6 (DD) – 0.3g in Table 3, which measured maximum pore pressure ratios of 0.48
205 and 0.18, significantly less than the 0.8 target. Therefore, these two DD experiments were repeated
206 with larger input accelerations of 0.065g and 0.5g, respectively, reaching values of $(r_u)_{max}$ of 0.68
207 and 0.85, much closer to the 0.8 target.

208 Therefore, the experiments of Table 3 allow evaluating the effects of drainage conditions
209 on the results using two different types of comparison: 1) comparison between pairs of SD and
210 DD tests having the same input motion; and 2) comparison between pairs of SD and DD tests

211 having different input motions but a similar $(r_u)_{max} \approx 0.8$. These comparison are presented under
212 the next two headings for centrifuge experiments performed at both 1 atm and 6 atm.

213 The comparisons under the next two headings include acceleration time histories, excess
214 pore pressure buildup, and pore pressure dissipation. Comparisons of excess pore pressure profiles
215 for all six tests are presented later herein, together with other results. All presented data are in
216 prototype units unless stated otherwise.

217 **Comparison of SD and DD tests having the same input motion**

218 This section presents comparisons of acceleration and excess pore pressure time histories for SD
219 and DD tests having the same input motion.

220 ***Acceleration time histories***

221 Figure 4 shows the comparison of measured acceleration time histories at different depths inside
222 the saturated sand layer. Figure 4a includes measurements from the 1 atm SD and DD tests with a
223 common input motion of 0.045g. Similarly, Fig. 4b includes measurements from the 6 atm SD and
224 DD tests with a common input motion of 0.3g. The black curves correspond to the SD experiments,
225 first introduced by Ni et al. (2020), while the red curves correspond to the new DD tests. The labels
226 in Fig. 4 indicate the relative depth of the accelerometer buried in the soil within the layer (top,
227 middle and bottom of the sand layer).

228 Figure 4 indicates that for these tests having the same input motion, the acceleration
229 responses of the layer at different depths were quite similar, and more or less independent of the
230 difference in drainage condition at the bottom of the sand layer, with some deviations observed at
231 shallow elevations. This finding is valid for both 1 atm and 6 atm tests. Test 45 – 1 (SD) – 0.045g
232 and Test 45 – 6 (SD) – 0.3g experienced degradation of acceleration at shallow elevations near the
233 top of the sand layer, which was not observed in the double drainage tests (Test 45 – 1 (DD) –

234 0.045g and Test 45 – 6 (DD) – 0.3g), probably due to the lower pore pressure buildup in the DD
235 experiments (Table 3).

236 Figure 4 shows that some of the findings originally reported for the single drainage tests
237 by Ni et al. (2020), still hold in the double drainage tests at both low and high overburden pressure.
238 For example, when contrasting the acceleration time histories at the bottom and top of the sand
239 layer in Fig. 4, the amplification and de-amplification phenomena were similar in the SD and DD
240 models. Specifically, amplification of acceleration with increasing height above the bottom within
241 the sand layer happens in the two 1 atm tests corresponding to SD and DD conditions, while de-
242 amplification with height occurs in the two SD and DD 6 atm tests. However, there is one slight
243 difference between the SD and DD 1 atm tests: amplification of accelerations held at all times
244 during shaking in the DD test ($(r_u)_{max} = 0.48$), while amplification occurred only in the first several
245 cycles in the SD test, followed by de-amplification afterwards ($(r_u)_{max} = 0.8$). The reason for the
246 de-amplification afterwards in the SD 1 atm test is most probably related to the high $(r_u)_{max} = 0.8$,
247 that caused stress-strain degradation in the sand, compared with the much lower $(r_u)_{max} = 0.48$ in
248 the DD 1 atm tests, with much less stress-strain degradation.

249
250 ***Excess pore pressure buildup***

251 Figure 5 presents the comparison of excess pore pressure ratio time histories, r_u , at different depths
252 within the saturated sand layer. Figure 5a includes measurements from the 1 atm SD and DD tests
253 with a common input motion of 0.045g. Figure 5b includes measurements from the 6 atm SD and
254 DD tests with a common input motion of 0.3g. Pore pressure ratio, r_u , is defined as the ratio
255 between excess pore pressure, u , and initial effective overburden pressure, σ'_{v0} . The color codes
256 for the curves are consistent with Fig. 4.

257 The comparisons in Fig. 5 show that: in the SD tests the excess pore pressure ratio, r_u ,
258 increased with depth within the sand layer, with the maximum excess pore pressure ratio, $(r_u)_{max}$,
259 happening at the bottom of the layer. On the other hand, in the DD tests $(r_u)_{max}$ occurred at mid-
260 depth of the layer. That is, r_u decreased in the double drainage tests when the location was farther
261 from the mid-depth and closer to the free drainage boundaries at the top and bottom. These trends
262 are as expected, and are confirmed later herein when discussing the excess pore pressure profiles
263 measured in the SD and DD tests.

264 Figure 5 confirms what was already clear from the values of $(r_u)_{max}$ in Table 3: DD tests
265 subjected to a comparable input motion built up much less r_u than SD tests. This reduction of
266 $(r_u)_{max}$ due to the added bottom drainage boundary is much more significant at 6 atm than at 1 atm.
267 (The $(r_u)_{max} = 0.8$ is reduced to $(r_u)_{max} = 0.48$ at 1 atm; while the $(r_u)_{max} = 0.76$ is much more
268 radically reduced to $(r_u)_{max} = 0.18$ at 6 atm.) This indicates that the significant effect on pore
269 pressure buildup of the partial drainage due to a high overburden pressure – already noticed by Ni
270 et al. (2020) for the SD tests - is even more pronounced for DD conditions.

271 **Comparison of SD and DD tests having a similar $(r_u)_{max} \approx 0.8$**

272 This section presents comparisons of acceleration time and excess pore pressure time histories for
273 SD and DD tests having a similar $(r_u)_{max} \approx 0.8$, rather than the same input motion.

274

275 ***Acceleration time histories***

276 Figure 6 has the same format of Fig. 4, providing comparisons of measured acceleration time
277 histories at three different elevations within the sand layer: bottom, middle and top. The labels in
278 Fig. 6b have been omitted as the curves correspond to the same elevations as Fig. 6a. The black
279 curves correspond to the same SD tests shown before in Figure 4: they are Test 45 – 1 (SD) –

280 0.045g in Fig. 6a, and Test 45 – 6 (SD) – 0.3g in Fig. 6b. The magenta curves in Fig. 6 constitute
281 the only difference with Fig. 4, as these magenta curves correspond now to DD tests under a
282 stronger input motion than their SD counterparts. As shown in Table 3 and discussed earlier, all
283 tests in Fig. 6 have consistent maximum excess pore pressure ratios of $(r_u)_{max} \approx 0.8$, but with a
284 stronger input acceleration required for this in the DD tests, at both 1 atm and 6 atm. The
285 percentage increase in input acceleration to achieve this target of $(r_u)_{max} \approx 0.8$, was 45% to 67%.

286 Since the input acceleration was 45% to 67% stronger in the DD tests, the measured
287 acceleration records at the bottom of the soil in Fig. 6 are also consistently higher for the DD than
288 for the SD tests. However, at the middle and top elevations, the acceleration measurements at 1
289 atm are similar for SD and DD tests, while at 6 atm, the acceleration amplitudes are always greater
290 in the DD than in the SD test at all depths.

291 ***Excess pore pressure buildup***

292 Figure 7 has the same format of Fig. 5. The magenta curves in Fig. 7 are the only difference with
293 Fig. 5, as they correspond now to DD tests under stronger input acceleration than the SD tests.
294 Specifically, Fig. 7 displays the excess pore pressure ratio, r_u , over time for four tests with a similar
295 recorded $(r_u)_{max} \approx 0.8$, see Table 3. Thus, Fig. 7 shows the effect of drainage conditions and
296 overburden pressure for cases of similar $(r_u)_{max} \approx 0.8$.

297 Ni et al. (2020) stated that in the SD tests, the maximum excess pore pressure, $(r_u)_{max}$, was
298 measured at the bottom of the layer, with r_u decreasing much faster when going from deep to
299 shallow elevations in the 6 atm test (Test 45 – 6 (SD) – 0.045g), compared to the 1 atm test (Test
300 45 – 1 (SD) – 0.3g). Figure 7 indicates that this finding remains valid in the DD experiments. The
301 difference is that in the DD experiments, this more significant decrease in excess pore pressure
302 ratio occurs from the middle to the bottom and from the middle to the top drainage boundaries,

303 instead of only from deep to shallow elevations toward the single top drainage boundary.
304 Specifically, in the two DD experiments of Fig. 7 (Test 45 – 1(DD) – 0.065g and Test 45 – 6 (DD)
305 – 0.5g), the r_u at mid-depth happened to be higher for 6 atm than for 1 atm (0.85 versus 0.68).
306 Despite this, the r_u values at the bottom and top elevations for 6 atm were both smaller than the
307 corresponding r_u values at the same elevations for 1 atm (0.38 versus 0.5 near the top, and 0.2
308 versus 0.3 near the bottom of the layer), as shown by the comparison of magenta curves in Figs.
309 7a and 7b.

310 **Other experimental results and comparisons**

311 This section presents two other sets of comparisons between the tests of Table 3, again showing
312 the influence of SD versus DD for the same σ'_{v0} , as well as the effect of changing σ'_{v0} from 1 to 6
313 atm for the same drainage conditions. Instantaneous excess pore pressure profiles (isochrones)
314 during both shaking and dissipation, as well as shear strain and shear stress ratio time histories
315 during shaking are compared for all six experiments of Table 3.

316 ***Excess pore pressure profiles***

317 Figure 8 presents the instantaneous excess pore pressure profiles (isochrones) at four different
318 times during shaking and dissipation for the three tests performed at 1 atm. The results allow
319 examining the effect of the drainage conditions for both common input (Test 45 – 1(SD) – 0.045g
320 and Test 45 – 1(DD) – 0.045g in Figs. 8a and b), as well as common $(r_u)_{max} \approx 0.8$ (Test 45 – 1(SD)
321 – 0.045g and Test 45 – 1(DD) – 0.065g in Figs. 8a and c). In each plot, the curves with solid data
322 points represent the instantaneous excess pore pressure profiles during shaking ($0 < t \leq 5$ sec), and
323 the green curve with open data points corresponds to the profile at a time during dissipation, that
324 is after the shaking ($t > 5$ sec). The data points are measurements of pore pressure transducers at
325 different depths in the layer. Each plot also includes the total vertical overburden pressure line in

326 dashed black color, and the effective vertical overburden pressure solid line, with this last line
327 indicating $r_u = 1.0$ and hence liquefaction. None of the tests reached liquefaction, with $(r_u)_{\max} =$
328 0.80, 0.48 and 0.68 in the three tests (Table 3). In the plots, $z = 0$ means the very top of the sand
329 layer, which is a free drainage surface in both SD and DD tests. For the single drainage Test 45 –
330 1(SD) – 0.045g, the isochrones have a shape roughly similar to a quarter sine curve, with an excess
331 pore pressure, $u = 0$ for $z = 0$ at all times, validating the assumption that $z = 0$ is a free drainage
332 boundary (Ni et al. 2020). The isochrones of the double drainage tests in Figs. 8b and c show that:
333 i) The maximum excess pore pressure at a given time occurred at or near mid-depth at all
334 times during and after shaking, because the center elevation has the longest drainage path in these
335 tests with double drainage condition. This is different from the single drainage test in Fig. 8a,
336 where the maximum pore pressure at a given time was always at the bottom of sand layer, also
337 having the longest drainage path in this scenario;
338 ii) $u = 0$ at both the surface and bottom depths of the sand layer close to the top and bottom
339 drainage boundaries, during and after shaking.
340 iii) The shapes of all isochrones at any time during and after shaking are close to the idealized
341 excess pore pressure profiles of 1-D consolidation model with double drainage condition,
342 following approximately half sine distributions (Holtz et al. 2011). In fact, the shapes of the top
343 half of the isochrones from 0 m to 2.2 m in Figs. 8b and c are very similar to the full isochrone
344 shapes in Fig. 8a. This validates the effectiveness of the double drainage design in the centrifuge
345 experiments that used geocomposite under the bottom of the sand layer;
346 iv) The isochrone slopes at mid-depth of the layer were always close to vertical, indicating
347 about zero hydraulic gradients at that location. The maximum gradients occurred at elevations
348 close to the top and the bottom.

349 Figure 9 presents the instantaneous excess pore pressure profiles (isochrones) at four
350 different times during shaking and dissipation for the three tests done at 6 atm. That is, Fig. 9 is
351 the exact counterpart of Fig. 8 for 6 atm. All observations discussed before for Fig. 8 are also
352 applicable to Fig. 9, including findings i) ~ iv) above. However, one important difference is that
353 the drop in $(r_u)_{max}$ when going from Fig. 9c to Fig. 9b (0.85 to 0.18), is much greater than the same
354 drop when going from Fig. 8c to Fig. 8b (0.68 to 0.48), see Table 3. This is again a demonstration
355 of the increased importance of partial drainage in depressing pore pressure buildup as σ'_{v0}
356 increases.

357 In all six plots of Figs. 8-9, the blue curves correspond to the time of the $(r_u)_{max}$ of the test,
358 which happened at the bottom in the SD experiments of Figs. 8a and 9a, and at mid-depth in the
359 DD experiments of Figs. 8b, c and 9b, c. In the SD tests, the time of $(r_u)_{max}$ was always around 5
360 sec (end of shaking), for both 1 atm and 6 atm, as previously reported by Ni et al. (2020). However,
361 in the four DD tests, the time of $(r_u)_{max}$ was always less than 5 sec. In these DD tests, it was ~ 4.5
362 sec, that is slightly before the end of shaking for the 1 atm tests in Figs. 8 b, c; and 1.5 to 3.5 sec
363 or much earlier in the shaking for the 6 atm tests of Fig. 9b, c. This systematic difference between
364 SD and DD experiments was clearly caused by the additional drainage surface at the bottom,
365 compounded in the case of Test 45-6(DD)-0.3g in Fig. 9b by the relatively low shaking intensity
366 and corresponding low $(r_u)_{max} = 0.18$.

367 The dissipation of excess pore pressures after shaking was found to be significantly faster
368 for the DD tests at 6 atm than at 1 atm. This is consistent with the greater partial drainage during
369 shaking at 6 atm discussed above. It is also consistent with the similar conclusions reached by Ni
370 et al. (2020) for dissipation during the SD tests.

371 ***Shear Stress Ratio and shear strain time histories***

372 Figure 10 shows the shear stress ratio and shear strain time histories of the loose sand models
373 tested ($Dr = 45\%$), for the different drainage boundary conditions and different overburden
374 pressures, including all six tests listed in Table 3. Specifically, Figs. 10a and 10c present stress and
375 strain data for the three 1 atm experiments, while Figs. 10b and 10d display the same information
376 for the three 6 atm experiments. In Fig. 10, the black dash-dot curves correspond to the SD tests
377 at 1 and 6 atm, while the blue and red solid curves present the data for the DD tests. The shear
378 stress and shear strain time histories were obtained with the System Identification (SI) technique
379 (Elgamal et al. (1995, 1996); Zeghal et al. 1995), that uses the acceleration records at different
380 depths inside a centrifuge model. Shear stress ratio was defined as the ratio between shear stress
381 τ , from System Identification (SI) and the initial effective overburden pressure, σ'_{v0} , at the same
382 depth as the shear stress, that is, τ / σ'_{v0} . All stress ratio and shear strain curves in Fig. 10
383 correspond to the depth of measured $(r_u)_{max}$; bottom depth in SD tests and middle depth in DD
384 tests.

385 As stated by Ni et al. (2020) for the SD experiments, the shear stress peaks of Test 45 – 1
386 (SD) – 0.045g degraded after the first several cycles due to the high excess pore pressure build up
387 ($(r_u)_{max} = 0.8$); this is shown by the black curve in Fig. 10a. Such degradation was not observed in
388 any of the DD experiments at 1 and 6 atm, not even for the DD tests that also had a similar high
389 excess pore pressure of $(r_u)_{max} \approx 0.8$. With respect to the six strain time histories in Fig. 10c and
390 10d, five of them show no clear increase or decrease with time. The sixth, Test 45-6(DD)-0.5g,
391 shows a possible increase in the cyclic strain during the shaking.

392 Table 4 lists representative values of the Cyclic Shear Strain (γ_c) for the six tests of Table
393 3, calculated as the median of all positive and negative peaks from the 10 cycles in the strain time

394 histories of Figs. 10c and 10d. Table 4 also include the γ_c and $(r_u)_{max}$ for the two SD tests conducted
395 by Ni et al. (2020) at $D_r = 80\%$. All γ_c and $(r_u)_{max}$ for SD tests in the table were already reported
396 by Ni et al. (2020). On the other hand, the γ_c for the DD tests in Table 4 were obtained using the
397 same procedure by the authors for this paper. The γ_c values in Table 4 indicate that the strain level
398 increased from SD to DD conditions in order to reach a similar $(r_u)_{max} \approx 0.8$. This is valid at both
399 low and high overburden pressures (γ_c increases from 0.13% to 0.18% at 1 atm, and from 0.23%
400 to 0.54% at 6 atm).

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417 **Overburden Pressure Correction Factor, K_σ**

418 As mentioned earlier and following the original definition of Eq. 1 for $\sigma'_{v0} = 6$ atm, the overburden
419 correction factor is defined as $K_\sigma = (CRR)_6 / (CRR)_1$, where $(CRR)_6$ and $(CRR)_1$ are obtained
420 respectively at high and low confining pressure, from undrained stress-controlled cyclic tests
421 (triaxial or simple shear), and for a certain number of cycles to failure, N . This original definition
422 is entirely based on undrained cyclic testing, and was labeled by Ni et al. (2020) as the laboratory
423 undrained K_σ .

424 The same general approach based on Eq. 1 was used by Ni et al. (2020) to obtain values of
425 field K_σ from the centrifuge CSR values for the single drainage tests at $D_r = 45\%$ and 80% . This
426 took advantage of the cyclic stresses backfigured from the experiments using System Identification
427 (SI). This field $K_\sigma = 1.28$ from Ni et al. (2020) for $D_r = 45\%$ is reproduced here in Table 4, where
428 it is characterized as “CRRs in Eq. 1 directly from shear stresses using SI”. This field $K_\sigma = 1.28$ is
429 associated with a failure criterion, $(r_u)_{max} = 0.8$. A similar $K_\sigma > 1.15$ was also obtained by Ni et al.
430 (2020) for the SD, $D_r = 80\%$ tests, and this result is also listed in Table 4. Further details on the
431 corresponding procedure and calculations are provided by Ni et al. (2020). The same method was
432 used here by the authors for double drainage Tests 45-6(DD)-0.5g and 45-1(DD)-0.065g, giving
433 $K_\sigma = (CRR)_6 / (CRR)_1 < 1.30$, included in Table 4.

434 These two field K_σ just discussed for $D_r = 45\%$ and SD and DD conditions (1.28 and <
435 1.30), as well as the field $K_\sigma > 1.15$ also obtained by Ni et al. (2020) for the single drainage $D_r =$
436 80% tests, are all above 1.0, contrary to the results from undrained tests reflected in the SoP, which
437 are invariably less than 1.0 and decrease with overburden pressure. As discussed by Ni et al. (2020)
438 and Abdoun et al. (2020) for single drainage tests, and confirmed here for the new DD centrifuge
439 experiments, this is due to the decreased compressibility of the sand at 6 atm, which increases the

440 significance of partial drainage during shaking under 6 atm compared with 1 atm. On the other
441 hand, some of these field K_o determined directly from Stress Ratio histories such as Fig. 10a and
442 10b, involve an inequality sign. An example is the $K_o < 1.30$ in Table 4 for DD conditions. This
443 is due to the fact that in several of the centrifuge tests with $D_r = 45\%$ and 80% , $(r_u)_{max}$ was different
444 from the target value 0.8, so upper or lower bounds are obtained for the CRRs and K_o , rather than
445 more exact values.

446 Therefore, the authors decided to pursue also an alternative method to evaluate K_o from all
447 eight SD and DD tests of $D_r = 45\%$ and 80% listed in Table 3. This alternative method still uses
448 the ratio of CRRs in Eq. 1, but takes advantage of shear strain time histories from SI such as those
449 in Fig. 10c and 10d, in order to remove these inequalities and provide a more precise estimate of
450 the field K_o associated with the centrifuge experiments. This is possible because the plots of pore
451 pressure ratio versus cyclic shear strain in both cyclic undrained laboratory tests and centrifuge
452 model experiments, tend to be more unique than corresponding plots based on cyclic shear stress
453 or stress ratio, lending themselves better to interpolation and extrapolation (Dobry and Abdoun
454 2015, 2017). The method is described below, with the new calculated K_o also listed in Table 4 for
455 the SD and DD tests, and characterized there as “CRRs in Eq. 1 from shear strains using SI”. Both
456 new calculated values in Table 4 are similar ($K_o \approx 1.2$), and also generally consistent with the values
457 obtained before directly from the shear stresses. The next two sections explain how these
458 alternative field $K_o = 1.18$ and 1.20 values in Table 4 were evaluated using available information
459 from the corresponding centrifuge tests at 1 and 6 atm.

460 **Relationship between γ_c and $(r_u)_{max}$ in centrifuge tests**

461 Dobry and Abdoun (2015) proposed a relation between $(r_u)_{max}$ and cyclic shear strain (γ_c) based
462 on a series of six large-scale and centrifuge tests on 6m uniform layers of loose saturated sand,

463 previously reported by Abdoun et al. (2013). These six large-scale and centrifuge experiments had
464 imposed a 10-cycle uniform base input sinusoidal shaking to develop an excess pore pressure
465 buildup below liquefaction triggering. A clean sand and a silty sand as well as two methods of
466 sand deposition were used in these tests, where the effective overburden pressure at mid-depth of
467 the layer was $\sigma'_{v0} = 0.24$ atm. The measured values of $(r_u)_{max}$ versus γ_c from the six tests plotted
468 within a narrow band, which is reproduced here as the shaded band of Fig. 11.

469 Ni et al. (2020) tabulated the values of $(r_u)_{max}$ and γ_c for the four SD centrifuge tests listed
470 in Table 1, corresponding to sand of $D_r = 45\%$ and 80% . These values of $(r_u)_{max}$ and γ_c are
471 reproduced here in Table 4 and are plotted as data points in Fig. 11. Two curves – associated with
472 $\sigma'_{v0} = 1$ and 6 atm - were passed by these four datapoints in Fig. 11, with both curves being parallel
473 to the middle trend of the shaded band containing the results of Abdoun et al. (2013).

474 It is useful to review the way in which the representative γ_c was obtained for each SD test
475 in Table 4 by Ni et al. (2020). The System Identification (SI) technique (Elgamal et al. 1995, 1996;
476 Zeghal et al. 1995) was applied to determine the shear strain from the acceleration time histories
477 measured at different elevations inside the saturated sand layer, like the shear strain time histories
478 presented in Fig. 10 c, d herein. Each representative cyclic shear strain listed in Table 4, γ_c , was
479 obtained by Ni et al. (2020) by taking the median value of the 10-cycle shear strain peaks, a
480 procedure which had been proposed before by Dobry and Abdoun (2015). The $(r_u)_{max}$ in the four
481 SD tests of Fig. 11 was measured at the bottom of the sand layer, close to the bottom undrained
482 boundary, while $(r_u)_{max}$ from previous centrifuge and large-scale tests included in the band of Fig.
483 11, had been recorded at shallower elevations. Thus, cyclic shear strains for the four data points of
484 the SD tests in Fig. 11 were evaluated at the depth where $(r_u)_{max}$ was measured.

485 The following observations are reached from inspection of the two SD curves in Fig. 11:

486 1) A greater γ_c is needed to reach the same $(r_u)_{max}$ when σ'_{v0} is higher;

487 2) Relative density, D_r , affects the $(r_u)_{max}$ versus γ_c relationship minimally or not at all. This

488 is shown by the fact that a single $(r_u)_{max}$ versus γ_c curve could be passed by the data points of SD

489 tests with different relative densities and same overburden pressure.

490 The authors obtained representative values of γ_c for the four new DD centrifuge tests listed

491 in Table 2, from the shear strain time histories of Fig. 10, and utilizing the same exact procedure

492 used before by Ni et al. (2020) for the SD tests. The corresponding four DD γ_c values of are also

493 listed in Table 4, which now contains all values of $(r_u)_{max}$ and γ_c for the complete group of eight

494 SD and DD centrifuge experiments. These eight pairs of $(r_u)_{max}$ and γ_c for SD and DD tests are

495 plotted in Fig. 11.

496 That is, Fig. 11 contains all information available for $D_r = 45\%$ and 80% centrifuge tests

497 done with SD and DD drainage conditions. Inspection of the graph reveals the following:

498 1) The four curves from the SD and DD experiments, each determined by the location of

499 two data points, are indeed parallel to each other and parallel to the original shaded band of Fig.

500 11, independent of drainage condition and overburden pressure. This consistency between the

501 shapes of the new curves with each other and with the Abdoun et al. (2013) band, serves as a

502 confirmation of the hypothesis that curves are parallel in a plot such as Fig. 11, and reinforces the

503 reliability of the curves;

504 2) Comparison of the curves of 6 atm and 1 atm in Fig. 11, confirms the conclusion, that a

505 higher overburden pressure shifts the curve to the right for both SD and DD conditions, with a

506 higher γ_c needed to build up the same $(r_u)_{max}$;

507 3) Comparison of DD and SD curves at the same overburden pressure, shows that a greater

508 γ_c is needed to generate the same $(r_u)_{max}$ for DD compared to SD conditions. In fact, Fig. 11 reveals

509 that adding the bottom drainage boundary has roughly the same effect on the curve than increasing
510 the overburden pressure from 1 atm to 6 atm.

511 The four $(r_u)_{\max}$ versus γ_c curves in Fig. 11 were used to evaluate the γ_c needed to reach the
512 target failure criterion of $(r_u)_{\max} = 0.8$, with such γ_c defined as $\gamma_{cl,0.8}$. This $\gamma_{cl,0.8}$ corresponds to an
513 hypothetical centrifuge experiment causing an $(r_u)_{\max} = 0.8$. The value of $\gamma_{cl,0.8}$ for each curve in
514 Fig. 11 was determined from the intersection with the curve of the horizontal line shown
515 corresponding to $(r_u)_{\max} = 0.8$. Table 4 lists these values of $\gamma_{cl,0.8}$ needed to reach $(r_u)_{\max} = 0.8$ in
516 all eight centrifuge tests having both SD and DD conditions. For the SD experiments, as the curve
517 is independent of relative density, only one value of $\gamma_{cl,0.8}$ is listed in Table 4 for each overburden
518 pressure (1 and 6 atm). For the DD experiments, as the curve is independent of base shaking
519 intensity, also only one value of $\gamma_{cl,0.8}$ is listed in Table 4 for each overburden pressure (1 and 6
520 atm). Due to the fact that all four curves contain data points close to the target $(r_u)_{\max} = 0.80$, the
521 four $\gamma_{cl,0.8}$ in Table 4 are estimates having a high degree of precision

522 **Strain-based method for CRR and field K_σ**

523 The values of $(CRR)_6$ and $(CRR)_1$ needed to evaluate the field K_σ from pairs of centrifuge tests at
524 6 atm and 1 atm, may now be calculated from the corresponding $\gamma_{cl,0.8}$ for these tests listed in Table
525 4. This requires consideration of the shear stiffness characteristics of the sand models in the
526 centrifuge experiments, so these cyclic shear strains $\gamma_{cl,0.8}$ may be converted into corresponding
527 undegraded cyclic shear stresses, $\tau_{c,0.8}$, and CRRs, with K_σ finally evaluated using Eq. 1. The
528 corresponding stiffness information for all eight centrifuge tests is plotted in Fig. 12 in the form of
529 G/G_{\max} versus γ_c and τ_c / G_{\max} versus γ_c curves, with the corresponding values listed in Table 5.
530 That is, Fig. 12 includes the modulus reduction and normalized backbone curves common to all

531 eight centrifuge models. The way Fig. 12 was developed and its use in evaluating K_σ is explained
532 in the rest of this section.

533 The information needed for the G/G_{\max} curve of Fig. 12a was obtained as follows:

- 534 • The value of G_{\max} for each centrifuge test was from bender element measurements at mid-
535 depth of the layer (Fig. 2), of the shear wave velocity, V_s , conducted in flight before the
536 main shaking. Once V_s was known, G_{\max} was evaluated with the expression $G_{\max} = \rho V_s^2$
537 (ρ = mass density of saturated sand). Ni et al. (2020) had already done this for the SD tests
538 in Table 4; the process was repeated by the authors for the new DD tests.
- 539 • Once G_{\max} had been determined for each centrifuge test, the modulus reduction values and
540 curves of G/G_{\max} versus γ_c of Fig. 12a could be obtained. The secant shear modulus, G , at
541 various γ_c , was determined from the cyclic stress-strain loops with the SI technique. In the
542 process, both the cyclic shear stress, τ_c , and cyclic shear strain, γ_c , were obtained for each
543 loop, with $G = \tau_c / \gamma_c$. Centrifuge models with the same overburden pressure, but different
544 drainage boundary conditions and different relative densities, were expected to share the
545 same shear modulus reduction curve (Darendeli 2001), as confirmed by Fig. 12a. Therefore,
546 the G/G_{\max} curves for 1 atm and 6 atm in Figure 12a were determined by combining
547 information from both SD and DD tests. The information documenting the data points of
548 Fig. 12 is listed in Table 5. Specifically, the development of the G/G_{\max} reduction curve for
549 1 atm in Fig. 12a used four G/G_{\max} versus γ_c points (black circles), corresponding to the τ_c
550 and γ_c measured in the second cycle of shaking of the four 1 atm tests of Table 4. Similarly,
551 the development of the G/G_{\max} curve for 6 atm in the figure used four data points (red
552 circles), also from the second cycle of motion of the four 6 atm tests of Table 4. The second
553 cycle was consistently used for all eight data points of Table 5 and Fig. 12, because of two

554 reasons: (i) the cycle had a clear, symmetric non-noisy cyclic shape; and (ii) it
555 corresponded to a relatively low excess pore pressure ratio at a time early in the shaking.

556 After determining the G/G_{\max} curves in Fig. 12a, in a second step, the same information was
557 converted into the normalized cyclic shear stress-strain backbone curve of Fig. 12b. This new plot
558 of τ_c / G_{\max} versus γ_c , takes advantage of the fact that the undegraded cyclic shear stress, $\tau_c = G \gamma_c$
559 $= G_{\max} (G/G_{\max}) \gamma_c$, so $\tau_c / G_{\max} = (G/G_{\max}) \gamma_c$. All eight values of G/G_{\max} and τ_c/G_{\max} are listed in
560 Table 5.

561 Specifically, the conversion from Fig. 12a to Fig. 12b was done as follows:

- 562 • For each data point of G/G_{\max} versus γ_c in Fig. 12a, G/G_{\max} was multiplied by γ_c to
563 obtain the normalized cyclic shear stress for the corresponding stress-strain loop, τ_c
564 $/ G_{\max} = (G/G_{\max}) \gamma_c = G \gamma_c / G_{\max}$. In a sense, this was just a recovery of the same
565 value of τ_c previously obtained using SI and used to define the secant modulus of
566 the loop, $G = \tau_c / \gamma_c$. The corresponding data points, tabulated in Table 5 and plotted
567 in Fig. 12b, define the normalized backbone curves of τ_c / G_{\max} versus γ_c at $\sigma'_{v0} =$
568 1 and 6 atm.
- 569 • The curves for 1 atm, $(\tau_c / G_{\max})_1$, and 6 atm, $(\tau_c / G_{\max})_6$, were fitted to the data
570 points in Fig. 12b by using the modified hyperbolic stress-strain framework
571 proposed by Darendeli (2001), see also Dobry and Abdoun (2015):

$$572 \frac{\tau_c}{G_{\max}} = \left(\frac{G}{G_{\max}} \right) \gamma_c = \frac{\gamma_c}{1 + \left(\frac{\gamma_c}{\gamma_r} \right)^{0.919}} \quad (4)$$

573 and adjusting the value of the reference strain, γ_r , to provide the best fit of the curves to the data
574 points for 1 and 6 atm in Fig. 12b. The corresponding values used for the mean representative
575 curves of Fig. 12b in Eq. 4 are: $\gamma_r = 0.0123\%$ for $\sigma'_{v0} = 1$ atm, and $\gamma_r = 0.0385\%$ for $\sigma'_{v0} = 6$ atm.

576 The normalized backbone curves of Fig. 12b and Eq. 4 provide the means to evaluate the
 577 normalized cyclic shear stress for the $D_r = 45\%$ and 80% centrifuge tests, τ_c / G_{\max} , associated with
 578 any undegraded cyclic strain, γ_c . It is then possible to evaluate the corresponding Cyclic Stress
 579 Ratio, CSR, of the same centrifuge tests, as CSR is the same cyclic shear stress but now normalized
 580 to the σ'_{v0} of the test:

$$581 \quad \text{CSR} = \frac{\tau_c}{\sigma'_{v0}} = \frac{\tau_c}{G_{\max}} \frac{G_{\max}}{\sigma'_{v0}} \quad (5)$$

582 We are interested in a specific value of CSR for each test, the one associated with the nondegraded
 583 τ_c and γ_c causing a maximum pore pressure equal to the target value, $(r_u)_{\max} = 0.8$; that is $\gamma_{cl,0.8}$ and
 584 $\tau_{cl,0.8}$. The values of $\gamma_{cl,0.8}$ were already determined and are listed in Table 4. The corresponding
 585 $\tau_{cl,0.8}$ may now be evaluated with Eq. 4 using these $\gamma_{cl,0.8}$. That is, the curves in Fig. 12b have
 586 equations of the form:

$$587 \quad \left(\frac{\tau_{cl}}{G_{\max}} \right)_{0.8} = \frac{\gamma_{cl,0.8}}{1 + \left(\frac{\gamma_{cl,0.8}}{\gamma_r} \right)^{0.919}} \quad (6)$$

588 All values of $(\tau_{cl} / G_{\max})_{0.8}$ were calculated using Eq. 6 and are listed in Table 4 for the eight
 589 centrifuge tests. Notice that the pair of DD tests at 1 atm, as well as the pair of DD tests at 6 atm,
 590 share common values of $\gamma_{cl,0.8}$ and thus also common values of $(\tau_{cl} / G_{\max})_{0.8}$. Therefore, there are
 591 only four instead of eight different values of $(\tau_{cl} / G_{\max})_{0.8}$ in Table 4.

592 By replacing τ_c by $\tau_{cl,0.8}$ in Eq. 5, CSR becomes the Cyclic Resistance Ratio, CRR.
 593 associated in these centrifuge tests with the failure criterion given by $(r_u)_{\max} = 0.8$:

$$594 \quad \text{CRR} = \left(\frac{\tau_{cl}}{G_{\max}} \right)_{0.8} \frac{G_{\max}}{\sigma'_{v0}} \quad (7)$$

595 It is now possible to evaluate the corresponding $K_\sigma = (\text{CRR})_6 / (\text{CRR})_1$, where both CRRs are
 596 obtained from Eq. 7 for $\sigma'_{v0} = 6$ and 1 atm, respectively. Finally:

597
$$K_{\sigma} = \frac{(CRR)_6}{(CRR)_1} = \frac{\left(\frac{\tau_{cl}}{G_{max}}\right)_{0.8,6}}{\left(\frac{\tau_{cl}}{G_{max}}\right)_{0.8,1}} \frac{(G_{max})_6}{(G_{max})_1} \frac{1}{6}$$

598
$$= \frac{\left(\frac{\tau_{cl}}{G_{max}}\right)_{0.8,6}}{\left(\frac{\tau_{cl}}{G_{max}}\right)_{0.8,1}} \sqrt{6} \frac{1}{6}$$

599
$$K_{\sigma} = \frac{(CRR)_6}{(CRR)_1} = \frac{\left(\frac{\tau_{cl}}{G_{max}}\right)_{0.8,6}}{\left(\frac{\tau_{cl}}{G_{max}}\right)_{0.8,1}} \frac{1}{2.45} \quad (8)$$

600 Ni et al (2020) had verified that in the SD tests of Table 4, the measured ratio between G_{max} for
 601 comparable tests at 6 and 1 atm, $(G_{max})_6 / (G_{max})_1 = \sqrt{6} = 2.45$ with a high degree of precision.
 602 This ratio $(G_{max})_6 / (G_{max})_1 = 2.45$ was again verified by the authors and found to hold for the DD
 603 tests in Table 4. The result was used to produce the final version of Eq. 8 above.

604 K_{σ} may now be obtained in Table 4 by just dividing the corresponding pairs of $(\tau_{cl} / G_{max})_{0.8}$
 605 at 6 and 1 atm and then dividing again by $\sqrt{6} = 2.45$. This was done in the table; resulting in best
 606 estimate values of $K_{\sigma} = 1.18$ and 1.20 for the SD and DD conditions, respectively, independent of
 607 relative density for the range between 45% and 80%.

608 Table 4 also includes the uncertainties of these best estimate K_{σ} determined using this
 609 approach, quantified as the standard deviations of K_{σ} obtained with Eqs. 6 and 8. The sources of
 610 uncertainty considered were:

- 611 1. Uncertainty introduced by using the median cyclic strain as representative of each whole
 612 strain history such as those plotted in Fig. 10.
- 613 2. Uncertainty in the values of γ_r due to the scatter of the data points around the normalized
 614 backbone curves of Fig. 12b.
- 615 3. Uncertainty due to the location of the accelerometers in the centrifuge model.
- 616 4. Uncertainty in the values of $\gamma_{cl,0.8}$ due to the fitted γ_{cl} vs $(r_u)_{max}$ parallel lines in Fig. 11.

617 These sources of uncertainty were combined using the method presented by Benjamin and Cornell
618 (1970), in order to get the combined standard deviations and ranges of K_σ around the best estimates
619 listed in Table 4 (1.18 ± 0.17 and 1.20 ± 0.18 for the SD and DD tests, respectively).

620 **Discussion**

621 Determination of K_σ using the cyclic strains from SI followed four main steps: 1) at both 1 and 6
622 atm, get $\gamma_{cl,0.8}$, the cyclic shear strain needed to reach $(r_u)_{max} = 0.8$, using Fig. 11; 2) at both 1
623 and 6 atm, obtain $(\tau_{cl} / G_{max})_{0.8} = \tau_{cl,0.8} / G_{max}$ using the curves of Fig. 12b, fitted using Eq. 6, where
624 $\tau_{cl,0.8}$ is the undegraded cyclic shear stress needed to reach $(r_u)_{max} = 0.8$; 3) at both 1 and 6 atm,
625 obtain the Cyclic Stress Ratio, CRR, corresponding to this failure criterion, $(r_u)_{max} = 0.8$, using Eq.
626 7; and 4) evaluate $K_\sigma = (CRR)_6 / (CRR)_1$ (Eq. 8). As shown in Table 4, these K_σ obtained by going
627 first through the cyclic strains contain no inequalities, as a result of the mild interpolations and
628 extrapolations conducted in Fig. 11 to estimate the value of $\gamma_{cl,0.8}$ for each centrifuge test.

629 All K_σ listed in Table 4 are very consistent, irrespective of them corresponding to SD or
630 DD conditions, irrespective of relative density, and also irrespective of being calculated directly
631 with the cyclic shear stresses from SI, or by going through the strains first to get those cyclic
632 stresses. All best estimates of K_σ in Table 4 are essentially in the range 1.2 to 1.3. That is, this
633 work confirms and extends to DD conditions, the conclusion reached by Ni et al. (2020) for SD
634 tests done at $D_r = 45\%$ and 80% , that the field K_σ for the field and shaking situations simulated in
635 these model experiments, is $K_\sigma \approx 1.2$ to $1.3 > 1$. This again suggests that the current State-of-
636 Practice where $K_\sigma < 1$ may be too conservative for some field conditions, due to the decreased
637 sand compressibility at high overburden pressures.

638 **Summary and Conclusions**

639 A series of eight centrifuge tests was analyzed, four of them with single drainage conditions
640 already reported by Ni et al. (2020) and Abdoun et al. (2020), and four new tests conducted with
641 double drainage conditions for the same liquefiable sand layer. In the eight experiments, a 5-m
642 thick saturated clean Ottawa sand was subjected to an input base acceleration of the same shape
643 and duration but different acceleration amplitudes. The sand layer had a relative density of 45% or
644 80%, an effective overburden pressure of 1 atm or 6 atm, a drainage condition covering single
645 drainage (SD) at the top of the layer or double drainage (DD) at top and bottom, and the models
646 were subjected to a base input shaking aimed at achieving in the sand a targeted maximum excess
647 pore pressure ratio, $(r_u)_{max} \approx 0.8$. Comparable models were also conducted with SD and DD
648 conditions that had the same input shaking intensity but induced a smaller $(r_u)_{max}$ in the DD test.
649 The overburden correction factor, K_σ , for an overburden of 6 atm and the idealized field condition
650 of the tests was determined for a failure conditions, $(r_u)_{max} \approx 0.8$, using directly the Cyclic
651 Resistance Ratios (CSR) measured in the tests, as well as an alternative method where the CRRs
652 were evaluated by going first through the cyclic shear strains measured in the tests. The main
653 conclusions are as follows:

- 654 1. A novel centrifuge technique to achieve the DD condition with geocomposite layer at the
655 bottom of the sand layer and a dry lead shot layer at the top of the sand layer worked successfully,
656 as proven by the negligible excess pore pressures measured at the two boundaries. This technique
657 provides a new option to centrifuge modelers for simulating idealized single and double drainage
658 field condition in their experiments.
- 659 2. A stronger input acceleration (1.45 ~ 1.67 times stronger) was required to achieve a similar
660 $(r_u)_{max} \approx 0.8$ in a DD test compared to the SD test. When the same input shaking was used,

661 comparable SD and DD experiments had similar acceleration records at different depths in the
662 sand layer, indicating little effect of the drainage conditions on these accelerations.

663 3. The excess pore water pressures dissipated significantly faster in the DD than in the SD
664 tests. Both in the SD and DD experiments, there was more drainage in the 6 atm than in the 1 atm
665 tests, resulting in high field $K_\sigma > 1$ values obtained for both SD and DD conditions.

666 4. The drainage conditions had a significant effect on the cyclic shear strain required to reach
667 the same value of $(r_u)_{max}$, with a higher cyclic strain for DD than for SD tests.

668 5. Relationships between $(r_u)_{max}$ and the cyclic shear strain (γ_c) were developed for all eight
669 tests. It was found that both the overburden pressure, σ'_{v0} , as well as the drainage conditions had
670 a significant effect on the location of the $(r_u)_{max}$ versus γ_c curve. Specifically, both a high
671 overburden pressure and a DD condition shift the curve rightward. On the other hand, relative
672 density in the range from 45% to 80% has little or no effect on the location of the $(r_u)_{max}$ versus γ_c
673 curve.

674 6. The best estimates of field K_σ obtained for 6 atm are in the approximate range between 1.2
675 and 1.3, irrespective of drainage conditions (SD or DD), irrespective of relative density between
676 $D = 45\%$ and 80% , and also irrespective of the method used to determine K_σ . This overall
677 consistency validates the two methods used in this paper for K_σ , indicating that the current State-
678 of-Practice where $K_\sigma < 1$, is too conservative for the idealized SD and DD field conditions
679 implemented in these centrifuge tests.

680

681

682

683

684 **Data Availability Statement**

685 Some or all data, models, or code generated or used during the study are available from the
686 corresponding author by request.

687 **ACKNOWLEDGMENTS**

688 The authors wish to thank the RPI geotechnical centrifuge technical staff for their help in the project
689 and the preparation of this paper. Prof. Mourad Zeghal helped with the system identification of
690 records, which is most appreciated. The authors also would like to thank Solmax.com for providing
691 all the geocomposite and geonet materials in the research project, which is greatly appreciated. The
692 research was supported by the National Science Foundation under Grants No. 1545026 & 1904313
693 and NYU Abu Dhabi; this support is gratefully acknowledged.

694

695

696

697

698

699

700

701

702

703

704

705

706

707 **References**

- 708 Abdoun, T., M. A. Gonzalez, S. Thevanayagam, R. Dobry, A. Elgamal, M. Zeghal, and U. El
709 Shamy. 2013. “Centrifuge and large-scale modeling of seismic pore pressures in sands: cyclic
710 strain interpretation.” *J. Geotech. Geoenviron. Eng.* 139 (8): 1215–
711 1234. [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0000821](https://doi.org/10.1061/(ASCE)GT.1943-5606.0000821).
- 712 Abdoun, T., M. Ni, R. Dobry, A. Marr, K. Zehtab, and W. El-Sekelly. 2020. “Pore pressure and
713 k_σ evaluation at high overburden pressure under field drainage conditions. II: Additional
714 interpretation.” *J. Geotech. Geoenviron. Eng.* [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002302](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002302).
- 715
- 716 Andrus, R. D., and K. H. Stokoe II. 2000. “Liquefaction resistance of soils from shear-wave
717 velocity.” *J. Geotech. Geoenviron. Eng.* 126 (11): 1015–1025.
718 [https://doi.org/10.1061/\(ASCE\)1090-0241\(2000\)126:11 836\(1015\)](https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11 836(1015)).
- 719 Benjamin, J. R & Cornell, C. A. (1970). Probability, statistics, and decision for civil engineers.
720 McGraw-Hill.
- 721 Boulanger, R. W. 2003. “High overburden stress effects in liquefaction analyses.” *J. Geotech.
722 Geoenviron. Eng.* 129 (12): 1071–1082. [https://doi.org/10.1061/\(ASCE\)1090-0241\(2003\)129:12\(1071\)](https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1071)).
- 723
- 724 Boulanger, R. W., and I. M. Idriss. 2004. “State normalization of penetration resistance and the
725 effect of overburden stress on liquefaction resistance.” In *Proc., 11th SDEE and 3rd ICEGE*,
726 Berkeley, CA: Univ. of California.
- 727 Boulanger, R. W., and I. M. Idriss. 2012. “Probabilistic standard penetration test-based
728 liquefaction-triggering procedure.” *J. Geotech. Geoenviron. Eng.* 138 (10): 1185–1195.
729 [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0000700](https://doi.org/10.1061/(ASCE)GT.1943-5606.0000700).

- 730 Cetin, K. O., R. B. Seed, A. Der Kiureghian, K. Tokimatsu, L. F. Harder Jr., R. E. Kayen, and R.
731 E. Moss. 2004. "Standard penetration test-Based probabilistic and deterministic assessment
732 of seismic soil liquefaction potential." *J. Geotech. Geoenviron. Eng.* 130 (12): 1314–1340.
733 [https://doi.org/10.1061/\(ASCE\)1090-0241\(2004\)130:12\(1314\)](https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1314)).
- 734 Darendeli, M. B. 2001. "Development of a new family of normalized 865 modulus reduction and
735 material damping curves." Ph.D. thesis, Dept. of Civil Engineering, Univ. of Texas at Austin.
- 736 Dobry, R., and T. Abdoun. 2015. "Cyclic shear strain needed for liquefaction triggering and
737 assessment of overburden pressure factor K_σ ." *J. Geotech. Geoenviron. Eng.* 141 (11):
738 04015047. [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0001342](https://doi.org/10.1061/(ASCE)GT.1943-5606.0001342).
- 739 Dobry, R., and T. Abdoun. 2017. "Recent findings on liquefaction triggering in clean and silty
740 sands during earthquakes," *J. Geotech. Geoenviron. Eng.* 143 (10): 04017077.
741 [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0001778](https://doi.org/10.1061/(ASCE)GT.1943-5606.0001778).
- 742 El-Ghorabiy, M. A., H. Park, and M. T. Manzari. 2017. *LEAP 2017: Soil characterization and
743 element tests for Ottawa F65 sand*. Washington, DC: George Washington Univ.
- 744 Elgamal, A.W., M. Zeghal, V. Taboada, and R. Dobry. 1996. "Analysis of site liquefaction and
745 lateral spreading using centrifuge testing records." *Soils Found.* 36 (2): 111–121.
746 https://doi.org/10.3208/sandf.36.2_111.
- 747 Elgamal, A. W., M. Zeghal, H. T. Tang, and J. C. Stepp. 1995. "Lotung downhole array. I:
748 evaluation of site dynamic properties." *J. Geotech. Geoenviron. Eng.* 121 (4): 350–362.
749 [https://doi.org/10.1061/\(ASCE\)0733-9410\(1995\)121:4\(350\)](https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(350)).
- 750 Gillette, D. 2013. "Liquefaction issues for dam safety—Bureau of Reclamation." In *Proc.,
751 Presentation in One-Day Workshop, Committee on State of the Art and Practice in
752 Earthquake Induced Soil Liquefaction Assessment*. Washington, DC: National Research

- 753 Council of the National Academies.
- 754 GSE Environmental. (2015). Tri-Axial Geonets and Geocomposites for Drainage Applications, <
755 http://www.gseworld.com/content/documents/datasheets/Tri_Axial/DuraFlow_8.4_mm_Ge
756 ocomp_METRIC_DS.pdf> (accessed 5 April 2020).
- 757 Harder, L. 1988. "Use of Penetration Tests to Determine the Cyclic Loading Resistance of
758 Gravelly Soils during Earthquake Shaking." Dept. of Civil Engineering, Univ. of California,
759 Berkeley, CA.
- 760 Holtz, R. D., W. D. Kovacs, and T. C. Sheahan. 2011. *An introduction to geotechnical engineering*.
761 Englewood Cliffs, NJ: Prentice-Hall.
- 762 Hynes, M. E., R. S. Olsen, and D. E. Yule. 1999. "Influence of confining stress on liquefaction
763 resistance." In *Proc., Int. Workshop on Physics and mechanics of Soil Liquefaction*, 145–152.
764 Balkema, Rotterdam, The Netherlands.
- 765 Idriss, I. M., and R. W. Boulanger. 2006. "Semi-empirical procedures for evaluating liquefaction
766 potential during earthquakes." *Soil Dyn. Earthquake Eng.* 26 (2–4): 115–130.
767 <https://doi.org/10.1016/j.soildyn.2004.11.023>.
- 768 Idriss, I. M., and R. W. Boulanger. 2008. *Soil liquefaction during earthquakes. Monograph MNO-*
769 12. Berkeley, CA: Earthquake Engineering Research Institute.
- 770 Idriss, I.M., and R.W. Boulanger. 2010. *SPT-based liquefaction triggering procedures*. Rep. No.
771 UCD/CGM-10/02. Davis, CA: Dept. of Civil and Environmental Engineering, Univ. of
772 California.
- 773 Montgomery, J., R. W. Boulanger, and L. F. Harder Jr. 2012. *Examination of the $K\sigma$ overburden*
774 *correction factor on liquefaction resistance*. Rep. No. UCD/CGM-12-02. Davis, CA: Center
775 for Geotechnical Modeling, Dept. of Civil and Environmental Engineering, Univ. of

- 776 California.
- 777 National Academies. 2017. *State of the art and practice in the assessment of earthquake-induced*
778 *soil liquefaction and its consequences: A Report of the National Academies, Committee on*
779 *State of the Art and Practice in Earthquake-Induced Soil Liquefaction*. Washington, DC:
780 National Academies Press.
- 781 Ni, M., T. Abdoun, R. Dobry, A. Marr, K. Zehtab, and W. El-Sekelly. 2020. “Pore pressure and
782 K_σ evaluation at high overburden pressure under field drainage conditions. I: Centrifuge
783 experiments.” *J. Geotech. Geoenviron. Eng.* [https://doi.org/10.1061/\(ASCE\)GT.1943-5606.0002303](https://doi.org/10.1061/(ASCE)GT.1943-5606.0002303).
- 785 Reddi, L. 2003. *Seepage in Soils: Principles and Applications*. Wiley, Hoboken, NJ.
- 786 Robertson, P. K., and C. E. Wride. 1998. “Evaluating cyclic liquefaction potential using the cone
787 penetration test.” *Can. Geotech. J.* 35 (3):442–459. <https://doi.org/10.1139/t98-017>.
- 788 Seed, H. B. 1983. “Earthquake-resistant design of earth dams.” In *Proc., Seismic Design of Earth*
789 *Dams and Caverns*. Philadelphia: ASCE.
- 790 Seed, H. B., and I. M. Idriss. 1971. “Simplified procedure for evaluating soil liquefaction potential.”
791 *J. Soil Mech. Found. Div.* 97 (9): 1249–1273.
- 792 Seed, H. B., and I. M. Idriss. 1981. “Evaluation of liquefaction potential sand deposits based on
793 observation of performance in previous earthquakes.” In *Session on in situ testing to evaluate*
794 *liquefaction susceptibility*. Reston, VA: ASCE.
- 795 Seed, R. B., and L. F. Harder Jr. 1990. “SPT-based analysis of cyclic pore 982 pressure generation
796 and undrained residual strength.” In *Proc., H. Bol- 983 ton Seed Memorial Symp.* Berkeley,
797 CA: Univ. of California.
- 798 Vaid, Y. P., and S. Sivathayalan. 1996. “Static and cyclic liquefaction potential of Fraser Delta

- 799 sand in simple shear and triaxial tests.” *Can. Geotech. J.* 33 (2): 281–289.
- 800 <https://doi.org/10.1139/t96-007>.
- 801 Vaid, Y. P., and J. Thomas. 1995. “Liquefaction and postliquefaction behavior of sand.” *J. Geotech.*
802 *Eng.* 121 (2): 163–173. [https://doi.org/10.1061/\(ASCE\)0733-9410\(1995\)121:2\(163\)](https://doi.org/10.1061/(ASCE)0733-9410(1995)121:2(163)).
- 803 Youd, T. L., Idriss, I.M., Andrus, R.D., Arango, I., Castro, G., Christian, J.T., Dobry, R., Finn,
804 W.D.L., Harder Jr., L.F., Hynes, M.E., Ishihara, K., Koester, J.P., Liao, S.C., Marcuson III,
805 W.F., Martin, G.R., Mitchell, J.K., Moriwaki, Y., Power, M.S., Robertson, P.K., Seed, R.B.
806 and Stokoe II, K.H. (2001). Liquefaction Resistance of Soils: Summary Report from the 1996
807 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of
808 Soils. *Journal of Geotechnical and Geoenvironmental Engineering*, ASCE, 127(10), 817-833.
- 809 Zeghal, M., A. W. Elgamal, H. T. Tang, and J. C. Stepp. 1995. “Lotung downhole array. II:
810 Evaluation of soil nonlinear properties.” *J. Geotech. Eng.* 121 (4): 363–378.
811 [https://doi.org/10.1061/\(ASCE\)0733-9410\(1995\)121:4\(363\)](https://doi.org/10.1061/(ASCE)0733-9410(1995)121:4(363)).
- 812 Zimmaro, P., et al. 2019. “Next-generation liquefaction database.” *Next-Gener. Liquefaction*
813 *Consortium*. <https://doi.org/10.21222/C2J040>.
- 814
- 815

Table 1 Relative density, confining pressure, g-level and drainage condition of centrifuge models with single drainage boundary at the top (Ni et al. 2020)

Test	Relative Density, D_r (%) ⁽¹⁾	Centrifugal g-level (g)	Effective overburden pressure, σ'_{v0} (atm) ⁽²⁾	Drainage conditions
Test 45-1 ⁽³⁾ (SD)0.045g ⁽⁴⁾	45	20	1	SD ⁽⁵⁾
Test 45-6(SD)-0.3g	45	60	6	SD
Test 80-1(SD)-0.05g	80	20	1	SD
Test 80-6(SD)-0.3g	80	60	6	SD

⁽¹⁾ Relative density after spinning to target g-level

(2) Effective overburden pressure at mid depth of sand layer

⁽³⁾ Test name includes “sand relative density–effective overburden pressure in atm (drainage condition)”

⁽⁴⁾ Test name includes average rounded up prototype input peak base acceleration inside the container (g) for each test

⁽⁵⁾ SD represents single drainage, meaning free drainage only at the top of the sand layer

827 **Table 2** Relative density, confining pressure g-level and drainage condition of centrifuge models
828 with double drainage at top and bottom

Test	Relative Density, D_r (%) ⁽¹⁾	Centrifugal g-level (g)	Effective overburden pressure, σ'_{v0} (atm) ⁽²⁾	Drainage conditions
Test 45-1 ⁽³⁾ (DD)0.045g ⁽⁴⁾	45	20	1	DD ⁽⁵⁾
Test 45-1(DD)-0.065g	45	20	1	DD
Test 45-6(DD)-0.3g	45	45	6	DD
Test 45-6(DD)-0.5g	45	45	6	DD

829 ⁽¹⁾ Relative density after spinning to target g-level

830 ⁽²⁾ Effective overburden pressure at mid depth of sand layer

831 ⁽³⁾ Test name includes “g-level–effective overburden pressure (drainage condition)”

832 ⁽⁴⁾ Test name includes the average prototype input peak base acceleration inside the container (g) for each test

833 ⁽⁵⁾ DD represents double drainage, meaning free drainage at both the top and bottom of the sand layer

838 **Table 3** Peak base acceleration and maximum pore pressure ratios reached for different
 839 centrifuge tests under single drainage (SD) and double drainage (DD) boundary conditions with
 840 $Dr = 45\%$

Test	Average prototype input peak base acceleration (inside container) (g) ⁽¹⁾	$(r_u)_{\max}$
Test 45 – 1(SD) – 0.045g ⁽²⁾	0.045	0.80
Test 45 – 1(DD) – 0.045g	0.045	0.48
Test 45 – 1(DD) – 0.065g	0.065	0.68
Test 45 – 6(SD) – 0.3g ⁽²⁾	0.3	0.76
Test 45 – 6(DD) – 0.3g	0.3	0.18
Test 45 – 6(DD) – 0.5g	0.5	0.85

841 ⁽¹⁾All input acceleration time histories consisted of ten cycles of uniform acceleration
 842 amplitude having a 2 Hz prototype frequency

843 ⁽²⁾ The single drainage (SD) tests were reported in detail by Ni et al. (2020)

844

845 **Table 4** Maximum excess pore pressure ratio, $(r_u)_{\max}$; median cyclic shear strain, γ_c ; extrapolated
 846 $\gamma_{cl,0.8}$ and undegraded $\tau_{cl,0.8}$ required to reach $(r_u)_{\max} = 0.8$; and K_σ from Eq. 8 for $D_r = 45\%$ and
 847 different drainage conditions

Test	$(r_u)_{\max}$	Median γ_c (%)	$\gamma_{cl,0.8}$ (%)	$(\tau_{cl}/G_{\max})_{0.8}$ (Eq. 6)	K_σ (Eq. 8, CRRs in Eq. 1 from shear strains using SI)	K_σ (CRRs in Eq. 1 directly from shear stresses using SI)
Test 45 – 6(SD)–0.3g ⁽¹⁾	0.76	0.232	0.273	3.87×10^{-4}		1.28
Test 45 – 1(SD)–0.045g ⁽¹⁾	0.80	0.133	0.127	1.33×10^{-4}	1.18	
Test 80 – 6(SD)–0.3g ⁽¹⁾	0.60	0.209	0.273	3.87×10^{-4}	± 0.17	>1.15
Test 80 – 1(SD)–0.05g ⁽¹⁾	0.92	0.153	0.127	1.33×10^{-4}		
Test 45 – 6(DD)–0.3g ⁽²⁾	0.18	0.131		0.450	4.25×10^{-4}	
Test 45 – 6(DD)–0.5g ⁽²⁾	0.85	0.537			1.20	<1.30
Test 45 – 1(DD)–0.045g ⁽²⁾	0.48	0.123		0.214	1.45×10^{-4}	± 0.18
Test 45 – 1(DD)–0.065g ⁽²⁾	0.68	0.175				

848 ⁽¹⁾SD centrifuge tests reported by Ni et al. (2020)

849 ⁽²⁾New DD centrifuge tests

850

851 **Table 5** Undegraded cyclic shear stress-strain parameters obtained from second cycle of shaking
 852 in centrifuge tests

Test	γ_c (%)	G/G_{\max}	$\tau_c/G_{\max} = (G/G_{\max})\gamma_c^{(1)}$
Test 45-1(SD)-0.045g ⁽²⁾	0.108	0.120	1.30×10^{-4}
Test 45-6(SD)-0.3g ⁽²⁾	0.225	0.187	4.20×10^{-4}
Test 80-1(SD)-0.05g ⁽²⁾	0.0766	0.208	1.59×10^{-4}
Test 80-6(SD)-0.3g ⁽²⁾	0.148	0.265	3.91×10^{-4}
Test 45-1(DD)-0.045g ⁽³⁾	0.101	0.133	1.35×10^{-4}
Test 45-1(DD)-0.065g ⁽³⁾	0.136	0.0635	0.866×10^{-4}
Test 45-6(DD)-0.3g ⁽³⁾	0.175	0.199	3.47×10^{-4}
Test 45-6(DD)-0.5g ⁽³⁾	0.342	0.0936	3.20×10^{-4}

853 ⁽¹⁾ γ_c in meter/meter

854 ⁽²⁾ SD centrifuge test reported by Ni et al. (2020)

855 ⁽³⁾ New DD centrifuge test

856

857

858

859