

Evaluation of field sand liquefaction including partial drainage under low and high overburden using a generalized bounding surface model

El-Sekelly, W.^{1*}, Dobry, R.², Abdoun, T.³, and Ni, M.⁴

¹Associate Professor, Dept. of Structural Eng., Mansoura University, Mansoura, Egypt and Research Scientist at New York University Abu Dhabi, Abu Dhabi, United Arab Emirates, email: welsekelly@mans.edu.eg (* corresponding author)

² Emeritus Professor, Dept. of Civil and Environmental Eng., Rensselaer Polytechnic Institute, 23 Mann Boulevard, Clifton Park, NY 12065, email: dobryr@rpi.edu

³ Iovino Chair Professor, Dept. of Civil and Environmental Eng., Rensselaer Polytechnic Institute, 110 8th Street, JEC 4049, Troy, NY 12180 and Global Distinguish Professor, New York University Abu Dhabi, P.O.Box 129188 Abu Dhabi, UAE, email: abdout@rpi.edu

⁴ Software development engineer at Amazon Development Center, P. O. Box 81226 Seattle, WA, 98105, email : niminly2008@gmail.com

24 **Abstract**

25 The article presents simulations of the seismic liquefaction response of dense and loose clean
26 Ottawa sand under low and high overburden in the centrifuge, using Program FLAC3D and the
27 P2Psand constitutive model. P2Psand was initially calibrated with cyclic stress-controlled triaxial
28 tests and then modified with information from two centrifuge experiments. The calibrated model
29 was used to simulate four centrifuge tests covering relative densities from 45% to 80% and
30 overburden pressures from about 100 kPa (1 atm) to 600 kPa (6 atm). The four numerical
31 computations were fully coupled effective stress simulations that allowed for pore water pressure
32 buildup and dissipation at every time step. The calibration yielded very good matches between
33 numerical and experimental results in all four centrifuge experiments, and calibrated P2Psand
34 input parameters are suggested for practitioners in similar clean sands. The simulations confirmed
35 the increased diffusivity of the sand layer under high overburden obtained before from the
36 centrifuge results. The reason is that P2Psand assumes that the sand bulk modulus is proportional
37 to the square root of the mean effective stress, consistent with the similar conclusion derived from
38 the centrifuge data. The calibrated P2Psand model was also used to perform “no flow” simulations
39 of the same four centrifuge experiments, in which fluid flow was not allowed during or after
40 shaking. No flow simulations are used sometimes in practice to reduce numerical effort, on the
41 assumption that liquefaction in the field is mostly undrained. It was found that this assumption
42 may produce useful engineering results for a low overburden of 1 atm, but it may become
43 increasingly incorrect and too conservative at higher overburden. The reason is that for certain
44 field conditions, fluid flow becomes more significant during shaking under high overburden due
45 to increased sand diffusivity.

46 **Keywords**

47 Sand liquefaction, constitutive modeling, bounding surface, centrifuge experiments

48 **1. Introduction and literature review**

49 Liquefaction of soils can have devastating consequences to structures and soil-structural systems.
50 Structures and dams that are located on soils that liquefy can be severely damaged during
51 earthquakes resulting in huge loss of lives and assets. Traditionally, the liquefaction potential has
52 been estimated using the Simplified Procedure, originally developed by Seed and Idriss (1971). In
53 this method, the earthquake demand is estimated using the Cyclic Stress Ratio, CSR – related to
54 the seismic shear stress acting on the soil - while the site resistance is estimated with the Cyclic
55 Resistance Ratio, CRR. Both CSR and CRR are evaluated neglecting any stress-strain softening
56 at the site due to the pore pressure buildup in any layer including the critical layer (Youd et al.,
57 2001; Idriss and Boulanger, 2008). Liquefaction is predicted if CSR > CRR. The CRR has been
58 correlated to several field measurements: such the Standard Penetration Test (SPT), the Cone
59 Penetration Test (CPT) and the shear wave velocity (V_s). In practice, liquefaction charts linked to
60 these field measurements are used based on the Simplified Procedure, with these charts calibrated
61 by field case histories of liquefaction and no liquefaction during earthquakes.

62 Most of these available case histories correspond to effective vertical overburden pressures
63 on the critical liquefiable layer, σ'_{v0} of less than 1 atm, and none of them exceeding 2 atm (Andrus
64 and Stokoe, 2000; Kayen et al., 2013 and Boulanger and Idriss, 2014). Therefore, they are clearly
65 valid at representative overburden pressures of about 1 atm; in fact, some liquefaction charts have
66 been explicitly developed for 1 atm by appropriate normalization of the case histories (Idriss and
67 Boulanger, 2008). However, in the case of tall embankment dams, for example, the liquefiable
68 sand layer in the foundation soil may be subjected to σ'_{v0} much greater than 1 or 2 atm; up to or
69 even higher than 10 atm (Gillette, 2013). In the absence of case histories during actual earthquakes

70 at these high pressures, Seed (1983) proposed the use of an overburden pressure correction factor
71 (K_σ), valid for $\sigma'_{v0} > 1$ atm. Undrained cyclic stress-controlled triaxial or simple shear tests at both
72 1 atm as well as at the high $\sigma'_{v0} > 1$ atm, are conducted in order to generate the $K_\sigma = (CRR)_{\sigma'v0} /$
73 $(CRR)_1$, where $(CRR)_{\sigma'v0}$ and $(CRR)_1$ are the cyclic resistance ratios at σ'_{v0} and 1 atm, respectively.
74 These undrained tests invariably produce $K_\sigma < 1.0$ for overburden pressures greater than 1 atm. As
75 a result, the current state of practice always recommends values of $K_\sigma < 1.0$ at high overburden
76 pressures (Seed and Harder, 1990; Vaid and Thomas, 1995; Hynes et al., 1999; Youd et al., 2001;
77 Boulanger, 2003; Boulanger and Idriss, 2004; Idriss and Boulanger, 2006; 2008; Montgomery et
78 al., 2012 ; Dobry and Abdoun, 2015).

79 Ni et al. (2020) conducted two pairs of liquefaction centrifuge experiments simulating
80 idealized field conditions at $\sigma'_{v0} = 100$ and 600 kPa (1 and 6 atm) listed in Table 1, and obtained
81 $K_\sigma > 1.0$, in contradiction with the State of Practice, where invariably $K_\sigma < 1.0$. They attributed the
82 discrepancy to partial drainage in the critical sand layer during shaking in the centrifuge, with this
83 drainage being more pronounced at 600 kPa (6 atm). This partial drainage is completely prevented
84 in the undrained cyclic tests that serve as the basis for K_σ values in the current State of Practice.
85 Ni et al. (2020) and Abdoun et al. (2020) further concluded that the increased volumetric drained
86 stiffness of the sand at 6 atm was responsible for this more significant drainage. Abdoun et al.
87 (2020) recommended additional experimental and numerical work in order to understand better
88 liquefaction response at high confining pressure. This paper is focused on such numerical
89 simulation of the sand layer under low and high overburden pressure in the four centrifuge tests
90 reported by Ni et al. (2020).

91 During the last few decades, researchers have developed a number of numerical models
92 that aim at capturing the liquefaction response of sands to liquefaction-inducing cyclic shearing

93 (Prevost, 1977; Li et al., 1993; Mckenna and Fenves, 2001; Elgamal et al., 2003; Dafalias and
94 Manzari, 2004; Gerolymos and Gazetas, 2005; Boulanger and Ziotopoulou, 2013; Wang et al.
95 2014; Barrero et al., 2019; Zou et al., 2020). Some of these material models have been
96 implemented in commercial finite elements and finite difference software. FLAC3D (Fast
97 Lagrangian Analysis of Continua in 3 Dimensions) is a popular finite difference commercial code,
98 commonly used in practice in soil-structure problems, particularly those which involve dynamic
99 excitation and liquefaction. FLAC3D has recently included its in-house liquefaction constitutive
100 model for sands, named P2Psand (Cheng, 2018; Cheng and Detournay, 2021), that builds on the
101 bounding surface model originally developed by Dafalias and Manzari (2004)

102 The purpose of the paper is to implement the recent P2Psand numerical model to
103 understand the liquefaction behavior of sand in the idealized field conditions of the centrifuge,
104 under low and high overburden. It aims at determining a set of input parameters that may be used
105 by practitioners in similar sands for a range of confining pressures and relative densities.

106 The P2Psand model was calibrated in four main steps: (i) initial calibration using available
107 cyclic stress controlled triaxial results on dense soil of the same clean Ottawa F65 sand of the
108 centrifuge tests, published by Liquefaction Experiments and Analysis Projects, LEAP (Manzari et
109 al., 2017); (ii) comparison between FLAC3D predictions using this calibration, and the pore
110 pressures measured in one of the centrifuge tests on dense sand of Table 1; (iii) adjustment of the
111 calibration to account for centrifuge-specific information including those centrifuge pore pressures
112 measured in dense sand; and (iv) adjustment of the sand contraction parameter for the simulation
113 of one of the centrifuge tests on loose sand of Table 1, using cyclic triaxial data presented by Vaid
114 and Sivathayalan (1996) and reported by Idriss and Boulanger (2008).

115 The calibrated model was then used to simulate the four centrifuge experiments listed in
116 Table 1, covering for the critical liquefiable sand layer relative densities of 45% and 80%, and
117 effective overburden pressures of 100 and 600 kPa (1 and 6 atm). Since the results of the centrifuge
118 experiments were available during the numerical simulation, they are considered Class C
119 simulations of the centrifuge experiments as defined by VELACS (Arulanandan and Scott, 1993),
120 as well as by ongoing project LEAP (Manzari et al., 2017). The numerical simulations were fully
121 coupled with pore pressure build up and fluid flow and dissipation being updated at every time
122 step.

123 The paper starts with a summary of the centrifuge tests listed in Table 1, with focus on the
124 measured results to be simulated by FLAC3D. Details of this experimental work are published
125 elsewhere (Ni et al., 2020, Abdoun et al., 2020). A brief description of the P2Psand model is then
126 presented along with the FLAC3D model setup. A detailed description of the P2Psand calibration
127 process adopted by the authors is presented, including the changes in the main parameters from
128 their default values, followed by a comparison between measured and simulated centrifuge results.
129 A section is dedicated to the fluid flow (diffusivity) characteristics of the layer. Diffusivity plays
130 a critical role in conjunction with the drainage boundaries, in the degree of partial drainage during
131 shaking as well as in the rate of pore pressure dissipation after shaking. This is true at both low
132 and high overburden pressures. Following this, simplified “no flow” numerical simulations -that
133 do not allow for fluid drainage- were performed and compared to the fully coupled simulations
134 and experimental results. This was done in order to assess the accuracy and relevance of the
135 undrained simplification that is sometimes used in practice to reduce computational effort,
136 including high overburden pressure simulations (Gillette, 2021).

137 **2. Summary of experimental work**

138 The four centrifuge experiments listed in Table 1 were performed using the lightweight aluminum
139 laminar container and shaking table in the geotechnical centrifuge facility at Rensselaer
140 Polytechnic Institute (RPI). All experiments were conducted on an approximately 5 m layer of
141 saturated clean Ottawa F65 sand having an impervious boundary at the bottom and a free drainage
142 boundary at the top. Characteristics and grain size distribution of this sand have been reported
143 elsewhere (El Ghoraiby et al., 2017; Manzari et al., 2017). All dimensions mentioned in this paper
144 are in prototype units unless stated otherwise. Two of the centrifuge experiments were performed
145 at a relative density, D_r of about 45% (Tests 45-1 and 45-6) while the other two were performed
146 at D_r of about 80% (Test 80-1 and 80-6). The average vertical effective stress in the sand layer was
147 about 1 atm (~ 100 kPa) in Tests 45-1 and 80-1, and about 6 atm (~ 600 kPa) in Tests 45-6 and 80-
148 6. The two setups used for the centrifuge models are shown in Fig. 1. In all cases, they represent a
149 dry pluviated saturated clean sand layer about 5 m thick, covered by a dry lead shot layer of
150 variable thickness. The lead shot provided the desired vertical effective pressure, as well as the
151 right level of inertially-generated horizontal shear stresses during shaking in the sand. In order to
152 prevent the lead shot from sinking into the saturated sand, a transition filter layer was added in
153 between. The dry pluviated sand was saturated with a viscous fluid of appropriate viscosity
154 depending on the g level, in order to maintain the fluid flow characteristics of the sand at 1 g.
155 Additional details about the construction and saturation procedure of the model can be found in Ni
156 et al. (2020). Each model was subjected to sinusoidal excitation at the base, having the right
157 acceleration level designed to generate in the sand a maximum pore pressure ratio, $(r_u)_{max} =$
158 $(u/\sigma'_{v0})_{max} \approx 0.8$, where u = excess pore pressure.. This target pore pressure ratio of 0.8, while close
159 enough to the full liquefaction condition of $(r_u)_{max} \approx 1.0$ to allow for the desired evaluation of soil
160 liquefaction resistance at low and high σ'_{v0} , is enough below full liquefaction to avoid phenomena

161 like particle flotation and resettlement, which would have added challenges and uncertainties to
162 the numerical modeling (Scott, 1986; Sharp and Dobry, 2002)

163 Figures 2 and 3 display the measured time histories of excess pore pressure ratio during
164 and after shaking in the four tests, as reported by Ni et al. (2020). While the target maximum excess
165 pore pressure ratio, $(r_u)_{max}$ was 0.8, Table 1 shows that the measured $(r_u)_{max}$ were generally
166 somewhat different from 0.8. The actual measured pore pressure ratios were used in all analyses
167 and discussions presented herein. Figures 2 and 3 indicate three things: (i) $(r_u)_{max}$ was invariably
168 reached at the end of shaking (~5 seconds), near the bottom of the layer where the impervious
169 boundary is located; (ii) the values of r_u were smaller at shallower depths, especially near the top
170 where the pervious boundary is located, indicating partial drainage during the shaking; and (iii)
171 the degree of partial drainage and correspondingly lower values of r_u at shallower elevations were
172 much more pronounced in the 6 atm tests compared to the 1 atm tests.

173 Figures 4 and 5 show the time histories of acceleration during shaking, measured at
174 different depths in the same four centrifuge tests. The input acceleration consisted of a 10-cycle
175 uniform sinusoidal motion having a prototype frequency of 2 Hz. In order to reach a target
176 maximum pore pressure ratio of about 0.8 in all the tests, the input acceleration amplitude had to
177 be almost an order of magnitude higher at 6 atm compared to the 1 atm tests.

178 Figures 6 and 7 show the time histories during shaking of the stress ratio (shear stress (τ) /
179 σ'_{v0}), at different depths in the four tests. Ni et al. (2020) used the System Identification technique
180 developed by Elgamal et al. (1995, 1996) and Zeghal et al. (1995), to obtain these shear stresses
181 at multiple elevations from the acceleration recordings.

182 Finally, Figs. 8 and 9 present the time histories of vertical strain at the surface of the sand
183 layer, while Figs. 10 and 11 show the time histories of the same surface vertical strain starting after

184 the end of shaking, measured in the same four centrifuge tests, as reported by Ni et al. (2020). The
185 vertical strain equals $(S/H) * 100$, where S is the settlement of the layer measured using the LVDT
186 placed at the sand layer surface (Fig. 1), and H is the thickness of the deposit.

187 Further discussion of these experimental data is presented later in the paper along with the
188 corresponding results from the numerical simulations.

189 **3. Numerical analysis**

190 ***3.1. Material model description***

191 All analyses presented in this paper were performed using the P2Psand (Practical Two-surface
192 Plastic Sand) constitutive model. This model was developed by Cheng (2018) and Cheng and
193 Detournay (2021) for dynamic and earthquake engineering applications in sand. It is a
194 modification of fabric-dilatancy related sand plasticity DM04 model proposed by Dafalias and
195 Manzari (2004). Cheng and Detournay (2021) showed that the modified version has improved
196 performance and reduced complexity compared to the original DM04 model. P2PSand maintains
197 the bounding surface plasticity framework originally included by Manzari and Dafalias (1997) and
198 Dafalias and Manzari (2004). It uses relative density instead of void ratio for defining the state
199 parameter, as shown in Cheng and Detournay (2021). P2PSand is designed to use the same general
200 model constants for a wide range of initial relative densities and initial stress states. The details of
201 the material model formulation can be found in Cheng and Detournay (2021). Table 2 lists the user
202 defined parameters in the P2PSand model, describes each parameter and – when available –
203 provides the corresponding expression used to calculate the default value. As can be noted from
204 the table, the user is allowed to change as many as twenty parameters. Since P2Psand aims at being
205 user friendly to practitioners, most of the parameters have a default value recommended by the
206 model developers (Cheng and Detournay, 2021). In fact, it is possible for the user to input only the

207 relative density or an equivalent index parameter for the sand, obtained from the SPT blow count
208 or CPT tip resistance. Table 2 lists the values of all default parameters evaluated at a relative
209 density, $D_r^0 = 71.5\%$ - labeled Set A in the table - which defines the starting point for the calibration
210 conducted in this paper.

211 **3.2. *FLAC3D model setup***

212 The numerical platform used herein is FLAC3D version 7. FLAC3D is a three dimensional
213 numerical modeling software that utilizes an explicit finite volume formulation in an explicit,
214 Lagrangian calculation scheme and the mixed-discretization zoning technique. It is commonly
215 used by geotechnical engineers in practice for geotechnical analyses of soil, rock, groundwater,
216 and ground support systems. The dynamic analysis feature was utilized in the simulations
217 presented in this paper. The analyses were performed in the time domain and are characterized by
218 being fully coupled non-linear path-dependent. Different materials are represented in FLAC3D by
219 elements or zones connected together with grid points or nodes.

220 The centrifuge tests simulations were performed at the prototype scale (Fig. 1). The
221 numerical model was built using 8-nodes brick zones stacked on each other and connected at the
222 nodes to form the corresponding soil column shown in Figure 1. The numerical grid consisted of
223 a uniform layer of sand overlaid by a transition layer which had on top of it a layer of lead shot,
224 one zone wide and 11 to 20 zones high depending on the experiment simulated. The aspect ratio
225 was maintained as close to 1:1 as possible with a maximum of 2:1. The numerical model was
226 meant to simulate a single soil column rather than the full experimental model. An elastic analysis
227 using the Mohr-Coulomb material model was first conducted with appropriate stress-dependent
228 stiffness to establish the initial geostatic conditions of the soil column before shaking. In this initial

229 phase, the Poisson's ratio was adjusted to generate a lateral earth pressure coefficient at rest, $K_0 \approx$
230 0.5. The boundary conditions were fixed at the base, with only vertical motions allowed in the soil
231 column assuming a frictionless wall, which is a realistic assumption given that the soil was placed
232 inside a very low friction latex membrane within the laminar container. As explained before in
233 Section 2 and illustrated in Fig. 1, the centrifuge tests were performed in this laminar container
234 having flexible walls, which approximated a shear beam horizontal dynamic response. In order to
235 accurately capture this behavior in the numerical analysis, each node was linked to all nodes at the
236 same elevation in order to move together as a shear beam. A saturation value of 1.0 was maintained
237 in both the sand and transition layer to simulate the experimental condition where the water table
238 was at the top of the transition layer.

239 Once the initial geostatic conditions were established, the sand was assigned the P2Psand
240 constitutive model and the soil was allowed to reach equilibrium again. After that, the dynamic
241 phase started with the soil column being fixed at the base and free to move elsewhere, still
242 maintaining the shear beam behavior. The corresponding sinusoidal base motion was then applied
243 at the base of the soil column, similar to what actually happened in the centrifuge experiments.
244 During both this dynamic phase of the analysis and the dissipation phase after shaking, the fluid
245 flow feature was turned on to allow for fully coupled effective stress analysis. The hydraulic
246 boundary conditions were similar to that of the centrifuge: impervious side and base boundaries
247 and pervious top boundary. A permeability value of 0.001-0.0012 m/sec (depending on the sand
248 relative density) was assigned to the sand layer, as measured in LEAP (2017). The maximum time
249 step allowed in the analysis was 1.25E-4 sec in order to ensure adequate solution stability.
250 However, FLAC3D adjusted the actual time step to a much lower value in order to maintain the
251 required accuracy. A small Rayleigh damping was set to 0.5% with a center frequency of 2 Hz.

252 3.3. Model Calibration

253 The calibration process was based initially on cyclic triaxial (CTX) undrained stress-controlled
254 results available from the LEAP (2017) database. All existing CTX information in this database
255 corresponds to dense and very dense soils. The most relevant are the results of a series of stress
256 controlled CTXs on Ottawa F65 sand of $D_r = 71.5\%$ under an isotropic effective pressure of 100
257 kPa (~ 1 atm). This density and confining pressure are close to the conditions of our centrifuge Test
258 80-1 (Table 1) – $D_r = 77\%$ and effective overburden pressure of 1 atm - performed using the same
259 Ottawa F65 sand. The corresponding liquefaction strength curve (LSC) for the LEAP cyclic
260 triaxial tests is included in Fig. 12a.

261 This initial calibration - based on the experimental LSC of Fig. 12a - was then adjusted to
262 incorporate information obtained from our dense sand centrifuge Test 80-1. The centrifuge
263 information from Test 80-1 used for the adjustment included the actual relative density and shear
264 wave velocity of the sand measured in the centrifuge experiment, as well as the pore pressures
265 measured in the sand during and after shaking. Finally, the calibration was extended to the loose
266 sand of $D_r = 45\%$, by incorporating information from cyclic triaxial testing data at different
267 densities reported by Idriss and Boulanger (2008). In this last step, only the factor-cyclic K_c was
268 modified to account for the change of density from 71.5% to 45%, with the value of Elasticity-r
269 G_r determined from the bender element shear wave velocity measurements in Test 45-1.

270 The evolution of the calibration process for $D_r \approx 70\text{-}80\%$ may best be followed with the
271 help of input parameter Sets A through D in Table 2, where Set A contains the default parameters
272 associated with the $D_r^0 = 71.5\%$ of the sand in the cyclic triaxial results of Fig. 12a, and Set D
273 corresponds to the parameters finally adopted in this paper for the FLAC3D centrifuge simulations

274 on dense sand of $D_r = 77\%$. The modified Set D parameters for $D_r = 45\%$ are included in Table 3.
275 Additional detail on the calibration is provided in the next paragraphs.

276 The process started by simulating with FLAC3D the LSC from LEAP in Fig. 12a, using
277 the default parameters provided in the P2Psand model for an initial sand relative density, $D_r^0 =$
278 71.5% , which is the actual density used in these triaxial tests (Set A in Table 2). It must be noted
279 that in this Set A (along with Sets B, C and D), the actual maximum ($e_{\max} = 0.78$) and minimum
280 ($e_{\min} = 0.51$) void ratios rather than the default values were used, with these measured void ratios
281 obtained from LEAP (2017). The simulated cyclic triaxial LSC curve using P2Psand and Set A
282 has been included in Fig. 12a, where it plots significantly higher than the experimental LEAP LSC.

283 The next step was to change only the parameter that controls the rate of sand contraction
284 (known as factor-cyclic, K_c), while not changing any of the other seventeen default parameters
285 associated with $D_r^0 = 71.5\%$. The default $K_c = 0.1857$ was increased in an effort to move the
286 simulated LSC downwards toward the experimental LSC. Several values of K_c were tried up to K_c
287 = 2, shown in Fig. 12b (Set B in Table 2). While the simulated LSC has indeed moved downwards,
288 the slope of this numerical LSC with $K_c = 2$ in Fig. 12b has also become much steeper than that of
289 the experimental curve.

290 This difference in slope between simulated and experimental triaxial curves in Fig. 12b
291 triggered the need to modify other parameters away from their default values, in addition to K_c , in
292 order to match the experimental LEAP triaxial LSC as closely as possible. Several trials were
293 performed, with the best match shown in Fig. 12c, and with the corresponding parameters listed
294 in Table 2 (Set C). In this Set C, three out of a total of seventeen parameters associated with $D_r^0 =$
295 71.5% , were changed, with the other fourteen maintaining their default values, as shown in Table

296 2. The three parameters changed from Set A to Set C at $D_r^0 = 71.5\%$ were: K_c (0.1857 to 0.3); n^d
297 $= (0.465 \text{ to } 1)$; and h_0 (1.7 to 0.5).

298 Set C – obtained using exclusively the LEAP cyclic triaxial tests without reference to our
299 centrifuge results - was then used to model the pore pressure response of centrifuge Test 80-1, with
300 the results shown in Fig. 13 in black dashed lines. As this simulation did not consider any measured
301 data from the centrifuge tests listed in Table 1, it is a Class B simulation as defined by VELACS
302 (Arulanandan and Scott, 1993), as well as by ongoing project LEAP (Manzari et al., 2017). The
303 match in Fig. 13 between the experimental Test 80-1 and its numerical simulation using Set C is
304 poor, with the measured pore pressures underpredicted at all depths.

305 In order to reach a better match between numerical and experimental simulations for
306 centrifuge Test 80-1, Set C was adjusted in a final step to a new set of parameters (Set D in Table
307 2). Two types of adjustments were implemented: (i) change from the $D_r^0 = 71.5\%$ of the cyclic
308 triaxial tests to the $D_r^0 = 77\%$ of centrifuge Test 80-1, and replacement of $G_r = 967.2$ by $G_r = 772$
309 corresponding to the shear wave velocity measured in the sand by bender elements in the same
310 centrifuge test; and (ii) slight change in other four parameters. The change in these four parameters
311 was conducted in order to improve the comparison with the centrifuge results, while
312 simultaneously preserving the good match with the LEAP LSC curve achieved before in Fig. 12c
313 using Set C. These other four parameters slightly changed between Sets C and D were: K_c (0.3 to
314 0.32); Q (10 to 9); h_0 (0.5 to 0.4); and ν (0.14 to 0.1). The change in the Poisson's ratio ν took into
315 account the need to improve the simulation of the measured pore water pressure dissipation with
316 time after shaking in centrifuge Test 80-1, as illustrated by Fig. 13 and explained later in more
317 detail in Section 4.5.

318 The centrifuge pore pressure simulation of Test 80-1 using Set D is shown in Fig. 13 in red
319 dashed lines, where it is now in excellent agreement with the measurements. The simulated LSC
320 using Set D is also compared with the experimental LSC in Fig. 12d, with a very reasonable match,
321 especially at a cyclic stress ratio, CSR of about 0.2 and number of cycles of about 10, which are
322 close to the experimental conditions during shaking of centrifuge Test 80-1.

323 Figure 14 compares the experimental and numerical stress paths and shear stress-strain
324 loops for the cyclic triaxial test located at the intersection point between numerical and
325 experimental LSC in Fig. 12d. The plots indicate a very good match in terms of stress path,
326 particularly before the onset of liquefaction. Both the simulated and experimental stress paths in
327 Figs. 14a and 14c show signs of dilation followed by increased contraction at an average effective
328 confining pressure, P of about 50 kPa. The comparison of shear stress-strain loops in Figs. 14b and
329 14d is also reasonably good.

330 In order to simulate the two centrifuge tests of Table 1 with sand at a relative density of
331 45%, three parameters were adjusted from the Set D listed in Table 2:

- 332 • The “relative-density-initial, D_r^0 ” which defines the initial relative density of the sand
333 before seismic shaking (from 77% to 45%).
- 334 • The “elasticity-r, G_r ” which defines the modulus of elasticity of the sand deposit. This
335 information was obtained from the shear wave velocity measured in centrifuge Tests 45-1
336 and 45-6 using bender elements (from 772 to 596).
- 337 • The “factor-cyclic, K_c ” which defines the rate of contraction and cyclic mobility. The
338 LEAP database does not include any cyclic triaxial test data at relative densities close to
339 45%. Therefore, it was decided to adjust K_c using data from the stress controlled cyclic

340 triaxial tests on clean Fraser Delta sand, conducted at a consolidation pressure of 100 kPa
341 and using several relative densities, performed by Vaid and Sivathayalan (1996) and
342 reported by Idriss and Boulanger (2008). Figure 15 plots the measured cyclic strength
343 versus relative density for these tests. The cyclic shear strengths for relative densities of
344 45% and 71.5% were found by interpolation to be about 15 and 27 kPa, as shown in the
345 figure. The ratio between these two values of cyclic strength ($15/27 = 0.56$) was then used
346 to plot in Fig. 16, an “experimental” cyclic triaxial LSC that represents the loose Ottawa
347 F65 sand ($D_r = 45\%$), by just shifting down by this factor 0.56, the actual experimental
348 LSC curve for Ottawa sand at 100 kPa reported by LEAP (2017) and plotted in Figs. 12a
349 through d. This new “experimental” curve is labeled “Interpolated Exp. CTX 1 atm $D_r =$
350 45%” in Fig. 16. The factor-cyclic, K_c was then adjusted in an iterative process using
351 FLAC3D simulations of these CTX tests, until the simulation matched well in Fig. 16 the
352 “experimental” LSC for $D_r = 45\%$ at around ten cycles of loading with a K_c value of 0.8.
353 This value of $K_c = 0.8$ – included in Table 3 for $D_r = 45\%$ - was also found to yield a very
354 good match between experimental and numerical excess pore pressure measured in the
355 corresponding centrifuge Test 45-1 (Fig. 2a).

356 Additional verification: As explained above, the calibration was entirely performed for a level of
357 confinement of about 100 kPa (1 atm), based on available cyclic triaxial data on sand conducted
358 with an isotropic consolidated pressure of 100 kPa, and refined with results from the two centrifuge
359 experiments that used an overburden pressure of 1 atm (Tests 80-1 and 45-1). In order to further
360 verify the general validity of the calibrated parameters of Table 3 at the higher pressure of 600 kPa
361 (6 atm), the experimental LEAP LSC at 100 kPa plotted in Figs. 12a through d was adjusted for
362 confining pressure using the commonly used overburden correction factor, K_σ , proposed by Idriss

363 and Boulanger (2008). This K_σ at 600 kPa (6 atm) is equal to 0.73 and 0.84 for relative densities
364 of 71.5% and 45%, respectively. These factors were used to generate two “ K_σ - predicted” LSCs
365 for relative densities of 71.5% and 45% and a confining pressure of 600 kPa (6 atm) in Figs. 12d
366 and 16, respectively. The same figures also present the LSCs of simulated CTX subjected to a
367 confining pressure of 600 kPa (6 atm) using FLAC3D and P2Psand with the parameters listed in
368 Table 3. Figures 12d and 16 show a reasonable match between these simulated and the “ K_σ -
369 predicted” LSCs at 6 atm. While it would be possible to adjust the model parameters to reach a
370 better match, this would completely defeat the philosophy of the model, which should be the same
371 for different levels of confining pressure. Moreover, maintaining the same parameters at 1 and 6
372 atm in the numerical simulations of the actual centrifuge tests, yielded also a very good match for
373 the two different overburden pressures used in the centrifuge tests, as shown in Figs. 2 and 3.

374 **4. Numerical Fully Coupled Results**

375 The FLAC3D simulations of the four centrifuge tests of Table 1, presented below, used P2Psand
376 with the Set D parameters listed in Table 3.

377 ***4.1. Pore pressure histories***

378 Figures 2 and 3 show the computed time histories of excess pore pressure ratio, predicted by FLAC
379 Runs 45-1, 45-6, 80-1, and 80-6, and compare them with the corresponding centrifuge
380 experimental results. Both the rates of buildup and dissipation match very well in most cases
381 between measured and computed excess pore pressures. The only exception is the measured excess
382 pore pressure in the middle of the sand layer in Test 45-1, where the numerically computed buildup
383 rate and total accumulated excess pore pressure are smaller than the measured ones. It is not clear
384 to the authors whether this discrepancy was caused by an experimental or a numerical issue. In the

385 numerical model, the buildup rate is mostly determined by the “factor-cyclic K_c ” which influences
386 the rate of cyclic mobility and liquefaction (contraction). The dissipation rate is in turn controlled
387 by the Poisson’s ratio, ν , already mentioned and further discussed later herein. The figures show
388 that dissipation after shaking is much faster at 6 atm than at 1 atm, in both actual and simulated
389 centrifuge experiments. It must be noted that the value of K_c is solely dependent on relative
390 density. The lower the relative density, the higher the contractive tendency of the sand. For the
391 same relative density, the K_c as well as ALL the rest of the parameters are the same in Table 3
392 irrespective of effective overburden pressure. The effect of confining pressure on the contractive
393 tendency of the soil is inherently included in the formulation of the model (Cheng and Detournay,
394 2021). Figures 2 and 3 also show that the numerical simulations do not capture the transient
395 response (cyclic component) of the measured pore pressure histories. This transient behavior in
396 the measured pore pressure histories are mostly due to the sensor motion during shaking, and hence
397 is not associated with the actual response of the soil to the horizontal excitation.

398 *4.2. Acceleration histories*

399 Figures 4 and 5 show the computed time histories of acceleration at different depths, recorded in
400 Flac3D runs 45-1, 45-6, 80-1, and 80-6, and compare them to the corresponding experimental
401 results. The input acceleration consisted of a 10-cycle uniform sinusoidal motion having a
402 prototype frequency of 2 Hz. The comparisons range from fair to very good. The best comparisons
403 correspond to the bottom elevation, and more generally to the first few cycles before the effect of
404 generated excess pore pressure kicks in. This is especially clear in the comparison between Test
405 45-1 and Flac 45-1, where the experimental acceleration in the middle and top of the layer degrades
406 rapidly, while the computed acceleration degrades very little. This is probably associated with the
407 lower numerical excess pore pressure ratio in the middle of the sand layer in Test 45-1 (Figure 2).

408 Except for this problem in the middle and top of the layer for Flac 45-1 in Fig. 4, the rest of the
409 comparisons at the bottom layer in this test, as well as the other three tests at all elevations and
410 throughout the shaking, are generally good to very good.

411 *4.3. Shear stress histories*

412 Figures 6 and 7 show the time histories of shear stress ratios, computed in numerical Flac runs 45-
413 1, 45-6, 80-1, and 80-6. The figures compare these computed histories to the measured histories.
414 The graphs show a very good match for the stress histories, especially during the first few cycles
415 before the effect of excess pore pressure kicks in. As the experimental stress ratios were obtained
416 from the acceleration time histories of Figs. 4 and 5 using System Identification, it should be
417 expected that the stress ratio comparisons should exhibit similar features to those just described
418 for the acceleration time histories. This is what happens in Fig. 6, with only fair agreement in Flac
419 45-1 after the first few cycles. On the other hand, the agreement for the other three Flac simulations
420 at all elevations and times is uniformly excellent.

421 *4.4. Settlement*

422 Figures 8 and 9 show the time histories of vertical strain, while Figs. 10 and 11 show the time
423 histories of vertical strain after the end of shaking, computed in numerical Flac runs 45-1, 45-6,
424 80-1, and 80-6. The graphs compare the computed vertical strains to the measured ones. The
425 vertical strain equals $(S/H) * 100$, where S is the settlement measured using the vertical LVDT atop
426 of the layer, and H is the layer thickness. Figures 8 and 9 showing the total settlement from
427 beginning of shaking reveal that:

428 - The computed settlement is generally smaller than the experimental settlement, with the
429 exception of Test 80-6.

430 - The cyclic component of the settlement history only appears in the measured but not the
431 computed settlement. The cyclic component of the measured settlement is probably due to
432 the cyclic motion of the LVDT or its mounting brackets.

433 Figures 10 and 11 -presenting the settlement after the end of shaking- show excellent matches
434 between computed and measured settlement at 1 atm (Test 45-1 and Test 80-1). This is probably
435 associated with the fact that settlement after the end of shaking is mostly due to consolidation,
436 which is well suited to the capabilities of the numerical model. The comparisons at 6 atm show
437 some discrepancies, especially for Test 45-6 where the computed values are about 50% higher than
438 the measured settlements. It is not clear to the authors what is causing this discrepancy. It must be
439 noted that for the 6 atm tests, most of the settlement occurred during shaking, as shown in Figs. 8b
440 and 9b, so the remaining settlement after the end of shaking was very small, possibly resulting in
441 a greater experimental error.

442 4.5. Coefficient of consolidation and diffusivity

443 In FLAC3D, the diffusivity, C , is calculated from Biot (1955) theory of consolidation, based on
444 the following equation for incompressible grains:

445
$$C = C_v = \frac{k}{\frac{n}{K_f} + \alpha_1} \quad (15)$$

446
$$\alpha_1 = K + \frac{4}{3} G = \left(\frac{2(1+\nu)}{3(1-2\nu)} + \frac{4}{3} \right) G \quad (16)$$

447 where k is the fluid mobility coefficient (sand permeability divided by the unit weight of water:
448 1.2 E -5 and 1.0 E-5 m⁴/kN.sec for the loose and dense sand used in our centrifuge tests,
449 respectively); n is the porosity (0.4 and 0.35 for loose and dense sand); K_f is the fluid bulk modulus
450 (2.2E-6 kPa); G is the shear modulus; and K is the bulk modulus of the soil, $K =$

451 $2G(1+\nu)/3(1-2\nu)$. While in the FLAC3D simulations of the centrifuge tests, k , n , ν and K_f
452 remain constant throughout shaking and dissipation, the value of G (and thus also of K) varies as
453 the effective stress changes during excess pore pressure build-up and dissipation. The influence
454 of the effective stress change due to the evolution of the excess pore pressure, is intrinsically
455 handled by P2PSand through the change in G , by the fact that $G \sim \sqrt{\sigma'_0}$, where σ'_0 = mean
456 effective normal stress. The diffusivity, C , in Eq. 15 is identical to the coefficient of consolidation,
457 C_v , used in Terzaghi's theory of consolidation (Terzaghi et al. 1996). All variables in Eqs. 15 and
458 16 were measured or estimated experimentally for the Ottawa F65 sand used in the centrifuge tests
459 (LEAP 2017, El Ghoraiby et al. 2017 and Ni et al. 2020), except for the Poisson's ratio ν . As
460 mentioned before in Section 3.3, ν was adjusted from the default value of 0.14 to 0.1 in order to
461 obtain the correct rate of pore pressure dissipation after shaking measured in centrifuge Test 80-1.
462 Once ν was adjusted for the Test 80-1 simulation, it was found that the same $\nu = 0.1$ yielded very
463 reasonable results for other three centrifuge simulations.

464 Equation 15 was used to generate the time history of diffusivity, $C = C_v$, for each centrifuge
465 simulation, based on the values of G and K at each time increment. The four calculated time
466 histories of $C = C_v$ are displayed in Figs. 17 and 18. The graphs show that the diffusivity first
467 decreases with time during shaking ($t < 5$ seconds), and then increases with time after the end of
468 shaking. The reason is that as the shaking progresses, the increased excess pore pressure results in
469 a reduction in vertical effective stresses, and thus also in a reduction of both shear and bulk moduli,
470 which are dependent on the average effective stress. Afterwards and for $t > 5$ seconds, the excess
471 pore pressures gradually dissipate, resulting in an increase in the vertical effective stresses and
472 hence increases in the shear and bulk moduli, which translates into increasing diffusivity C . Each
473 of the four plots in Figs. 17 and 18 also include one data point for the value of C_v obtained by

474 Abdoun et al. (2020) at a specific time instance during dissipation from the measured pore pressure
475 and settlement in the centrifuge tests. Figures 17 and 18 indicate an excellent match between
476 experimental and numerical diffusivity, even though they were based on two different
477 consolidation theories.

478 Figures 17 and 18 also show that the diffusivity at 6 atm is about three times higher than
479 that at 1 atm (3 to 4 m²/s versus 1 to 1.5 m²/s), which explains the much faster dissipation of excess
480 pore pressure at 6 atm already noted in Figs. 2 and 3. This suggests that the excess pore pressures
481 in the sand at 6 atm are draining much faster than at 1 atm, both during and after shaking. This
482 more partial drainage in turn results in less liquefaction vulnerability at a higher vertical
483 overburden pressure.

484 **5. Numerical no flow simulations**

485 The results presented in the previous sections of the paper –corresponding to the four FLAC3D
486 runs listed in Table 1– were fully coupled numerical simulations, with fluid flow and partial
487 drainage updated at every time step and allowed at all times during and after shaking. While this
488 is the most rigorous analysis procedure, and a very good match was achieved between
489 experimental and numerical results, sometimes a different approach is used in practice. The reason
490 is that it is computationally expensive and requires relatively precise knowledge about
491 permeability and drained moduli of the sand (Gillette, 2021). Therefore, sometimes a “no flow”
492 analysis is performed in which no water drainage is allowed during shaking, including situations
493 of high overburden pressure. The basic assumption is that this is a good engineering approximation
494 as the liquefaction phenomenon in the field is mostly undrained.

495 In order to evaluate this practice at low and high overburden pressures, the authors
496 conducted four FLAC3D “no-flow” simulations for the centrifuge Tests 45-1, 45-6, 80-1, and 80-

497 6, in which fluid flow was turned off during and after shaking. These four runs were otherwise
498 identical to the four FLAC3D runs listed in Table 1, including use of the same acceleration input
499 time histories and P2Psand sand parameters of Table 3.

500 The results and comparisons for these no flow runs are shown in Figs. 19 and 20. Figure
501 19 shows the excess pore pressure ratio histories for both fully coupled and no flow numerical
502 simulations and compares both to the experimental results. Figure 20 presents the instantaneous
503 excess pore pressure ratio profiles at the end of shaking at the time, $t = 5$ sec, which is in all cases
504 equal or very close to the maximum excess pore pressure ratio at each elevation. The two figures
505 reveal that:

- 506 • As noticed before herein, the pore pressure ratios of the fully coupled simulations
507 follow closely the experimental results, both versus time and versus depth.
- 508 • The pore pressures from the no-flow simulations are also reasonably in agreement
509 with the experimental results during shaking at 1 atm for Tests 45-1 and 80-1. They
510 diverge significantly from both experimental and fully coupled experimental results
511 only after shaking (Fig. 19a and c), where dissipation was not allowed in the “no
512 flow” simulations. As the experimental pore pressures invariably decrease during
513 dissipation, this does not affect the good agreement in Figs. 19a,c and 20a,c in the
514 maximum pore pressure ratios, with all maximum values happening during
515 shaking. This is important, as evaluation of the maximum pore pressure ratio for
516 the layer or at a given depth is often in practice the main purpose of the numerical
517 simulations. This good agreement during shaking in the pore pressure ratios during
518 shaking in Figs. 19 and 20 may justify – for 1 atm – the basic assumption underlying
519 the use of “no flow” simulations in engineering practice.

520 • On the other hand, the match with the experimentally measured pore pressure ratios
521 ranges from fair to poor for the pore pressure ratios from the “no flow” simulations
522 during shaking at 6 atm for Tests 45-6 and 80-6 in Figs. 19b and d. This is especially
523 true at $D_r = 45\%$ for Test 45-6, for which the no flow simulation overestimated the
524 excess pore pressure generation at some depths and underestimated it at other
525 depths. This is especially troublesome, as in practice liquefaction of looser sands is
526 a greater concern than that of denser sands, due to their potential for greater
527 engineering effects after liquefaction.

528 • That is, Figs. 19 and 20 indicate that the liquefaction phenomenon during shaking
529 was indeed not far from undrained during shaking at the low overburden pressure
530 of 1 atm, as sometimes assumed in practice. The same figures also show that this
531 assumption ceased to be valid at the higher overburden pressure of 6 atm, due to
532 the effect of drainage which made the liquefaction phenomenon partially drained
533 rather than fully undrained during shaking. As already discussed herein, this
534 increased partial drainage occurs because of the increased drained modulus and
535 coefficient of consolidation (diffusivity) of the sand as the overburden pressure
536 increases. Therefore, the discrepancy between fully coupled and experimental pore
537 pressures on the one hand, and no flow pore pressures on the other, revealed by
538 Figs. 19 and 20 for 6 atm, is expected to become even worse for the higher
539 overburden of interest in some projects, like 10 or 12 atm.

540 • Therefore, while it may be computationally expensive to run a fully coupled
541 numerical simulation where water flow and drainage are allowed, it seems to be

542 crucial for capturing the true liquefaction behavior in some field situations
543 involving a high overburden.

544

545 **6. Conclusions and Recommendations**

546 A practical 3D field liquefaction numerical model (P2Psand) developed by Cheng and Detourmay,
547 (2021), was calibrated using an established experimental dataset of undrained cyclic stress-
548 controlled triaxial reported by LEAP (2017) and Idriss and Boulanger (2008) and modified based
549 on centrifuge experimental results. The calibrated model was used to simulate four centrifuge tests
550 under a wide range of overburden pressures (1-6 atm) and relative densities (45-77 %). P2PSand
551 is based on the bounding surface plasticity theory originally implemented in Dafalias and Manzari
552 (2004) soil model. Based on the presented results and analyses, the authors arrived to the following
553 conclusions and recommendations:

554 - P2Psand together with FLAC3D constitute a practical tool that may be used by
555 practitioners for similar clean sands using the calibration numerical parameters listed in
556 Table 3, covering wide ranges of overburden pressures from 1 to 6 atm and relative
557 densities from 45 % to 77 %. In future practical applications involving different conditions
558 for which cyclic laboratory tests are not available, at least three parameters may have to be
559 changed by the user; the initial relative density D_r^0 , the cycling factor K_c , and the elasticity
560 G_r , as follows:

561 ○ The initial relative density D_r^0 may be estimated from field measurements using the
562 Standard Penetration Test (SPT) or Cone Penetration Test (CPT).

563 ○ For relative densities between 45% and 77%, the cycling factor K_c and the elasticity
564 G_r may be estimated based on D_r^0 by linear interpolation of the values used herein
565 and reported in Table 3.

566 - Based on the numerical and experimental diffusivity and dissipation behaviors discussed
567 in the paper, a sand layer will be more partially drained under a high overburden pressure
568 compared with the situation at 1 atm. This is appropriately accounted for in P2PSand, by
569 the square root law dependency on the effective mean stress of the elastic shear modulus
570 and bulk modulus of the sand.

571 - Based on the previous conclusion and the results of the parallel “no flow” runs conducted
572 by the authors, “no flow” numerical simulations that do not allow for fluid drainage during
573 shaking may be appropriate at a low overburden pressure in the order of 1 atm, but not
574 necessarily at high overburden pressures of 6 atm or 10 atm of interest in some projects.

575 - Under some circumstances, sand layers in the field may be less prone to liquefaction under
576 high overburden pressure than suggested by the values of the factor $K_o < 1$ in the current
577 State of Practice (SoP). The reason for this discrepancy is that the current SoP relies on
578 undrained small-scale cyclic tests, while the liquefaction process in the field may be
579 affected by partial drainage rather than being fully undrained, with this partial drainage
580 being more significant at high overburden pressures.

581

582 **Acknowledgments**

583 This research was performed using the FLAC3D demo version provided by Itasca Consulting
584 Group, Inc. The authors would like to thank Dr. Zhao Cheng from FLAC3D support team for his
585 guidance during the course of this research. The research was supported by the National Science

586 Foundation under Grants No. 1545026 & 1904313 and NYU Abu Dhabi; this support is gratefully
587 acknowledged.

588
589 **REFERENCES**
590

591 Abdoun, T., Ni, M., Dobry, R., Zehtab, K., Marr, A., & El-Sekelly, W. (2020) Pore Pressure and
592 K_σ Evaluation at High Overburden Pressure under Field Drainage Conditions. II:
593 Additional Interpretation. *Journal of Geotechnical and Geoenvironmental Engineering*,
594 146(9), 04020089.

595 Andrus, R. D., & Stokoe II, K. H. (2000) Liquefaction resistance of soils from shear-wave velocity.
596 *Journal of geotechnical and geoenvironmental engineering*, 126(11), 1015-1025.

597 Arulanandan, K., & Scott, R. F. (1993). Project VELACS—Control test results. *Journal of
598 geotechnical engineering*, 119(8), 1276-1292.

599 Barrero, A. R., Taiebat, M., & Dafalias, Y. F. (2020). Modeling cyclic shearing of sands in the
600 semifluidized state. *International Journal for Numerical and Analytical Methods in
601 Geomechanics*, 44(3), 371-388.

602 Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid. *Journal
603 of applied physics*, 26(2), 182-185.

604 Boulanger, R. W. (2003) High overburden stress effects in liquefaction analyses. *Journal of
605 geotechnical and geoenvironmental engineering*, ASCE, 129(12), 1071-1082.

606 Boulanger, R. W., and Idriss, I. M. (2004) State normalization of penetration resistance and the
607 effect of overburden stress on liquefaction resistance. *Proceedings 11th SDEE and 3rd
608 ICEGE*, University of California, Berkeley, CA.

609 Boulanger, R. W., & Ziotopoulou, K. (2013). Formulation of a sand plasticity plane-strain model
610 for earthquake engineering applications. *Soil Dynamics and Earthquake Engineering*, 53,
611 254-267.

612 Boulanger, R. W., & Idriss, I. M. (2014) CPT and SPT based liquefaction triggering procedures.
613 Report No. UCD/CGM.-14, 1.

614 Cheng, Z. (2018) A practical 3D bounding surface plastic sand model for geotechnical earthquake
615 engineering application. In *Geotechnical Earthquake Engineering and Soil Dynamics V:
616 Numerical Modeling and Soil Structure Interaction* (pp. 37-47). Reston, VA: American
617 Society of Civil Engineers.

618 Cheng, Z., Detournay, C. (2021) Formulation, validation and application of a practice-oriented
619 two-surface plasticity sand model. *Computers and Geotechnics*, 132,
620 <https://doi.org/10.1016/j.compgeo.2020.103984>.

621 Dafalias, Y.F. and Manzari, M.T. (2004) Simple plasticity sand model accounting for fabric
622 change effects. *Journal of Engineering Mechanics*, 130(6), pp. 622-634.

623 Dashti, S., Bray, J. D., Pestana, J. M., Riemer, M., & Wilson, D. (2010). Mechanisms of
624 seismically induced settlement of buildings with shallow foundations on liquefiable soil.
625 *Journal of geotechnical and geoenvironmental engineering*, 136(1), 151-164.

626 Dobry, R. and Abdoun, T. (2015) Cyclic shear strain needed for liquefaction triggering and
627 assessment of overburden pressure factor K_σ . *J. Geotech. Geoenvir. Eng.*,
628 10.1061/(ASCE)GT.1943-5606.0001342, 04015047.

629 Elgamal, A. W., Zeghal, M., Tang, H. T., and Stepp, J. C. (1995) Lotung downhole array. I:
 630 evaluation of site dynamic properties. *Journal of geotechnical and geoenvironmental*
 631 *engineering*, ASCE, 121(4), 350-362.

632 Elgamal A., Yang Z., Parra E. and Ragheb A. (2003) Modeling of cyclic mobility in saturated
 633 cohesionless soils. *Int. J. Plasticity*, 19, (6), 883-905.

634 El Ghoraiby, M.A., Park, H., and Manzari, M.T. (2017). LEAP 2017: soil characterization and
 635 element tests for Ottawa F65 sand. The George Washington University, Washington, DC.

636 Gerolymos, N., and Gazetas, G. (2005) Constitutive model for 1-D cyclic soil behavior applied to
 637 seismic analysis of layered deposits. *Soils and Foundation*, 45(3), 147-159.

638 Gillette, D. (2021) US Bureau of Reclamation, Personal communication .

639 Hashash, Y. M. A. (2009) DEEPSOIL V 3.7, Tutorial and User Manual. 2002-2009. University of
 640 Illinois at Urbana-Champaign, Urbana, Illinois.

641 Hynes, M. E., Olsen, R. S., and Yule, D. E. (1999) Influence of confining stress on Liquefaction
 642 Resistance. *Proc., Int. Workshop on Phys. And Mech. Of Soil Liquefaction*, Balkema,
 643 Rotterdam, The Netherlands, 145–152.

644 Idriss, I. M., and Boulanger R. W. (2006) Semi-empirical procedures for evaluating liquefaction
 645 potential during earthquakes *Soil Dynamics and Earthquake Engineering*, 26(2-4), 115-
 646 130.

647 Idriss, I.M., and Boulanger, R.W. (2008) Soil liquefaction during earthquakes. *Monograph MNO-*
 648 *12*, Earthquake Engineering Research Institute. Oakland, CA.

649 Ishihara, K. (1993) Review of the predictions for Model 1 in the VELACS program. Verification
 650 of numerical procedures for the analysis of soil liquefaction problems (VELACS).
 651 Arulanandan K. and Scott R.F., editors. Rotterdam: A.A. Balkema; 1353–68.

652 Kayen, R., Moss, R. E. S., Thompson, E. M., etal. (2013) Shear-wave velocity–based probabilistic
 653 and deterministic assessment of seismic soil liquefaction potential. *Journal of Geotechnical
 654 and Geoenvironmental Engineering*, 139(3), 407-419.

655 Lee, M. K., and Finn, W. D. (1978) DESRA-2, Dynamic effective stress response analysis of soil
 656 deposits with energy transmitting boundary including assessment of liquefaction potential.
 657 *Soil Mechanics Series*, No. 36, Department of Civil Engineering, University of British
 658 Columbia, Vancouver, Canada.

659 LEAP-2017 GWU Laboratory Tests (2017), in LEAP-2017 GWU Laboratory Tests. DesignSafe-
 660 CI, doi:10.17603/DS2210X

661 Li, X., Wang, Z. L., and Shen, C. K. (1993) SUMDES. A nonlinear procedure for response analysis
 662 of horizontally layered sites subjected to multidirectional earthquake loading. Department
 663 of Civil Engineering, University of California at Davis.

664 Manzari, M. T., & Dafalias, Y. F. (1997) A critical state two-surface plasticity model for sands.
 665 *Geotechnique*, 47(2), 255-272.

666 Manzari, M.T., Ghoraiby, M.E., Kutter, B.L, et al. (2017) Liquefaction Experiment and
 667 Analysis Projects (LEAP): summary of observations from the planning phase. LEAP
 668 Special Issue, *Journal of Soil Dynamics and Earthquake Engineering* (in press).

669 McKenna, F., and Fenves, G. L. (2001) The OpenSees Command Language Manual: version
 670 1.2.” PEER Center, University of California at Berkeley.

671 Montgomery, J., Boulanger, R. W., and Harder, L. F., Jr. (2012) Examination of the K_o overburden
 672 correction factor on liquefaction resistance. *Report No. UCD/CGM-12-02*, Center for
 673 Geotechnical Modeling, Department of Civil and Environmental Engineering, University
 674 of California, Davis, CA.

675 Ni, M., Abdoun, T., Dobry, R., Zehtab, K., Marr, A., & El-Sekelly, W. (2020) Pore pressure and K
676 σ evaluation at high overburden pressure under field drainage conditions. I: Centrifuge
677 experiments. *Journal of Geotechnical and Geoenvironmental Engineering*, 146(9),
678 04020088.

679 Prevost, J. H. (1977) Mathematical modeling of monotonic and cyclic undrained clay behavior." *International Journal of Numerical and Analytical Methods in Geomechanics*, 1(2), 195-
680 216.

682 Schnabel, P. B. (1972) SHAKE: A computer program for earthquake response analysis of
683 horizontally layered sites. EERC Report 72-12, University of California, Berkeley.

684 Scott, R. F. (1986) Solidification and Consolidation of a Liquefied Sand Column. *Soils and
685 Foundations*, Vol. 26, No.4, 23-31, December.

686 Seed, R. B., and Harder Jr., L. F. (1990) SPT-based analysis of cyclic pore pressure generation
687 and undrained residual strength. *Proc. H. Bolton Seed Memorial Symposium*, University of
688 California, Berkeley, California.

689 Seed, H. B. (1983) Earthquake-resistant design of earth dams. *Proc. Seismic Design of Earth Dams
690 and Caverns*, ASCE, Philadelphia, Pennsylvania, May 16-20.

691 Seed, H. B. (1979) Soil liquefaction and cyclic mobility evaluation for level ground during
692 earthquakes. *Journal of the Geotechnical Engineering Division*, 105(GT2), pp. 201-255.

693 Seed, H.B. and Idriss, I.M. (1971) Simplified Procedure for Evaluating Soil Liquefaction
694 Potential." *Journal of the Soil Mechanics and Foundations Division*, (97), 1249-1273.

695 Sharp, M. K. and Dobry, R. (2002) Sliding Block Analysis of Lateral Spreading Based on
696 Centrifuge Results," *Intl. Journal of Physical Modelling in Geotechnics*, 2(22), pp. 13-32,
697 June.

698 Terzaghi, K., Peck, R. B., & Mesri, G. (1996) Soil mechanics in engineering practice. John Wiley
699 & Sons.

700 Vaid, Y. P., and Thomas, J. (1995) Liquefaction and postliquefaction behavior of sand." *Journal
701 of Geotechnical Engineering*, 121(2), 163-173.

702 Vaid, Y. P., & Sivathayalan, S. (1996). Static and cyclic liquefaction potential of Fraser Delta sand
703 in simple shear and triaxial tests. *Canadian Geotechnical Journal*, 33(2), 281-289.

704 Wang, R., Zhang, J. M., & Wang, G. (2014). A unified plasticity model for large post-liquefaction
705 shear deformation of sand. *Computers and Geotechnics*, 59, 54-66.

706 Youd, T. L., Idriss, I.M., Andrus, R.D., et al. (2001) Liquefaction Resistance of Soils: Summary
707 Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of
708 Liquefaction Resistance of Soils. *Journal of Geotechnical and Geoenvironmental
709 Engineering*, ASCE, 127(10), 817-833.

710 Zou, Y. X., Zhang, J. M., & Wang, R. (2020). Seismic analysis of stone column improved
711 liquefiable ground using a plasticity model for coarse-grained soil. *Computers and
712 Geotechnics*, 125, 103690.

713 Zeghal, M., Elgamal, A. W., Tang, H. T. and Stepp, J. C. (1995) Lotung downhole seismic array:
714 evaluation of soil nonlinear properties." *Journal of Geotechnical Engineering*, ASCE,
715 121(4), pp. 363-378.

716

717

718

719

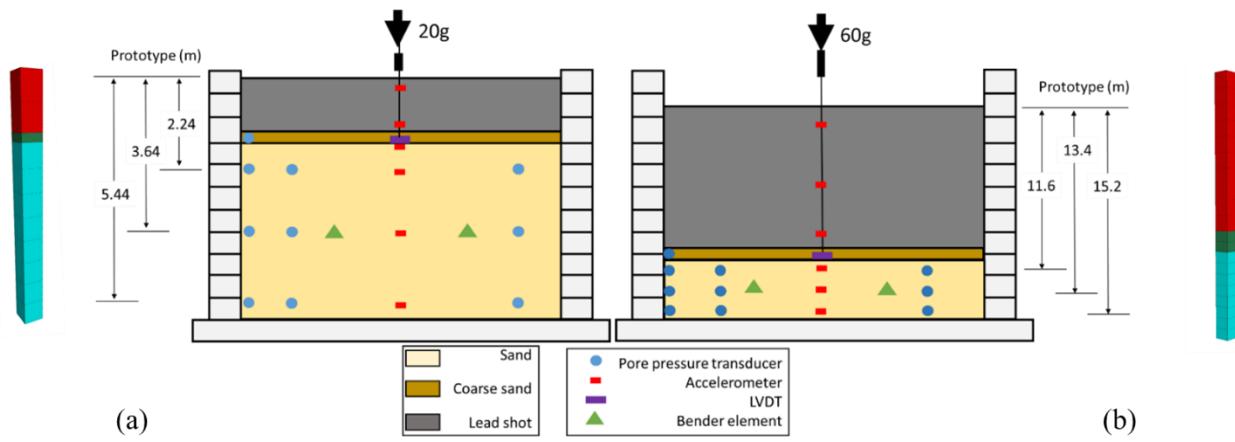
720

721 **Table 1.** Relative density, confining pressure and g-level of centrifuge models and FLAC3D simulations

Experiment	Effective overburden pressure, σ'_{v0} (atm) (¹)	Relative Density, D_r (%) ⁽²⁾	Measured Experimental Maximum Pore Pressure Ratio $(r_u)_{max} = (u/\sigma'_{v0})_{max}$	Numerical Simulation	Numerically Computed $(r_u)_{max}$
Test 45-1	1	45	0.80	FLAC 45-1	0.76
Test 45-6	6	45	0.76	FLAC 45-6	0.76
Test 80-1	1	80	0.92	FLAC 80-1	0.81
Test 80-6	6	80	0.60	FLAC 80-6	0.60

722 ⁽¹⁾ Effective overburden pressure before shaking at mid depth of sand layer.723 ⁽²⁾ Rounded Relative Density. The actual relative densities of 45% and 77% measured in the centrifuge tests
724 before shaking were used in the numerical simulations.

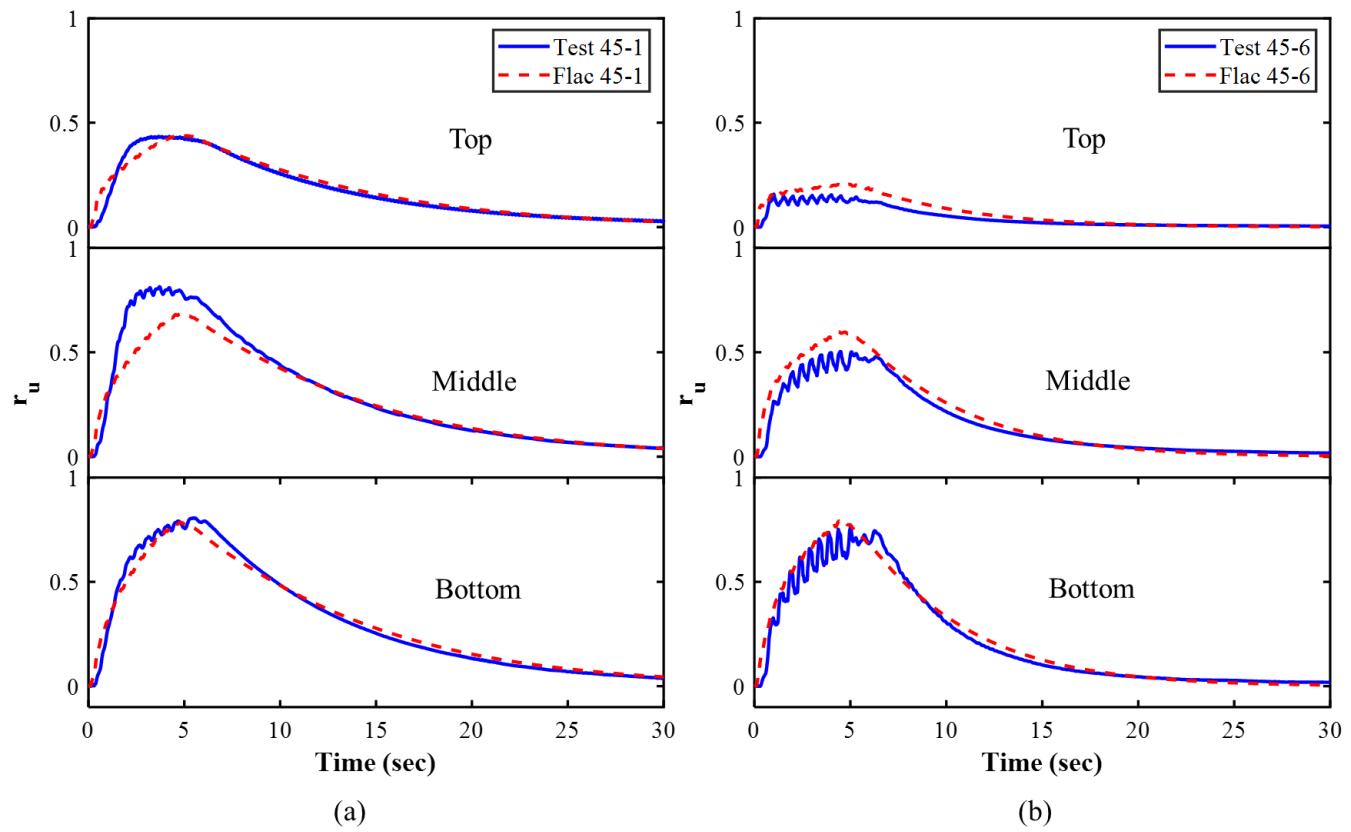
725

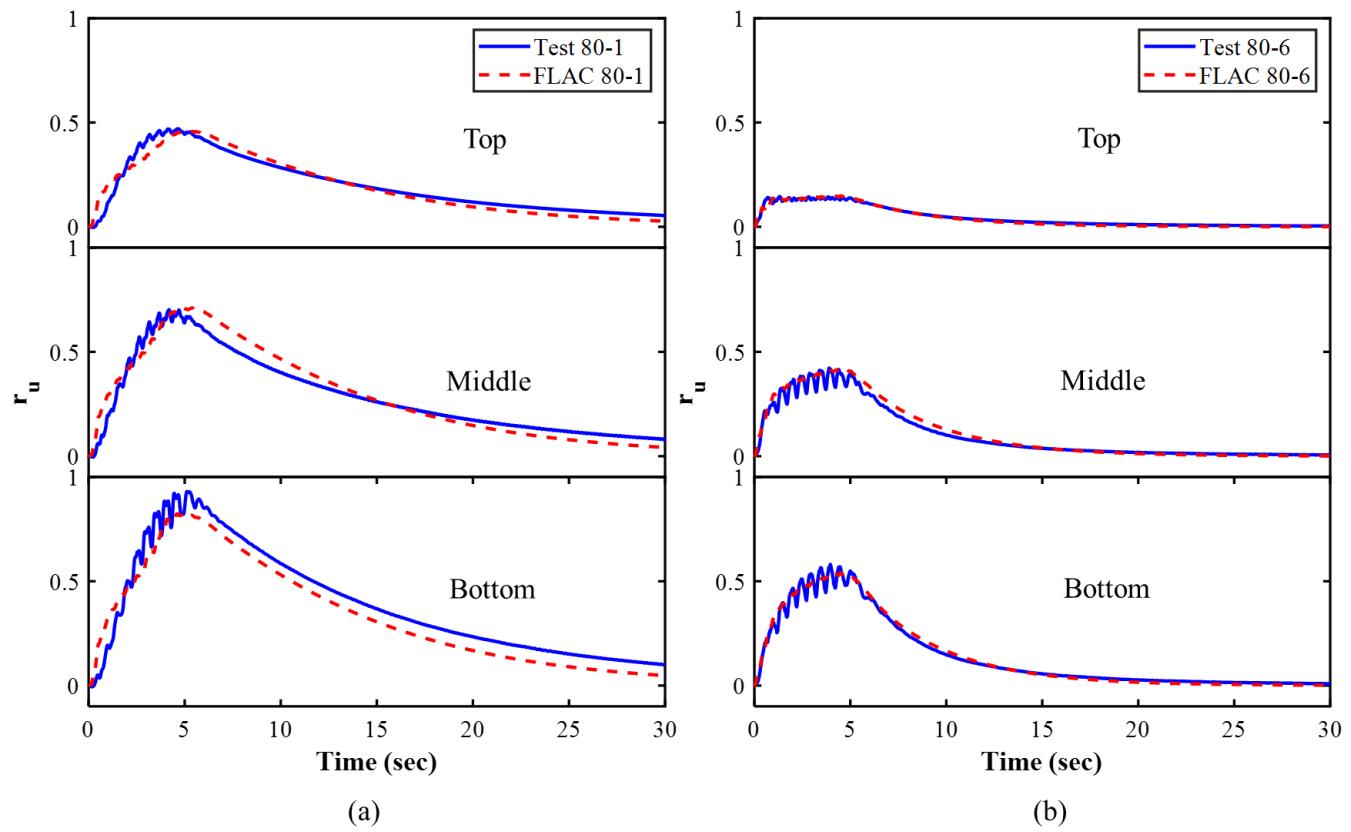

Table 2. P2Psand model parameters used in FLAC3D simulations of stress controlled cyclic triaxial tests to generate the experimental LSC of Fig. 12.

Parameter	Set A (Default)	Set B (Default except K_c)	Set C	Set D (used in FLAC 80-1)	Parameter description and expression for default value
relative-density-initial D_r^0	0.715	0.715	0.715	0.77	Initial relative density before loading
factor-cyclic K_c	0.1857	2	0.3	0.32	Factor of cycling to adjust the rate of cyclic mobility and liquefaction. The default value is internally initialized as $K_c = 3.8 - 7.2D_r^0 + 3.0(D_r^0)^2$.
pressure-reference	101.3	101.3	101.3	101.3	Reference pressure (usually atmospheric pressure, $p_{atm} = 101.3$ kPa)
friction-critical ϕ_{cs}	33^0	33^0	33^0	33^0	Friction angle at critical state. The default value is 33^0 .
coefficient-bounding n^b	0.0775	0.0775	0.0775	0.0775	The coefficient of bounding, used to define the bounding surface. The default value is $n^b = 0.16 - \phi_{cs}/400$.
coefficient-dilatancy n^d	0.465	0.465	1	1	The coefficient of dilatancy, used to define dilation surface. The default value is $n^d = 6n^b$.
critical state parameter Q	10	10	10	9	A critical state parameter used to define the shape and location of the critical state curve. The default value is 10.
critical state parameter R	1	1	1	1	A critical state parameter used to define the shape and location of the critical state curve. The default value is 1.
dilatancy-ratio-minimum K_{LB}^d	0.7	0.7	0.7	0.7	Minimum dilatancy ratio at low pressures. The default value is 0.7.
elasticity-r G_r	967.2	967.2	967.2	772	A function of relative density material parameter used to determine the elastic shear modulus, $G = G_{max}$ as follows $G_r = 1240 (D_r^0 + 0.01)$
fabric-maximum, z_{max}	15	15	15	15	Maximum fabric magnitude. The default value is $z_{max} = \max(21D_r^{3.85}, 15)$.

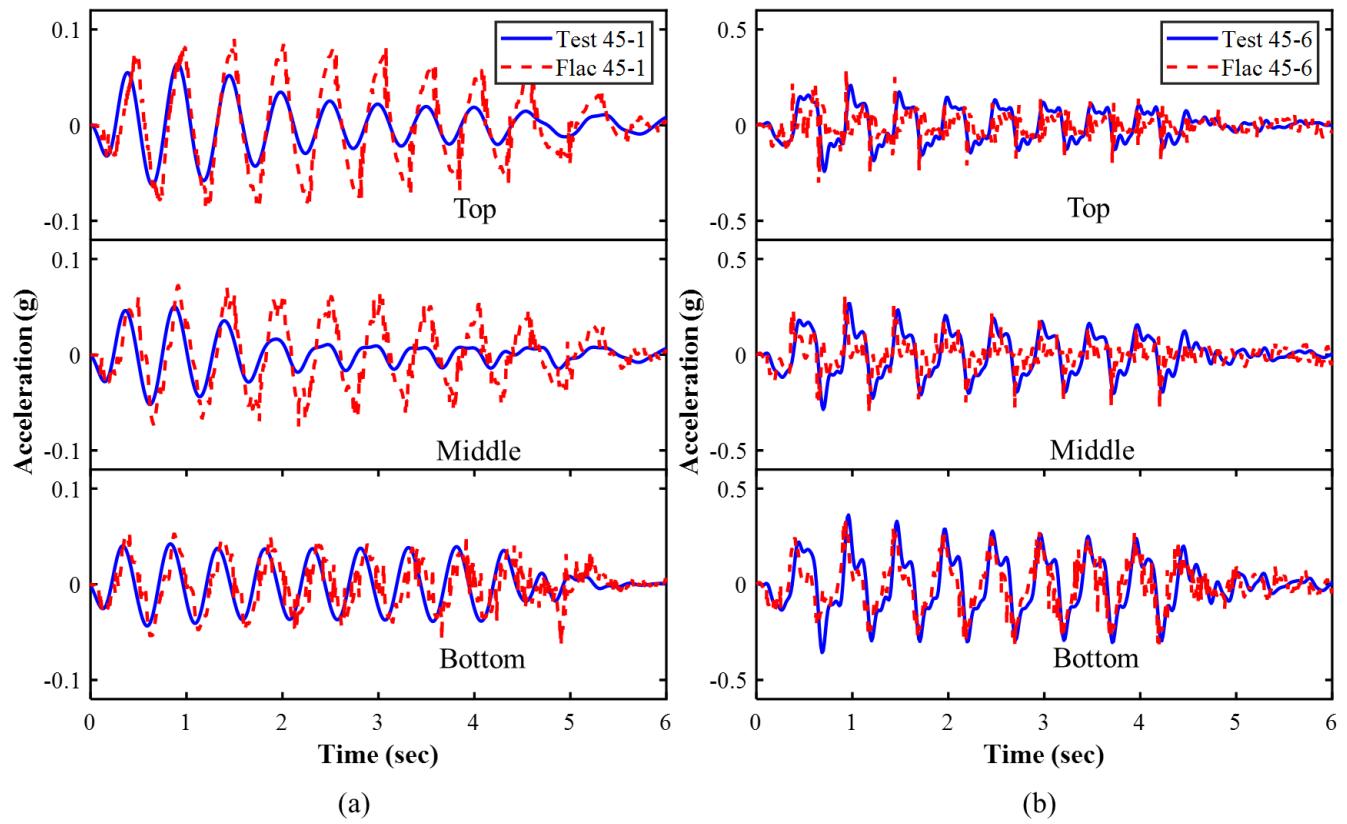
factor-degradation k_d	0.21	0.21	0.21	0.19	Factor of elastic modulus degradation. The default value is $k_d = 0.46 - 0.35D_r$.
Poisson's ratio ν	0.14	0.14	0.14	0.1	Poisson's ratio. The default is $\nu = 0.1 + 0.3\nu_\phi$, in which $0 \leq \nu_\phi = 0.015(\phi_{cs} - 25) \leq 1$.
rate-fabric, c_z	967.2	967.2	967.2	772	Rate of fabric. The default value is $c_z = G_r$
rate-plastic-shear h_0	1.7	1.7	0.5	0.4	Plastic shear rate, h_0 . The default value is 1.7.
rate-plastic-volumetric A_{d0}	Internal	Internal	Internal	Internal	Plastic volumetric rate, A_{d0} . The default value is estimated internally.
ratio-reverse	0.02	0.02	0.02	0.02	Minimum change of the back-stress ratio to be considered a reverse path. The default value is 0.02.
ratio-strength, c	0.69	0.69	0.69	0.69	Strength ratio of the extension to compression triaxial strengths, c . The default value is $(3 - \sin \phi_{cs})/(3 + \sin \phi_{cs})$.
void-maximum e_{max}	0.78	0.78	0.78	0.78	Maximum void ratio. The default value is $e_{max} = 1.0$.
void-minimum e_{min}	0.51	0.51	0.51	0.51	Minimum void ratio. The default value is $e_{min} = 0.6$.

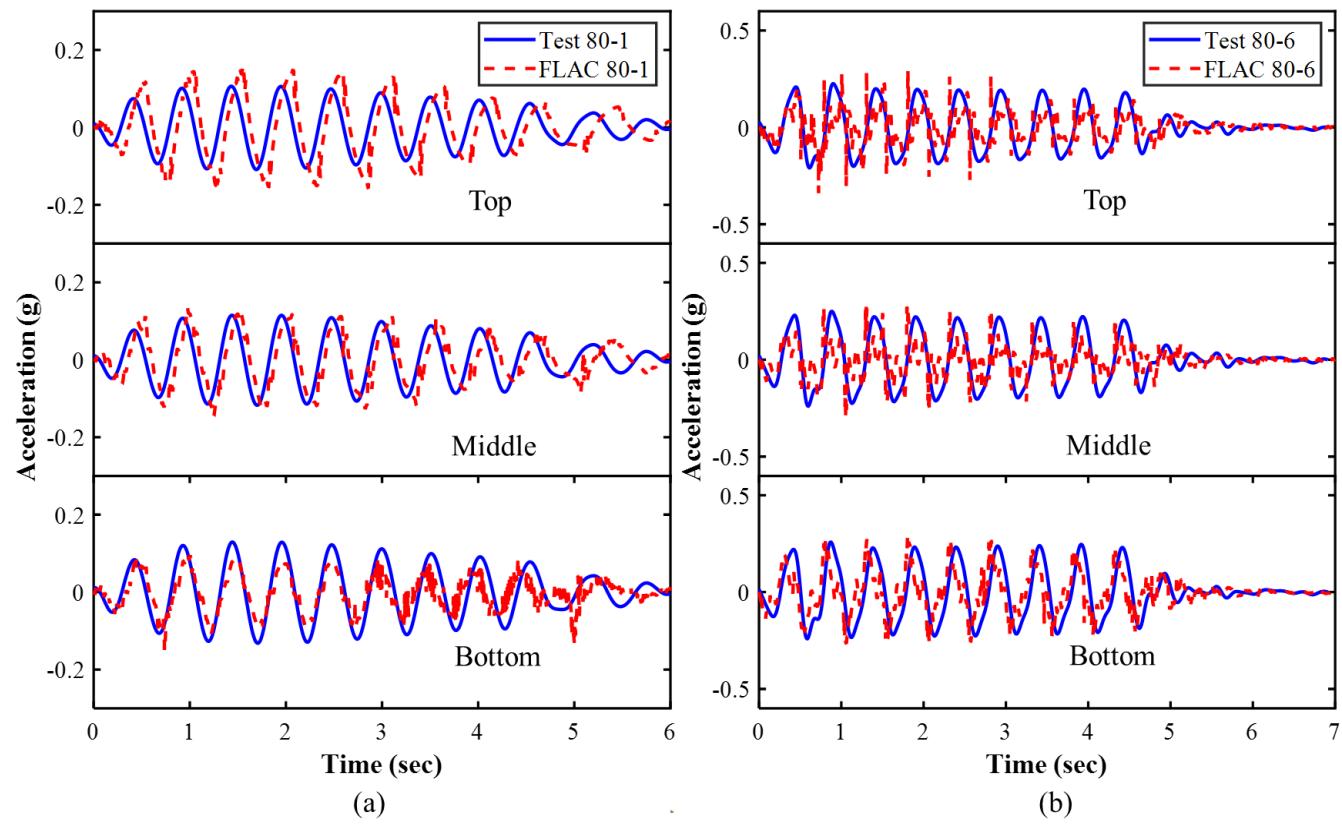
727 **Table 3.** P2Psand Set D parameters used in FLAC3D simulations of centrifuge tests.728
729
730


Parameter	FLAC 45-1	FLAC 45-6	FLAC 80-1	FLAC 80-6
relative-density-initial D_r^0	0.45		0.77	
factor-cyclic K_c	0.8		0.32	
pressure-reference		Default (101.3 kPa)		
friction-critical ϕ_{cs}		Default (33°)		
coefficient-bounding n^b		Default (0.0775)		
coefficient-dilatancy n^d		1		
critical state parameter Q		9		
critical state parameter R		Default (1)		
dilatancy-ratio-minimum K_{LB}^d		Default (0.7)		
elasticity-r G_r	596		772	
fabric-maximum, z_{max}		Default (15)		
factor-degradation k_d	(0.3)		Default (0.19)	
Poisson's ratio ν		0.1		
rate-fabric, c_z	596		772	
rate-plastic-shear h_0		0.4		
rate-plastic-volumetric A_{d0}		Default (Estimated Internally)		
ratio-reverse		Default (0.02)		
ratio-strength, c		Default (0.69)		
void-maximum e_{max}		0.78		
void-minimum e_{min}		0.51		

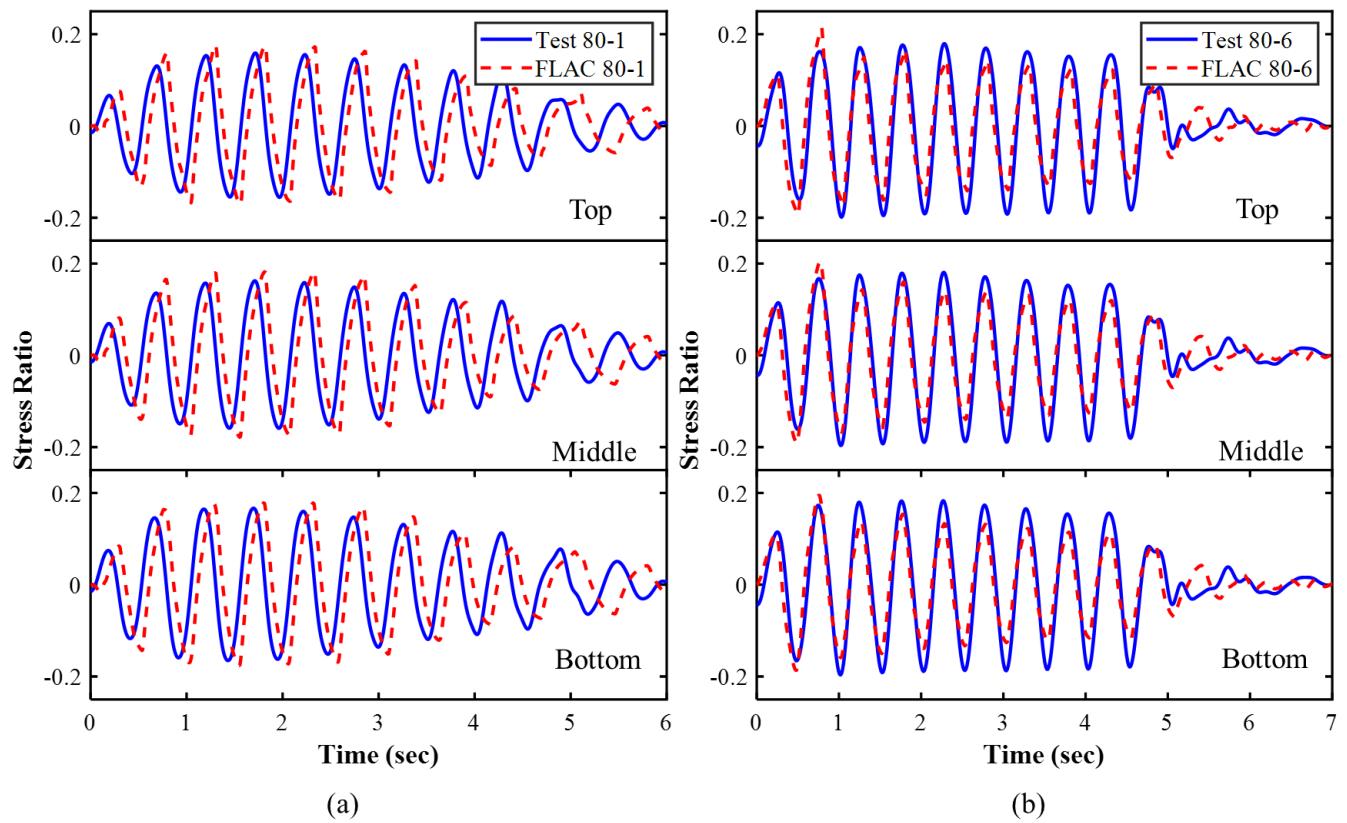

731

732 Figure 1. Physical and numerical model layout for (a) low confining pressure tests (Tests 45-1 and 80-1),
 733 and (b) high confining pressure tests (Tests 45-6 and Test 80-6)


734

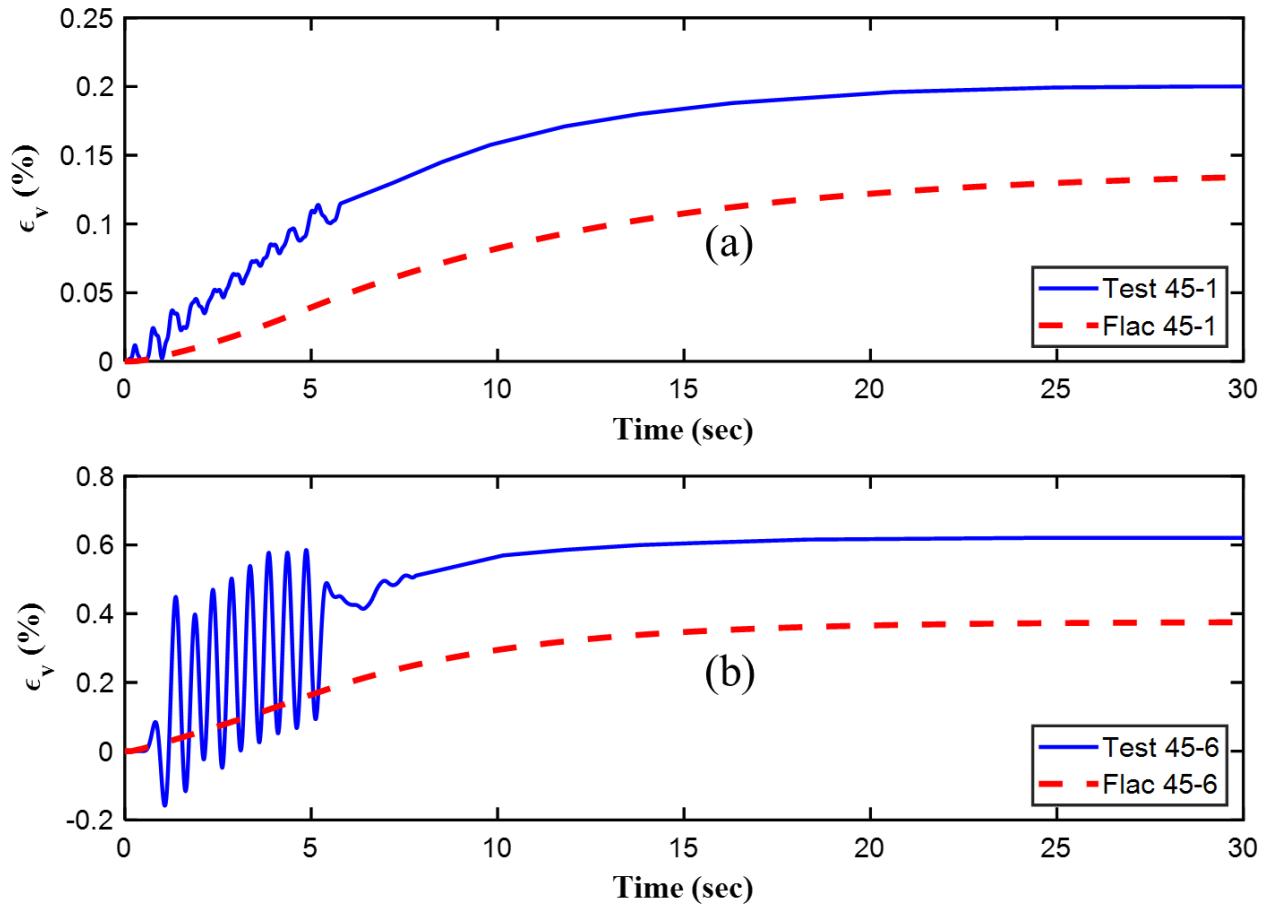

737 Figure 2. Experimentally recorded and numerically computed excess pore pressure ratio histories at the
 738 top, middle and bottom of the sand layer for (a) Test 45-1, and (b) Test 45-6

742 Figure 3. Experimentally recorded and numerically computed excess pore pressure ratio histories at the
 743 top, middle and bottom of the sand layer for (a) Test 80-1, and (b) Test 80-6

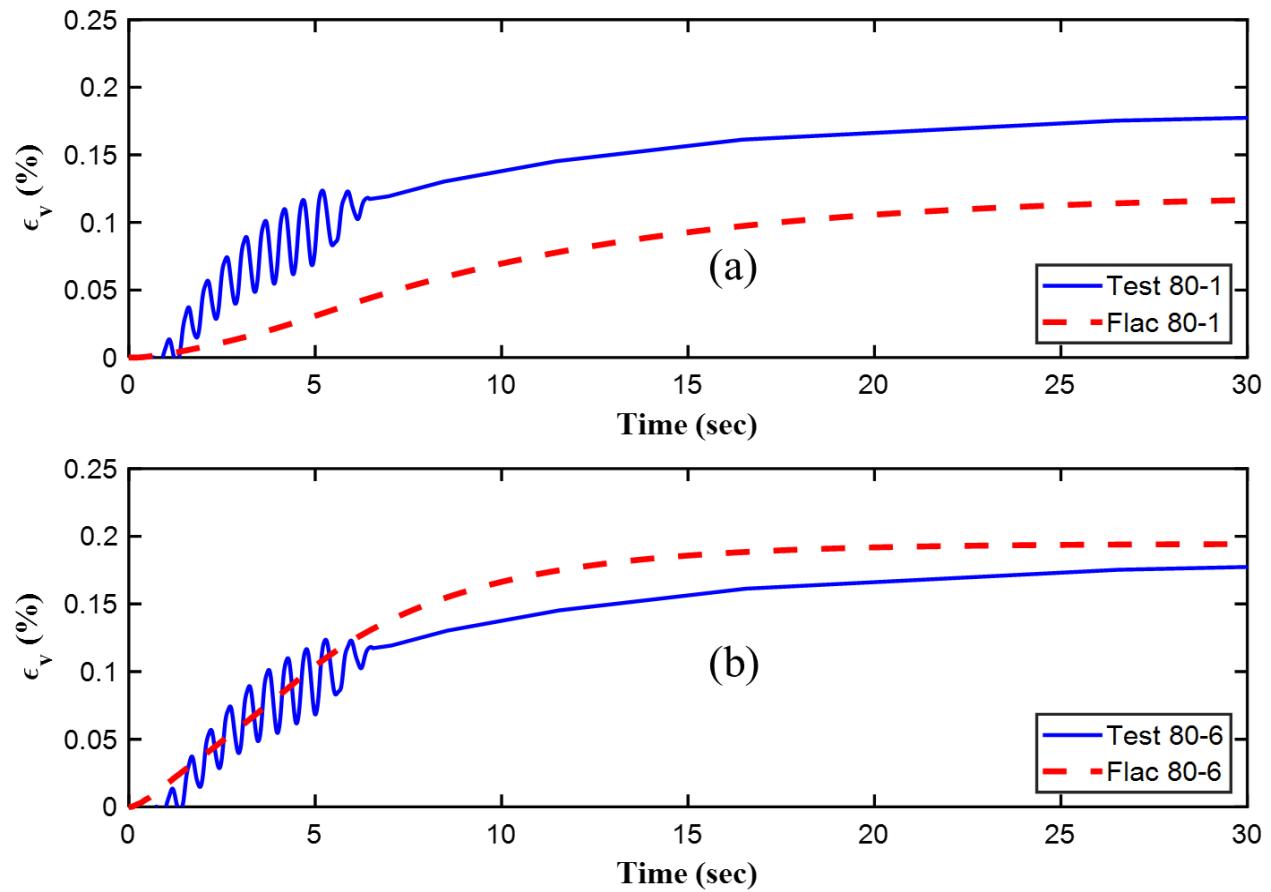

747 Figure 4. Experimentally recorded and numerically computed acceleration histories at the top, middle
 748 and bottom of the sand layer for (a) Test 45-1, and (b) Test 45-6

752 Figure 5. Experimentally recorded and numerically computed acceleration histories at the top, middle
 753 and bottom of the sand layer for (a) Test 80-1, and (b) Test 80-6

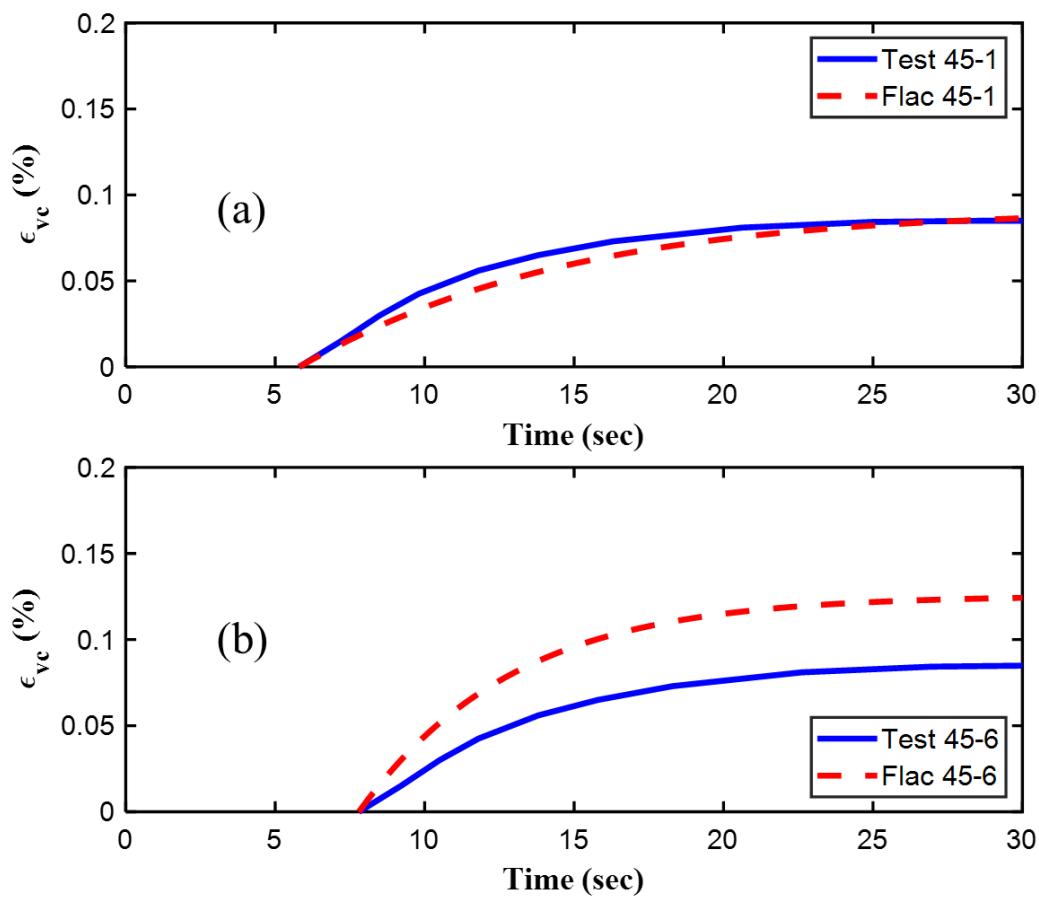
757 Figure 6. Experimentally and numerically computed shear stress ratio histories at the top, middle and
 758 bottom of the sand layer for (a) Test 45-1, and (b) Test 45-6


760

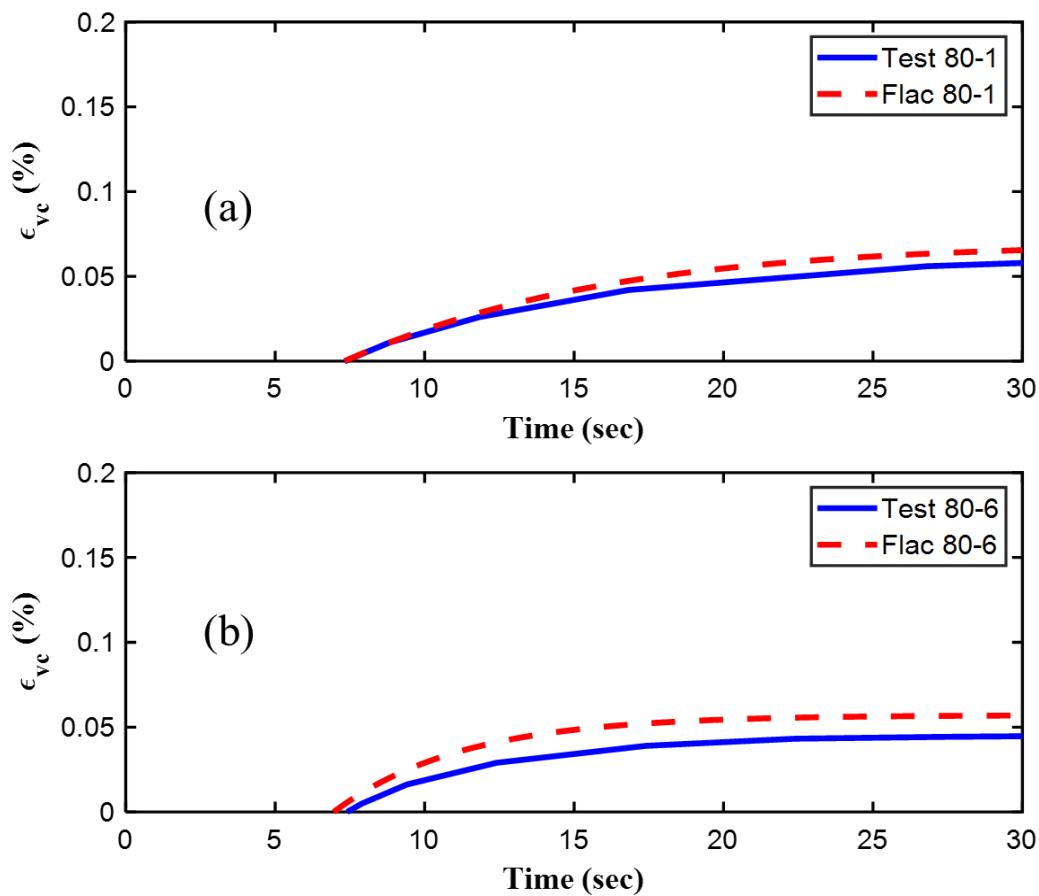
761


762 Figure 7. Experimentally and numerically computed shear stress ratio histories at the top, middle and
 763 bottom of the sand layer for (a) Test 80-1, and (b) Tests 80-6

764


765
766
767

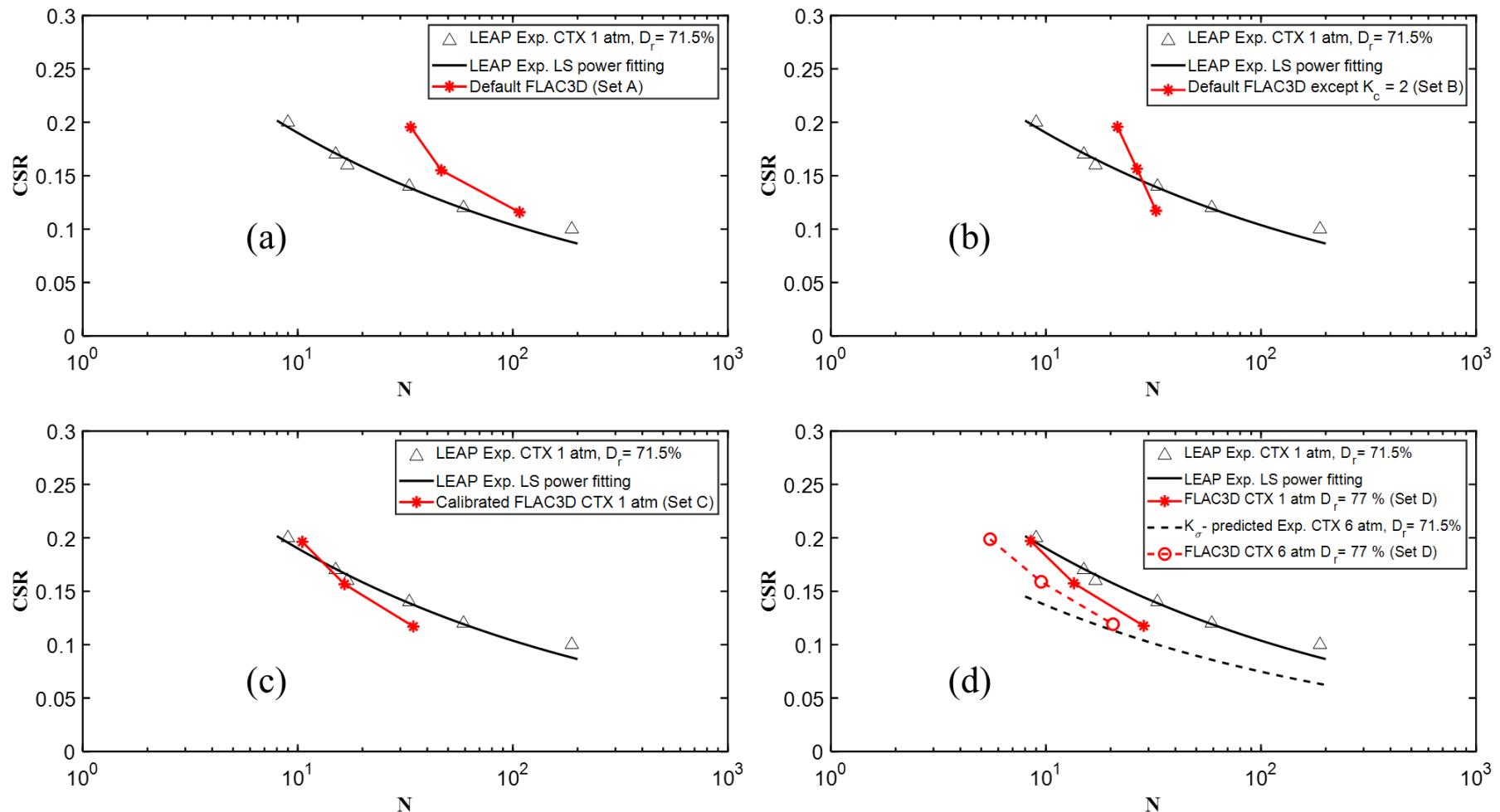
768
769 Figure 8. Experimentally and numerically computed total vertical strain histories of the sand layer for (a)
770 Test 45-1, and (b) Test 45-6
771


774 Figure 9. Experimentally and numerically computed total vertical strain history of the sand layer for (a)
 775 Test 80-1, and (b) Test 80-6

776

777 Figure 10. Experimentally and numerically computed vertical strain histories of the sand layer after the
 778 end of shaking for (a) Tests 45-1, and (b) Tests 45-6

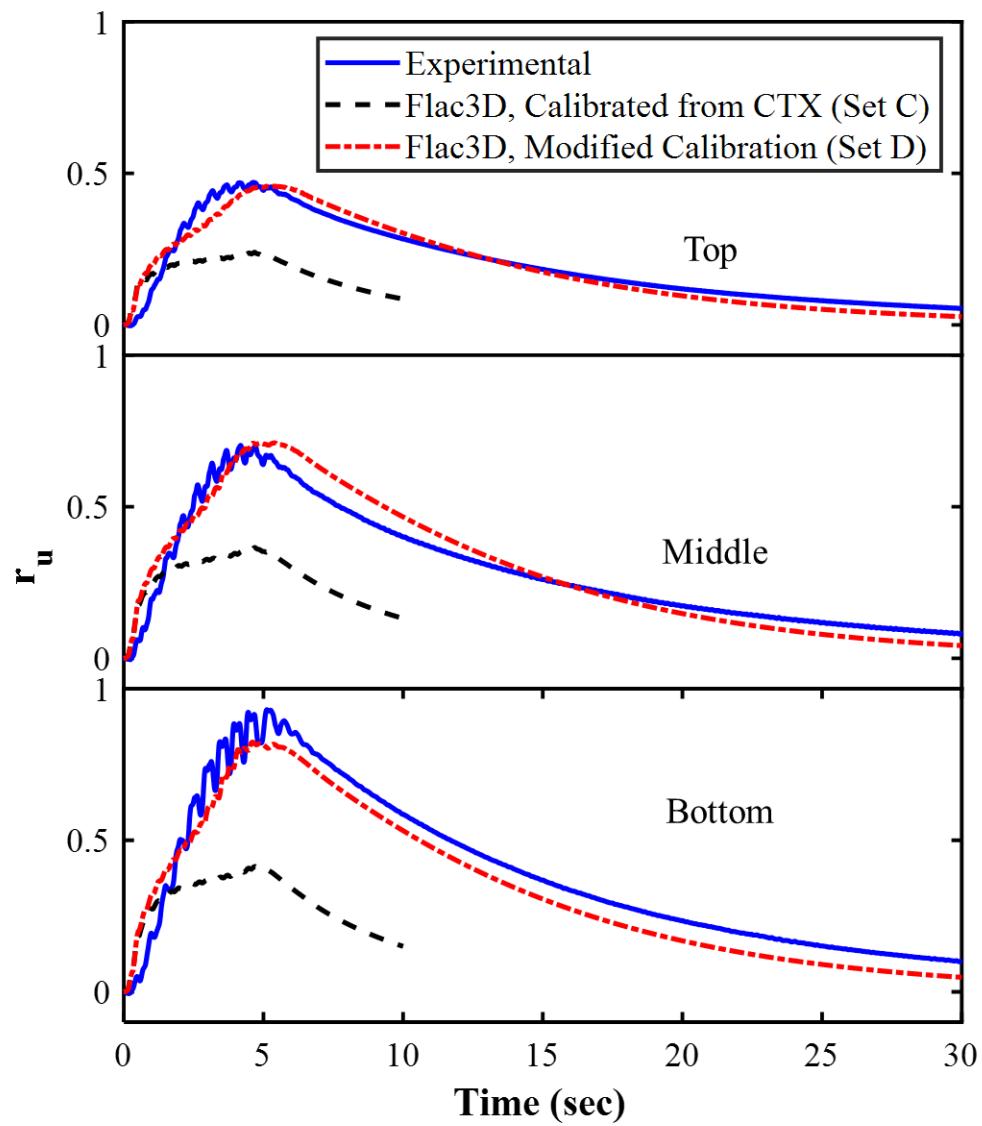
779



780

781

782 Figure 11. Experimentally and numerically computed vertical strain histories of the sand layer after the
783 end of shaking for (a) Tests 80-1, and (b) Tests 80-6


784

785

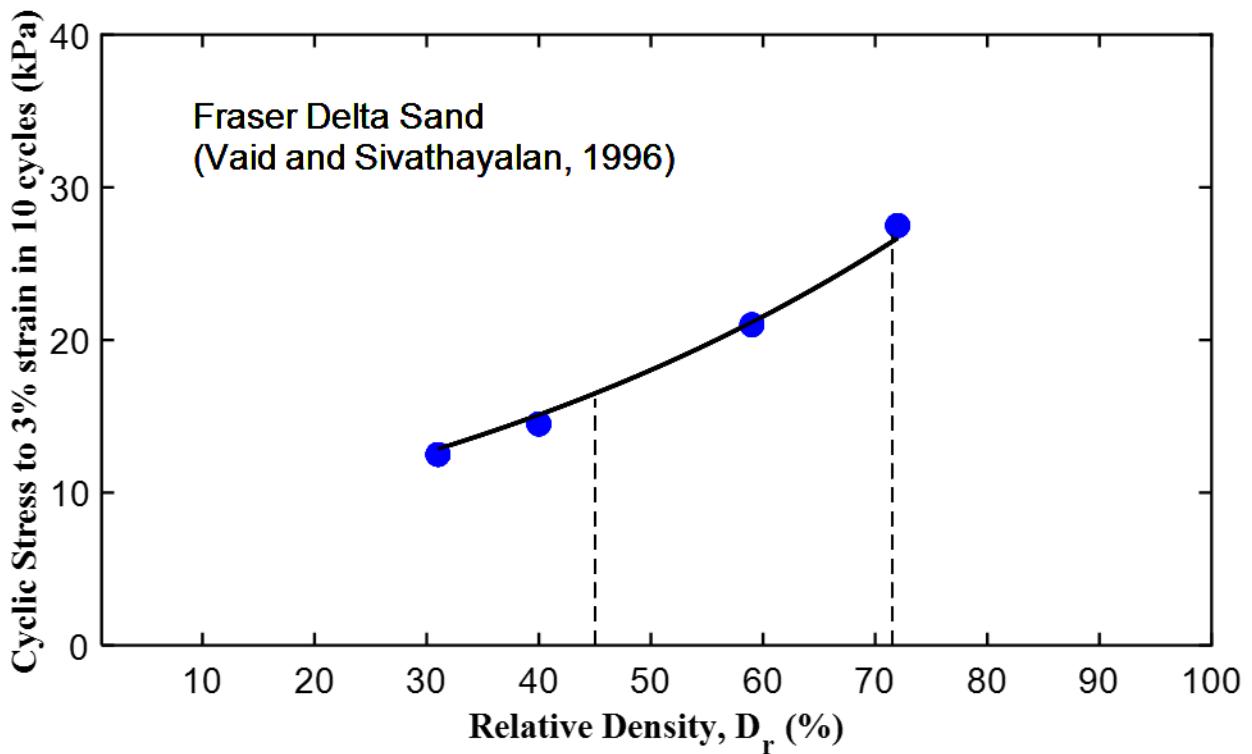
786

787 Figure 12. Cyclic stress ratio (CSR) versus number of cycles (N) required to reach a single amplitude vertical strain of 2.5% (liquefaction strength
 788 curves, LSC) of LEAP cyclic stress-controlled triaxial experiments and Flac3D numerical simulations using P2Psand model parameter sets from
 789 Table 2: a) Set A, b) Set B, c) Set C, and d) Set D .

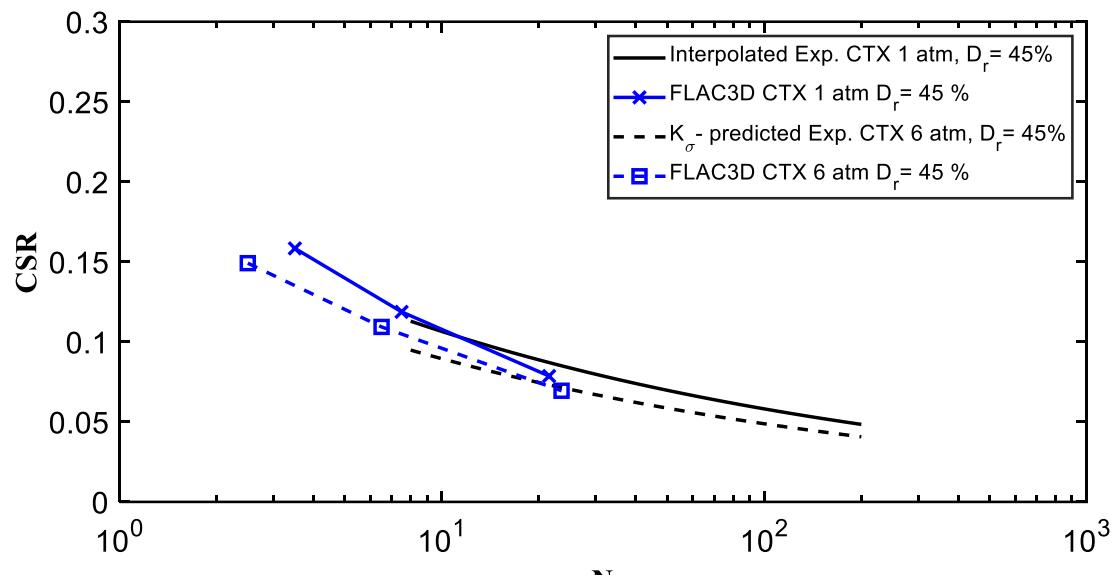
790

791 Figure 13. Experimentally recorded and numerically computed excess pore pressure ratio histories at
 792 the top, middle and bottom of the sand layer for Test 80-1, using parameter Sets C and D from Table 2

793

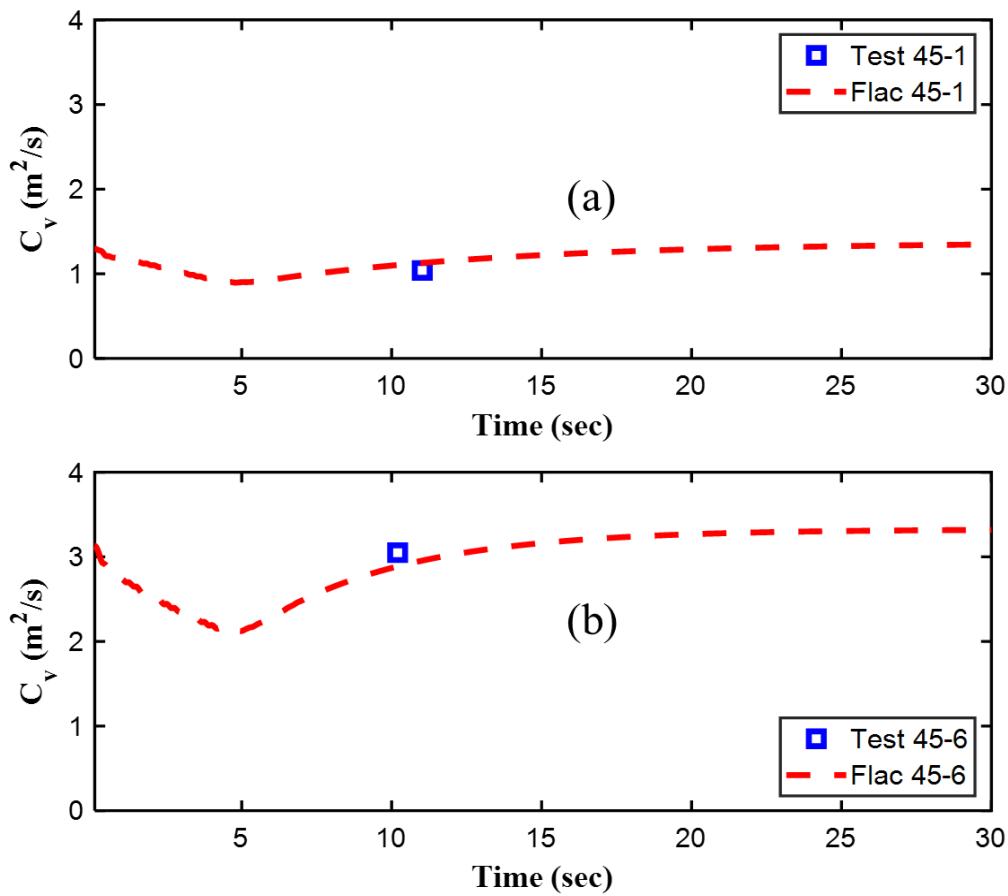


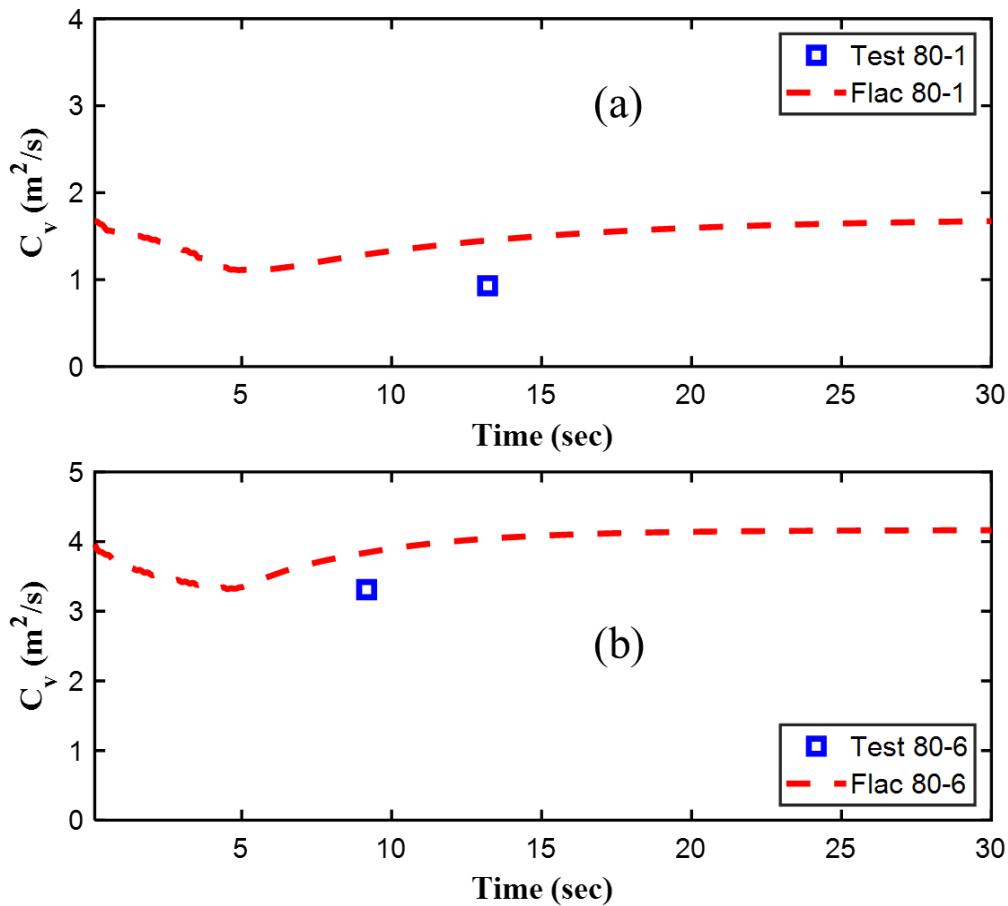
794


795 Figure 14. Stress paths and stress-strain loops of cyclic triaxial test on Ottawa F65 sand, $D_r = 71.5\%$,
 796 consolidation pressure = 100 kPa, CSR = 0.2, and number of cycles ~ 10 cycles reported by LEAP : a) CTX
 797 experimental stress path, b) CTX experimental stress-strain loops, c) CTX FLAC3D simulated stress path
 798 using P2P and Set D parameters, and d) CTX FLAC3D simulated stress-strain loops using P2P and Set D
 799 parameters

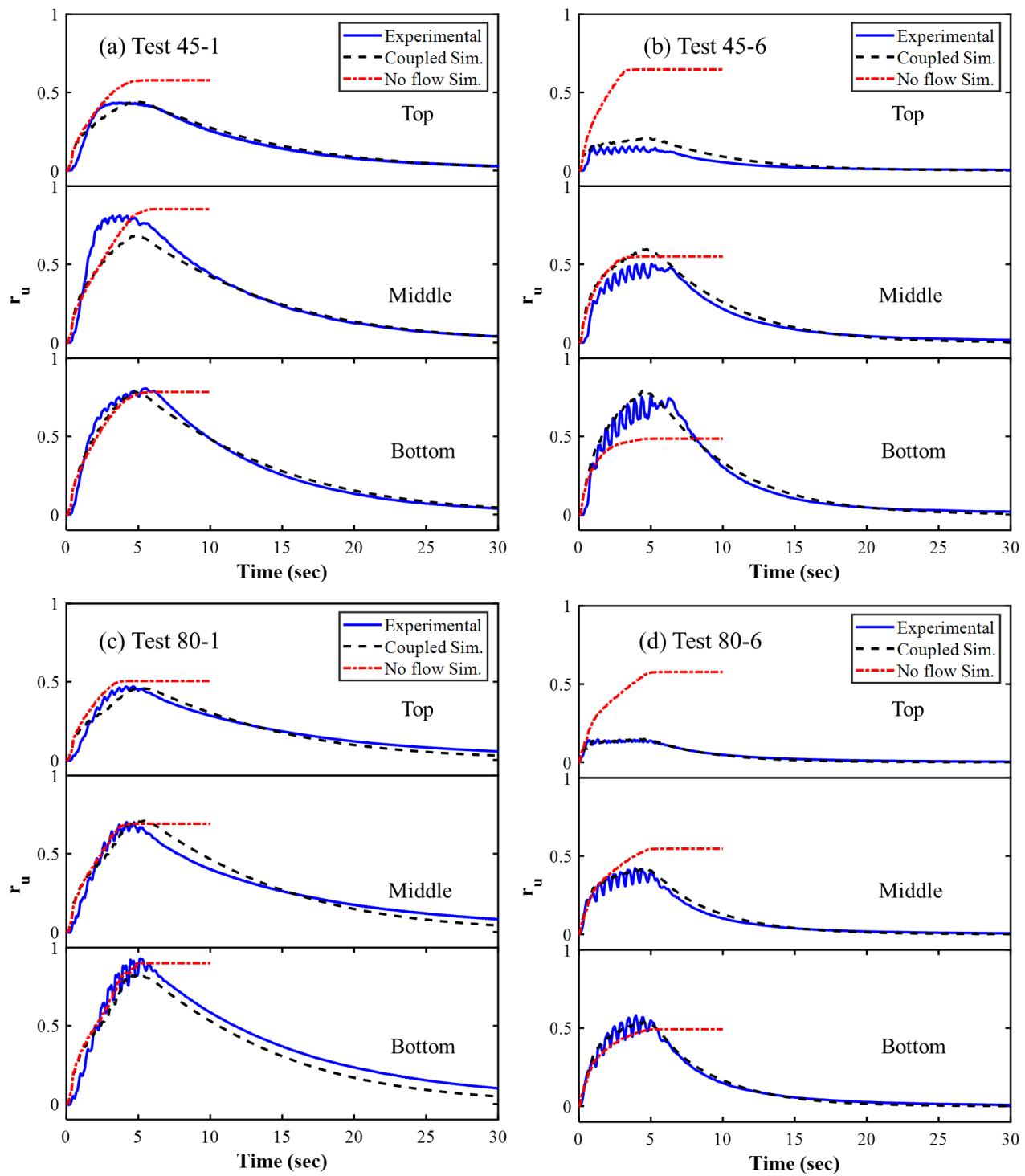
800

801

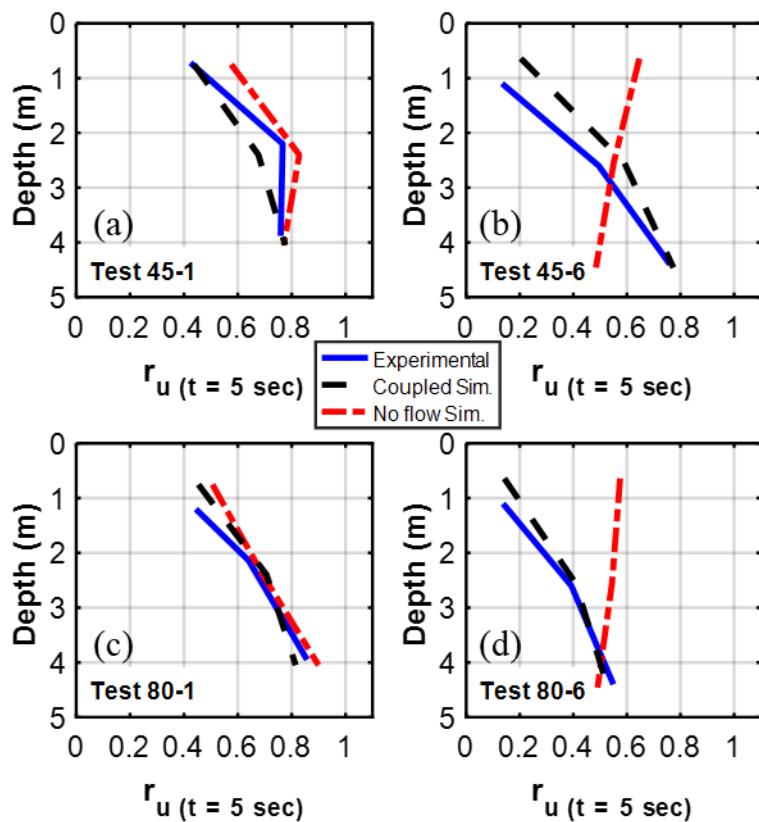

802
803 Figure 15. Cyclic stress-controlled triaxial test results for clean Fraser Delta sand, showing the cyclic
804 stresses that cause 3% shear strain in 10 uniform cycles at relative densities of 31–72% and an effective
805 consolidation stress of 100 kPa (data from Vaid and Sivathayalan 1996 and Idriss and Boulanger 2008).
806


807

808 Figure 16. Cyclic stress ratio (CSR) versus number of cycles (N) required to reach a single amplitude
 809 vertical strain of 2.5% (aka liquefaction strength curves, LSC) of cyclic stress-controlled triaxial
 810 experiments and Flac3D numerical simulations using parameters from Table 3, $D_r = 45\%$


811

814 Figure 17. Experimentally and numerically computed average diffusivity of the sand layer after the end
 815 of shaking for (a) Test 45-1, and (b) Test 45-6



819 Figure 18. Experimentally and numerically computed average diffusivity of the sand layer after the end
 820 of shaking for (a) Test 80-1, and (b) Test 80-6

823

824 Figure 19. Experimentally recorded and numerically computed excess pore pressure ratio histories for
 825 fully coupled and no flow analyses at the top, middle and bottom of the sand layer for (a) Test 45-1, (b)
 826 Test 45-6, (c) Test 80-1, and (d) Test 80-6

827

828 Figure 20. Experimentally recorded and numerically computed excess pore pressure ratio profiles at the
 829 end of shaking (5 sec), for fully coupled and no flow analyses for (a) Test 45-1, (b) Test 45-6, (c) Test 80-
 830 1, and (d) Test 80-6

831