2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-1714-3/21/$31.00 ©2021 IEEE | DOI: 10.1109/IROS51168.2021.9636005

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 27 - October 1, 2021. Prague, Czech Republic

Telemanipulation via Virtual Reality Interfaces with Enhanced
Environment Models

Murphy Wonsick, Tarik Kelestemur, Stephen Alt, and Tagkin Padir!

Abstract— Extreme environments, such as search and rescue
missions, defusing bombs, or exploring extraterrestrial planets,
are unsafe environments for humans to be in. Robots enable
humans to explore and interact in these environments through
remote presence and teleoperation and virtual reality provides
a medium to create immersive and easy-to-use teleoperation
interfaces. However, current virtual reality interfaces are still
very limited in their capabilities. In this work, we aim to
advance robot teleoperation virtual reality interfaces by de-
veloping an environment reconstruction methodology capable
of recognizing objects in a robot’s environment and rendering
high fidelity models inside a virtual reality headset. We compare
our proposed environment reconstruction method against tradi-
tional point cloud streaming by having operators plan waypoint
trajectories to accomplish a pick-and-place task. Overall, our
results show that users find our environment reconstruction
method more usable and less cognitive work compared to raw
point cloud streaming.

I. INTRODUCTION

The capability of remote robot teleoperation is essential
for robotic operation in extreme environments, such as
disaster response, nuclear decommissioning, bomb disposal,
or space exploration. By having the ability to teleoperate
a robot from a distance, one can remove the inherent risk
these environments pose to humans while keeping their
knowledge and expertise in-the-loop. Most current interfaces
for robot teleoperation though are 2D interfaces that utilize
standard monitor, keyboards, and mice for interaction. These
interfaces are often very complex and require operators to
handle 3D data using 2D devices. Furthermore, they require
comprehensive operator training [1]. Virtual reality (VR),
as an emerging interaction technology, offers a potential
solution to these problems by allowing for an immersive en-
vironment and 3D interaction abilities. Recent advancements
in VR devices, making them more affordable and available,
have allowed for an increase in VR robot teleoperation
interfaces [2]. In general, these VR interfaces have shown
to improve performance, lower operator workload, and are
found to be considered more usable and likeable among
users compared to traditional interfaces. However, there is
still room for additional development in VR interfaces before
they can be used in real-world applications, particularly in
visualizing the robot’s environment.

We aim to further the development of VR interfaces for
robot teleoperation by designing a system architecture that
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utilizes object segmentation to reconstruct a modeled version
of the robot’s environment in VR. Using deep learning, we
can detect known objects in a robot’s environment and then
display the corresponding models inside a VR headset. This
allows for an increased fidelity of the real world in VR
compared to point cloud streaming, as well as a reduction in
the required bandwidth. It is also more flexible than pre-
constructed VR environments as objects only need to be
modeled once and the VR environment does not need to be
altered anytime the real-world changes. The main contribu-
tions of this paper are: (1) a deep learning based environment
reconstruction framework for VR, (2) development of a robot
teleoperation VR interface, and (3) a user study design for the
evaluation of the framework and VR interface with trained
operators.

The remainder of the paper is organized as follows. We
first discuss the prior related work in VR robot teleoperation
interfaces in Section II. We present our system architecture
and VR interface in Section III. An evaluation of our
setup by comparing our proposed environment reconstruction
technique to raw point cloud visualization is described in
Section IV. The results and a discussion are presented in
Sections V and VI, respectively.

II. RELATED WORK

Due to virtual reality devices becoming commercially
available, and therefore more accessible and affordable, there
has been a rapid increase in VR interface development for
robot operation [2]. Several works have demonstrated the
utility of VR over traditional interfaces, such as keyboard,
mouse & monitor interfaces and direct manipulation in-
terfaces, where the user must physically move the robot.
For fixed robotic manipulators, VR has been shown to be
significantly better compared to keyboard & monitor inter-
faces with an improvement in task completion time, lower
workload, higher usability, and higher likability score [3].
Similar comparisons have also been conducted using ma-
nipulators mounted on wheeled mobile bases with results
showing an improvement in performance when using VR
interfaces over a traditional monitor & controller interface
in manipulation tasks, but not in driving tasks [4], [5].
However, there has been work that shows when utilizing VR
to teleoperate a mobile robot to map an environment, users
have less collisions and report a greater level of immersion
and situational awareness compared to a traditional monitor
view interface [6], [7]. Although it does take users longer to
complete their exploration tasks when using VR.
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Even with the success of VR interfaces over more tra-
ditional ones, there has been limited work in investigating
the best interaction techniques or visualization modalities.
Hetrick et al. [8] compared two different interaction control
techniques for VR interfaces, a trajectory control, where op-
erator movements are translated into robot movements, and
positional control, where waypoints are placed for the robot
to move through, for a fixed robot manipulator. Their results
showed trends suggesting that a positional control paradigm
may be more beneficial compared to trajectory control. Van
de Merwe et al. [9] examined the effects of different levels
of environmental information in VR teleoperation interfaces
and found that performance time is decreased with the
inclusion of both contextual and task-related information
compared to only task-related information. Therefore, they
recommend inclusion of contextual information, such as
floors or recognizable objects, to improve robot teleoperation
VR interfaces. Su et al. [10] ran a similar study comparing
a pre-modeled VR environment to one with the addition of
a point cloud, concluding that the inclusion of information
from the real environment both increased success rates and
was found more usable.

However, pre-modeling environments is not always feasi-
ble, especially for mobile robots where the environment is
not fixed, nor is streaming point cloud data due to potential
bandwidth limitations. Kohn et al. [11] aimed to address
some of these issues by presenting a method capable of
efficient processing and visualization of point cloud data by
segmenting known objects from unknown objects to help
reduce the bandwidth requirement. This method, however,
is designed for a fixed robot manipulator in a semi-known
environment.

III. SYSTEM OVERVIEW

Our system can be broken down into three major com-
ponents: Robot & Planners, Object Detection, and the VR
Interface. Each component was developed separately and
designed using principles of modularity for ease of future
development. Communication between each component is
accomplished through the Robot Operating System (ROS).

A. Robot & Planners

In this work, we use the Toyota Human Support Robot
(HSR) [12] as our development platform. HSR is a mobile
manipulation robot equipped with a 5 degrees-of-freedom
(DoF) arm and an omnidirectional base. It has a 2 DoF head
that holds the visual sensors including an RGB-D, stereo, and
a fisheye camera. To reconstruct the robot’s environment,
send feedback about the state of the robot, and execute
commands from the VR interface, we developed a Planning
and Perception Server (PPS). This server has three respon-
sibilities: (I) Plan motions for the desired end-effector poses
and return the planned trajectories. (II) Execute robot actions
commanded from the VR. (III) Send visual observations of
the environment, such as point clouds or the IDs and poses
of known objects.

(a) Object Segmentation

(b) 6D Object Poses

Fig. 1: Object Detection. Objects are first segmented using
a deep-learning model then their poses are calculated using
point cloud data.

1) Motion Planning: Our motion planning module is
based on the trajectory optimization framework that was
developed in our previous work [13]. The framework is built
on top of the TrajOpt [14] method where the motion plan-
ning is formulated as a non-convex constrained optimization
problem and solved using sequential quadratic programming
(SQP). The PPS implements a ROS service (PlannerService)
using this framework in which the user can request multiple
end-effector waypoints. Once the PlannerService receives
desired waypoints, it plans a trajectory and sends it back
to the VR interface for visualization.

2) Execution: To execute instructions from the VR in-
terface, we built another service (ExecutionService) within
the PPS. The ExecutionService takes three commands: (1)
EXECUTE_TRAJECTORY: to send the latest planned trajectory
to HSR’s low-level controller, (2) GRASP_OR_RELEASE: to
close or open the gripper for grasping or placing objects, and
(3) HOME: to return HSR to its original configuration.

3) Perception: The goal of the perception module is to
find object poses and return these poses to the VR interface
along with the corresponding object IDs. To accomplish this,
we developed a service (PoseEstimationService) that takes
the pixel coordinates of each object in the scene, which
is detected by our object segmentation model (explained in
Section III-B), and calculates their 6D poses. Once the ser-
vice receives a set of pixel coordinates, individual localized
point clouds for each of the objects are extracted from the
depth camera. Object positions are calculated by finding the
geometric center and orientation is assigned by assuming the
z — axis to be perpendicular to the ground and the y — axis
as the longest side of an object.

B. Object Detection

At the core of the environment reconstruction is a deep
learning model that was trained using the Detectron2 frame-
work [15]. This model was trained on a custom dataset
consisting of 10,000 images of 8 YCB [16] objects: chips
can, cracker box, master chef can, mug, potted meat can,
pudding box, tomato soup can, and sugar box. Each image
contained a minimum of 1 object and a maximum of 8
objects and were annotated using the COCO JSON RLE
format. A Mask RCNN instance segmentation model [17]
with a ResNet + FPN backbone, which was trained on the
COCO dataset [18], was pre-loaded and used as the model’s
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Category mAP | | Category mAP
Chip Can 85.88 Potted Meat Can 77.67
Cracker Box 85.34 Pudding Box 71.42
Master Chef Can  86.54 Tomato Soup Can  72.15
Mug 79.77 Sugar Box 81.02

TABLE I: mAP Values

Hyper Parameter Value
Iterations 25000
Base Learning Rate 0.0025

Learning Rate Decay  3x
Batch Size 512
Images/Batch 2
Training Time 2 hours

TABLE II: Detectron2 Hyper Parameter Values

starting point. We report the mean average precision (mAP)
per object category in Table I to show the performance of
our object segmentation model. The hyper-parameters for our
training can be seen in Table II. The success of the model
can be attributed to the variety of the data that it was trained
on. The data set used was created by collecting video data
of the 8 objects in the environment in which the experiment
was conducted. We then apply data augmentation using the
SBX Data Multiplier tool [19] to increase the diversity of the
dataset by randomizing the objects positions and scales. An
example of the object segmentation can be seen in Fig. 1a.

The object detection and image segmentation deep learn-
ing model is integrated into the system using a ROS service
(ObjectSegmentationService). When the service is called, the
model grabs the latest image from HSR’s RGB-D head
camera as input and outputs the bounding box, object class,
detection score, and the pixel location data of each object
detected in the image. This service is called by the PoseEs-
timationService in order to produce the 6D poses of the
detected objects in the scene.

C. VR Interface

The VR interface is modeled after our supervisory-control
VR interface for humanoid robots [20]. It is developed using
the Unity game engine and uses an HTC Vive with a single
Vive controller for the VR equipment. In addition, we utilize
an open-source software library called ROS# [21] to assist in
all the communication between the Unity project and ROS.

The interface is started with any known fixed objects in the
scene, in our case, the floor and a table. Next, the rest of the
environment is constructed by calling the PoseEstimationSer-
vice presented earlier, that returns a list of identified objects
and their poses in the robot’s environment. Transformations
are done to convert from the robot’s environment to the VR
environment and then high fidelity models are displayed in
the scene. Fig. 4c shows an example of the reconstructed
environment with Fig. 4a as the actual environment.

The VR controller can be in one of two modes, Teleport
Mode or Planner Mode, and the controls on the controller
change depending on the current mode. Teleport Mode

(b) Place Planning

(a) Displaying Plan

Fig. 2: VR Interface. User can place waypoints, request
a plan, and have the returned trajectory visualized before
execution. Once an object has been grasped, the waypoints
are displayed with the currently grasped object.

&
Switch Mode Create/Edit

Toggle Gripper [><Waypoint

Remove
Waypoint

Fig. 3: Planner Mode Controls. Controls change depending
on the current mode the user is in.

allows the user to use the controller to navigate around the
scene without having to physically move their body around.
While Planner Mode is where the user can interact with the
robot to create, visualize, and execute trajectory plans, as
well as control the robot’s gripper. Users are able to switch
between modes through a button click on the controller and
the active mode appears as text at the top of the user’s view.

Planner Mode interfaces with HSR and the planners pre-
sented in Section III-A. Fig. 3 shows the controls for this
mode. For every button click in this mode, text is displayed at
the top of the user’s view informing the user that the request
was sent and if applicable, text of the result is displayed (i.e.,
when a plan has been returned or if a grasp was successful
or not). Users start by placing ordered waypoints to generate
a path for the end-effector to traverse through. Waypoints
can be edited at any time by hovering over the waypoint
with the controller and using the trigger on the controller to
do a click-and-drag operation to move the waypoint around.
Once a user is satisfied with the waypoint placement, they
can request a plan from our motion planning module. When
a plan has been returned, it can be displayed to ensure it
is both collision free and matches the desired intent. Plans
can be displayed an unlimited number of times and can be
discarded at any time by simply editing, adding, or removing
a waypoint. Fig. 2a provides an example of placed waypoints
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(a) Real World Environment

(b) Point Cloud Visualization

(c) Model Visualization

Fig. 4: Experiment Setup.

and the final configuration of the returned plan after the
trajectory was displayed. After ensuring the returned plan
is as intended, users can request the robot execute the plan.
Following execution, users can then toggle the gripper to
open/close to grasp/drop an object.

One additional feature of our interface using this system, is
the ability to display a visualization of the grasped object in
the waypoint visual. Fig. 2b shows an example of waypoints
visualized with the grasped cracker box. The goal of this
feature is to assist users in placing objects once grasped.

IV. EVALUATION

To evaluate the effectiveness of our proposed system,
we conducted a user study comparing our VR environment
reconstruction method, hereby known as the Model Visual-
ization, to the Point Cloud Visualization that streams and
displays a raw point cloud inside the VR headset. We used a
pick-and-place task to help evaluate each visualization. Fig. 4
shows our experiment setup.

A. User Study Design

We designed the pick-and-place task with the following
considerations:

« Objects were chosen with a variety of different shapes
and all objects had the ability to be grasped in more
than one way to allow for multiple solutions.

e Objects were placed in close proximity to require a
higher level of precision in waypoint placement. This
also increased the difficulty in placing waypoints in a
manner that resulted in a collision-free trajectory from
other objects on the table.

o Similar shaped objects were used to increase the dif-
ficulty in object recognition. We selected two pairs of
similar shaped objects: (1) a chips can and a tomato
soup can and (2) a potted meat can and a pudding box.

o Some objects were partially occluded to increase the
difficulty of waypoint precision, ensuring a collision
free trajectory, and object recognition.

The task involved picking three specific objects, a cracker
box, a potted meat can, and a chips can, from the left side
of a table and placing them on the right side of a table. The
primary goal of the task was to place waypoints in a way

that accomplished the pick-and-place task while avoiding
collisions with the other objects on the table. Both the task
and the underlining interface remained the same between the
two visualizations, with the only difference being that there
was no object visualization in the waypoint visual, as seen in
Fig. 2b, for the Point Cloud Visualization since objects were
considered “unknown” in this visualization. All the objects’
poses were kept the same between participants, but the two
pairs of similar shaped objects were randomized each trial.

B. Experimental Procedure

Participants were first brought in and given a high-level
overview of the study and demographics were collected.
Next, the general VR interface was demonstrated and after-
wards, participants were placed in VR to grow accustomed to
both the interface itself and VR in general. To help offset any
potential learning biases, the first visualization was random-
ized for each participant. Participants were then provided a
chance to practice with the visualization with a single cracker
box placed in the scene for interaction. After participants
were comfortable with the interface and visualization, we
moved on to the pick-and-place task, where they were
informed that their primary goal was accuracy, specifically
to avoid collisions, and secondary goal was speed. Once
complete, participants were given the questionnaires and then
the process was repeated with the next visualization, starting
with a chance to practice again. Finally, after completing the
task in both visualizations, participants were asked to provide
verbal feedback of their experience.

C. Measurements

There are four, two subjective and two objective, mea-
surements we used to evaluate our Model Visualization to
the more traditional Point Cloud Visualization.

1) Subjective: For the subjective measurements, we mea-
sured both the usability of the system and the perceived
workload. For the usability measurement, we utilized the
System Usability Scale (SUS) [22]. The SUS is a commonly
used tool that measures the usability of a system by asking
participants to rate 10 statements related to their perception
of the system on a scale from 1-’Strongly Disagree” to 5-
”Strongly Agree”. SUS scores can range from 0-100 with
any score above 68 is considered as “above average”. For the
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workload measurement, we used the NASA Task Load Index
(NASA-TLX) [23]. The NASA-TLX measures workload by
having participants rate on a scale from 0-Low to 100-High
their overall perceived, mental demand, physical demand,
temporal demand, performance, effort, and frustration.

2) Objective: For the objective measurements, we mea-
sured the time to complete each object pick-and-place and
the total time to complete the task, as well as the overall
accuracy. Completion times were collected through a logging
system that recorded every time the gripper changed state.
This allowed us to record each objects total pick and place
time, as well as the total completion time. If a participant
failed to pick-and-place an object, the time for that object
was removed from the calculation and their total time became
the average time of the other successful pick-and-places
multiplied by 3. Accuracy was measured by counting the
number of failures, with a failure being defined as any
unsuccessful attempt to grasp an object, pick up the correct
object, or major collision. For this given task, a perfect score
is defined as 0 and the worst possible score is 3, where there
was no successful pick or place operation.

D. Farticipants

Because of limitations caused by the COVID-19 pan-
demic, participants were recruited from Northeastern’s
robotics labs. We had a total of 14 participants (14 males,
0 females) complete our study with ages ranging from 19
to 33 (M = 25.36,SD = 3.99). All participants had prior
experience with robotics. 11 of our participants had little to
no previous experience with VR and the remaining 3 had
only moderate VR gaming experience.

V. RESULTS

Wilcoxon signed-rank tests were conducted to test for
statistical significance for all the measured data.

A. Subjective

Table III presents the results from the SUS and NASA-
TLX questionnaires for both visualizations. The usability for
the Model Visualization scored much higher than the Point
Visualization and the results were found to be statistically
significant with p = 0.000122. Results for the workload were
also found to be statistically significant with p = 0.0336.

Measure Visualization Mean SD
SUS Point Cloud 69.11 17.37
Model 90.89 8.75
NASA-TLX Point Cloud 31.31 13.44
Model 26.25 13.08

TABLE III: SUS and NASA-TLX Results

B. Objective

Table IV displays the average time for each object and the
total time for each visualization and Fig. 5 displays the box
plot of the total time. The results show that participants were
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Fig. 5: Total Task Completion Times for Each Visualization.

Point Cloud Model
Item Mean SD Mean SD
Cracker Box 3:08 1:02 | 3:01 1:17
Potted Meat Can  2:24 0:42 | 2:08 0:26
Chips Can 3:17 1:37 | 2:54 1:28
Total 9:01 2:33 \ 7:59 2:22

TABLE IV: Completion Time (mm:ss) Results

faster on average for each object individually and overall
while using the Model Visualization compared to the Point
Cloud Visualization. However, the overall completion time
results were not found to be statistically significant with
p = 0.135. Furthermore, completion time results showed
that on average participants were 2 minutes and 59 seconds
faster when going from the Point Cloud Visualization to the
Model Visualization, but only 49 seconds faster on average
when going from the Model Visualization to the Point Cloud
Visualization. Additionally, participants were approximately
equally as accurate for each visualization with a slight
advantage to the Model Visualization. There were a total of
4 failures for all the Point Cloud Visualization trials, with
all four failures being object picking failures, and only 2
failures for all of the Model Visualization trials, with only
one failure being an object picking failure and the other a
major collision with the table.

VI. DISCUSSION

Overall, our subjective results show, with statistical sig-
nificance, that participants found our developed environment
reconstruction, Model Visualization, more usable and less
taxing than the more traditional visualization, Point Cloud Vi-
sualization. We also observed this with participant feedback,
which was overwhelmingly positive. Almost every single
participant used the word “fun” to describe the interface and
several remarked how intuitive the interface was after a small
learning curve that was generally caused by the unfamiliarity
of VR from many of our participants. Additionally, many
participants noted that they appreciated the object visualiza-
tion inside a waypoint when an object was currently in the
robot’s gripper and stated that it helped in placing the object
on the table.
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Unfortunately, the objective measures were not found
to be significant. However, there are trends that suggest
the Model Visualization reduces overall completion time.
It was observed that most participants appeared to feel
more comfortable and confident with the interface during
their second visualization and a few verbally shared this
observation as well. This generally resulted in lower, or at
least similar times, for the second visualization compared to
the first one, regardless of which visualization was first or
second. This speed up was much larger on average though for
participants that started with the Point Cloud Visualization
and then moved to the Model Visualization, compared to the
reverse, suggesting that the Model Visualization decreases
completion times. A larger sample set could help solidify
these trends. In addition, an alternative task that is more
dependent on accurate visualization, such as a stacking task,
could potentially show greater differences in time completion
between the two visualizations, as participants appreciated
having the grasped object displayed in the waypoint claiming
it made object placement easier. An alternative task could
also potentially alter the accuracy results as well. During
the study, several participants asked for help identifying
the objects in the scene when using the Point Cloud Visu-
alization. Participants were informed to do their best and
ultimately no mistakes were made in the object recognition,
but several participants admitted to taking a “best guess”
when identifying objects and took more time identifying
them. Less familiar or recognizable objects would likely
decrease the accuracy for the Point Cloud Visualization.

VII. CONCLUSION

This paper presented our environment reconstruction
method that creates high fidelity VR environments to rep-
resent the robot’s environment. Our work revealed that by
using our proposed system, the usability of our VR interface
is increased and the overall workload is reduced. However,
there is still additional work for further improvement, such
as evaluating the proposed system with other user groups and
investigating a combination visualization that can utilize the
environment reconstruction for known objects, but standard
visualization techniques for unknown ones. Overall, this
work helps demonstrate the feasibility of using VR to create
more natural and easy-to-use robot teleoperation interfaces.
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