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A numerical scheme is presented for the solution of Fredholm second-kind boundary 
integral equations with right-hand sides that are singular at a finite set of boundary points. 
The boundaries themselves may be non-smooth. The scheme, which builds on recursively 
compressed inverse preconditioning (RCIP), is universal as it is independent of the nature 
of the singularities. Strong right-hand-side singularities, such as 1/|r|α with α close to 1, 
can be treated in full machine precision. Adaptive refinement is used only in the recursive 
construction of the preconditioner, leading to an optimal number of discretization points 
and superior stability in the solve phase. The performance of the scheme is illustrated via 
several numerical examples, including an application to an integral equation derived from 
the linearized BGKW kinetic equation for the steady Couette flow.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Fredholm second-kind integral equations (SKIEs) have become standard tools for solving boundary value problems of 
elliptic partial differential equations [9,23,26,30,32]. Advantages include dimensionality reduction in the solve phase, elimi-
nation of the need to impose artificial boundary conditions for exterior problems, easily achieved high-order discretization, 
and optimal complexity when coupled with fast algorithms such as the fast multipole method [14].

The present work is about the numerical solution to SKIEs of the form

(I + K )ρ(r) = f (r) , r ∈ � . (1)

Here r ∈ R2 is a point in the plane; I is the identity operator; ρ is an unknown layer density to be solved for; � is a 
piecewise smooth closed contour (boundary) with a finite number of corners; K is an integral operator on � which is 
compact away from the corners; and f is a right-hand side which is singular at a finite number of boundary points, which 
may or may not coincide with the corner vertices, but otherwise smooth. The union of corner vertices and boundary points 
where f is singular is referred to as singular points. These points are denoted γ j , j = 1, 2, . . .. The kernel of K is denoted 
K (r, r′). We also assume a parameterization r(s) of � where s is a parameter.

We shall construct an efficient scheme for the numerical solution of (1). The difficulty in this undertaking is that the 
singularities in f and the non-compactness of K at the γ j may require a very large number of unknowns for the resolution 
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of ρ . This, in turn, may lead to high computing costs and also to artificial ill-conditioning and reduced achievable precision 
in quantities computed from ρ .

The nature of the singularity of f can be rather arbitrary in the applications we consider. There is no analysis of f
involved in our work and neither is there any further analysis of K . We only assume that f can be evaluated everywhere 
at � except for at the γ j . If, however, it is known whether the leading singular behavior of f is homogeneous on � in 
the shape of a wedge and whether K is scale invariant on such �, that information can be used to further improve the 
performance of our scheme.

We shall solve (1) numerically using Nyström discretization based on underlying composite 16-point Gauss-Legendre 
quadrature and the parameterization r(s) and then accelerate and stabilize the solution process using an extended version 
of the recursively compressed inverse preconditioning (RCIP) method [16]. The discretization is chiefly done on a coarse 
mesh with quadrature panels of approximately equal size. The coarse quadrature panels are chosen so that the following 
holds: all singular points γ j coincide with panel endpoints; for r on a panel close to γ j and r′ away from γ j , K (r(s), r′) is 
smooth; for r away from γ j and r′ on a panel close to γ j , K (r, r′(s)) is smooth.

The RCIP method assumes that the SKIE has a panelwise smooth right-hand side and consists of the following steps:

• Transform the SKIE at hand into a form where the layer density to be solved for is panelwise smooth.
• Use Nyström discretization to discretize the transformed SKIE on a grid on a fine mesh, obtained from the coarse mesh 

by repeated subdivision of the panels closest to each γ j .
• Compress the transformed and discretized SKIE so that it can be solved on a grid on the coarse mesh without the loss 

of information. This involves the use of a forward recursion.
• Solve the compressed equation.
• Reconstruct the solution to the original SKIE from the solution to the compressed equation. This involves the use of a 

backward recursion.

In this paper, we extend the RCIP method to treat singular right-hand sides. The method is universal since algorithmic 
steps are completely independent of the nature of the singularities in the right-hand-side function. The only information 
needed is the locations of singularities. Very strong singularities can be treated in full machine precision. Indeed, we have 
studied singularities of the form 1/|r|α for a wide range of α and our method works very well even for α = 1 + 0.3i.

We further observe that problems involving sources close to corners occur surprisingly often in computational elec-
tromagnetics and computational fluid dynamics. Examples include the determination of radiation patterns from 5G base 
stations placed at street corners [33] and singularity formation in Hele–Shaw flows driven by multipoles [31]. These prob-
lems involve nearly singular right-hand sides and can be treated easily by the method developed in this paper. The 5G base 
stations often have antennas with logarithmic singularities in their radiated field.

Examples of problems involving singular sources close to smooth surfaces can be found in the area of Internet of Things 
(IoT), where the radiation patterns from antennas, integrated in devices, again need to be found numerically for design 
purposes [10]. The most common types of IoT antennas are stripline and patch antennas. These have a radiating current 
density very close to a metallic ground plane, which often is a smooth part of the housing of the device. As IoT carrier 
frequencies get higher, antennas become smaller and the distance between the current and the housing surface shrinks – 
leading to increased need for computational resolution.

The paper is organized as follows. In Section 2, a new transformation is introduced to treat the singular right-hand side 
f . Sections 3, 4, 5, and 6 present detailed modifications to the other steps in the list that follow from the introduction of 
the new transform. Numerical examples are presented in Section 7. Finally, we discuss the application of our new method 
to the integral equation derived from the linearized Bhatnagar-Gross-Krook-Welander (BGKW) kinetic equation [5,35] for 
the steady Couette flow.

In order to keep the presentation concise, we concentrate on new development and refer the reader to the recently 
updated compendium [16] for details on the RCIP method. This compendium, in turn, contains references to original journal 
papers.

2. Transformed equation with smooth density

This section reviews the original RCIP transformation, discusses its shortcomings for singular right-hand sides f , and 
presents a new and better transformation. We frequently use the concept of panelwise smooth functions. By this we mean 
functions which can be well approximated by polynomials of degree 15 in s on individual quadrature panels. We also 
introduce the boundary subsets � j� , which refer to the four panels that are closest to a point γ j (two on each side), and 
the boundary subsets � j�� , which refer to the two panels that are closest to a point γ j (one on each side).

2.1. The original transformation

The original RCIP transformation for SKIEs of the form (1) assumes that f is a panelwise smooth function and relies on 
a kernel split
2
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K (r, r′) = K �(r, r′) + K ◦(r, r′) , r, r′ ∈ �, (2)

and a corresponding operator split

K = K � + K ◦ . (3)

In (3), the operator K � denotes the part of K that accounts for self-interaction close to the corner vertices γ j , and K ◦ is 
the compact remainder. The split (2) is determined from a geometric criterion: if r and r′ both are in � j� for some j, then 
K �(r, r′) = K (r, r′). Otherwise K �(r, r′) is zero.

The change of variables

ρ(r) = (I + K �)−1ρ̃(r) , r ∈ �, (4)

makes (1) with (3) assume the form

(I + K ◦(I + K �)−1)ρ̃(r) = f (r) , r ∈ � . (5)

When f is panelwise smooth, the transformed layer density ρ̃ in (5) will, loosely speaking, also be panelwise smooth. This 
is so since the action of K ◦ on any function results in a panelwise smooth function. In particular, ρ̃ will be smooth on � j�� . 
The panelwise smoothness of ρ̃ on � j�� , inherited from f , is the key property which makes the transformed equation (5)
efficient for the original problem (1). The efficiency comes from the fact that a panelwise smooth unknown is easy to resolve 
by panelwise polynomials.

2.2. A new transformation

When the right-hand side f in (1) is not panelwise smooth, but has singularities at the corner vertices, the transformed 
layer density ρ̃ in (5) is not panelwise smooth either. In order to fix this problem we now propose a new transformation 
of (1) which, in addition to the split of K , also splits the right-hand side f and the unknown ρ as

f (r) = f �(r) + f ◦(r) , r ∈ �, (6)

ρ(r) = v(r) + g(r) , r ∈ � . (7)

Here f �(r) = f (r) if r ∈ � j� for some j. Otherwise f �(r) is zero. The functions v and g are given by

v(r) = (I + K �)−1 ṽ(r) , (8)

g(r) = (I + K �)−1 f �(r) , (9)

where ṽ is a new unknown transformed layer density.
Use of (3), (6), (7), (8), and (9) makes (1) assume the form

(I + K ◦(I + K �)−1)ṽ(r) = f ◦(r) − K ◦(I + K �)−1 f �(r) , r ∈ � . (10)

One can see, in (10), that ṽ is panelwise smooth on � j�� . This is so since the right-hand side of (10) is smooth on � j� .
We remark that if � is smooth so that there are no corners, only singularities in f , then the local transformation (8) is 

not needed and (10) reduces to

(I + K )v(r) = f ◦(r) − K ◦(I + K �)−1 f �(r) , r ∈ � . (11)

One can also imagine mixed situations where (8) is used only at those γ j which correspond to corner vertices.

3. Discretization of (5) and (10)

This section summarizes the modifications needed in the RCIP method in order for it to apply to (10) rather than to (5). 
We first show how RCIP is applied to (5), with detailed references to [16], and then state the modifications needed for (10). 
For simplicity of presentation it is from now on assumed that there is only one singular point, denoted γ , with an associated 
four-panel neighboring zone denoted �� as illustrated in Fig. 1. We let ��� refer to the two panels closest to γ (one on each 
side).

The discretization of (5) takes place on two different meshes: on the coarse mesh and on a fine mesh. The fine mesh is 
constructed from the coarse mesh by nsub times subdividing the panels closest to γ . See the right image of Fig. 1 for an 
example. Discretization points on the coarse mesh constitute the coarse grid. Points on the fine mesh constitute the fine grid. 
The number of refinement levels, nsub, is chosen so that the operator (I + K �)−1 in (5) is resolved to a desired precision.

As mentioned in Section 1, our Nyström discretization relies on composite 16-point Gauss–Legendre quadrature. This 
means that an integral
3
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Fig. 1. A contour � with a corner at γ of opening angle θ = π/2. Left: A coarse mesh with ten quadrature panels on �. A subset of �, called �� , covers the 
four coarse panels closest to γ . Right: A fine mesh created from the coarse mesh by subdividing the panels closest to γ a number nsub = 3 of times.

∫
�

h(r)d	 ,

where h is a smooth function and d	 is an element of arc length, can be approximated by a sum on the coarse grid∫
�

h(r)d	 ≈
∑

j

h(r(scoa j ))|ṙ(scoa j )|wcoa j . (12)

Here ṙ(s) = dr(s)/ds denotes differentiation with respect to the boundary parameter s and wcoa j are appropriately scaled 
Gauss–Legendre weights. A formula, analogous to (12) but with subscripts coa replaced with subscripts fin, holds when h is 
a singular function that needs the fine grid for resolution.

3.1. Smooth right-hand side

It is shown in [16, Appendix B] that the discretization of (5) on the fine grid followed by RCIP-style compression leads 
to the system

(
Icoa + K◦

coaR
)
ρ̃coa = fcoa . (13)

Here R is a block-diagonal matrix defined as [16, Eq. (26)]

R = PT
W

(
Ifin + K�

fin

)−1 P , (14)

and the subscripts coa and fin indicate what type of mesh is used for discretization. The prolongation matrix P interpolates 
piecewise polynomial functions known at the coarse grid to the fine grid. The weighted prolongation matrix PW resembles 
P, but is designed to act on discretized functions multiplied by quadrature weights [16, Eq. (21)]. The interpolation is done 
with respect to the boundary parameter s. The superscript T denotes the transpose.

3.2. Singular right-hand side

The discretization and compression of (10) can be constructed in a manner completely analogous to that of (5) and leads 
to the system

(Icoa + K◦
coaR)ṽcoa = f◦coa − K◦

coaR f f�coa , (15)

where R is as in (14) and

R f = PT
W

(
Ifin + K�

fin

)−1 P f . (16)

The prolongation matrix P f interpolates f from the coarse grid to the fine grid and can easily be constructed from computed 
values of f on the two grids respectively. The matrix P f is block-diagonal with blocks being either identity matrices or, for 
entries corresponding to discretization points on ��� , the rectangular rank-one matrix

P��
f = 1

f��H
coa f��coa

f��finf��H
coa . (17)

Here f��fin is a column vector with values of f on the fine grid on ��� , f��coa is a column vector with values of f on the coarse 
grid on ��� , and H denotes the conjugate transpose. Clearly, P��

f f��coa = f��fin.

4. Forward recursion for R and R f

The matrices R and R f of (14) and (16) differ from the identity matrix only in that they each contain a non-trivial 
64 × 64 diagonal block, associated with entries corresponding to discretization points on �� . These diagonal blocks can be 
efficiently constructed via recursions relying on the discretization of K on small meshes on a hierarchy of boundary subsets 
�� around γ . Central to the recursions are two types of overlapping meshes called type b and type c. The type b mesh 
i

4
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Fig. 2. Top row: meshes of type b and type c on the boundary subset �� . The type b mesh has six panels. The type c mesh has four panels. Bottom row: 
the boundary subsets ��

3 = �� , ��
2, and ��

1 along with their corresponding type b meshes for nsub = 3.

contains six quadrature panels. The type c mesh contains four quadrature panels. See Fig. 2 for an illustration and [16, 
Section 7] for more information.

The recursions for R and R f , given below, use local prolongation matrices Pbc, PW bc, and P f ibc similar to the global 
matrices P, PW and P f of Section 3. The matrix Pbc performs polynomial interpolation from a grid on a type c mesh to a 
grid on a type b mesh on the same level. The matrix P f ibc interpolates f from a grid on a type c mesh to a grid on a type
b mesh on the same level. The subscript i indicates that P f ibc depends on the hierarchical level in which it appears.

The matrices Pbc and PW bc are level independent. Their construction is described in [16, Section 7.1]. The matrix P f ibc is 
constructed analogously to the matrix P f of Section 3.

4.1. The recursion for R

It is shown in [16, Appendix D] that the non-trivial diagonal 64 × 64 block of R can be obtained from the recursion

Ri = PT
W bc

(
F{R−1

i−1} + I◦b + K◦
ib

)−1
Pbc , i = 1, . . . ,nsub , (18)

with the initializer

F{R−1
0 } = I�b + K�

1b . (19)

Here Kib is the discretization of K on a type b mesh on level i in the hierarchy of local meshes around γ . The operator 
F{·} expands its matrix argument by zero-padding (adding a frame of zeros of width 16 around it). The superscripts � and 
◦ denote matrix splits analogous to the split (3).

The forward recursion (18) starts at the finest refinement level, i = 1, and ascends through the hierarchy of levels until 
it reaches the coarsest level i = nsub. The matrix Rnsub is equal to the non-trivial 64 × 64 block of R.

4.2. The recursion for R f

A recursion for the non-trivial 64 × 64 block of R f can be derived in complete analogy with the derivation of (18). See 
Appendix A for the key steps of the derivation. The result is

R f i = PT
W bc

(
F{R−1

i−1} + I◦b + K◦
ib

)−1 (
F{R−1

i−1R f (i−1)} + I◦b
)

P f ibc , i = 1, . . . ,nsub . (20)

The recursion (20) can be initialized with

R f 0 = R0 (21)

and run in tandem with (18).

4.3. Further improvement of the recursions

From (15) it is evident that the matrix R f acts only on one particular known vector, namely on f�coa. Therefore, rather 
than first finding R f via (20) and then computing the vector

r�
f = R f f�coa , (22)

one can instead modify (20) with (21) so that it produces r�
f directly

r�
f i = PT

W bc

(
F{R−1

i−1} + I◦b + K◦
ib

)−1 (
F{R−1

i−1r�
f (i−1)} + f◦ib

)
, i = 1, . . . ,nsub , (23)
5
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r�
f 0 = R f 0f�1b . (24)

The recursion (23) with (24) is a bit faster than (20) with (21).
It is also worth noting that all three recursions (18), (20), and (23) can be implemented without the explicit inversion 

of Ri−1. The key to this is to use the Schur–Banachiewicz inverse formula for partitioned matrices [21, Eq. (8)]. Avoiding 
inversion is particularly important when Ri−1 is ill conditioned. Details on an implementation for (18), free from inversion 
of Ri−1, are given in [16, Section 8].

4.4. Efficient initializers

A minor problem with the recursions (18), (20), and (23) is that it could be difficult to determine a suitable recursion 
length nsub a priori. A too large nsub leads to unnecessary work. A too small nsub fails to resolve the problem. Should it, 
however, happen that K is scale-invariant on wedges, there may be an easy way around this problem. The key observation 
is that for large nsub and at levels i such that nsub − i � 1, the matrices K◦

ib have often converged to a matrix K◦
b (in double 

precision arithmetic) that is independent of i. This, typically, happens for nsub − i > 60 and means that (18) assumes the 
form of a fixed-point iteration

R∗i = PT
W bc

(
F{R−1

∗(i−1)
} + I◦b + K◦

b

)−1
Pbc , i = 1,2, . . . . (25)

It also means that all Ri in (18) are the same for nsub − i � 1. In view of the above one can replace the initializer R0 of (19)
with the fixed-point matrix R∗ obtained by running (25) until convergence. With the choice R0 = R∗ , it is enough to take 
nsub = 60 steps in the recursion (18). See, further, the discussion in [16, Sections 12–13].

In a procedure similar to that just described, it is also possible to replace the initializers R f 0 and r�
f 0 of (21) and (24)

with more efficient initializers. The requirements are, in addition to that K is scale invariant on wedges, that the leading 
singular behavior of f is homogeneous on wedges. If this holds, and if nsub − i � 1, then (20) assumes the form of a linear 
fixed-point iteration

R f ∗i = PT
W bc

(
F{R−1∗ } + I◦b + K◦

b

)−1 (
F{R−1∗ R f ∗(i−1)} + I◦b

)
P f bc , i = 1,2, . . . . (26)

The fixed-point matrix R f ∗ can be found with direct methods solving a Sylvester equation. With the choices R f 0 = R f ∗ and 
r�

f 0 = R f ∗f�1b it is enough to take nsub = 60 steps in the recursions (20) and (23).
We remark that efficient initializers can be found also under more general conditions on K than scale invariant on 

wedges. See [17, Section 5.3], for an example.

5. Computing integrals of ρ

Often, in applications, one is not primarily interested in the solution ρ to (1) in itself. Rather, one is interested in 
computing functionals of ρ of the type

q =
∫
�

h(r)ρ(r)d	 , (27)

where h(r) is a smooth function. The RCIP method offers an elegant way to do this that only involves quantities appearing 
in the compressed equations (13) and (15).

Assume that f is smooth and consider (13). The quantity q of (27) can then be well approximated by the sum on the 
coarse grid

q ≈
∑

j

h(r(scoa j ))ρ̂coa j |ṙ(scoa j )|wcoa j , (28)

where ρ̂coa j are elements of the weight-corrected density vector

ρ̂coa = Rρ̃coa . (29)

See [16, Appendix C] for a proof.
The situation for a singular f and (15) is completely analogous. The expression (28) holds with (29) replaced by

ρ̂coa = Rṽcoa + r� . (30)
f

6
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6. Backward recursion for the reconstruction of ρ

When the compressed equation (15) has been solved for ṽcoa one might also be interested in the reconstruction of the 
discretized solution

ρfin = vfin + gfin (31)

to the original SKIE (1), compare (7). Such a reconstruction can be achieved by, loosely speaking, running the recursions (18)
and (20) backward on �� . Outside of �� , the coarse grid and the fine grid coincide and it holds that ρ = v = ṽ, see (7), (8), 
and (9).

6.1. The recursion for vfin

We first review the reconstruction of ρfin from the solution ρ̃coa to (13). The mechanism for this reconstruction was 
originally derived in [15, Section 7] and is also summarized in [16, Section 10]. The backward recursion reads

�ρcoa,i =
[

Ib − K◦
ib

(
F{R−1

i−1} + I◦b + K◦
ib

)−1
]

Pbcρ̃coa,i , i = nsub, . . . ,1 . (32)

Here ρ̃coa,i is a column vector with 64 elements. In particular, ρ̃coa,nsub
is the restriction of ρ̃coa to �� , while ρ̃coa,i are taken 

as elements {17 : 80} of �ρcoa,i+1 for i < nsub. The elements {1 : 16} and {81 : 96} of �ρcoa,i are the reconstructed values of 
ρfin on the outermost panels of a type b mesh on ��

i .
When the recursion is completed, there are no values assigned to ρfin at points on the four innermost panels (on ��

1
closest to γ ) on the fine grid. Reconstructed weight-corrected values of ρfin on these panels can then be used, rather than 
true values, and are obtained from

R0ρ̃coa,0 . (33)

We now observe that the reconstruction of vfin from the solution ṽcoa to (15) is identical to the reconstruction just 
described. This is so since both ρ̃ of (5) and ṽ of (10) are panelwise smooth functions.

6.2. The recursion for gfin

The backward recursion for gfin from f�coa is analogous to (32), but the vector �gcoa,i , corresponding to �ρcoa,i in (32), needs 
a split in a singular and a panelwise smooth part on a type b mesh on each ��

i

�gcoa,i = �g smo
coa,i + fib . (34)

The backward recursion can then be written

�g smo
coa,i =

[
Ib − K◦

ib

(
F{R−1

i−1} + I◦b + K◦
ib

)−1
]

Pbcg̃ smo
coa,i

− K◦
ib

(
F{R−1

i−1} + I◦b + K◦
ib

)−1 (
F{R−1

i−1r�
f (i−1)} + f◦ib

)
, i = nsub, . . . ,1 . (35)

Here g̃ smo
coa,i is a column vector with 64 elements. In particular, g̃ smo

coa,nsub
= 0 while g̃ smo

coa,i are taken as elements {17 : 80} of 
�gcoa,i+1 for i < nsub. The elements {1 : 16} and {81 : 96} of �gcoa,i in (34) are the reconstructed values of gfin on the outermost 
panels of a type b mesh on ��

i . The reconstructed weight-corrected values of gfin on the four innermost panels on the fine 
grid are obtained from

R0g̃ smo
coa,0 + r�

f 0 . (36)

7. Numerical examples

We now demonstrate the efficiency of our numerical scheme for (1). The scheme consists of the compressed equa-
tion (15), the recursions (18), (23), (32), and (35), and initializers obtained from (25) and (26). The code is implemented in
Matlab, release 2020b, and executed on a 64 bit Linux laptop with a 2.10 GHz Intel i7-4600U CPU. The implementations are 
standard and rely on built-in functions such as dlyap (SLICOT subroutine SB04QD), for the Sylvester equation. Large linear 
systems are solved using GMRES, incorporating a low-threshold stagnation avoiding technique [19, Section 8] applicable 
to systems coming from discretizations of SKIEs. The GMRES stopping criterion is set to machine epsilon in the estimated 
relative residual.
7
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7.1. A transmission problem for Laplace’s equation

7.1.1. Test equation and test geometry
We solve the SKIE (1) with an integral operator K defined by its action on ρ as

Kρ(r) = 2λ

∫
�

∂G

∂ν
(r, r′)ρ(r′)d	′ , r ∈ � . (37)

Here λ is a parameter set to λ = 0.5, ν(r) is the exterior unit normal at position r on �, ∂/∂ν = ν(r) · ∇ , G(r, r′) is the 
fundamental solution to Laplace’s equation in the plane

G(r, r′) = − 1

2π
log |r − r′| , (38)

and � is the closed contour with a corner at γ = 0 parameterized as

r(s) = sin(π s) (cos((s − 0.5)θ), sin((s − 0.5)θ)) , s ∈ [0,1] , (39)

where θ corresponds to the opening angle of the corner. With the particular choice (37) for K , the SKIE (1) can model a 
transmission problem for Laplace’s equation [16, Section 4].

In our experiments we shall use a coarse mesh that is sufficiently refined as to resolve (1) away from γ , vary the number 
of distinct recursion steps nsub, and monitor the convergence of the scalar quantity q of (27) with h(r) = 1. For comparison 
we compute q in two ways: first on the coarse grid via (28) and with ρ̂coa from (30), then on the fine grid via

q ≈
∑

j

ρfin j |ṙ(sfin j )|wfin j (40)

and with ρfin from (31).

7.1.2. Example with an analytical solution
We start with an example where the corner opening angle is set to θ = π . Then � of (39) becomes a circle with a 

circumference of π . The right-hand side of (1) is set to

f (r) = 1

	α(r)
+ 1

(π − 	(r))α
, r ∈ � . (41)

Here α is a possibly complex parameter with 
e{α} < 1, controlling the strength of the singularity at γ , and 	(r) is the 
distance from γ to r measured in arc length along � as the circle is traversed in a counterclockwise fashion. The solution 
ρ to (1) can in this example be computed analytically

ρ(r) = f (r) + 2λπ−α

(1 − α)(1 − λ)
, r ∈ �, (42)

as can the quantity q:

q = 2π(1−α)

(1 − α)(1 − λ)
. (43)

Note that ρ(r) of (42) diverges everywhere on � as α → 1− , so there is no solution for α = 1. Neither is there a finite limit 
value of q. If �m{α} 
= 0 is fixed, however, then there is a limit solution ρ(r) and a finite limit value of q as 
e{α} → 1− .

Fig. 3 shows results obtained with 10 quadrature panels on the coarse mesh on �, corresponding to 160 discretization 
points on the coarse grid, and for various singularity strengths α. For α < 1 and not too close to 1, the results produced by 
our scheme are essentially fully accurate. Values of q computed on the coarse grid (qcoa) and on the fine grid (qfin) agree 
completely – indicating that the reconstruction procedure of Section 6 is stable.

Note, in Fig. 3(d), that for α = 1 + 0.3i, which corresponds to a singular right-hand side f that is not even in L1, the 
scheme loses only about two digits of accuracy. Note also that, thanks to the use of initializers, a number nsub = 60 of 
distinct recursion steps is more than enough to make q converge (to the achievable precision) for all values of α tested in 
Fig. 3.

7.1.3. A one-corner example
We now consider an example where the corner opening angle in (39) is set to θ = π/2. The contour � then assumes 

the shape shown in Fig. 1. The right-hand side of (1) is set to

f (r) = 1
α

+ log |r| , r ∈ � . (44)
|r|
8



J. Helsing and S. Jiang Journal of Computational Physics 448 (2022) 110714
Fig. 3. Convergence of q with the number of distinct recursion levels nsub in the example of Section 7.1.2. The singularity strengths α of (41) are taken as: 
(a) α = 0.5; (b) α = 0.94; (c) α = 0.99; (d) α = 1 + 0.3i.

Fig. 4, analogous to Fig. 3, shows results obtained with 160 discretization points on the coarse grid on � and for various 
singularity strengths α. In the absence of an analytical expression for q we use, as a reference, the value of qcoa obtained 
with nsub = 500. For example, with α = 0.94 this value is q ≈ 63.53529437281905 and could be compared to the value 
q ≈ 63.53529437281894, obtained with 29,088 discretization points on the fine grid on � using the L1-norm-preserving 
Nyström discretization of Askham and Greengard [4, Section 4], which extends the L2-inner-product-preserving discretiza-
tion of Bremer [6, Section 2], in combination with compensated summation [22,25]. Since the relative difference between 
these two reference values is on the order of our own error estimate in Fig. 4(b), we believe that our error estimates are 
reliable also in Fig. 4(c,d), where the norm-preserving discretization cannot be used due to memory constraints.

We add that the execution of our code is very rapid. The computing time, per data point, in Fig. 4 varies with nsub and 
also differs between qcoa and qfin, but it is much less than a second for all the data points shown.

7.2. The exterior Dirichlet Helmholtz problem

The exterior Dirichlet problem for the Helmholtz equation has been considered in [16, Section 18] in detail. Here we use 
this problem to illustrate that its solution U (r) can be found accurately in the entire computational domain also when the 
right-hand side f (r) is singular or nearly singular. The integral representation of U (r) and the resulting boundary integral 
equation (a combined field integral equation) are identical to those in [16, Section 18]. The boundary � is given by (39)
with θ = π/2. We consider two cases

(a) Singular right-hand side
The exact solution is

U (r) = H (1)
(ω|r|) (45)
0

9
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Fig. 4. Convergence of q with the number of distinct recursion levels nsub in the example of Section 7.1.3. The singularity strengths α of (44) are taken as: 
(a) α = 0.5; (b) α = 0.94; (c) α = 0.99; (d) α = 1 + 0.3i.

with f (r) being the restriction of U (r) to �. Here ω is the wavenumber and H (1)
0 is the first-kind Hankel function of 

order zero, that is, the field is generated by an acoustic monopole right at the corner.
(b) Nearly singular right-hand side

The exact solution is

U (r) = H (1)
1 (ω|r − r′|) x − x′

|r − r′| , (46)

with f (r) being the restriction of U (r) to �, and r′ = (10−10, 0). That is, the field is generated by an acoustic dipole 
very close to the corner.

The integral equation [16, Eq. (68)] is solved with ω = 10 using the method in this paper, the singular point is taken as 
γ = 0 both for (a) and for (b). For both cases, the coarse grid on � has 56 panels, i.e., 896 discretization points; the number 
of refinement levels is set to nsub = 112; and the number of GMRES iterations needed is 18. The field is evaluated using 
the scheme in [16, Section 20]. The solve phase takes about 4 seconds, while the field evaluation takes about 100 seconds, 
which can be accelerated via the fast multipole method [8] when necessary. A Cartesian grid of 200 ×200 equispaced points 
is placed on the rectangle [−0.1, 1.1] × [−0.53, 0.53] and evaluations are carried out at those 27,760 grid points that are in 
the exterior domain. For case (a), 5,088 target points activate local panelwise evaluation for close panels; 920 target points 
close to the corner vertex require that the solution ρfin on the fine grid is reconstructed using the backward recursion in 
Section 6. For case (b), the numbers are 6,364 and 1,326, respectively.

Fig. 5 shows the absolute error in the numerical solution, demonstrating that our scheme achieves high accuracy in 
the entire computational domain for both singular and nearly singular right-hand sides. The small difference in achievable 
accuracy between (a) and (b) can chiefly be explained by that (b) has a stronger singularity in the right-hand side f (r) than 
has (a) and is, thus, harder to resolve.
10
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Fig. 5. log10 of absolute error in the solution U (r) to the exterior Dirichlet Helmholtz problem. The blue curve is the boundary �. Left: U (r) is an acoustic 
monopole field with the source at r′ = (0, 0) shown as a red star. Right: U (r) is an acoustic dipole field with the source at r′ = (10−10, 0) shown as a green 
star. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

8. Application to the linearized BGKW equation for the Couette flow

In this section, we revisit the integral equation that is derived from the linearized BGKW equation for the steady Couette 
flow [7,24,27]

u(x) − 1

k
√

π

0.5∫
−0.5

J−1

( |x − y|
k

)
u(y)dy = f (x) , x ∈ [−0.5,0.5] , (47a)

f (x) = 1

2
√

π

[
J0

(
0.5 − x

k

)
− J0

(
0.5 + x

k

)]
, (47b)

where the parameter k is the Knudsen number and Jn is the nth order Abramowitz function defined by

Jn(x) =
∞∫

0

tne−t2−x/t dt , n ≥ −1 . (48)

See, for example, [13] and references therein for the properties of Abramowitz functions and an accurate numerical scheme 
for their evaluation. The BGKW equation has been studied in [24], where it is shown that the solution of (47a) contains 
singular terms (x ln x)n for n ∈ N := {1, 2, . . .} at the endpoints. It is known that the kernel function J−1(x) has both 
absolute value and logarithmic singularities at x = 0, and that the right-hand-side function (47b) has x ln x singularity at the 
endpoints. Benchmark calculations have been carried out in [24], using dyadic refinement towards the endpoints to treat the 
singularities of the solution and the right-hand-side function, and generalized Gaussian quadrature [28] to treat the kernel 
singularities.

We have implemented the method of this paper, based on (10), to solve (47a). We note that both endpoints are sin-
gular points and there is only one side to each singular point, since we are dealing with an open arc instead of a closed 
contour. This leads to straightforward modifications in the method and its implementation. Some implementation details 
are as follows. First, the kernel-split quadrature is applied to treat the kernel singularity: the correction to the logarithmic 
singularity was done in [15]; the correction on diagonal blocks for the absolute value singularity can be derived easily in an 
identical manner; the splitting of the kernel into various parts is done using either the series expansion of the Abramowitz 
function [1] or the Chebyshev expansion for each part as in [29]. When the Knudsen number is low, the kernel is sharply 
peaked at the origin. A modified version of the upsampling scheme in [2] is used to resolve the sharp peak of the kernel 
accurately and efficiently so that the coarse panels only need to resolve the features of the solution. Here the modification is 
that the exact centering in [2] is not enforced for local adaptive panels for each target. Instead, the so-called level-restricted 
property [11], i.e., sizes of adjacent panels can differ at most by a factor of 2, is used to ensure the accuracy in the cal-
culation of the integrals. We remark that the cost of the upsampling scheme is O (log(1/k)) as k → 0, the same as that 
in [2].

Second, it is observed numerically that the condition number of the integral equation (47a) increases as k decreases, 
reaching about 2 · 104 for k = 0.003. On the other hand, the solution u(x) approaches the asymptotic solution uasym(x) = x
as k → 0. Thus, in order to reduce the effect of the ill-conditioning of the integral equation for small values of k, we write 
u(x) = w(x) + x and solve the following equation for w(x) instead when k ≤ 0.3:
11
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Table 1
The velocity u at x = 0.5 at sample values of the Knudsen number k. Note that in [24], the 
interval is shifted from [−0.5, 0.5] to [0, 1]. Thus, the velocity u at x = 0.5 is listed as u at x = 1
in Tables 1 and 2 in [24].

k u(0.5) in [24] u(0.5) (current) Error

0.003 4.978915352789693·10−1 4.978915352789726·10−1 6.6·10−15

0.01 4.930697807742208·10−1 4.930697807742217·10−1 1.8·10−15

0.03 4.800058682766829·10−1 4.800058682766837·10−1 1.6·10−15

0.1 4.412246409722421·10−1 4.412246409722424·10−1 6.3·10−16

0.3 3.672125695500504·10−1 3.672125695500499·10−1 1.4·10−15

1.0 2.518613399894732·10−1 2.518613399894736·10−1 1.5·10−15

2.0 1.852462993740218·10−1 1.852462993740218·10−1 1.5·10−16

3.0 1.504282444992075·10−1 1.504282444992074·10−1 3.7·10−16

5.0 1.126351880294592·10−1 1.126351880294592·10−1 2.5·10−16

7.0 9.171689613521435·10−2 9.171689613521428·10−2 7.6·10−16

10.0 7.292211299328497·10−2 7.292211299328491·10−2 7.6·10−16

30.0 3.381357342231838·10−2 3.381357342231840·10−2 6.2·10−16

100.0 1.343072948081877·10−2 1.343072948081874·10−2 1.9·10−15

Table 2
The stress Pxy at sample values of the Knudsen number k.

k Pxy in [24] Pxy (current) Error

0.003 −1.490909702131201·10−3 −1.490909702131188·10−3 8.7·10−15

0.01 −4.900405009657547·10−3 −4.900405009657524·10−3 4.8·10−15

0.03 −1.413798601526842·10−2 −1.413798601526841·10−2 4.9·10−16

0.1 −4.155607782558620·10−2 −4.155607782558619·10−2 3.3·10−16

0.3 −9.344983511356682·10−2 −9.344983511356685·10−2 3.0·10−16

1.0 −1.694625753368226·10−1 −1.694625753368225·10−1 3.3·10−16

2.0 −2.083322536749375·10−1 −2.083322536749375·10−1 0.0
3.0 −2.266437497658084·10−1 −2.266437497658084·10−1 0.0
5.0 −2.446632678455994·10−1 −2.446632678455994·10−1 0.0
7.0 −2.536943539674479·10−1 −2.536943539674479·10−1 0.0
10.0 −2.611624603488405·10−1 −2.611624603488405·10−1 0.0
30.0 −2.743853873277227·10−1 −2.743853873277228·10−1 2.0·10−16

100.0 −2.796682147138912·10−1 −2.796682147138912·10−1 2.0·10−16

w(x) − 1

k
√

π

0.5∫
−0.5

J−1

( |x − y|
k

)
w(y)dy = h(x) , x ∈ [−0.5,0.5] , (49a)

h(x) = − k√
π

[
J1

(
0.5 − x

k

)
− J1

(
0.5 + x

k

)]
. (49b)

Since w(x) is a small perturbation when k is small, the inaccuracy in the calculation of w(x) has almost no effect on the 
overall accuracy of u(x). This allows us to achieve the machine precision for all physical quantities of interest for a much 
wider range of the Knudsen number k than reported in [24].

We have repeated the calculations in [24] using the current method. For all values of k, the computational domain 
[−0.5, 0.5] is divided into four coarse panels; nsub is set to 41; and the GMRES stopping criterion is set to machine epsilon. 
Tables 1–3 list the values of the velocity u at x = 0.5, the stress P xy [24, Eq. (43)] and the half-channel mass flow rate Q
[24, Eq. (42)] at sample values of the Knudsen number k, where the second column contains the values in [24], the third 
column contains the values using the current method, and the last column shows the relative difference between these 
values. Here u(0.5) is obtained via the backward recursion in Section 6, P xy and Q are calculated using the velocity on the 
coarse grid with the kernel-split quadrature applied to treat the logarithmic singularity of J0(x) at x = 0 in P xy . It is clear 
that the numerical results agree with those in [24] to machine precision for all sample values of k.

The current method is much more efficient as compared with the one used in [24]. For k = 0.003, the computation 
takes about 0.05 second of CPU time; and for k = 10, the computational time becomes unmeasurable with Matlab’s cputime
command for a single run, i.e., less than 0.01 second. In [24], the timing results are 62.8 and 23.9 seconds, respectively. 
The RCIP method eliminates the dyadic refinement towards the endpoints in the solve phase, and the upsampling scheme 
allows us to use such coarse panels that they only need to capture the features of the solution. The combination of these 
two techniques enables us to use the optimal number of discretization points for constructing the system matrix. The full 
machine precision accuracy of the current method completely removes the need of using quadruple precision arithmetic. 
Finally, the preconditioner R also reduces the number of GMRES iterations. Indeed, the number of GMRES iterations required 
is at most 6 for all sample values of k, whereas 430 was reported in [24] for k = 0.003. All of this results in a significant 
reduction in the computational cost, i.e., a speedup of at least a factor of 1000.
12
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Table 3
The half-channel mass flow rate Q at sample values of the Knudsen number k.

k Q in [24] Q (current) Error

0.003 1.242445655299172·10−1 1.242445655299167·10−1 4.4·10−15

0.01 1.225330275292623·10−1 1.225330275292621·10−1 1.8·10−15

0.03 1.180147037188893·10−1 1.180147037188893·10−1 1.2·10−16

0.1 1.057028408172292·10−1 1.057028408172292·10−1 2.6·10−16

0.3 8.560111699820618·10−2 8.560111699820613·10−2 4.9·10−16

1.0 5.804708735555459·10−2 5.804708735555460·10−2 2.4·10−16

2.0 4.281659776113917·10−2 4.281659776113918·10−2 1.6·10−16

3.0 3.489298506190833·10−2 3.489298506190833·10−2 2.0·10−16

5.0 2.627042060967383·10−2 2.627042060967383·10−2 1.3·10−16

7.0 2.147460412330841·10−2 2.147460412330841·10−2 1.6·10−16

10.0 1.714449048590649·10−2 1.714449048590649·10−2 2.0·10−16

30.0 8.043009085700258·10−3 8.043009085700263·10−3 6.5·10−16

100.0 3.226757181742400·10−3 3.226757181742397·10−3 9.4·10−16

9. Concluding remarks

Finding efficient solvers for SKIEs on non-smooth boundaries is a field with substantial recent activity. However, almost 
all existing methods only work well for smooth right-hand sides and may also involve a fair amount of operator-specific 
analysis and precomputed quantities. In contrast, the method constructed in this paper for singular and nearly singular 
right-hand sides computes all intermediary quantities needed on-the-fly and only involves a bare minimum of analysis.

The extension of the current method to multiple right-hand sides can be carried out easily. The compressed inverse R
is independent on f and needs only to be computed once, while the compressed inverse R f depends on f and needs to 
be computed afresh for each new f . The setup cost of R f for each additional f can, furthermore, be reduced since several 
of the matrices entering into the forward recursion for R f are independent of f and can be stored after they have been 
computed on-the-fly. A similar situation holds in the backward recursions for ρ on the fine grid – should that quantity be 
needed.

In a certain sense, the work completes the RCIP method in two dimensions since the splitting into a smooth part 
and a local singular part is carried out on both sides of the integral equation. The RCIP method can be generalized to three 
dimensions. In [20], the RCIP method was extended to solve a boundary integral equation on the surface of a cube. In [18], it 
was extended to solve boundary integral equations on axially symmetric surfaces. In a recent talk [12], an RCIP-type scheme 
for discretizing corner and edge singularities in three dimensions was discussed. For general surfaces in three dimensions, 
the extension of the RCIP is more or less straightforward when the geometry admits a local hierarchical discretization near 
the corner and edge singularities; and the extension of the work in this paper should follow subsequently.
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Appendix A. Derivation of the forward recursion formula (20) for R f

First, we prove the following lemma.

Lemma 1. Suppose that A is an invertible m × m matrix, B is an n × n matrix, U is an n × m matrix, and V is an m × n matrix with 
m ≥ n. Suppose further that UA−1V and A + VBU are both invertible. Then

U(A + VBU)−1V = (
(UA−1V)−1 + B

)−1
, (A.1)

U(A + VBU)−1 = (
(UA−1V)−1 + B

)−1
(UA−1V)−1UA−1. (A.2)
13
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Fig. A.6. Meshes of type a, type b, and type c at different levels. The type a mesh contains 4 + 2i dyadic fine panels at level i. The type b mesh always 
contains six panels, and the type c mesh always contains four panels. At level 1, the type a mesh is identical to the type b mesh. At level nsub, the type c
mesh contains four coarse panels on �� in Fig. 1.

Proof. Introduce a complex parameter λ and consider (A + λVBU)−1. When λ is sufficiently small, the following Taylor 
expansion is valid

(A + λVBU)−1 = A−1 − λA−1VBUA−1 + λ2A−1VBUA−1VBUA−1 − . . . , (A.3)

Mutiplying both sides of (A.3) with U from the left and with V from the right and regrouping, we obtain

U(A + λVBU)−1V = UA−1V − λ
(
UA−1V

)
B

(
UA−1V

)
+ λ2 (

UA−1V
)

B
(
UA−1V

)
B

(
UA−1V

) − . . .

=
((

UA−1V
)−1 + λB

)−1
,

(A.4)

where the second equality follows from the application of the Taylor expansion in the reverse order. By the cofactor formula 
of the matrix inverse and the so-called big formula for the matrix determinant [34], both sides of (A.4) are rational functions 
of λ. Since these two rational functions are equal in a small neighborhood of the origin in the complex plane, they must 
be equal everywhere in the whole complex plane by analytic continuation [3]. Setting λ = 1 in (A.4), we establish (A.2) and 
the invertibility of (UA−1V)−1 + B simultaneously. (A.2) can be proved in an almost identical manner. �

We now recall the definition of R f in (16)

R f = PT
W

(
Ifin + K�

fin

)−1 P f , (A.5)

where K�
fin is the system matrix built on a fine mesh that is obtained via nsub level of dyadic refinement of the four coarsest 

panels (with two panels on each side) near the singular point. Let ngl be the number of Gauss-Legendre nodes on each 
panel. Then the total number of discretization points on the fine mesh is ngl(4 + 2nsub). Clearly, direct application of (A.5)
is very expensive, inaccurate, and unrobust. Instead, the forward recursion is used to compute R f . The forward recursion 
starts from the finest six panels around the singular point at level i = 1, adds one panel on each side as the level goes up, 
and reaches the full fine mesh at level i = nsub. See Fig. A.6 for an illustration of three different types of meshes at different 
levels, where the type a mesh is needed only in the derivation of the forward recursion. The actual recursion formula 
involves only type b and type c meshes. To be more precise, at any step in the forward recursion, one only needs to build 
a system matrix of size 6ngl × 6ngl, i.e., on the six panels of a type b mesh, and the type c mesh is used only implicitly in 
the construction of the prolongation matrix P and its weighted version PW . Similar to [16, Eq. (D.1)], we define

R f i := PT
W iac(Iia + Kia)

−1P f iac, i = 1, · · · ,nsub. (A.6)

By the action of P f iac and PT
W iac, R f i is always a matrix of size 4ngl × 4ngl at any level i. A derivation similar to that of [16, 

Eq. (D.6)] leads to

R f i = PT
W bcPT

W iab(Iia + F{K(i−1)a} + PiabK◦
ibPT

W iab)
−1P f iabP f ibc, (A.7)

where we have assumed that the low-rank property

K◦
ia = PiabK◦

ibPT
W iab (A.8)

holds to machine precision, as in [16, Eq. (D.3)]. Since the type a mesh differs from the type b mesh only on the two panels 
(i.e., ���) closest to the singular point in the type b mesh, the only diagonal blocks in Piab and PW iab that are not identity 
ib

14
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Fig. A.7. Nonzero patterns of F{R−1
i−1} and F{R f (i−1)} (left), K◦

ib (center), and I◦b (right). Note that the patterns depend on the fact that when constructing 
the system matrix in the forward recursion, the sources and targets are arranged in the order from the top panel to the bottom panel on a type b mesh, 
see Fig. A.6.

matrices are Piab(I��ia , I��ib ) and PW iab(I��ia , I��ib ), respectively. Here I��ia and I��ib contain indices corresponding to discretization 
points in ���

ib on type a and type b meshes, respectively. Now it is straightforward to verify that (A.8) is equivalent to

Kia(I��ia , I◦ib) = Piab(I��ia , I��ib )Kib(I��ib , I◦ib) ,

Kia(I◦ib, I��ia ) = Kib(I◦ib, I��ib )PT
W iab(I��ib , I��ia ) ,

(A.9)

where I◦ib contains indices corresponding to discretization points on �◦
ib, that is, on the two outermost panels from γ . 

Since ���
ib is always well-separated from �◦

ib for any level i, (A.9) is equivalent to stating that the kernel function K (r, r′)
is smooth when r ∈ ���

ib and r′ ∈ �◦
ib, or vice versa, and thus the interaction between ���

ib and �◦
ib can be discretized to 

machine precision with ngl points on each panel in ���
ib provided that ngl is not too small. This holds for all kernels we 

have encountered in practice, including, say, highly oscillatory ones, if the coarse mesh is chosen in such a way that the 
oscillations of the kernel are well-resolved. We emphasize that this is a property of the kernel function K (r, r′) and the type
a and b meshes. It has nothing to do with the singularity of the right-hand side f .

Applying (A.2) to part of the right-hand side of (A.7), we obtain

PT
W iab(Iia + F{K(i−1)a} + PiabK◦

ibPT
W iab)

−1 =[(
PT

W iab(Iia + F{K(i−1)a})−1Piab

)−1 + K◦
ib

]−1

·
(

PT
W iab(Iia + F{K(i−1)a})−1Piab

)−1
PT

W iab(Iia + F{K(i−1)a})−1.

(A.10)

Recall that [16, Eq. (D.10)] states that

F{Ri−1} + I◦b = PT
W iab(Iia + F{K(i−1)a})−1Piab. (A.11)

We observe that F{Ri−1} places Ri−1 in the center 4ngl × 4ngl block with zero padding in a 6ngl × 6ngl matrix, and the 
nonzero blocks of I◦b are the identity matrix of size ngl in the top and bottom diagonal blocks (Fig. A.7). Thus,

F{R−1
i−1} + I◦b = (

F{Ri−1} + I◦b
)−1

=
(

PT
W iab(Iia + F{K(i−1)a})−1Piab

)−1
.

(A.12)

Similarly,

F{R f (i−1)} = F{PT
W (i−1)ac(I(i−1)a + K(i−1)a)

−1P f (i−1)ac}
= PT

W iab(Iia + F{K(i−1)a})−1P f iab − I◦b,
(A.13)

where the second equality uses 
(
PT

W iabP f iab
)◦ = I◦b. Combining (A.7), (A.10)–(A.13), we obtain

R f i = PT
W bc

(
F{R−1

i−1} + I◦b + K◦
ib

)−1 (
F{R−1

i−1} + I◦b
)(

F{R f (i−1)} + I◦b
)

P f ibc. (A.14)

Finally, we arrive at (20) by observing that(
F{R−1

i−1} + I◦b
)(

F{R f (i−1)} + I◦b
) = F{R−1

i−1R f (i−1)} + I◦b, (A.15)

due to the nonzero patterns of the involved matrices shown in Fig. A.7.
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