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Abstract: We study how conserved quantities such as angular momentum and center of
mass evolve with respect to the retarded time at null infinity, which is described in terms
of aBondi–Sachs coordinate system. These evolution formulae complement the classical
Bondi mass loss formula for gravitational radiation. They are further expressed in terms
of the potentials of the shear and news tensors. The consequences that follow from
these formulae are (1) Supertranslation invariance of the fluxes of the CWY conserved
quantities. (2)A conservation lawof angularmomentumà laChristodoulou. (3)Aduality
paradigm for null infinity. In particular, the supertranslation invariance distinguishes the
CWY angular momentum and center of mass from the classical definitions.

1. Introduction

In this article, we study the evolution of angular momentum and center of mass at null
infinity of asymptotically flat vacuumspacetimes. These evolution formulae complement
the classical Bondi mass loss formula for gravitational radiations. We are particularly
interested in the total flux of angular momentum and center of mass.

For a good notion of conserved quantities, one expects that the total flux is indepen-
dent of the choice of coordinate systems. However, as indicated by Penrose [19], the
notion of “angular momentum carried away by gravitational radiation” can be shifted
by supertranslations, an infinite dimensional symmetry at null infinity. Such ambiguity
has been a crucial obstacle to a clear understanding of conserved quantities at null in-
finity. In this article, we consider both the classical and the Chen–Wang–Yau (CWY)
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[4] definitions for angular momentum and center of mass at null infinity. A key result is
the supertranslation invariance of the flux of the CWY angular momentum and center of
mass. This invariance distinguishes the CWY definitions from the classical definitions.

Consider the future null infinity I + of an asymptotically flat spacetime, which is
described in terms of a Bondi–Sachs coordinate system. I + is identified with I × S2,
where I ⊂ (−∞,+∞) is an interval parametrized by the retarded time u and S2 is the
standard unit 2-sphere equipped with the standard round metric σAB . Let m denote the
mass aspect, NA the angular momentum aspect,CAB the shear tensor, and NAB the news
tensor of I +. One can view m as a smooth function, NA a smooth one-form, and CAB
and NAB smooth symmetric traceless 2-tensors (with respect to σAB) on S2 that depend
on u. In particular, ∂uCAB = NAB . See a brief description of I + in the Bondi–Sachs
coordinates and the definitions of these quantities in Sect. 2.

All integrals in this paper on the sphere are taken over the standard two-sphere S2

with the standard round metric σAB . We take the standard formulae for energy and linear
momentum:

E =
∫
S2
2m

Pk =
∫
S2
2mX̃k, k = 1, 2, 3

(1.1)

where X̃ k, k = 1, 2, 3 are the standard coordinate functions on R
3 restricted to the unit

sphere S2.
Furthermore, we consider the classical angular momentum

J̃ k =
∫
S2

εAB∇B X̃
k[NA − 1

4
C D

A ∇BCDB], (1.2)

and the classical center of mass

C̃k =
∫
S2

∇ A X̃k[NA − u∇Am − 1

4
C D

A ∇BCDB − 1

16
∇A(CDEC

DE )], (1.3)

where ∇A denotes the covariant derivative with respect to σAB , and εAB denotes the
volume form of σAB and k = 1, 2, 3. The indexes are raised, lowered, and contracted
with respect to σAB . Our definition is that of Dray–Streubel [12]. See Section III.B of
Flanagan–Nichols [13] for details.

Remark 1.1. In the above definitions of conserved quantities, we omit the constant 1
8π .

Furthermore, we consider the CWY angular momentum J k and center of mass Ck as
the limits of the CWY quasi-local angular momentum and center of mass [4,5] on I +

evaluated in [15].

J k =
∫
S2

εAB∇B X̃
k
(
NA − 1

4
CAB∇DC

DB − c∇Am

)

Ck =
∫
S2

∇ A X̃k
[
NA − u∇Am − 1

4
CAB∇DC

DB − 1

16
∇A

(
CDECDE

)
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−c∇Am + 2εAB(∇Bc)m

]

+
∫
S2
3X̃ kcm − 1

4
X̃ k∇AF

AB∇DFDB

where c and c are the potentials of CAB , as given in (2.9) and F AB = 1
2 (εAD∇B∇Dc +

εBD∇A∇Dc). For definiteness, the potentials are assumed to be supported in the � ≥ 2
modes.

In Theorem 11 and Theorem 16 of [15], it is shown that J k and Ck

E are the limit of the
Chen–Wang–Yau quasi-local angular momentum and center of mass (omitting constant
1/8π ) under the zero linear momentum assumption

∫
S2
m(u, x)X̃ i = 0. (1.4)

The CWY angular momentum and center of mass modify the classical definitions as
follows:

J k = J̃ k −
∫
S2

εAB∇B X̃
kc∇Am

Ck = C̃k +
∫
S2

∇ A X̃k
(
−c∇Am + 2εAB(∇Bc)m

)

+
∫
S2
3X̃ kcm − 1

4
X̃ k∇AF

AB∇DFDB

(1.5)

The correction terms come from solving the optimal isometric embedding equation
in the theory of Wang–Yau quasilocal mass [25,26] and are non-local. They provide
the reference terms that are critical in the Hamiltonian approach of defining conserved
quantities. See [16] for a definition of angular momentum in the context of perturbations
of Kerr, in which the referencing is achieved by the uniformization theorem.

The ten conserved quantities (E, Pk, J̃ k, C̃k), or (E, Pk, J k,Ck), are functions on
I that depend on the retarded time u. We compute the derivatives of these conserved
quantities with respect to u. In particular, for the classical angular momentum and center
of mass, we obtain

Theorem 1.2. The classical angular momentum J̃ k and center of mass C̃k , k = 1, 2, 3
evolve according to the following:

∂u J̃
k = 1

4

∫
S2

[
εAE∇E X̃

k(CAB∇DN
BD − NAB∇DC

BD) + X̃ kεAB(C D
A NDB)

]
,

(1.6)

∂uC̃
k = 1

4

∫
S2

[
∇ A X̃k

(u
2
∇A|N |2 + CAB∇DN

BD − NAB∇DC
BD

)]
. (1.7)

The evolution formulae (1.6) and (1.7) can be further expressed in terms of the
potentials of CAB and NAB :
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Theorem 1.3. Suppose c and c are the potentials of CAB and n and n are the potentials
of NAB, as given in (2.9) and (2.10), then

∂u J̃
k = 1

8

∫
S2

X̃ k([c,�(� + 2)n]1 + [c,�(� + 2)n]1)

∂uC̃
k = 1

8

∫
S2

X̃ k
(
u[((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n]

+ [(� + 2)c, (� + 2)n]2 + [(� + 2)c, (� + 2)n]2
)
,

(1.8)

where [·, ·]1 is the Poisson bracket on S2 defined in (4.1) and [·, ·]2 is another bracket
on S2 defined in (4.2).

The Bondi–Metzner–Sachs (BMS) group acts on I +. It includes supertranslations
which we will review in further details in Sect. 5. The ambiguity of supertranslations has
presented an essential difficulty to understanding the structure of I + since the 1960s.
Among (m, NA,CAB, NAB), only NAB is a supertranslation invariant quantity. It is nat-
ural to ask whether total flux of angular momentum is invariant under a supertranslation.
For the classical angular momentum, we prove that

Corollary 1.4 (Theorem 5.1). Suppose I + extends from u = −∞ to u = +∞ and the
news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u → ±∞,

then the total flux of the classical angular momentum J̃ k is supertranslation invariant
if and only if

lim
u→+∞m(u, x) − lim

u→−∞m(u, x) (1.9)

is supported in the l ≤ 1 modes.

In particular, if limu→+∞ m(u, x) − limu→−∞ m(u, x) contains l ≥ 2 modes, the
total flux of the classical angular momentum will depend on the supertranslation. This
demonstrates how the total flux of the classical angular momentum can be shifted by a
supertranslation. On the other hand, we show that the CWY angular momentum is free
of such supertranslation ambiguity.

Theorem 1.5 (Theorem 5.4). Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u → ±∞.

Then the total flux of J k is supertranslation invariant.

Remark 1.6. In the above statement, supertranslation invariantmeans that it is equivariant
under ordinary (l = 1) translation and is invariant under higher mode (l ≥ 2) of the
supertranslation. See the statement of Theorem 5.4 for further details.

We also show that the invariance under supertranslation distinguishes the CWY cen-
ter of mass from the classical center of mass. Indeed, the total flux of the classical
center of mass is invariant under supertranslation if and only if limu→+∞ m(u, x) −
limu→−∞ m(u, x) is a constant function on S2. On the other hand, the total flux of the
CWY center of mass is always supertranslation invariant. See the statement of Theo-
rem 5.5.
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Next, we show that if a spacetime admits a Bondi–Sachs coordinate system with
vanishing news tensor, then (E, Pk, J k,Ck) are constant (independent of the retarded
time u) and supertranslation invariant. See the statement of Theorem 6.2 for further
details.

While our focus is on the study of angular momentum and center of mass in a
Bondi–Sachs coordinate system, we show that the evolution formulae for the classical
angular momentum can be carried over to the framework of the stability of Minkowski
spacetime [9] if we take Rizzi’s definition of angular momentum [20,21]. This provides
a conservation law of angular momentum that complements the conservation law for
linear momentum of Christodoulou [7, Equation (13)].

Another natural consequence of (1.8) is a duality paradigm among sets of null infinity
data (m, NA,CAB, NAB), through replacing the potentials (c, c, n, n) by (−c, c,−n, n).

Corollary 1.7. Given a set of null infinity data (m, NA,CAB, NAB) defined on [u1, u2]×
S2, there exists a dual set of null infinity data (m∗, N∗

A,C∗
AB, N∗

AB) that has the same
(classical) energy, linear momentum, angular momentum, and center-of-mass.

These are dual sets of null infinity data that are indistinguishable in terms of the
classical conserved quantities.

The paper is organized as follows. In Sect. 2, we introduce the definitions and in-
tegration by parts formulae used throughout the paper. The flux of classical conserved
quantities is computed in Sect. 3 and is rewritten in terms of the potentials in Sect. 4.
The aforementioned consequences of flux formulae are presented in Sects. 5 to 7. In
the last section, we consider the case of quadrupole moment radiation. With the future
theoretical and numerical investigation in mind, we express the flux formulae in terms
of the spherical harmonics expansion of potentials explicitly.

2. Background Information

In this section, we describe the Bondi–Sachs coordinate system and recall several useful
formulae for functions and tensors on S2.

2.1. Bondi–Sachs coordinates. In terms of a Bondi–Sachs coordinate system (u, r, x2,
x3), near I + of a vacuum spacetime, the metric takes the form

gαβdx
αdxβ = −UVdu2 − 2Ududr + r2hAB(dx A +W Adu)(dx B +WBdu).

(2.1)

The index conventions here are α, β = 0, 1, 2, 3, A, B = 2, 3, and u = x0, r = x1.
See [2,17] for more details of the construction of the coordinate system.

The metric coefficients U, V, hAB ,W A of (2.1) depend on u, r, θ, φ, but det hAB
is independent of u and r . These gauge conditions thus reduce the number of metric
coefficients of a Bondi–Sachs coordinate system to six (there are only two independent
components in hAB). On the other hand, the boundary conditions U → 1, V → 1,
W A → 0, hAB → σAB are imposed as r → ∞ (such boundary conditions may not
be satisfied in a radiative spacetime). Here σAB denotes a standard round metric on S2.
The special gauge choice implies a hierarchy among the vacuum Einstein equations, see
[14,17].

Assuming the outgoing radiation condition [2,17,22], the boundary condition and the
vacuum Einstein equation imply that as r → ∞, all metric coefficients can be expanded
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in inverse integral powers of r .1 In particular (see Chrusciel–Jezierski–Kijowski [10,
(5.98)–(5.100)] for example),

U = 1 − 1

16r2
|C |2 + O(r−3),

V = 1 − 2m

r
+

1

r2

(
1

3
∇ ANA +

1

4
∇ ACAB∇DC

BD +
1

16
|C |2

)
+ O(r−3),

W A = 1

2r2
∇BC

AB +
1

r3

(
2

3
N A − 1

16
∇ A|C |2 − 1

2
CAB∇DCBD

)
+ O(r−4),

hAB = σAB +
CAB

r
+

1

4r2
|C |2σAB + O(r−3)

where m = m(u, x A) is the mass aspect, NA = NA(u, x A) is the angular aspect and
CAB = CAB(u, x A) is the shear tensor of this Bondi–Sachs coordinate system. Note that
our convention of angular momentum aspect differs from that of Chrusciel–Jezierski–
Kijowski [10], NA = −3NA(C JK ). Here we take norm, raise and lower indices of tensors
with respect to the metric σAB . We also define the news tensor NAB = ∂uCAB .

2.2. Integral formulae on 2-sphere. Let σAB be the standard round metric on S2 with
respect to which the indexes of tensors are raised or lowered. Let ∇A be covariant
derivative with respect to σAB . Let εAB be the volume form. The following identity

εABεCD = σACσBD − σADσBC (2.2)

and its contraction

εABεA
C = σBC (2.3)

will be used frequently.
The curvature formula on S2 gives

∇A∇B∇Cu − ∇B∇A∇Cu = σAC∇Bu − σBC∇Au

for a smooth function u on S2. In particular, we have

∇D∇D∇Au = ∇A(� + 1)u

εAB∇A∇B∇Cu = ε B
C ∇Bu.

(2.4)

Let X̃ k, k = 1, 2, 3 be the restriction to S2 of the standard coordinate functions in
R
3. It is well-known that they are eigenfunctions for σAB :

�X̃ k = −2X̃ k .

X̃ k also satisfies the Hessian equation

∇A∇B X̃
k = −X̃ kσAB . (2.5)

1 The outgoing radiation condition assumes the traceless part of the r−2 term in the expansion of hAB
is zero. The presence of this traceless term will lead to a logarithmic term in the expansions of W A and V .
Spacetimes with metrics which admit an expansion in terms of r− j logi r are called “polyhomogeneous" and
are studied in [11]. They do not obey the outgoing radiation condition or the peeling theorem [23], but they
do appear as perturbations of the Minkowski spacetime by the work of Christodoulou–Klainerman [9].
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In general, an eigenfunction f with

� f = −�(� + 1) f (2.6)

is said to be of mode �. We need the following integration by parts lemma:

Lemma 2.1. Suppose u and v are smooth functions on S2 of mode m and n respectively.
Then ∫

S2
X̃ kεAB∇Au∇Bv = 0

unless m = n.

Proof. Integrating by parts, we obtain
∫
S2

X̃ kεAB∇Au∇Bv =
∫
S2

(Y A∇Av)u,

where Y A = εAB∇B X̃k is a rotation Killing field. Since � commutes with Y A∇A,
Y A∇Av is of the same mode as v. 	

The following integrating by parts formulae will be useful in the later sections.

Lemma 2.2. For any smooth functions u, v on S2, we have
∫
S2

X̃ kεAB∇A(�u)∇Bv =
∫
S2

X̃ kεAB∇Au∇B(�v) (2.7)
∫
S2

X̃ kεAB∇A∇Du∇B∇Dv = −
∫
S2

X̃ kεAB∇Au∇B(� + 2)v. (2.8)

Proof. We prove the second formula and the first formula follows similarly. Integrating
by parts the left hand side, we obtain

−
∫
S2

∇D X̃
kεAB∇Au∇B∇Dv −

∫
S2

X̃ kεAB∇Au∇D∇B∇Dv

Integrating the first term by parts again, we obtain
∫
S2

∇B∇D X̃
kεAB∇Au∇Dv −

∫
S2

X̃ kεAB∇Au∇D∇B∇Dv

By (2.4), this is equal to

−
∫
S2

X̃ kεAB∇Au∇Bv −
∫
S2

X̃ kεAB∇Au∇B(� + 1)v.

	

Lemma 2.3. For any smooth function u on S2, we have

∫
S2

[2∇A∇Bu∇ A∇Bu − (�u)2] =
∫
S2
u�(� + 2)u

∫
S2

X̃ i [2∇A∇Bu∇ A∇Bu − (�u)2] =
∫
S2

X̃ i [(� + 2)u]2.
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Proof. We use the following formulae in the derivation

�|∇u|2 = 2|∇2u|2 + 2∇u · ∇(� + 1)u

�(u2) = 2|∇u|2 + 2u�u

�(u�u) = (�u)2 + 2∇u · ∇(�u) + u�2u.

We prove the second formula and the first one follows similarly. Integrating by parts
twice gives

∫
S2

X̃ i∇A∇Bu∇ A∇Bu =
∫
S2
u∇ A∇B(X̃ i∇A∇Bu)

We compute

∇ A∇B(X̃ i∇A∇Bu)

= (∇ A∇B X̃ i )∇A∇Bu + 2∇B X̃ i∇ A∇A∇Bu + X̃ i∇ A∇B∇A∇Bu

= −X̃ i�u + 2∇B X̃ i∇B(� + 1)u + X̃ i�(� + 1)u

= X̃ i�2u + 2∇B X̃ i∇B(� + 1)u

,

where we use ∇ A∇A∇Bu = ∇B(� + 1)u.
On the other hand, we have the identity:

2∇Bu∇Bv = �(uv) − u�v − v�u

and thus

2∇B X̃ i∇B(� + 1)u = �(X̃ i (� + 1)u) − X̃ i�(� + 1)u + 2X̃ i (� + 1)u.

Putting all together gives:

∫
S2

X̃ i∇A∇Bu∇ A∇Bu

=
∫
S2

X̃ i�2u +
∫

u[�(X̃ i (� + 1)u) − X̃ i�(� + 1)u + 2X̃ i (� + 1)u]

=
∫
S2

X̃ i [(�u)2 + 2u�u + 2u2].

Therefore,

∫
S2

X̃ i [2∇A∇Bu∇A∇Bu − (�u)2] =
∫
S2

X̃ i [(�u)2 + 4u�u + 4u2] =
∫
S2

X̃ i [(� + 2)u]2.
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2.3. Closed and co-closed decomposition. In this subsection, we consider symmetric
traceless 2-tensors CAB and NAB on S2 with the decomposition (see [15, Appendix B]
for a derivation)

CAB = ∇A∇Bc − 1

2
σAB�c +

1

2
(ε E

A ∇E∇Bc + ε E
B ∇E∇Ac) (2.9)

NAB = ∇A∇Bn − 1

2
σAB�n +

1

2
(ε E

A ∇E∇Bn + ε E
B ∇E∇An) (2.10)

for smooth functions c, c, n, n on S2 that are referred as potentials of CAB and NAB .
The potentials are unique up to their 0 and 1 mode. In the case we consider when CAB
and NAB depend on u, all c, c, n, n depend on u as well.

Proposition 2.4. Closed and co-closed parts of a symmetric traceless 2-tensors on S2

are dual to each other in the following sense.

(1) Denote the space of symmetric traceless 2-tensors on S2 by Ŝym. Then the map
ε2 : Ŝym → Ŝym, ε2(CAB) = ε D

A CDB satisfies

ε2(∇A∇Bc − 1

2
σAB�c) = 1

2
(ε E

A ∇E∇Bc + ε E
B ∇E∇Ac), (2.11)

ε2

(
1

2
(ε E

A ∇E∇Bc + ε E
B ∇E∇Ac)

)
= −∇A∇Bc +

1

2
σAB�c. (2.12)

(2) The following identity holds for symmetric traceless 2-tensors

ε B
D ∇DCBA = ε D

A ∇BCBD. (2.13)

In other words, we have a commutative diagram of isomorphisms

Ŝym
ε2−−−−→ Ŝym⏐⏐�div

⏐⏐�div

1 ∗−−−−→ 
1,

where 
1 denotes the space of 1-forms and (∗ω)A = ε B
A ωB is the Hodge star on

1-forms.

Proof. Weuse (2.2) and (2.3) in the derivation. Since εABε2(CAB) = 0 andσ ABε2(CAB)

= 0, ε2(CAB) is symmetric and traceless. In particular,

ε D
A CDB = 1

2
(ε D

A CDB + ε D
B CDA) (2.14)

and (2.11) and (2.12) follow by direct computation.
To verify (2.13), note that both sides are equal to ∇DCDE after contracted with

εA
E . 	

In the following two lemmas, we express several integrals involving the shear tensor

and the news tensor in terms of their potentials. These formulae will help us to derive
Theorem 1.3 from Theorem 1.2.
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Lemma 2.5. Suppose Y A is either ∇ A X̃k or εAB∇B X̃k , and CAB and NAB are given
by (2.9) and (2.10), then

∫
S2
Y ACAB∇DN

BD

= −1

4

∫
S2
Y A[(� + 2)n∇A(� + 2)c + (� + 2)n∇A(� + 2)c]

+
1

4

∫
S2
Y Aε D

A [∇D((� + 2)c)(� + 2)n − ∇D((� + 2)c)(� + 2)n]

(2.15)

Proof. First of all, note that

∇BY ACAB = 0, εBD∇DY
ACAB = 0.

From

∇DN
BD = 1

2
∇B(� + 2)n +

1

2
εBD∇D(� + 2)n,

we integrate by parts to get
∫
S2
Y ACAB∇DN

BD = −1

2

∫
S2
Y A(∇BCAB(� + 2)n + εBD∇DCAB(� + 2)n).

By (2.13)

εDB∇DCBA = εAD∇BC
BD

and ∇BCBD = 1
2∇D(� + 2)c + 1

2ε
BD∇B(� + 2)c, we obtain the desired

formula. 	

The above generalizes the integral identities derived in [15, (65), (66)]:

∫
S2
Y AFB

A ∇DFDB = 0,
∫
S2
Y AFB

A∇DFDB = 0

for Y A = εAB∇B X̃k .
Skew-symmetrizing (2.15), we obtain:

∫
S2
Y A(CAB∇DN

BD − NAB∇DC
BD)

= 1

4

∫
S2
Y A[(� + 2)c∇A(� + 2)n − (� + 2)n∇A(� + 2)c]

+
1

4

∫
S2
Y A[(� + 2)c∇A(� + 2)n − (� + 2)n∇A(� + 2)c]

+
1

4

∫
S2
Y Aε D

A ∇D[(� + 2)c(� + 2)n − (� + 2)c(� + 2)n].

(2.16)

Next we prove
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Lemma 2.6.∫
S2

NABN
AB = 1

2

∫
S2
n�(� + 2)n + n�(� + 2)n

∫
S2

X̃ k NABN
AB = 1

2

∫
S2

X̃ k
[
((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n

]
.

Proof. Using the formula ε C
A εBD = δ B

A σCD − δ D
A σCB and εABεAE = σ BE , we

compute that

NABN
AB = ∇A∇Bn∇ A∇Bn − 1

2
(�n)2 + ∇A∇Bn∇ A∇Bn − 1

2
(�n)2

+ 2εAC∇A∇Bn∇C∇Bn
(2.17)

Integrating by parts yields
∫
S2

εAC∇A∇Bn∇C∇Bn = −
∫
S2

εAC∇B∇A∇Bn∇Cn

= −
∫
S2

εAC∇A(� + 1)n∇Cn = 0

The first formula now follows from the first formula in Lemma 2.3. The second
formula follows from the second and third formula in Lemma 2.3. 	


The second formula of Lemma 2.6 can be polarized and we obtain

∫
S2

X̃ kCABN
AB Z = 1

2

∫
S2

X̃ k
[
(� + 2)c(� + 2)n + (� + 2)c(� + 2)n

− 2εAB(∇Ac∇B(� + 2)n + ∇An∇B(� + 2)c)
] (2.18)

3. Evolution of Conserved Quantities

In this section,we compute the evolution of the classical angularmomentumand center of
mass. These formulae will be used to calculate the total flux of the conserved quantities.

Let’s first review the evolution of the metric under the Einstein equation. It is well-
known (see [10, (5.102)] for example) that the evolution of the mass aspect function is
given by

∂um = −1

8
NABN

AB +
1

4
∇ A∇BNAB . (3.1)

The modified mass aspect function m̂ is defined to be [24]

m̂ = m − 1

4
∇ A∇BCAB = m − 1

8
�(� + 2)c (3.2)

and satisfies

∂um̂ = −1

8
NABN

AB . (3.3)
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Therefore,

∂u E = −1

4

∫
S2

NABN
AB

∂u P
k = −1

4

∫
S2

X̃ k NABN
AB, k = 1, 2, 3.

We also recall the evolution of NA (see [10, (5.103)] for example):

∂u NA = ∇Am − 1

4
∇D(∇D∇ECEA − ∇A∇ECED)

+
1

4
∇A(CBE N

BE ) − 1

4
∇B(CBDNDA) +

1

2
CAB∇DN

DB .

The formula can be rewritten in the following form:

Proposition 3.1. The angular momentum aspect NA evolves according to

∂u NA =∇Am +
1

4
εAB∇B(εPQ∇P∇ECEQ) +

1

8
∇A(CBE N

BE )

+
1

8
εAB∇B(εPQC E

P NEQ) +
1

2
CAB∇DN

DB .

(3.4)

Proof. We rewrite the terms− 1
4∇D(∇D∇ECEA−∇A∇ECED) and− 1

4∇B(CBDNDA).
First we check the following identity directly:

εAB∇B(εPQ∇P∇ECEQ) = −∇D(∇D∇ECEA − ∇A∇ECED).

As for the term C D
B NDA, we use the following general formulae for symmetric

traceless 2-tensors on the 2-sphere:

C D
B NDA + N D

B CDA = (CDE N
DE )σAB

C D
B NDA − ND

B CDA = −(εPQC E
P NEQ)εAB

Therefore,

2C D
B NDA = (CDE N

DE )σAB − (εPQC E
P NEQ)εAB .

	

Equation (3.4) is indeed equivalent to equation (4) on page 48 of [8]. We apply (3.4)

to derive the evolution of the classical angular momentum and center of mass.

Theorem 3.2 (Theorem 1.2). The classical angular momentum and center of mass
evolve according to the following:

∂u J̃
k = 1

4

∫
S2

[
εAE∇E X̃

k(CAB∇DN
BD − NAB∇DC

BD) + X̃ kεAB(C D
A NDB)

]
,

(3.5)

∂uC̃
k = 1

4

∫
S2

[
∇ A X̃k

(u
2
∇A|N |2 + CAB∇DN

BD − NAB∇DC
BD

)]
, (3.6)

where k = 1, 2, 3.
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Proof. By (1.2),

∂u J̃
k =

∫
S2

εAB∇B X̃
k[∂u NA − 1

4
∂u(C

D
A ∇BCDB)].

First, we deal with the term 1
4εAB∇B(εPQ∇P∇ECEQ) on the right hand side of (3.4)

and claim that

∫
S2
Y AεAB∇B(εPQ∇P∇ECEQ) = 0 (3.7)

for Y A = ∇ A X̃k or εAB∇B X̃k . Integrating by parts, the integral becomes

∫
S2

εAB∇ AY B(εPQ∇P∇ECEQ).

Since εPQ∇P∇ECEQ = − 1
2�(� + 2)c and εAB∇ AY B is zero or 2X̃ k , the integral

vanishes.
Hence, we obtain

∂u J̃
k

=
∫
S2

εAB∇B X̃
k
[
1

8
εAE∇E (εPQC E

P NEQ) +
1

2
CAB∇DNDB − 1

4
∂u(C D

A ∇BCDB)

]

since the integral of ∇Am + 1
8∇A(CBE N BE ) against εAB∇B X̃k vanishes. Integrating by

parts the first term and use εABεAE = δBE , we obtain the desired formula.

We now turn to the formula for C̃k . By (1.3) and (3.7),

∂uC̃
k

=
∫
S2

∇A X̃k
[
∂u NA − ∇Am +

u

8
∇A|N |2 − 1

4
∂u(C D

A ∇BCDB) − 1

16
∇A∂u(CDEC

DE )

]

=
∫
S2

∇A X̃k
[u
8
∇A|N |2 + 1

8
∇A(CBE N

BE ) +
1

2
CAB∇DNDB

− 1

4
∂u(C D

A ∇BCDB) − 1

16
∇A∂u(CDEC

DE )
]

since the integral of 1
8εAB∇B(εPQC E

P NEQ) against ∇ A X̃k vanishes. We arrive at the
desired formula since ∂u(CDECDE ) = 2(CBE N BE ). 	


4. Evolution Formulae in Terms of Potentials

In this section, we rewrite the evolution formulae in terms of the potentials of the shear
and the news tensor.
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4.1. Energy and linear momentum. First we recall the formulae for the energy and linear
momentum.

Proposition 4.1. Suppose CAB and NAB are given as in (2.9) and (2.10), we have

∂u E = −1

8

∫
S2

[n�(� + 2)n + n�(� + 2)n]

∂u P
k = −1

8

∫
S2

X̃ k[((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n].

Proof. These follow from Lemma 2.6. 	


4.2. Proof of Theorem 1.3. We first prove the following Proposition:

Proposition 4.2. The evolution formulae of the conserved quantities can be written as

∂u J̃
k = 1

8

∫
S2

X̃ kεAB[∇Ac∇B�(� + 2)n + ∇Ac∇B�(� + 2)n]

∂uC̃
k = 1

8

∫
S2
u X̃k[((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n]

+
1

16

∫
S2

[X̃ k(�(� + 2)c(� + 2)n − �(� + 2)n(� + 2)c)]

+
1

16

∫
S2

[X̃ k(�(� + 2)c(� + 2)n − �(� + 2)n(� + 2)c].

Proof. We write

4∂u J̃
k =

∫
S2

−X̃ kεABC D
B NDA +

∫
S2
Y A
k (CAB∇DN

BD − NAB∇DC
BD) = (1) + (2)

and compute (1) and (2) separately.
Note that (1) = − ∫

S2 X̃
kε2(CAB)N AB and recall that ε2(CAB) has potentials −c

and c. Applying (2.18), we get

(1) = − 1

2

∫
S2

X̃ k[−(� + 2)c(� + 2)n + (� + 2)c(� + 2)n

+
∫
S2

εAB(∇Ac∇B(� + 2)n − ∇An∇B(� + 2)c)]

= − 1

2

∫
S2

X̃ k[−(� + 2)c(� + 2)n + (� + 2)c(� + 2)n]

−
∫
S2

X̃ kεAB[∇Ac∇B(� + 2)n − ∇An∇B(� + 2)c]

= − 1

2

∫
S2

X̃ k[−(� + 2)c(� + 2)n + (� + 2)c(� + 2)n]

−
∫
S2

X̃ kεAB[∇Ac∇B(� + 2)n + ∇Ac∇B(� + 2)n]

where we used (2.7) in the last equality.
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Applying (2.16) to Y A = Y A
k , we have

(2) = 1

2

∫
S2

X̃ kεAB[∇A(� + 2)c∇B(� + 2)n + ∇A(� + 2)c∇B(� + 2)n]

+
1

2

∫
S2

X̃ k[(� + 2)c(� + 2)n − (� + 2)c(� + 2)n]

Therefore,

(1) + (2) = −
∫
S2

X̃ kεAB[∇Ac∇B(� + 2)n + ∇Ac∇B(� + 2)n]

+
1

2

∫
S2

X̃ kεAB[∇A(� + 2)c∇B(� + 2)n + ∇A(� + 2)c∇B(� + 2)n]

= 1

2

∫
S2

X̃ k[εAB∇A�c∇B(� + 2)n + ∇A�c∇B(� + 2)n
]
,

and the desired formula follows by (2.7).
As for the evolution of the center of mass, we apply (2.15) and note that

∫
S2

∇ A X̃kε D
A ∇D[(� + 2)c(� + 2)n + (� + 2)c(� + 2)n] = 0.

Therefore,

∂uC̃
k = 1

8

∫
S2
u X̃k[((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n]

− 1

16

∫
S2

[∇ A X̃k(∇A(� + 2)c(� + 2)n − ∇A(� + 2)n(� + 2)c)]

− 1

16

∫
S2

[∇ A X̃k(∇A(� + 2)c(� + 2)n − ∇A(� + 2)n(� + 2)c]

= 1

8

∫
S2
u X̃k[((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n]

+
1

16

∫
S2

X̃ k[�(� + 2)c(� + 2)n − �(� + 2)n(� + 2)c]

+
1

16

∫
S2

X̃ k[�(� + 2)c(� + 2)n − �(� + 2)n(� + 2)c]

	

To obtain the formulae given in Theorem 1.3, we rewrite the above formulae in terms

of bracket operators on S2.

Definition 4.3. For two smooth functions u and v on S2, denote

[u, v]1 = εAB∇Au∇Bv (4.1)

and

[u, v]2 = 1

2
((�u)v − (�v)u). (4.2)
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In view of Definition 4.3, we can write

∂u J̃
k = 1

8

∫
S2

X̃ k([c,�(� + 2)n]1 + [c,�(� + 2)n]1)

and similarly for the center of mass. This proves Theorem 1.3.

5. Supertranslation Invariance of the Total Flux

5.1. Total flux of classical conserved quantities. We study the effect of supertranslation
on the total flux of conserved quantities along null infinity or, equivalently, the difference
of conserved quantities at timelike infinity and spatial infinity. As in the previous section,
suppose I = (−∞,∞) and I + is complete extending from spatial infinity (u = −∞)
to timelike infinity (u = +∞). A supertranslation is a change of coordinates (ū, x̄ A) →
(u, x A) such that u = ū+ f (x), x A = x̄ A onI +. Letm,CAB , and NAB denote the mass
aspect, the shear, and the news, respectively, in the (u, x A) coordinate system. Since
the spherical coordinate is unchanged, we use x to denote either x A or x̄ A throughout
this section. It is well-known (see [10, (C.117) and (C.119)] for example) that the shear
C̄AB(ū, x), and the news N̄AB(ū, x) in the (ū, x) coordinate system are given by

C̄AB(ū, x) = CAB(ū + f (x), x) − 2∇A∇B f + � f σAB (5.1)

N̄AB(ū, x) = NAB(ū + f (x), x) (5.2)

We assume that there exists a constant ε > 0 such that

NAB(u, x) = O(|u|−1−ε) as u → ±∞. (5.3)

Note that the limits of the shear tensor exist

lim
u→±∞CAB(u, x) = CAB(±)

as a result of (5.3).
Similarly, (5.3) implies that the limits of the angular momentum exist

lim
u→±∞ J̃ k(u) = J̃ k(±).

Denote the corresponding quantities after supertranslation by J̃ kf (±).

Let Y A = εAB∇B X̃k . By (3.5), the total angular momentum flux is

J̃ k(+) − J̃ k(−)

= 1

4

∫ +∞
−∞

∫
S2

[
Y A

(
CAB∇DN BD − NAB∇DC

BD
)
+ X̃kεABC D

A NDB

]
(u, x)dS2du

= 1

4

∫ +∞
−∞

∫
S2

[
−∇DY

ACABN
BD + Y A

(
−∇DCABN

BD − NAB∇DC
BD

)]
(u, x)dS2du

+
1

4

∫ +∞
−∞

∫
S2

X̃kεAB(C D
A NDB)(u, x) dS2du

(5.4)
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in the (u, x) coordinates and

J̃ kf (+) − J̃ kf (−) = 1

4

∫ +∞

−∞

∫
S2

[
−∇DY

AC̄AB N̄
BD

+Y A
(
−∇DC̄AB N̄

BD − N̄AB∇DC̄
BD

)]
(ū, x)dS2dū

+
1

4

∫ +∞

−∞

∫
S2

X̃ kεAB(C̄ D
A N̄DB)(ū, x) dS2dū

(5.5)

in the (ū, x) coordinates.
Applying the chain rule on (5.1) yields

∇DC̄AB(ū, x) = NAB(ū + f, x)∇D f + (∇DCAB)(ū + f, x) − ∇DFAB,

∇DC̄
BD(ū, x) = N BD(ū + f, x)∇D f + (∇DC

BD)(ū + f, x) − ∇B(� + 2) f.

To simplify notation, we introduce the u independent symmetric traceless 2-tensor

FAB = 2∇A∇B f − � f σAB

and thus ∇DFBD = ∇B(� + 2) f .
Equation (5.5) can be rewritten as

J̃ kf (+) − J̃ kf (−)

= 1

4

∫ ∞

−∞

∫
S2

[
−∇DY

A(CAB − FAB)N BD + Y AωA

]
(ū + f, x)dS2dū

+
1

4

∫ +∞

−∞

∫
S2

[
X̃ kεAB

(
C D

A − FD
A

)
NDB

]
(ū + f, x) dS2dū

(5.6)

where

ωA(u, x) = ( − NAB(u, x)∇D f − ∇DCAB + ∇DFAB
)
N BD(u, x)

− NAB(u, x)
(
N BD(u, x)∇D f + ∇DC

BD(u, x) − ∇DF
BD(x)

)
.

Note that the integrand is evaluated at (ū + f, x) in Eq. (5.6), to which the change of
variable will be applied.

By the decaying assumption of the news (5.3), we can apply change of variable
u = ū + f to (5.6) and rewrite it as

J̃ kf (+) − J̃ kf (−)

= 1

4

∫ +∞

−∞

∫
S2

[
−∇DY

A(CAB − FAB)N BD

+Y AωA + X̃ kεAB
(
C D

A − FD
A

)
NDB

]
(u, x)dS2du

(5.7)

Combining (5.4) and (5.7), we obtain
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(
J̃ kf (+) − J̃ kf (−)

)
−

(
J̃ k(+) − J̃ k(−)

)

= 1

4

∫ ∞

−∞

∫
S2

−Y A|N |2∇A f dS2du

+
1

4

∫ ∞

−∞

∫
S2

[
−Y AFAB∇DN

BD + Y ANAB∇DF
BD − X̃ kεAB FD

A NDB

]
dS2du

where we used the identity 2NABN BD = |N |2δDA .
Observe that the second integral is of the same form as ∂u J̃ given in (3.5) and one

can thus simplify it as in the proof of Proposition 4.2 to get
(
J kf (+) − J kf (−)

)
−

(
J k(+) − J k(−)

)

= 1

4

∫ ∞

−∞

∫
S2

f Y A∇A|N |2dS2du +
1

4

∫ ∞

−∞

∫
S2

X̃ kεAB∇An∇B�(� + 2) f dS2du

Integrating by parts, we arrive at
(
J̃ kf (+) − J̃ kf (−)

)
−

(
J̃ k(+) − J̃ k(−)

)

= 1

4

∫ +∞

−∞

∫
S2

f Y A∇A
(|N |2 − �(� + 2)n

)
dS2du

=
∫
S2

−2 f Y A∇A(m(+) − m(−))dS2

(5.8)

where

m(±) = lim
u→±∞m(u, x).

Here we used the mass loss formula (3.1) in the form ∂um = 1
8�(� + 2)n − 1

8 |N |2.
Note that m(+) − m(−) is of the same mode as Y A∇A(m(+) − m(−)) because Y A is a
Killing field.

In summary, we obtain a necessary and sufficient condition for the total flux of the
classical angular momentum to be supertranslation invariant.

Theorem 5.1. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u → ±∞.

The total flux of the classical angular momentum J̃ k is supertranslation invariant if and
only if

m(+) − m(−)

(as a function on S2) is supported in the l ≤ 1 modes.
Moreover, the above condition holds when the rescaled curvature components P (see

Definition A.5) at I + satisfy

lim
u→∞ P − lim

u→−∞ P (5.9)

is supported in the l ≤ 1 modes.
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Remark 5.2. Theorem 5.1 is motivated by the investigation in [7], which is built on the
framework of stability of Minkowski spacetime. Indeed, equation (11) and (12) of [7]

Z+ − Z− = ∇� div
(
�+ − �−) = Z+ − Z−

imply limu→∞ c(u, x) = limu→−∞ c(u, x). Using moreover (10) of [7]

�� = −2(F − F̄),

we get

∇A
(
8F − �(� + 2)c|+∞−∞

) = 0.

Moreover, the total flux of the classical center of mass is supertranslation invariant
under the same condition

Theorem 5.3. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u → ±∞,

The total flux of the classical center of mass C̃k is supertranslation invariant if and only
if

m(+) − m(−)

is a constant function on S2.

Proof. Denoting C̃k(±) = limu→±∞ C̃k(u), by (3.6) we have

C̃k(+) − C̃k(−)

= 1

4

∫ +∞

−∞

∫
S2
u|N |2(u, x)X̃ k + ∇ A X̃k

[
CAB∇DN

BD − NAB∇DC
BD

]
(u, x) dS2du.

(5.10)

On the other hand,

C̃k
f (+) − C̃k

f (−)

= 1

4

∫ +∞

−∞

∫
S2
ū|N̄ |2(ū, x)X̃ k + ∇ A X̃k

[
C̄AB∇D N̄

BD − N̄AB∇DC̄
BD

]
(ū, x) dS2dū.

Proceed in the same way as in the case of angular momentum, we obtain
(
C̃k

f (+) − C̃k
f (−)

)
−

(
C̃k(+) − C̃k(−)

)

= 1

4

∫ +∞

−∞

∫
S2

−X̃ k |N |2 f − ∇ A X̃k |N |2∇A f dS2du

+
1

4

∫ +∞

−∞

∫
S2

∇ A X̃k(−2∇A∇B f + � f σAB)∇DN
BD

+ ∇ A X̃k NAB∇B(� + 2) f dS2du

We simplify the second integral as
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∫
S2

−2X̃ k∇A f ∇DN
AD + 2∇ A X̃k∇A f ∇B∇DN

BD − 2∇ A X̃k∇BNAB · f

=
∫
S2
2

(
∇ A X̃k∇A f ∇B∇DN

BD + X̃ k∇ A∇BNAB · f
)

and the mass loss formula ∂um = 1
4∇ A∇BNAB − 1

8 |N |2 implies that

(
C̃k

f (+) − C̃k
f (−)

)
−

(
C̃k(+) − C̃k(−)

)

=
∫
S2
2X̃ k f

(
m(+) − m(−)

)
+ 2∇ A X̃k(m(+) − m(−)

)∇A f

=
∫
S2

(
6X̃ k(m(+) − m(−)

) − 2∇ A X̃k∇A
(
m(+) − m(−)

))
f.

Hence, C̃k(+) − C̃k(−) is invariant under arbitrary supertranslation if and only if
6X̃ k

(
m(+) − m(−)

) − 2∇ A X̃k∇A
(
m(+) − m(−)

)
is supported in the l ≤ 1 modes.

Multiplying the expression by X̃ k and summing over k = 1, 2, 3, we get m(+) −
m(−) is supported in the l ≤ 2 modes. However, a direct computations shows that if
m(+) − m(−) contains a l = 2 mode, then 6X̃ k

(
m(+) − m(−)

) − 2∇ A X̃k∇A
(
m(+) −

m(−)
)
contains a l = 3 mode. Simiarly, if m(+) − m(−) contains a l = 1 mode,

then 6X̃ k
(
m(+) − m(−)

) − 2∇ A X̃k∇A
(
m(+) − m(−)

)
contains a l = 2 mode. Thus,

m(+) − m(−) is constant if and only if C̃k(+) − C̃k(−) is invariant under arbitrary
supertranslation 	


5.2. Total flux of theCWYconserved quantities. In this subsection,we show that the total
flux of the CWY angular momentum and center of mass is supertranslation invariant.
We decompose f into its modes:

f = α0 + αi X̃
i + fl≥2

and let J k(±) be the limits of the CWY angular momentum in the u coordinate and
J kf (±) be the limits of the CWY angular momentum in the ū coordinate. We have

Theorem 5.4. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u → ±∞.

Then the total flux of J k is supertranslation invariant. Namely,
(
J kf (+) − J kf (−)

)
−

(
J k(+) − J k(−)

)
= αiε

ik
j (P

j (+) − P j (−)).

Proof. Note that

J k = J̃ k −
∫
S2
Y Ac∇Am. (5.11)

where Y A = εAB∇B X̃k .
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The assumption (5.3) on the decay of news tensor implies that the limit of mass aspect
function is invariant of supertranslation

lim
ū→±∞ m̄(ū, x) = lim

u→±∞m(u, x) or m̄(±) = m(±). (5.12)

Moreover, we have

lim
ū→±∞ C̄AB(ū, x) = lim

u→±∞CAB(u, x) − 2∇A∇B f + � f σAB . (5.13)

If we denote the closed potential of limū→+∞ C̄AB and limū→+∞ CAB by c̄(+) and c(+)

respectively, we have

c̄(+) = c(+) − 2 f�≥2 (5.14)

as functions on S2. Evaluating the definition of the CWY angular momentum (5.11) at
+∞ gives

J k(+) = J̃ k(+) −
∫
S2
Y Ac(+)∇Am(+),

and

J kf (+) = J̃ kf (+) −
∫
S2
Y Ac̄(+)∇Am̄(+).

Taking the difference and applying (5.12) and (5.14), we derive

J kf (+) − J k(+) = J̃ kf (+) − J̃ k(+) + 2
∫
S2

f�≥2Y
A∇Am(+).

We derive a similar equation at −∞ and thus(
J kf (+) − J kf (−)

)
−

(
J k(+) − J k(−)

)

=
(
J̃ kf (+) − J̃ kf (−)

)
−

(
J̃ k(+) − J̃ k(−)

)
+ 2

∫
S2

f�≥2Y
A∇A(m(+) − m(−))

= −2
∫
S2

f�≤1Y
A∇A(m(+) − m(−))

by (5.8). It follows that(
J kf (+) − J kf (−)

)
−

(
J k(+) − J k(−)

)
= αiε

ik
j (P

j (+) − P j (−)).

	

Let Ck(±) be the limits of the CWY center of mass in the u coordinate and Ck

f (±)

be the limits of the CWY center of mass in the ū coordinate.

Theorem 5.5. Suppose the news tensor decays as

NAB(u, x) = O(|u|−1−ε) as u → ±∞,

then the total flux of Ck is supertranslation invariant. Namely,
(
Ck

f (+) − Ck
f (−)

)
−

(
Ck (+) − Ck (−)

)
= α0

(
Pk (+) − Pk (−)

)
+ αk (E(+) − E(−)) .
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Proof. We write

Ck = C̃k −
∫
S2
c∇ A X̃k∇Am + 3

∫
S2
cX̃km + �(c,m), (5.15)

where � is an integral over S2 that involves only c and m. Since the last three integrals
have limits at u = ±∞, the mass loss formula now implies

Ck(+) − Ck(−)

= 1

4

∫ +∞

−∞

∫
S2
u|N |2(u, x)X̃ k + ∇ A X̃k

[
CAB∇DN

BD − NAB∇DC
BD

]
(u, x) dS2du

−
∫
S2
c(+)∇ A X̃k∇Am(+) +

∫
S2
c(−)∇ A X̃k∇Am(−)

+ 3
∫
S2
c(+)X̃ km(+) − 3

∫
S2
c(−)X̃ km(−)

+ �(c(+),m(+)) − �(c(−),m(−)).

By (5.13), c(±) is invariant under supertranslation. We apply (5.12) and (5.14) to get

(
Ck

f (+) − Ck
f (−)

)
−

(
Ck(+) − Ck(−)

)

=
(
C̃k

f (+) − C̃k
f (−)

)
−

(
C̃k(+) − C̃k(−)

)

+ 2
∫
S2

f�≥2∇ A X̃k∇A
(
m(+) − m(−)

) − 6
∫
S2

f�≥2 X̃
k(m(+) − m(−)

)

= −2
∫
S2

f�≤1∇ A X̃k∇A
(
m(+) − m(−)

)
+ 6

∫
S2

f�≤1 X̃
k(m(+) − m(−)

)
.

We obtain

(
Ck

f (+) − Ck
f (−)

)
−

(
Ck(+) − Ck(−)

)
= 2

∫
S2

(α0 X̃
k + αk)(m(+) − m(−))

= α0

(
Pk(+) − Pk(−)

)
+ αk (E(+) − E(−)) .

	


6. Spacetime with Zero News

In this section, we consider a non-radiative spacetime in the sense that the news vanishes.
This includes all model spacetimes such as Minkowski and Kerr. First, we show that the
CWY angular momentum and center of mass are constant.

Lemma 6.1. Suppose the news NAB(u, x) ≡ 0 in a Bondi–Sachs coordinate system
(u, x), then the CWY angular momentum Jk(u) and CWY center of mass Ck(u) are
constant, i.e. independent of the retarded time u.
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Proof. The assumption implies ∂um(u, x) = 0, ∂uCAB(u, x) = 0 and thus

m(u, x) ≡ m̊(x),CAB(u, x) ≡ C̊AB(x)

and both potentials c and c are independent of u as well.
We recall the definition of CWY angular momentum

J k(u) =
∫
S2
Y A

(
NA − 1

4
CAB∇DC

DB − c∇Am

)
(6.1)

where Y A = εAB∇B X̃k . Since c and m are both independent of u, our previous calcu-
lation shows

∂u

∫
S2
Y A

(
NA − 1

4
CAB∇DC

DB
)

= 1

4

∫
S2

[
Y A(CAB∇DN

BD − NAB∇DC
BD) + X̃ kεAB(C D

A NDB)
]
,

the conclusion follows.
On the other hand, the CWY center of mass Ck is given by
∫
S2

∇ A X̃k
(
NA − 1

4
CAB∇DC

DB − 1

16
∇A

(
CDECDE

))
− ∇ A X̃k(c + u)∇Am

+
∫
S2

(
3X̃ kcm + 2∇ A X̃kεAB(∇Bc)m − 1

16
X̃ k∇A(� + 2)c∇ A(� + 2)c

)

(6.2)

Since all m, c, and c are independent of u,

∂uC
k

= ∂u

∫
S2

∇ A X̃k
(
NA − 1

4
CAB∇DC

DB − 1

16
∇A

(
CDECDE

))
−

∫
S2

∇ A X̃k∇Am

(6.3)

Our previous calculation shows that the first term on the right hand side is
∫
S2

∇ A X̃k
(

∇Am +
1

4
CAB∇DN

BD − 1

4
NAB∇DC

BD
)

,

and the conclusion follows. 	

Finally, we show that in a spacetime with vanishing news tensor, the angular

momentum and center of mass themselves, not just their total flux, are invariant
under supertranslation.

We pin down the exact formula for the angular momentum aspect on a spacetime
with vanishing news. In this case, we have

∂u NA(u, x) = ∇Am(u, x) − 1

4
∇B PBA(u, x)

where

PBA(u, x) = (∇B∇ECEA − ∇A∇ECEB)(u, x)
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Therefore

∂u NA(u, x) = ∇Am̊(x) − 1

4
∇B P̊BA(x)

is independent of u. Integrating gives

NA(u, x) = NA(u0, x) + (u − u0)(∇Am̊ − 1

4
∇B P̊BA) (6.4)

for any u and fixed u0.
Suppose (ū, x) is another Bondi–Sachs coordinate system that is related to (u, x) by

a supertranslation u = ū + f for f ∈ C∞(S2).
Recall the mass aspect m̄(ū, x), the shear C̄AB(ū, x), and the news N̄AB(ū, x) in the

(ū, x) coordinate system are related to the mass aspect m(u, x), the shear CAB(u, x),
and the news NAB(u, x) in the (u, x) coordinate system through:

m̄(ū, x) = m(ū + f, x) +
1

2
(∇BNBD)(ū + f, x)∇D f

+
1

4
(∂u NBD)(ū + f, x)∇B f ∇D f +

1

4
NBD(ū + f, x)∇B∇D f

C̄AB(ū, x) = CAB(ū + f (x), x) − 2∇A∇B f + � f σAB

N̄AB(ū, x) = NAB(ū + f (x), x)

(6.5)

In particular, N̄AB(ū, x) ≡ 0 and J̄ k(ū) and C̄k(ū) are independent of ū. In addition,
we have

m̄(ū, x) = ˚̄m(x) = m̊(x)

C̄AB(ū, x) = ˚̄CAB(x) = C̊AB(x) − FAB

˚̄c = c̊ − 2 f�≥2

˚̄c = c̊

(6.6)

where FAB = 2∇A∇B f − � f σAB .
Finally the angular momentum aspect transforms by

N̄A(ū, x) = NA(ū + f, x) + 3m(ū + f, x)∇A f − 3

4
PBA(ū + f, x)∇B f

= NA(ū + f, x) + 3m̊∇A f − 3

4
P̊BA∇B f.

See [10, (C.123)]. Note that the convention of angular momentum aspect there is−3NA.
Combining with (6.4) and setting u = ū + f , we obtain

N̄A(ū, x) = NA(u0, x) + (ū − u0 + f )(∇Am̊ − 1

4
∇B P̊BA) + 3m̊∇A f − 3

4
P̊BA∇B f

(6.7)

for any ū and fixed u0.
Now fixing ū = ū0, we consider the angular momentums

J̄ = J̄ (ū0) = ∫
S2 Y

A
(
N̄A − 1

4 C̄AB∇DC̄DB − ˚̄c∇A ˚̄m
)

(ū0, x)
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J = J (u0) =
∫
S2
Y A

(
NA − 1

4
C̊AB∇DC̊

DB − c̊∇Am̊

)
(u0, x)

where Y A = εAB∇B X̃k and the center of mass

C̄ = C̄(ū0) =
∫
S2

∇ A X̃k
(
N̄A − 1

4
C̄AB∇DC̄

DB − 1

16
∇A(C̄ DEC̄DE )

)
(ū0, x)

+
∫
S2

(
3X̃ k ˚̄c ˚̄m − ∇ A X̃k( ˚̄c + ū0)∇A ˚̄m

)

+
∫
S2

(
2∇ A X̃kεAB(∇B ˚̄c) ˚̄m − 1

16
X̃ k∇A(� + 2) ˚̄c∇ A(� + 2) ˚̄c

)

C = C(u0) =
∫
S2

∇ A X̃k
(
NA − 1

4
C̊AB∇DC̊

DB − 1

16
∇A(C̊ DEC̊DE )

)
(u0, x)

+
∫
S2

(
3X̃ k c̊ m̊ − ∇ A X̃k(c̊ + u0)∇Am̊

)

+
∫
S2

(
2∇ A X̃kεAB(∇Bc̊)m − 1

16
X̃ k∇A(� + 2)c̊∇ A(� + 2)c̊

)

We prove the following theorem:

Theorem 6.2. On a spacetime with vanishing news, the CWY angular momentum and
center of mass satisfy

J̄ − J = − 2
∫
S2
Y A f�≤1∇Am̊ (6.8)

C̄ − C =
∫
S2

(
6 f�≤1 X̃

km̊ − 2 f�≤1∇ A X̃k∇Am̊
)

(6.9)

Proof. Taking the difference of J̄ and J and applying (6.6), we obtain

J̄ − J =
∫
S2
Y A [

N̄A(ū0, x) − NA(u0, x)
]

+
1

4

∫
S2
Y A

[
C̊AB∇DF

BD + FAB∇DC̊
BD − FAB∇DF

BD
]

+ 2
∫
S2
YA f�≥2∇Am̊

We observe that
∫
S2 Y

A(FAB∇DFBD) = 0 and compute

∫
S2
Y A [

N̄A(ū0, x) − NA(u0, x)
]

=
∫
S2
Y A

[
(ū − u0 + f )(∇Am̊ − 1

4
∇B P̊BA) + 3m̊∇A f − 3

4
P̊BA∇B f

]

=
∫
S2
Y A

[
f ∇Am̊ − 1

4
f ∇B P̊BA + 3m̊∇A f − 3

4
P̊BA∇B f

]

=
∫
S2
Y A

[
−2 f ∇Am̊ − 1

4
f ∇B P̊BA − 3

4
P̊BA∇B f

]
,
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where we use
∫
S2 Y

A∇B P̊BA = 0 and
∫
S2 Y

A∇Am̊ = 0. Therefore,

J̄ − J = 1

4

∫
S2
Y A

[
C̊AB∇DF

BD + FAB∇DC̊
BD − f ∇B P̊BA − 3P̊BA∇B f

]

− 2
∫
S2
YA f�≤1∇Am̊.

By Theorem B.1, the first integral vanishes and the result follows.
Taking the difference of C̄ and C and applying (6.6), we obtain

C̄ − C =
∫
S2

∇ A X̃k [
N̄A(ū0, x) − NA(u0, x)

]

+
1

4

∫
S2

∇ A X̃k
[
C̊AB∇DF

BD + FAB∇DC̊
BD − FAB∇DF

DB

+
1

2
∇A(CBDF

BD) − 1

4
∇A(FBDF

BD)
]

+
∫
S2

(
−6 f�≥2 X̃

km̊ + (2 f�≥2 − ū0 + u0)∇ A X̃k∇Am̊
)

We observe that

∫
S2

∇ A X̃k
[
−FAB∇DF

DB − 1

4
∇A(FBDF

BD)

]
= 0

and compute

∫
S2

∇ A X̃k [
N̄A(ū0, x) − NA(u0, x)

]

=
∫
S2

∇ A X̃k
[
(ū0 − u0 + f )(∇Am̊ − 1

4
∇B P̊BA) + 3m̊∇A f − 3

4
P̊BA∇B f

]

=
∫
S2

∇ A X̃k
[
(ū0 − u0 + f )∇Am̊ − 1

4
f ∇B P̊BA + 3m̊∇A f − 3

4
P̊BA∇B f

]

=
∫
S2

∇ A X̃k
[
(ū0 − u0 − 2 f )∇Am̊ − 1

4
f ∇B P̊BA − 3

4
P̊BA∇B f

]
+

∫
S2

(6 f X̃ km̊),

where we use
∫
S2 ∇ A X̃k∇B P̊BA = 0.

Putting everything together, we arrive at

C̄ − C

= 1

4

∫
S2

∇ A X̃k
[
C̊AB∇DF

BD + FAB∇DC̊
BD +

1

2
∇A(C̊BDF

BD) − f ∇B P̊BA − 3P̊BA∇B f

]

+
∫
S2

(
6 f�≤1 X̃

k m̊ − 2 f�≤1∇ A X̃k∇Am̊
)

By Theorem B.2, the first integral vanishes and the result follows. 	
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7. Conservation Law of Angular Momentum and a Duality Paradigm for Null
Infinity

7.1. Conservation law of angular momentum. In this subsection, we derive a conserva-
tion law of angular momentum at I + à la Christodoulou [7].

Suppose I = (−∞,+∞) and I + is complete extending from spatial infinity (u =
−∞) to timelike infinity (u = +∞). Integrating the formula in Proposition 3.1 from
−∞ to +∞ and projecting onto the � = 1 modes, we obtain

εAE∇E NA(+∞)�=1 − εAE∇E NA(−∞)�=1 = G�=1, (7.1)

where

G =
∫ +∞

−∞
1

8
∇ A∇A(εPQC E

P NEQ) +
1

2
εAE∇E (CAB∇DN

DB)

Equation (7.1) should be considered as a conservation law for angularmomentum that
complements the conservation law for linear momentum of Christodoulou [7, Equation
(13)], which in our notation is

m̂(+∞)�=0,1 − m̂(−∞)�=0,1 = −F�=0,1,

where

F = 1

8

∫ ∞

−∞
NABN

AB (7.2)

and follows from (3.3).
The above discussion can be carried over under the framework of stability of

Minkowski spacetime, provided that we take Rizzi’s definition of angular momentum
[20,21]. Recall from [7,8] that two symmetric traceless 2-tensors � and � are defined
by

lim
C+
u ,r→∞

r2χ̂ = �, lim
C+
u ,r→∞

r χ̂ = �

with

∂�

∂u
= −1

2
�. (7.3)

See Definition A.5 for the curvature components and their limits at null infinity.
Rizzi’s definition of angular momentum [20, (3)] is given by (omitting the constant

1
8π )

L(�(i)) =
∫
S2

�A
(i)

(
IA − �AB∇C�CB

)
, i = 1, 2, 3 (7.4)

where he assumes that the curvature component β satisfies limr→∞ r3βA = −IA. Here
�A

(i) corresponds to εAB∇B X̃ i . In the appendix, we show that IA and�AB correspond to

NA and − 1
2CAB in Bondi–Sachs coordinate system. Hence Rizzi’s definition coincides

with (1.2).
Using Bianchi identities, Rizzi derived the evolution formula [20, (4)]
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∂L

∂u
=

∫
S2

�A
[
�AB∇C�CB +

1

2

(
�C

B∇B�CA − �AB∇C�CB
)]

= 1

2

∫
S2

�A
(
�AB∇C�CB − �AB∇C�CB

)
+ ∇ A�B�C

B�CA, (7.5)

where the second line is obtained by integrating by parts the term �A�C
B∇B�CA.

Remark 7.1. The definition we take has the opposite sign to [20, (3),(4)]. The discrep-
ancy comes from the fact that Kerr spacetime has angular momentum −ma under our
definition.

According to the main theorem of [9],

B = O(|u|− 3
2 ) (7.6)

as |u| → ∞, where B = limr→∞ r2β. (see also [7], the paragraph after equation (8)
where B is denoted by B there)

Estimate (7.6) and equation (2) of [7]

div� = B (7.7)

imply that

� = O(|u|− 3
2 ) (7.8)

as |u| → ∞ and

� → �± (7.9)

as u → ±∞.
By (7.8) and (7.9),

∫ ∞
−∞

∂L
∂u du is finite and furnishes the difference of the angular

momenta at timelike infinity (u → ∞) and spatial infinity (u → −∞).
We can write this in the spirit of [7]. In general, the peeling fails and β decays as

β = o(r− 7
2 ). Christodoulou [8] observed that Bianchi equation nevertheless implies that

R = lim
C+
u ,r→∞

r4Dβ

exists. Moreover, one has

R = ∇P + ∗∇Q + 2� · B, (7.10)

where (P, Q) = limr→∞(r3ρ, r3σ) and∇, ∗, · are takenwith respect to standardmetric
σ on S2.

In order to exhibit a physically reasonable initial data set that has a complete Cauchy
development without peeling, Christodoulou made the crucial assumption

lim
u→−∞ uR = R− 
= 0, (7.11)

which we adopt here.
From (7.11) he derived [8, (5)]

β = B∗r−4 log r + Br−4 + o(r−4)



Evolution of Angular Momentum and Center of Mass 579

uniformly in u with 1-forms B∗ and B on S2 satisfying [8, (6)]

∂B∗
∂u

= 0 (7.12)

∂B

∂u
= 1

2
R. (7.13)

Moreover, using Bianchi equation, he derived that

lim
C+
u ,r→∞

r4α = A∗ 
= 0

exists. A∗ is a symmetric traceless 2-tensor that is independent of u and satisfies

divA∗ = −B∗. (7.14)

Definition 7.2. For a function f on S2, we denote the projection of f on the sum of
zeroth and first eigenspaces of � by f[1]. Namely, f[1] = f�=0 + f�=1. For a 1-form
ωA = ∇A f + εAB∇Bg, we denote ωA[1] = ∇A f�=1 + εAB∇Bg�=1.

Since the spherical tangent vectors ∂A have length O(r), we have the correspondence

BA = −IA. (7.15)

By (7.14), B∗[1] = 0 and we integrate (7.10) to get

(IA(u2, x) − IA(u1, x))[1] = −1

2

∫ u2

u1
∇AP�=1 + εAB∇BQ�=1 + (2�AB B

B)[1]du.

By (7.6) and (7.9), the last term is integrable on (−∞,∞). For the first two terms,
we observe that equations (10, 11) of [8]

∂P

∂u
= −1

2
divB +

1

2
� · ∂�

∂u
(7.16)

∂Q

∂u
= −1

2
curlB +

1

2
� ∧ ∂�

∂u
(7.17)

infer that P�=1(u, x) = ai X̃ i + O(|u|− 3
2 ) and Q�=1(u, x) = bi X̃ i + O(|u|− 3

2 ) for some
constants ai , bi independent of u. Thanks to the main theorem of [9], P − P�=0, Q −
Q�=0 = O(|u|− 1

2 ), we have ai = 0, bi = 0. Thus P�=1, Q�=1 are also integrable on
(−∞,∞).

We conclude limu→∞ IA[1](u, x) − limu→−∞ IA[1](u, x) exists and is given by

−1

2

∫ ∞

−∞

(
∇AP�=1 + εAB∇BQ�=1 + (2�AB B

B)[1]
)
du′.

By (7.3) and Rizzi’s definition (7.4), we can interpret the following formula as a
conservation law of angular momentum

lim
u→∞

(
IA − �AB∇C�CB

)
[1] − lim

u→−∞
(
IA − �AB∇C�CB

)
[1]

= 1

2

∫ ∞

−∞
−∇AP�=1 − εAB∇BQ�=1 +

(
�AB∇C�CB − �AB∇C�CB

)
[1] du.

(7.18)

From Propositions A.2 and A.6, it follows that the co-closed part of the above con-
servation law is equivalent to the total flux of the classical angular momentum in a
Bondi–Sachs coordinate system.



580 P.-N. Chen, J. Keller, M.-T. Wang, Y.-K. Wang, S.-Y. Yau

7.2. A duality paradigm for null infinity. In this subsection, we describe a duality
paradigm for null infinity which creates a pair of dual spacetimes with the same classical
conserved quantities.

Corollary 7.3 (Corollary 1.7). Given a set of null infinity data (m, NA,CAB, NAB) de-
fined on [u1, u2] × S2, there exists a dual set of null infinity data (m∗, N∗

A,C∗
AB , N∗

AB)

that has the same (classical) energy, linear momentum, angular momentum, and center
of mass.

Proof. Define C∗
AB = ε2(CAB) on [u1, u2] × S2. Then N∗

AB = ∂uC∗
AB = ε2(NAB).

Define m∗(u, x) by the differential equation
{
m∗(u1, x) = m(u1, x)
∂um∗ = 1

4∇ A∇BN∗
AB − N∗

ABN
∗AB

and then define N∗
A by the differential equation

⎧⎪⎨
⎪⎩
N∗
A(u1, x) = NA(u1, x)

∂u N∗
A = ∇Am∗ − 1

4∇D(∇D∇EC∗
E A − ∇A∇EC∗

ED)

+ 1
4∇A(C∗

BE N
∗BE ) − 1

4∇B(C∗BDN∗
DA) + 1

2C
∗
AB∇DN∗DB .

For this subsection alone, we denote the classical conserved quantities of the infinity data
(m, NA,CAB, NAB) by E, Pk, J k,Ck and denote the classical conserved quantities of
the data (m∗, N∗

A,C∗
AB, N∗

AB) by E∗, P∗k, J ∗k,C∗k , we have

E∗(u1) = E(u1), P
∗k(u1) = Pk(u1)

and since C∗
A

D∇BC∗
BD = C D

A ∇BCBD,C∗
DEC

∗DE = CDECDE ,

J ∗k(u1) = J k(u1),C
∗k(u1) = Ck(u1).

It remains to show that the evolutions of the conserved quantities are identical. Recall
that the potentials of C∗

AB and N∗
AB are given by (−c, c) and (−n, n). We observe that

replacing (c, c, n, n) by (−c, c,−n, n) does not change the following expressions

∂u E = −1

8

∫
S2

[n�(� + 2)n + n�(� + 2)n],

∂u P
k = −1

8

∫
S2

X̃ k[((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n],

∂u J
k = 1

8

∫
S2

X̃ kεAB[∇Ac∇B�(� + 2)n + ∇Ac∇B�(� + 2)n]

∂uC
k = 1

8

∫
S2

X̃ k[((� + 2)n)2 + ((� + 2)n)2 − 4εAB∇An∇B(� + 2)n]

+
1

16

∫
S2

[X̃ k(�(� + 2)c(� + 2)n − �(� + 2)n(� + 2)c)]

+
1

16

∫
S2

[X̃ k(�(� + 2)c(� + 2)n − �(� + 2)n(� + 2)c]

This finishes the proof. 	
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8. The Case of Quadrupole Moments

In this section, we consider the case of generalized quadrupole moments. Namely, all
c, c, n, n are (−6) eigenfunctions (or � = 2 spherical harmonics). Therefore, c =∑

ci j (u)X̃ i X̃ j , c = ∑
ci j (u)X̃ i X̃ j n = ∑

ni j (u)X̃ i X̃ j , n = ∑
ni j (u)X̃ i X̃ j with

∂uci j = ni j and ∂uci j = ni j .

8.1. Classical conserved quantities. Next we compute the evolution of classical angular
momentum and center of mass for quadrupole moments.

Lemma 8.1. Suppose fi j and gi j are both symmetric, traceless 3 × 3 matrices. Then
∫
S2

( fi j X̃
i X̃ j )2 = 8π

15

∑
i j

f 2i j (8.1)

∫
S2

X̃ pεAB∇A( fi j X̃
i X̃ j )∇B(gkl X̃

k X̃ l) = 16π

15

∑
j

fi j g jkε
ikp. (8.2)

Proof. Both formulae follow from Lemma 5.3 of [6]∫
S2

X̃ i X̃ j X̃ k X̃ l = 4π

15
(δi jδkl + δikδ jl + δilδ jk).

	

Combining the above lemma with Theorem 1.3 and Proposition 4.1, we conclude

that

Proposition 8.2. Suppose c = ∑
ci j (u)X̃ i X̃ j , c = ∑

ci j (u)X̃ i X̃ j n = ∑
ni j (u)X̃ i X̃ j ,

n = ∑
ni j (u)X̃ i X̃ j , then

∂u E = −8π

5
(
∑
i j

n2i j +
∑
i j

n2i j )

∂u P
k = −32π

15

∑
ni j n jpε

i pk

∂u J̃
k = 16π

5

∑
(ci j n jp + ci j n jp)ε

i pk

∂uC̃
k = 32uπ

15

∑
ni j n jpε

i pk .

(8.3)

8.2. CWY angular momentum and center of mass. Next we compute the evolution of
the CWY angular momentum and center of mass for quadrupole moments. We need the
following lemma.

Lemma 8.3. Suppose the potentials of the news tensor are of mode � = 2. Namely,

NAB = ∇A∇Bn − 1

2
�nσAB +

1

2
(εAC∇B∇Cn + εBC∇A∇Cn)

where n = ∑
i j ni j X̃

i X̃ j and n = ∑
i j ni j X̃

i X̃ j satisfy
∑

i nii = ∑
i nii = 0. Introduce

two � = 2 spherical harmonics
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Q =
∑
i,k,l

(niknil X̃
k X̃ l) − 1

3

∑
i, j

n2i j ,

Q =
∑
i,k,l

(niknil X̃
k X̃ l) − 1

3

∑
i, j

n2i j .

Then

(1) the � = 2 component of NABN AB is

−48

7
Q − 48

7
Q,

(2) the odd mode component of NABN AB is

8εikmni j nkl X̃
m(δ jl − X̃ j X̃ l).

Here εi jk is the Levi–Civita symbol in three dimensions.

Proof. Note that the even-mode components (� = 0, 2, 4) and odd-mode components
(� = 1, 3) of NABN AB are given by

∇A∇Bn∇ A∇Bn − 1

2
(�n)2 + ∇A∇Bn∇ A∇Bn − 1

2
(�n)2

and

(∇ A∇Bn − 1

2
�nσ AB)(εAC∇B∇Cn + εBC∇A∇Cn)

= 2ni j∇ A X̃ i∇B X̃ j (εAC∇B∇Cn + εBC∇A∇Cn)

= 2ni j∇ A X̃ i∇B X̃ j · 2nkl(εAC∇B X̃
k∇C X̃l + εBC∇A X̃

k∇C X̃l)

= 8εikmni j nkl X̃
m(δ jl − X̃ j X̃ l)

respectively. In the last equality we use the identity εAB∇A X̃ i∇B X̃ j = εi jk X̃ k and
∇B X̃ i∇B X̃ j = δi j − X̃ i X̃ j .

For (1), we compute

∇A∇Bn∇ A∇Bn = 20n2 − 8Q +
4

3

∑
i j

n2i j .

Since the space of � = 4 spherical harmonics is spanned by

X̃ i X̃ j X̃ k X̃ l +
1

35

(
δi jδkl + δikδ jl + δilδ jk

)

− 1

7

(
X̃ i X̃ jδkl + X̃ i X̃ kδ jl + X̃ i X̃ lδ jk + X̃ j X̃ kδil + X̃ j X̃ lδik + X̃ k X̃ lδi j

)
,

(8.4)

the � = 2 component of n2 is 4
7Q. Putting these together, we obtain (1).
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In the case of quadrupole moments, the CWY angular momentum and center of mass
take the form:

J k =
∫
S2

εAB∇B X̃
k[NA − 1

4
C D

A ∇BCDB − c∇Am] (8.5)

Ck =
∫
S2

∇ A X̃k[NA − u∇Am − 1

4
C D

A ∇BCDB

− 1

16
∇A(CDEC

DE ) − 2c εAB∇Bm], (8.6)

Therefore,

J k = J̃ k −
∫
S2

X̃ kεAB∇Ac∇Bm̂

Ck = C̃k + 2
∫
S2

X̃ kεAB∇Ac∇Bm̂ +
1

4

∫
S2

X̃ kεAB∇Ac∇B�(� + 2)c
,

where we use (3.2) and (2.7).
The evolution formulae for J k and Ck are thus

∂u J
k = ∂u J̃

k −
∫
S2

X̃ kεAB∇An∇Bm̂ −
∫
S2

X̃ kεAB∇Ac∇B∂um̂

∂uC
k = ∂uC̃

k + 2
∫
S2

X̃ kεAB∇An∇Bm̂ + 2
∫
S2

X̃ kεAB∇Ac∇B∂um̂

+
1

4

∫
S2

X̃ kεAB∇An∇B�(� + 2)c +
1

4

∫
S2

X̃ kεAB∇Ac∇B�(� + 2)n

By Lemma 2.1, only the � = 2 mode components of m̂ and ∂um̂ will survive in the
above integrals.

Denote the � = 2 mode of m̂ by m̂�=2 = m̂kl X̃ k X̃ l . By Lemma 8.3, we get

∂um̂kl = 6

7

⎡
⎣∑

i

(niknil + niknil) − 1

3
δkl

∑
i, j

(n2i j + n2i j )

⎤
⎦ .

By (8.2, we obtain the evolution equation of J k and Ck :

Proposition 8.4. Suppose c = ∑
ci j (u)X̃ i X̃ j , c = ∑

ci j (u)X̃ i X̃ j , n = ∑
ni j (u)X̃ i X̃ j ,

n = ∑
ni j (u)X̃ i X̃ j , then

∂u E = − 8π

5
(
∑
i j

n2i j +
∑
i j

n2i j )

∂u P
k = − 32π

15

∑
i, j,p

ni j n jpε
i pk

∂u J
k = 16π

15

∑
i, j,p

(3ci j n jp + 3ci j n jp − ni j m̂ jp − ci j∂um̂ jp)ε
i pk

∂uC
k = 16π

15

∑
i, j,p

(2ni j m̂ jp + 2ci j∂um̂ jp + 6ni j c jp + 6ci j n jp)ε
i pk

+
32uπ

15

∑
ni j n jpε

i pk,

(8.7)
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where m̂kl is given by

∂um̂kl = 6

7
[
∑
i

(niknil + niknil) − 1

3
δkl

∑
i, j

(n2i j + n2i j )]

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
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Appendix A. Christodoulou–Klainerman Connection Coefficients and Curvature
Components in Bondi–Sachs Formalism

Wewrite the limit of connection coefficients and curvature components defined in [7–9]
in terms of the Bondi–Sachs metric coefficients.
We choose the null vector fields L = ∂

∂r and L = 2
U

(
∂u − WD∂D − V

2 ∂r
)
, which

satisfy 〈L , L〉 = −2.

Definition A.1. The second fundamental forms and torsion are defined by

χAB = 〈DAL , ∂B〉 = 1

2
trχgAB + χ̂AB

χ
AB

= 〈DAL, ∂B〉 = 1

2
trχgAB + χ̂

AB

ζA = 1

2
〈DAL , L〉

Their limit as r → ∞ are defined by

� = lim
r→∞ χ̂

� = lim
r→∞ r−1χ̂

Z = lim
r→∞ rζ.

They are related to the metric coefficients in the corresponding Bondi–Sachs coordinate
system as follows:

Proposition A.2.

�AB = −1

2
CAB

�AB = NAB

ZA = −1

2
∇BCAB

Proof. Starting with gAB = r2σAB + rCAB + O(1), the determinant condition gives
trχ = 2

r and we compute

χAB = rσAB +
1

2
CAB + O(r−1)
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to get �AB = − 1
2CAB . Direct computation gives

χ
AB

= r(−σAB + ∂uCAB) + O(1)

and hence trχ = − 2
r +O(r−2) and χ̂

AB
= r∂uCAB +O(1). The limit of torsion follows

from ζA = − 1
r W

(−2)
A + O(r−2). 	


Definition A.3. The mass aspect and conjugate mass aspect function of Christodoulou–
Klainerman are defined by

μ = K +
1

4
trχ trχ − divζ μ = K +

1

4
trχ trχ + divζ.

Here K denotes the Gauss curvature of the two-sphere r =const. Their limits are defined
by

N = lim
r→∞ r3μ

N = lim
r→∞ r3μ.

We express them in terms of the Bondi–Sachs metric coefficients as follows:

Proposition A.4.

N = 2m +
1

2
∇ A∇BCAB, N = 2m − 1

2
∇ A∇BCAB

Proof. We compute K = 1
r2

+ 1
2r3

∇ A∇BCAB + O(r−4) and 1
4 trχ trχ = − 1

r2
+ 1

r3
(2m −

1
2∇ A∇BCAB) and the assertion follows. 	

We turn to curvature components. The convention of Riemann curvature tensor is

R(X,Y )Z = (DX DY − DY DX − D[X,Y ])Z
R(X,Y,W, Z) = 〈R(X,Y )Z ,W 〉.

Definition A.5. Define the curvature components

αAB = R(∂A, L, ∂B, L)

β
A

= 1

2
R(∂A, L, L, L)

ρ = 1

4
R(L, L , L, L)

σ /εAB = 1

2
R(∂A, ∂B, L, L)

βA = 1

2
R(∂A, L , L, L)

Here /εABdx
A ∧dx B is the area form of the two-sphere with respect to gAB . Their limits

are defined by

AAB = lim
r→∞ r−1αAB



586 P.-N. Chen, J. Keller, M.-T. Wang, Y.-K. Wang, S.-Y. Yau

BA = lim
r→∞ rβ

A

P = lim
r→∞ r3ρ

Q = lim
r→∞ r3σ

BA = lim
r→∞ r3βA

Note that (A, B) were denoted by (A, B) in [7].

We express them in terms of the Bondi–Sachs metric coefficients as follows:

Proposition A.6.

AAB = −2∂u NAB

BA = ∇BNAB

P = −2m − 1

4
CABN

AB

Q = εAB
(

−1

4
CD

A NDB − 1

2
∇A∇DCDB

)

BA = −NA

Proof. The formula for A is obtained from (6) of [7], 2 ∂�
∂u = −A, which is the rescaled

limit of the propagation equation D̂χ̂ = −α.

The formula for B is obtained from (2) of [7], ∇B�AB = BA, which is the rescaled

limit of the Codazzi equation /divχ̂ − χ̂ · ζ = 1
2

(
/∇trχ − trχζ

)
+ β.

The formula for P and Q are obtained from (3) of [7],

εAB∇AZB = Q − 1

2
� ∧ �, ∇ AZA = N + P − 1

2
� · �,

which is the rescaled limit of the Hodge system

/curlζ = σ − 1

2
χ̂ ∧ χ̂ , /divζ = μ + ρ − 1

2
χ̂ · χ̂ .

Finally, we consider the Codazzi equation

/divχ̂ + χ̂ · ζ = 1

2

(
/∇trχ + trχζ

) − β.

Its leading order at O(r−2) leads to (1) of [7] and its subleading order at O(r−3) leads
to(

−1

4
∂A|C |2 + 1

2
CBD∇DCAB +

1

4
∇AC

E
DC

D
E +

1

2
∇DC

DECAE

)
+
1

4
CAB∇DC

BD

= ζ
(−2)
A − BA.

We simplify the second term in the parentheses by the identity ∇(DCB)A = ∇ACBD +
∇ECAEσBD −∇ECE(DCB)A and the left-hand side becomes 1

8∂A|C |2 + 1
4CAB∇DCBD .

Direct computation yields ζ
(−2)
A = −NA + 1

8∂A|C |2 + 1
4CAB∇DCBD and the formula

for B follows. 	
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Appendix B. Integration by Part Formula

In this section, we prove two integration formula that will be used to compute angular
momentum and center of mass in spacetime with vanishing news.

Theorem B.1. Let Y A = εAB∇B X̃k, k = 1, 2, 3. Let FAB = 2∇A∇B f − � f σAB and
PBA = ∇B∇DCDA − ∇A∇DCDB. Then

∫
S2
Y A

(
1

4
CAB∇DF

DB +
1

4
FAB∇DC

DB − 3

4
PBA∇B f − 1

4
∇B PBA f

)
= 0.

Proof. We integrate by parts the last two terms to get
∫
S2

−1

2
Y A(∇B∇DCAD − ∇A∇DCBD)∇B f +

1

2
∇BY A∇B∇DCAD · f.

=
∫
S2

1

2
∇BY

A∇DCAD∇B f +
1

2
Y A∇DCAD� f − 1

2
Y A∇DCB

D∇A∇B f

+
∫
S2

1

2
Y A∇DCAD f − 1

2
∇BY A∇DCAD∇B f

=
∫
S2

−1

2
Y A∇DCB

D(∇A∇B f − 1

2
� f σAB) +

1

4
Y A∇DCAD(� + 2) f

	

Theorem B.2. Let FAB = 2∇A∇B f − � f σAB and PBA = ∇B∇DCDA − ∇A∇DCDB.
Then

∫
S2

∇A X̃k
(
CAB∇DFBD + FAB∇DC

BD +
1

2
∇A(CBDFBD) − f ∇B PBA − 3PBA∇B f

)
= 0.

Proof. We integrate by parts the last two terms to get
∫
S2

∇ A X̃k(−2PBA)∇B f

=
∫
S2

−2∇ A X̃k(∇B∇DCDA − ∇A∇DCDB)∇B f

=
∫
S2

−2X̃ k∇DCDA∇ A f + 2∇ A X̃k∇DCDA� f + 4X̃ k∇DCDB∇B f

− 2∇ A X̃k∇DCDB∇A∇B f

=
∫
S2
2X̃ k∇DCDA∇ A f − ∇ A X̃k∇DCDBFAB + ∇ A X̃k∇DCDA� f

=
∫
S2

−2∇D X̃kCDA∇ A f − 2X̃ kCDA∇D∇ A f

− ∇ A X̃k∇DC
DBFAB + ∇ A X̃k∇DCDA� f

=
∫
S2
2∇ A X̃k∇DCDA∇ A f +

1

2
�X̃ kCDAF

DA

− ∇ A X̃k∇DC
DBFAB + ∇ A X̃k∇DCDA� f
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=
∫
S2

−∇ A X̃kCDA∇D(� + 2) f − 1

2
∇ A X̃k∇A(CDBF

DB)

− ∇ A X̃k∇DC
DBFAB .
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