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Abstract: We study how conserved quantities such as angular momentum and center of
mass evolve with respect to the retarded time at null infinity, which is described in terms
of a Bondi—Sachs coordinate system. These evolution formulae complement the classical
Bondi mass loss formula for gravitational radiation. They are further expressed in terms
of the potentials of the shear and news tensors. The consequences that follow from
these formulae are (1) Supertranslation invariance of the fluxes of the CWY conserved
quantities. (2) A conservation law of angular momentum a la Christodoulou. (3) A duality
paradigm for null infinity. In particular, the supertranslation invariance distinguishes the
CWY angular momentum and center of mass from the classical definitions.

1. Introduction

In this article, we study the evolution of angular momentum and center of mass at null
infinity of asymptotically flat vacuum spacetimes. These evolution formulae complement
the classical Bondi mass loss formula for gravitational radiations. We are particularly
interested in the total flux of angular momentum and center of mass.

For a good notion of conserved quantities, one expects that the total flux is indepen-
dent of the choice of coordinate systems. However, as indicated by Penrose [19], the
notion of “angular momentum carried away by gravitational radiation” can be shifted
by supertranslations, an infinite dimensional symmetry at null infinity. Such ambiguity
has been a crucial obstacle to a clear understanding of conserved quantities at null in-
finity. In this article, we consider both the classical and the Chen—Wang—Yau (CWY)
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[4] definitions for angular momentum and center of mass at null infinity. A key result is
the supertranslation invariance of the flux of the CWY angular momentum and center of
mass. This invariance distinguishes the CWY definitions from the classical definitions.

Consider the future null infinity .#* of an asymptotically flat spacetime, which is
described in terms of a Bondi—Sachs coordinate system. .#* is identified with I x s2,
where I C (—00, +00) is an interval parametrized by the retarded time u and S? is the
standard unit 2-sphere equipped with the standard round metric o4 . Let m denote the
mass aspect, N4 the angular momentum aspect, C 4 p the shear tensor, and N 4 p the news
tensor of .#*. One can view m as a smooth function, N4 a smooth one-form, and Cp
and N4 p smooth symmetric traceless 2-tensors (with respect to o4 p) on $? that depend
on u. In particular, 8,Cap = Nap. See a brief description of .#* in the Bondi—Sachs
coordinates and the definitions of these quantities in Sect. 2.

All integrals in this paper on the sphere are taken over the standard two-sphere S2
with the standard round metric o4 p. We take the standard formulae for energy and linear

momentum:
E = / 2m
SZ

(1.1)
Pk:/ omXk, k=1,2,3
SZ

where X* ,k =1, 2, 3 are the standard coordinate functions on R restricted to the unit
sphere S2.
Furthermore, we consider the classical angular momentum

By - 1
Jk = /2 AV XK N, — ZCADVBCDB], (1.2)
S

and the classical center of mass

. 8 1 1
k= /2 VAX¥[Ng — uVam — ZcADvBCDB - RVA(CDECDE)], (1.3)
N

where V4 denotes the covariant derivative with respect to o4p, and €4p denotes the
volume form of o4p and k = 1, 2, 3. The indexes are raised, lowered, and contracted
with respect to o4 p. Our definition is that of Dray—Streubel [12]. See Section III.B of
Flanagan—Nichols [13] for details.

Remark 1.1. In the above definitions of conserved quantities, we omit the constant %

Furthermore, we consider the CWY angular momentum J* and center of mass C¥ as
the limits of the CWY quasi-local angular momentum and center of mass [4,5] on ./ *
evaluated in [15].

- 1
Jk = / eABvy XK (NA — ZCABVDCDB — chm)
52

~ 1 1
ck = /2 VAXk[NA —uVam — ZCABVDCDB — 1—6VA (CDECDE>
N
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—cVam + 2€4pB (VBg)m]

~ 1~
+/ 3X*em — ZX"VAEABVDEDB
S2

where ¢ and ¢ are the potentials of C4p, as given in (2.9) and F 4, = %(GAD VaVPc+
egpVaVP ¢). For definiteness, the potentials are assumed to be supported in the £ > 2
modes.

In Theorem 11 and Theorem 16 of [15], it is shown that J* and %k are the limit of the
Chen—Wang—Yau quasi-local angular momentum and center of mass (omitting constant
1/87) under the zero linear momentum assumption

/Szm(u,x))?" =0. (1.4)

The CWY angular momentum and center of mass modify the classical definitions as
follows:

JEk=Jk —/ eABVBf(chAm
52
ck = ¢k +/ vA Xk (—chm + ZGAB(VBg)m> (1.5)
S2
~ 1 -~
+/ 3X*em — ZX"VAEABVDEDB
52

The correction terms come from solving the optimal isometric embedding equation
in the theory of Wang—Yau quasilocal mass [25,26] and are non-local. They provide
the reference terms that are critical in the Hamiltonian approach of defining conserved
quantities. See [16] for a definition of angular momentum in the context of perturbations
of Kerr, in which the referencing is achieved by the uniformization theorem.

The ten conserved quantities (E, Pk, fk, Ck), or (E, Pk, gk, Ck), are functions on
I that depend on the retarded time u#. We compute the derivatives of these conserved
quantities with respect to u. In particular, for the classical angular momentum and center
of mass, we obtain

Theorem 1.2. The classical angular momentum J* and center of mass C K k=1,2,3
evolve according to the following:

- 1 - -
9,5 = _[ [eAEVEXk(CABVDNBD —NABVDCBD)+X]‘€AB(CADNDB)],
SZ

4
(1.6)
- 1 -
9,C* = Z/ [VAX" (gwm2 +CapVpNED — NABVDCBD)] . 1.7)
SZ

The evolution formulae (1.6) and (1.7) can be further expressed in terms of the
potentials of C4p and N4p:
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Theorem 1.3. Suppose c and c are the potentials of C sp and n and n are the potentials
of Nap, as given in (2.9) and (2.10), then

B J* = é /S XX (e, A(A +2)n]; +[e, A(A +2nl)

9,Ck = é / Xk (u[((A +2)n)% + (A +2)n)> — 4BV nVp(A +2)n] (1.8)
52

+[(A+2)c, (A+2)nlr +[(A+2)c, (A + 2)2]2),

where [, 11 is the Poisson bracket on s2 defined in (4.1) and |-, -12 is another bracket
on §? defined in (4.2).

The Bondi-Metzner-Sachs (BMS) group acts on .#*. It includes supertranslations
which we will review in further details in Sect. 5. The ambiguity of supertranslations has
presented an essential difficulty to understanding the structure of .#* since the 1960s.
Among (m, Na, Cap, Nap), only N4p is a supertranslation invariant quantity. It is nat-
ural to ask whether total flux of angular momentum is invariant under a supertranslation.
For the classical angular momentum, we prove that

Corollary 1.4 (Theorem 5.1). Suppose ™ extends from u = —o00 to u = +00 and the
news tensor decays as

Nag(u,x) = O(u|"""%) asu — +oo,

then the total flux of the classical angular momentum J* is supertranslation invariant
if and only if

lim m(u,x) — lim m(u,x) (1.9)
U—>+00 U—>—00

is supported in the | < 1 modes.

In particular, if limy,— 100 m (1, x) — lim,—, oo m(u, x) contains [ > 2 modes, the
total flux of the classical angular momentum will depend on the supertranslation. This
demonstrates how the total flux of the classical angular momentum can be shifted by a
supertranslation. On the other hand, we show that the CWY angular momentum is free
of such supertranslation ambiguity.

Theorem 1.5 (Theorem 5.4). Suppose the news tensor decays as
Nag(u,x) = O(u|~""%) asu — +oo.
Then the total flux of J* is supertranslation invariant.

Remark 1.6. Inthe above statement, supertranslation invariant means that it is equivariant
under ordinary (/ = 1) translation and is invariant under higher mode (I > 2) of the
supertranslation. See the statement of Theorem 5.4 for further details.

We also show that the invariance under supertranslation distinguishes the CWY cen-
ter of mass from the classical center of mass. Indeed, the total flux of the classical
center of mass is invariant under supertranslation if and only if lim,_ 400 m(u, x) —
lim,_, oo m(u, x) is a constant function on $2. On the other hand, the total flux of the
CWY center of mass is always supertranslation invariant. See the statement of Theo-
rem 5.5.
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Next, we show that if a spacetime admits a Bondi—Sachs coordinate system with
vanishing news tensor, then (E, Pk, J k, ck ) are constant (independent of the retarded
time u) and supertranslation invariant. See the statement of Theorem 6.2 for further
details.

While our focus is on the study of angular momentum and center of mass in a
Bondi-Sachs coordinate system, we show that the evolution formulae for the classical
angular momentum can be carried over to the framework of the stability of Minkowski
spacetime [9] if we take Rizzi’s definition of angular momentum [20,21]. This provides
a conservation law of angular momentum that complements the conservation law for
linear momentum of Christodoulou [7, Equation (13)].

Another natural consequence of (1.8) is a duality paradigm among sets of null infinity
data (m, N4, Cap, Nap), through replacing the potentials (c, ¢, n, n) by (—c, ¢, —n, n).

Corollary 1.7. Given a set of null infinity data (im, Ns, Cap, Nap) defined on [uy, uz] x
S2, there exists a dual set of null infinity data (m™, N7, CZB, N3 p) that has the same
(classical) energy, linear momentum, angular momentum, and center-of-mass.

These are dual sets of null infinity data that are indistinguishable in terms of the
classical conserved quantities.

The paper is organized as follows. In Sect.2, we introduce the definitions and in-
tegration by parts formulae used throughout the paper. The flux of classical conserved
quantities is computed in Sect.3 and is rewritten in terms of the potentials in Sect. 4.
The aforementioned consequences of flux formulae are presented in Sects.5 to 7. In
the last section, we consider the case of quadrupole moment radiation. With the future
theoretical and numerical investigation in mind, we express the flux formulae in terms
of the spherical harmonics expansion of potentials explicitly.

2. Background Information

In this section, we describe the Bondi—Sachs coordinate system and recall several useful
formulae for functions and tensors on S2.

2.1. Bondi-Sachs coordinates. In terms of a Bondi—Sachs coordinate system (u, r, x2,
x3), near .#* of a vacuum spacetime, the metric takes the form

Supdx®dxP = —UVdu* — 2Ududr +r*hap(dx® + WAdu)(dx® + WBdu).
2.1)

The index conventions here are ¢, 8 =0,1,2,3, A, B =2,3,andu = x0,r =xl.

See [2,17] for more details of the construction of the coordinate system.

The metric coefficients U, V, hxp, WA of (2.1) depend on u,r, 0, ¢, but deth,p
is independent of u and r. These gauge conditions thus reduce the number of metric
coefficients of a Bondi—Sachs coordinate system to six (there are only two independent
components in 7 4p). On the other hand, the boundary conditions U — 1, V — 1,
WA — 0, hyp — oap are imposed as r — 00 (such boundary conditions may not
be satisfied in a radiative spacetime). Here o4 p denotes a standard round metric on S2.
The special gauge choice implies a hierarchy among the vacuum Einstein equations, see
[14,17].

Assuming the outgoing radiation condition [2,17,22], the boundary condition and the
vacuum Einstein equation imply that as »r — 00, all metric coefficients can be expanded
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in inverse integral powers of r.! In particular (see Chrusciel-Jezierski—Kijowski [10,
(5.98)—(5.100)] for example),

1
U=1-——|C?+0@G7),
16r2| "+ 0@™)

2 1 /1 1 1
V=1——m+—2 —VANA +-VACasVpCEP + —|C1? )+ O™,
r r< \ 3 4 16

1 1 /2 1 1
WA = —vpCcAB 4+ — (gNA — 1—6VA|C|2 - ECABVDCBD> +00™,

Cas 1

hap = 0ap + —— + —|C|Poap + O(r )
r 4r2

where m = m(u, x4) is the mass aspect, No = Na(u, x4) is the angular aspect and
Cap = Cap(u, x*) is the shear tensor of this Bondi-Sachs coordinate system. Note that
our convention of angular momentum aspect differs from that of Chrusciel-Jezierski—
Kijowski [10], No = —3N4(cJ k). Here we take norm, raise and lower indices of tensors
with respect to the metric 4 p. We also define the news tensor Nap = 0,Cap.

2.2. Integral formulae on 2-sphere. Let o4p be the standard round metric on S2 with
respect to which the indexes of tensors are raised or lowered. Let V4 be covariant
derivative with respect to o4 p. Let €4p be the volume form. The following identity

€ABECD = OACOBD — OADOBC (2.2)

and its contraction
A= 2.3
€ABE€ ¢ = OBC ( . )

will be used frequently.
The curvature formula on S? gives

VAVBVCM — VBVAVCM = OACvBu — GBCvAu
for a smooth function u on $2. In particular, we have
VpVPVau = V(A + Du

(2.4)
EABVAVBVCM = GCBVBM.

Let X k k = 1,2,3 be the restriction to S2 of the standard coordinate functions in
R3. It is well-known that they are eigenfunctions for o4 p:

AX* = 2%k,
X* also satisfies the Hessian equation
VaVpXk = —Xfoup. (2.5)

! The outgoing radiation condition assumes the traceless part of the r~2 term in the expansion of h4p
is zero. The presence of this traceless term will lead to a logarithmic term in the expansions of WA and V.
Spacetimes with metrics which admit an expansion in terms of rd logi r are called “polyhomogeneous” and
are studied in [11]. They do not obey the outgoing radiation condition or the peeling theorem [23], but they
do appear as perturbations of the Minkowski spacetime by the work of Christodoulou—Klainerman [9].



Evolution of Angular Momentum and Center of Mass 557

In general, an eigenfunction f with
Af=—Ll+1)f (2.6)
is said to be of mode £. We need the following integration by parts lemma:

Lemma 2.1. Suppose u and v are smooth functions on S* of mode m and n respectively.
Then

/ f(keABVAuVBv =0
52

unless m = n.

Proof. Integrating by parts, we obtain
/ XkeABY ,uVgv = f (YAV40)u,
52 52

where Y4 = 4B vB)”(k is a rotation Killing field. Since A commutes with Y AV 4,
YAV v is of the same mode as v. O

The following integrating by parts formulae will be useful in the later sections.

Lemma 2.2. For any smooth functions u, v on S%, we have
/ XkeABY  (Au)Vgv = / XkeABY  uVg(Av) 2.7
52 52
/ XkeABY Y puve Py = —/ XkeABY  uVg(A +2)v. (2.8)
S2 S2

Proof. We prove the second formula and the first formula follows similarly. Integrating
by parts the left hand side, we obtain

—/ Vo X eA BV 4uvp VP — / XkeABY 4uvpVpvPuy
52 52
Integrating the first term by parts again, we obtain
f ViV X er BV uvPy — f XkerBY ,uvpVvPu
s2 52

By (2.4), this is equal to

—/ f("eABVAuva—f Xk BV uVg(A + .
52 52

Lemma 2.3. For any smooth function u on S%, we have
/ [2VAVeuVAVEY — (Au)?] :/ UA(A +2)u
52 52

/X"[szvBuvAvBu—(Au)z]:/ XA +2)ul?.
52 SZ
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Proof. We use the following formulae in the derivation

AlVul? =2|V2ul> +2Vu - V(A + Du
AW?) = 2|Vul? + 2uAu
AwAu) = (Au)> +2Vu - V(Au) + uA’u.

We prove the second formula and the first one follows similarly. Integrating by parts
twice gives

/ XIVVeuVAvVEy = / uVAVE(XIV4Vgu)
s2 s2
We compute
VAVE(XIV4Vgu)
= (VAVEX)VuVau +2VEX VAV, VEu + X' VAVEV, Vu
= —X'Au+2VEX'Vg(A+Du+X'A(A+ Du
= X' A2u +2VBX'VE(A + Du

’

where we use VAV, Vgu = Ve(A + Du.
On the other hand, we have the identity:

2VBuVBv = A(uv) —ulAv —vAu
and thus
2VEXIVE(A + Du=AX (A +Du) — X'AA+Du+2X (A + Du.
Putting all together gives:
/52 X'VaVuvAvEy
= /52 X A%u+ / u[AXT(A + Du) — X'AA + Du +2X (A + Du]

= f X (AW)? + 2ulu + 2u?].
SZ
Therefore,

fz X 2VaVeuvAVEy — (Au)?] = /2 X(Aw)? +4uru +4u?] = /2 XA +2)ul?.
S S S
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2.3. Closed and co-closed decomposition. In this subsection, we consider symmetric
traceless 2-tensors C4p and N4p on $2 with the decomposition (see [15, Appendix B]
for a derivation)

1 1
Cap = VaVpe — goABAc + E(GAEVEVBQ+EBEVEVA£) (2.9)
1 1
Nag = VaVgn — SoABAn + E(GAEVEVBQ+ €3EVEVan) (2.10)

for smooth functions ¢, ¢, n, n on $? that are referred as potentials of C4p and Nyp.
The potentials are unique up to their O and 1 mode. In the case we consider when C4p
and N p depend on u, all ¢, ¢, n, n depend on u as well.

Proposition 2.4. Closed and co-closed parts of a symmetric traceless 2-tensors on S*
are dual to each other in the following sense.

(1) Denote the space of symmetric traceless 2-tensors on S* by w Then the map
&1 Sym — Sym, €2(Cap) = eADCDB satisfies
1 1 £
&2(VaVpe — EUABAC) = E(EA VEVpe+ep" VEV0), 2.11)

1 1
& (E(eAEvaBgHBEVEvAg)) = —VaVse+ SoapAc (2.12)

(2) The following identity holds for symmetric traceless 2-tensors
ePVPCpa = €,PVEChp. (2.13)

In other words, we have a commutative diagram of isomorphisms

—_— &y  —

Sym —2, Sym

ldiv ldiv
Al —E 5 Al

where A' denotes the space of 1-forms and (xw)s = € AB wp is the Hodge star on
I-forms.

Proof. Weuse (2.2) and (2.3) in the derivation. Since €48 ¢, (C4p) = 0Oand 4B &>(Cap)
= 0, &2(Cap) is symmetric and traceless. In particular,

1
eLCpp = 5(eADcDB +e;°Cpa) (2.14)

and (2.11) and (2.12) follow by direct computation.
To verify (2.13), note that both sides are equal to VPCpp after contracted with
A
€ty O

In the following two lemmas, we express several integrals involving the shear tensor
and the news tensor in terms of their potentials. These formulae will help us to derive
Theorem 1.3 from Theorem 1.2.
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Lemma 2.5. Suppose Y4 is either VAX* or eABVX¥, and Csp and Nap are given
by (2.9) and (2.10), then

f2 YACApVpNBP
S
1
=-3 / YAL(A +2)nVA(A +2)c + (A +2)nV4(A +2)c] (2.15)
SZ

+ ;1 / Y€, LIV ((A +2)c) (A +2)n — V(A +2)c) (A +2)n]
S2

Proof. First of all, note that
VBYACsp =0,eBPVpYACsp =0.

From
1 1
VpNBP = 5v'—’f(A +2)n + EGBDVD(A +2)n,
we integrate by parts to get

1
f YACAgVpNEBP = —5/ YAVEC4B(A +2)n +eBPVRCuR(A +2)n).
52 §2

By (2.13)

GDBVDCBA = EADVBCBD
and VBCsp = %VD(A + 2 + %EBDVB(A + 2)c, we obtain the desired
formula. m]

The above generalizes the integral identities derived in [15, (65), (66)]:
/ YAFEVP Fpg =0,
S2
/ YAFRVPE =0
52

for YA = eABVBf(k.
Skew-symmetrizing (2.15), we obtain:

/2 YA(CagVpNBP — NypVpCBP)
s

= % f YAU(A +2)cVa(A +2)n — (A +2)nVa(A +2)c]
S2

(2.16)

+3 f YA(A +2)eVA(A +2n — (A +2nVa(A +2)c]
52

+ % f YA€, PVpI(A +2)c(A+2)n — (A +2)c(A +2)n].
SZ

Next we prove
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Lemma 2.6.

1
N NAB:_/
AB 2

nAA+2)n+nAA+2)n
52

S2

/ K*NopNAE = % / Xk[((A +2)1)% + (A +2)n)% — 4 BV nV (A + 2)2].
52 S2

Proof. Using the formula eACeBD = SABGCD — (SADUCB and e4Be p = oBE we

compute that

1 1
NagNAB =V, VenVAVEn — —(An)? + VA VpnVAVER — —(An)?
AB AVp 2( ) AVgn n 2( n) 2.17)
+2e4CV,Vnvevin

Integrating by parts yields
/ eV VnVeVEn = —/ VBV, VEnVen
s2 §2
= _/ V(A + 1nVen =0
S2

The first formula now follows from the first formula in Lemma 2.3. The second
formula follows from the second and third formula in Lemma 2.3. 0O

The second formula of Lemma 2.6 can be polarized and we obtain

~ 1 ~
/ XkCupNABz = = / Xk[(A +2)c(A+2)n+ (A+2)c(A+2)n
52 2Js (2.18)
—2eAB(V4eVE(A +2)n + VanVp(A + 2)g)]

3. Evolution of Conserved Quantities

In this section, we compute the evolution of the classical angular momentum and center of
mass. These formulae will be used to calculate the total flux of the conserved quantities.

Let’s first review the evolution of the metric under the Einstein equation. It is well-
known (see [10, (5.102)] for example) that the evolution of the mass aspect function is
given by

1 1
dum = —gNABNAB + ZVAVBNAB. (3.1)

The modified mass aspect function 7 is defined to be [24]
m:m—ZV \Y CAB=m—§A(A+2)c (3.2)
and satisfies

1
dim = —gNABNAB. (3.3)
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Therefore,

1
e

1 3
BMsz—Z/ XKN4pNAB, k=1,2,3.
SZ

&
=
Il

We also recall the evolution of N4 (see [10, (5.103)] for example):
1
Ny = Vam — ZvD(vaEcEA —VaVECED)
1 1 1
+ 7 Va(CpeNPE) = 2VR(CPPNpo) + 5 CapVp NP,

The formula can be rewritten in the following form:
Proposition 3.1. The angular momentum aspect N 4 evolves according to
1 1
0uNg =Vam + ZeABvB(ePvavECEQ) + gVA(CBENBE)

1 | (3.4)
+ gEABVB(GPQCPENEQ) + ECABVDNDB.

Proof. We rewrite the terms — V2 (VpVECE — V4 VECEp) and — VE(CEP Npy).
First we check the following identity directly:
eanVE(P2VpVECE)) = —VP(VpVECEA — VaVECED).

As for the term C BD Npa, we use the following general formulae for symmetric
traceless 2-tensors on the 2-sphere:

CxP’Npa+NgPCpa = (CpeNPE)oap
CBDNDA - NBDCDA = —(6PQCPENEQ)6AB
Therefore,
2C°Npa = (CpeNPEYoup — (€PCCENEQ)ens.
O

Equation (3.4) is indeed equivalent to equation (4) on page 48 of [8]. We apply (3.4)
to derive the evolution of the classical angular momentum and center of mass.

Theorem 3.2 (Theorem 1.2). The classical angular momentum and center of mass
evolve according to the following:

- 1 - -
9, J% = Z/ [eAEVEXk(CABVDNBD — NapVpCED) +XkeAB(CADNDB)],
52
(3.5)
- 1 ~
9,C* = Z/ [vAxk (%VA|N|2 +CapVpNBD — NABVDCBD)], (3.6)
S2

wherek =1, 2, 3.
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Proof. By (1.2),
_ . 1
9,5 = /2 BV X[0,N4 — Za,,(CADvBCDB)].
S

First, we deal with the term Je45VZ(€”2VpVECE() on the right hand side of (3.4)
and claim that

/2 YeapVB (P 2VpVECEQ) =0 (3.7)
s
for YA = VAXK or eAB Vg XX, Integrating by parts, the integral becomes
/ eapVAYB (P OVpVECE)).
S2

Since ePQVpVECEQ = —%A(A + 2)c and eapVAYB is zero or 2X*, the integral
vanishes.
Hence, we obtain

W
- [1 1 1
= /S2 eABv g XK [géAEVE(ePQCPENEQ) + ECABVDNDB - Zau(cADvBcDB)]
since the integral of V m + %VA (CpeNBE) against eABVp X* vanishes. Integrating by
parts the first term and use eABe,p = Sg, we obtain the desired formula.
We now turn to the formula for C¥. By (1.3) and (3.7),
3, CF
- u 1 1
= /sz vAxk [BMNA — Vam+ gvA|N|2 - ZaL,(CADvBcDB) - EvAaM(CDEcD%]
- 1 1
- / VAX"[EVA|N|2 +-VA(CpeNBE)+ —CypVpNPEB
2 8 8 2
1 1
— 20u(C,PVPCpp) = = Vadu(CpECPT)]

since the integral of %EAB vE (ePQCPE NE ) against VA X* vanishes. We arrive at the
desired formula since 8,(CprCPF) = 2(CppNBE). O

4. Evolution Formulae in Terms of Potentials

In this section, we rewrite the evolution formulae in terms of the potentials of the shear
and the news tensor.
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4.1. Energy and linear momentum. First we recall the formulae for the energy and linear
momentum.

Proposition 4.1. Suppose C sp and Nap are given as in (2.9) and (2.10), we have
1
o E = ~3 / [RA(A +2)n +nA(A +2)n]
52
1 ~
9, PF = -3 / XA +2)n)% + (A +2)n)? — 4BV 4nVE(A +2)n).
52

Proof. These follow from Lemma 2.6. O
4.2. Proof of Theorem 1.3. We first prove the following Proposition:
Proposition 4.2. The evolution formulae of the conserved quantities can be written as
7k 1 vk AB
Ay J =3 X5 e P[VAcVBA(A +2)n + VacVBA(A +2)n]
S2
~ 1 ~
3. Ck = 3 / uX (A +2)n)? + (A +2)n)* — 4BV 4nV(A +2)n]
S2
1 ~
+ T3 / [XK(A(A +2)e(A +2)n — AA +2)n(A +2)¢)]
S2
1 ~
+ T3 / [XK(A(A +2)c(A +2)n — AA +2)n(A +2)c].
S2
Proof. We write
49, J* :/ —X*eABCPNpa +/ Y& (CapVpNBP — NypVpCEP) = (1) + (2)
s2 52

and compute (1) and (2) separately.
Note that (1) = — st XKer(Cap)NAE and recall that £2(C4p) has potentials —¢
and c. Applying (2.18), we get

1) =— % /S2 X —(A+2)c(A+2)n+ (A +2)c(A+2)n
+ fsz eNB(VacVp(A +2)n — VanVp(A +2)c)]
S % /S2 XK[—(A +2)c(A+2)n + (A +2)c(A +2)n]
- /sz X*eAB[V4cVE(A +2)n — VanVe(A +2)c]
S % /S2 XK[—(A +2)c(A +2)n + (A +2)c(A +2)n]
- /sz XKeAB[V4cVR(A +2)n + VacVp(A +2)n]

where we used (2.7) in the last equality.
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Applying (2.16) to Y4 = Y/, we have
1 N
) = 3 / X eABIVA(A +2)cVB(A +2)n + VA(A +2)cV(A +2)n]
SZ

+ % / XA +2)c(A +2)n — (A +2)c(A +2)n]
SZ

Therefore,
MH+2)=— / X eAB[V4eVE(A +2)n + VacVp(A +2)n)
SZ

1 .
*3 / X*eABIV4(A +2)cVE(A +2)n + VA(A +2)cV(A +2)n]
S2

1

=3 / X [eBVAACVE(A +2)n + VaACVE(A +2)n],
52

and the desired formula follows by (2.7).
As for the evolution of the center of mass, we apply (2.15) and note that

fz VAX e ,LVBI(A +2)c(A +2)n + (A +2)c(A +2)n] = 0.
S

Therefore,

3,CF = % / uX [((A +2)n)? + (A +2)n)* — 4BV 4nV(A +2)n]
SZ

- % [VARH(VA(A +2)c(A + 2 — Va(A + (A +2)0)]
S2

— % [VAXK(VA(A +2)c(A +2)n — VA(A +2)n(A +2)c]
S2

= é f uX (A +2)n)” + (A +2)n)” — 4P VanVp(A +2)n]
S2
+ % f XFA(A +2)c(A +2)n — A(A +2)n(A +2)c]
S2
N % f XK[A(A +2)c(A +2)n — A(A +2)n(A +2)c]
S2

m}

To obtain the formulae given in Theorem 1.3, we rewrite the above formulae in terms
of bracket operators on S2.

Definition 4.3. For two smooth functions u and v on S2, denote

[u, v]; = €28V uVgv 4.1)

and

1
[u,v]r = E((Au)v — (Av)u). 4.2)
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In view of Definition 4.3, we can write
- 1 -
duJ* = 3 / XE([e, A(A +2)n]1 +[c, A(A +2)nl)
S2

and similarly for the center of mass. This proves Theorem 1.3.

5. Supertranslation Invariance of the Total Flux

5.1. Total flux of classical conserved quantities. We study the effect of supertranslation
on the total flux of conserved quantities along null infinity or, equivalently, the difference
of conserved quantities at timelike infinity and spatial infinity. As in the previous section,
suppose I = (—o0, 00) and £+ is complete extending from spatial infinity (v = —o00)
to timelike infinity (¥ = +00). A supertranslation is a change of coordinates (i, i) -
(u, x*) such thatu = u+ f(x), x4 =34 on .7+ Letm, Cap, and N4 denote the mass
aspect, the shear, and the news, respectively, in the (u, x*) coordinate system. Since
the spherical coordinate is unchanged, we use x to denote either x* or ¥# throughout
this section. It is well-known (see [10, (C.117) and (C.119)] for example) that the shear
Cap(u, x), and the news N4p (i, x) in the (i, x) coordinate system are given by

Cap(it,x) = Cap(i + f(x),x) =2VaVp f + Afoap (5.1
Nap(it, x) = Nag (it + f(x), x) (5.2)

‘We assume that there exists a constant ¢ > 0 such that
Nag(u,x) = O(u|"""%) as u — +o0. (5.3)
Note that the limits of the shear tensor exist

lim Cup(u,x) = Cap(E)
u—+o00

as a result of (5.3).
Similarly, (5.3) implies that the limits of the angular momentum exist

lim J*w) = J* ().
u—+o00

Denote the corresponding quantities after supertranslation by J ’/5 (£).
Let Y4 = eABvg XK, By (3.5), the total angular momentum flux is

TGy = J* (=)
1 [ree A BD\ , 5k _AB,~ D 2
Z/ /sz Y CABVDN — NapVpC )+x ABc, NDB](u,x)dS du
l +00
=7 /2 VDYACABNBD+YA< VDCABNBD—NABVDCBD>] (u,x)dSzdu
- N
| B 2
+1f f XkeAB(Cc P Npp)(u, x)dS?du
—oc0 JS§2

(5.4)
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in the (u, x) coordinates and

ey — oy = 2 [ [ovprAc,nED
f f = 4 s D AB
—o0 J§
+YA (—VDCABNBD - NABVDGBD)] (i, x)dS2di (5.5)
l +00 ~ _ _
+-/ / X*eAB(C P Npp) (i, x) dS*di
4 —0 SZ

in the (i, x) coordinates.
Applying the chain rule on (5.1) yields

VpCaplit, x) = Nag(ii + f, x)Vp f +(VpCap)(ii + f, x) — VpFag,
VoCBP (i, x) = NBP (i + f,x)Vp f + (VpCBPYa + f,x) = VE(A+2) 1.

To simplify notation, we introduce the u independent symmetric traceless 2-tensor
Fap =2VaVpf — Afoap

and thus Vp FBP = VB(A +2)f.
Equation (5.5) can be rewritten as

T = )
- l/oo / [_VDYA(CAB _ FAB)NBD+YAwA] @+ f.x0dS di
4 )00 )2 (5.6)
l +00 " i )
” /_OO /S2 I:ngAB (CAD _ Ff) NDB] (@ + f,x)dS2dii
where
wa(u, x) = (— NAB(M,)C)VDf —VpCag + VDFAB)NBD(M,)C)

Note that the integrand is evaluated at (z + f, x) in Eq.(5.6), to which the change of
variable will be applied.

By the decaying assumption of the news (5.3), we can apply change of variable
u = u+ f to (5.6) and rewrite it as

ACECS!
1 oo A BD
= [—VDY (Cap — Fap)N (5.7
4 —00 S2
+Y 4w + XFeAB (CAD - Ff) NDB] (u, x)d Sdu

Combining (5.4) and (5.7), we obtain
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(70 =75 ) = (o = )

1 o0
= -/ f —YAIN >V, fdS*du
4 —00 S2

[ ~
+7 / /2 [—YAFABVDNBD +YAN,pVpFBD — X"eABFfNDB] dS2du
—o0 J§

where we used the identity 2N g NBP = |N|28AD.

Observe that the second integral is of the same form as 9,,J given in (3.5) and one
can thus simplify it as in the proof of Proposition 4.2 to get

(V0 = 7k@) = (FFm = 1)
= l/w/ fYAVA|N|2d52du+1/oo/ X*eABYAnVEA(A +2) fdS*du
4 ) _Js2 4 ) _Js2
Integrating by parts, we arrive at

(70 = TE ) = (T = 74 )
= %/: /SZ FYAVA(IN? — A(A +2)n)d S*du (5.8)
= / —2fYAVa(m(+) — m(-))dS>

SZ

where

m(+) = Mliriloom(u, X).

Here we used the mass loss formula (3.1) in the form d,m = %A(A +2)n — %|N|2.

Note that m(+) — m(—) is of the same mode as YAV (m(+) — m(—)) because Y is a
Killing field.

In summary, we obtain a necessary and sufficient condition for the total flux of the
classical angular momentum to be supertranslation invariant.

Theorem 5.1. Suppose the news tensor decays as
Nag(u,x) = O(u|~""%) asu — +oo.

The total flux of the classical angular momentum JKis supertranslation invariant if and
only if
m(+) —m(—)

(as a function on S?) is supported in the | < 1 modes.
Moreover, the above condition holds when the rescaled curvature components P (see
Definition A.5) at 9 satisfy

lim P — lim P (5.9)

u—0o0 Uu—>—o0

is supported in the | < 1 modes.
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Remark 5.2. Theorem 5.1 is motivated by the investigation in [7], which is built on the
framework of stability of Minkowski spacetime. Indeed, equation (11) and (12) of [7]

Zt—-7"=Vd div(ZT-%7)=Z2z"-Z"
imply lim,,—, oo c(#, x) = lim,,_, _ c(u, x). Using moreover (10) of [7]
AD = —2(F — F),
we get
Va(8F — A(A +2)c|™2) = 0.

Moreover, the total flux of the classical center of mass is supertranslation invariant
under the same condition

Theorem 5.3. Suppose the news tensor decays as
Nap(u,x) = O(ju|™'"%) as u — £oo,

The total flux of the classical center of mass Ckis supertranslation invariant if and only

if
m(+) —m(—)
is a constant function on S?.
Proof. Denoting C’k(i) = lim,_ 400 C‘k(u), by (3.6) we have
Ct = CH )
1 +00 B B
- ff / ulN 2@, x)X* + vAXE [CABVDNBD - NABVDCBD] (u, x) dS*du.
4 —00 SZ
(5.10)

On the other hand,
Ch+) = Ch(=)

l +00 _ - - _ _ _ _
- f/ / @|N (i, x) X* + VAXE [CABVDNBD - NABVDCBD] (@, x) dS2di.
4 —00 S2
Proceed in the same way as in the case of angular momentum, we obtain
(G5 = b)) = (Chen - ¢4 )
1 +00 - -
= -/ f —XKINPPf = VAXKINPVA £ dS?du
4— —00 S2
1 [+ Aok BD
+ - VEAX*(=2VsVpf+ Afoap)VpN
4 —00 S2

+VAXEN,pVE(A +2) F dS*du

We simplify the second integral as
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/s2 —2X*V 4 fVpNAP 1+ 2VAXKY, fVVpNBD —2VAXKVEN,p - f
_ /sz 2 (vA)?"vAvavDNBD + XEVAVEN 5 - f)
and the mass loss formula 9,,m = A—ILVAVBNAB — %|N|2 implies that
(Ch = b)) = (EHen - )
= fS2 2XF f(m(+) = m(=)) +2VAX* (m(+) — m(=))Va f
— /sz (6)?"(m(+) —m(=)) = 2VARKV 4 (m(+) — m(—))) f.

Hence, C¥(+) — CK(—) is invariant under arbitrary supertranslation if and only if
6)~(k(m(+) — m(—)) —2VAXkY, (m(+) — m(—)) is supported in the / < 1 modes.

Multiplying the expression by X* and summing over k = 1,2, 3, we get m(+) —
m(—) is supported in the / < 2 modes. However, a direct computations shows that if
m(+) — m(—) contains a/ = 2 mode, then 6X* (m(+) — m(=)) — 2VAX V, (m(+) —
m(—)) contains a / = 3 mode. Simiarly, if m(+) — m(—) contains a / = 1 mode,
then 6X¥ (m(+) — m(—)) — 2VAX*V 4 (m(+) — m(—)) contains a / = 2 mode. Thus,
m(4+) — m(—) is constant if and only if C*(+) — Ck(—) is invariant under arbitrary
supertranslation O

5.2. Total flux of the CWY conserved quantities. In this subsection, we show that the total
flux of the CWY angular momentum and center of mass is supertranslation invariant.
We decompose f into its modes:

f = +(¥iii + ﬁzz

and let J k(:l:) be the limits of the CWY angular momentum in the u# coordinate and
J 1; (&£) be the limits of the CWY angular momentum in the & coordinate. We have

Theorem 5.4. Suppose the news tensor decays as
Nag(u,x) = O(u|~""%) asu — +oo.
Then the total flux of J* is supertranslation invariant. Namely,
(70 = 75@) = (0 = M) = @ie™ (PT) = P (=),
Proof. Note that

Jk=Jk —/ YAcVam. (5.11)
SZ

where Y4 = 4BV XK,
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The assumption (5.3) on the decay of news tensor implies that the limit of mass aspect
function is invariant of supertranslation

lim m(u,x) = lim m(u,x) orm(x) = m(£). (5.12)
u—+o00 u—too

Moreover, we have

m éAB(ﬁ, X) = uEr:Itloo CAB(M, x) — ZVAVBf + AfGAB. (5.13)

li
u—=+00

If we denote the closed potential of limj;_, 1o Cap and limj— 100 Cap by ¢(+) and c(+)
respectively, we have

c(+) =c(H) —2f=2 (5.14)

as functions on S2. Evaluating the definition of the CWY angular momentum (5.11) at
+ 00 gives

@)= 5w = [ vt am,
S
and
TE) = Jj(+) — / YAG(H) Vari(+).
S2
Taking the difference and applying (5.12) and (5.14), we derive
Th() = J5 ) = Thn) = T* () + 2/ fe=2Y AV m(+).
S2
We derive a similar equation at —oo and thus
(7h0 =75 o) = (FFn = )
= (70 = 7o) - (P = ) +2 fs 2V VA () = m(=)
- —2/52 Fea1 YAV Gn() = m(—))
by (5.8). It follows that
() = 75@) = (V) = I @) = aie™ (PT) — PI(=)).

m}

Let CK(£) be the limits of the CWY center of mass in the u coordinate and C’;(:i:)
be the limits of the CWY center of mass in the & coordinate. ‘

Theorem 5.5. Suppose the news tensor decays as
Nag@,x) = O(u|"" %) asu — +o0,

then the total flux of C¥ is supertranslation invariant. Namely,

(chr = k@) = (chen = @) = a0 (PHe0) = PH)) + o () = E()).
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Proof. We write

ck=ck —/ eVAX YV am +3/ cXkm + 2(c, m), (5.15)
S2 S2

where Z is an integral over S? that involves only ¢ and m. Since the last three integrals
have limits at u = 00, the mass loss formula now implies

) -t
_ l/ - /2 u| NP, x)X* + vAXK [CABVDNBD _ NABVDCBD] (u, x) dS2du
—o00 J§
— / c(H)VAXEY gm(+) +/ c(—)VAXEY ym(—)
§2 52
+3/ c(+H) X m+) —3/ (=) X m(—)
52 52
+ B(c(+), m(+)) — B(c(—), m(—)).
By (5.13), c(£) is invariant under supertranslation. We apply (5.12) and (5.14) to get
(ch) = b)) = (chen - ¢t )
= (Chen = Eh)) = (Cren - ¢4 )
+2/ fe=2V XkVA(m(+) m(— ) / fe>2X m(+) m(— ))
= —2f52 ezt VAXIVA(m(+) —m (=) +6/S2 frz1 X (m(+) = m()).
‘We obtain
(chw = ch) = (cFen - ci) =2 fs (@X* + @) () = m(=)
= oo (PA) = PE) ) + o (E() = E()).

m}

6. Spacetime with Zero News

In this section, we consider a non-radiative spacetime in the sense that the news vanishes.
This includes all model spacetimes such as Minkowski and Kerr. First, we show that the
CWY angular momentum and center of mass are constant.

Lemma 6.1. Suppose the news Nap(u,x) = 0 in a Bondi—Sachs coordinate system
(u, x), then the CWY angular momentum J*u) and CWY center of mass Ck) are
constant, i.e. independent of the retarded time u.
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Proof. The assumption implies d,m (u, x) = 0, 3,C4p(u, x) = 0 and thus
m(u, x) = 1i(x), Cap(u, x) = Cap(x)

and both potentials ¢ and ¢ are independent of u as well.
We recall the definition of CWY angular momentum

1
JEw) = /SZYA (NA - ZCABVDCDB — CVAm> (6.1)

where Y4 = 4BV X¥ . Since ¢ and m are both independent of u, our previous calcu-
lation shows

1
314/ YA (NA——CABVDCDB>
52 4

| i
= /2 [YA(CABVDNBD — NagVpCBPy + X"EAB(CADNDB)] ,
S

the conclusion follows.
On the other hand, the CWY center of mass C is given by

~ 1 1 N
/2 vA Xk (NA ~ 2CanVpCP? — =V, (CDECDE)> —VARK (e +u)Vam
S

~ ~ 1 -~
+ / <3Xkcm +2VAX* e p(VBOm — 1—6XkVA(A +2)eVAA + 2)9)
S2

(6.2)
Since all m, ¢, and ¢ are independent of u,
3,C*
- 1 1 ~
- aL,/ VAXE ( Ny — ~CapVpCPE — —v, (CDECDE> —/ VAXEY om
S2 4 16 SZ
(6.3)

Our previous calculation shows that the first term on the right hand side is
~ 1 1
/ vA Xk <VAm + ZCABVDNBD — ZNABVDCBD> ,
S2

and the conclusion follows. O

Finally, we show that in a spacetime with vanishing news tensor, the angular
momentum and center of mass themselves, not just their total flux, are invariant
under supertranslation.

We pin down the exact formula for the angular momentum aspect on a spacetime
with vanishing news. In this case, we have

1
duNa(u, x) = Vam(u, x) — ZVBPBAm,x)

where

Ppa(u,x) = (VpVECEA — VaAVECER)(u, x)
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Therefore
1 o
0uNa(u, %) = Vari(x) = 2VF Ppa(x)
is independent of u. Integrating gives

1 o
Na(u,x) = Na(uo, x) + (u — uo)(Vari — ZVBPB/U (6.4)

for any u and fixed ug.

Suppose (i, x) is another Bondi—Sachs coordinate system that is related to (u, x) by
a supertranslationu = u + f for f € C°°(SZ)_. B

Recall the mass aspect m (i, x), the shear C4p (i, x), and the news N4p (i, x) in the
(i, x) coordinate system are related to the mass aspect m(u, x), the shear C4p(u, x),
and the news N4 p(u, x) in the (u, x) coordinate system through:

- _ 1 B _ D
m(u, x) =m(u+f,x)+§(V Npp)wu+ f,x)VZ f

1 _ B oD, | _ BoD
+ 3 @uNpp) U+ f OVEFVES+  Npplu+ f.X)VEVES (6.5)
Caplit,x) = Cap(ii + f(x),x) —2VaAVp f + Afoap
Nag(it,x) = Nag(ii + f(x), x)

In particular, Nag(ii, x) = 0and J* (@) and C*(21) are independent of u. In addition,
we have

mi, x) = m(x) = m(x)
Cap(it,x) = éAB(x) = Cap(x) — Fap
c=¢—2fp>2

(6.6)

No

c =

10

1o

where FAB = ZVAVBf — AfO'AB.
Finally the angular momentum aspect transforms by

NG, x) = No(ii + f,x) +3m(@i+ f, x)Vaf — %PBA(ﬁ+f,x)VBf
= Nao(ii + f, x) +3mV4 f — ZﬁBAva.

See [10, (C.123)]. Note that the convention of angular momentum aspect there is —3N 4.
Combining with (6.4) and setting u = u + f, we obtain

_ 1 o 3.
Na(it, x) = Na(ug, x) + (it — ug + f)(Vam — ZVBPBA) +3mVaf — ZPBAva
(6.7)

for any u and fixed uy.
Now fixing u = ug, we consider the angular momentums

J = J(ig) = [ YA (NA — LCpVpCPE - évAn%) (itg, x)
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J = J(up) = /Sz Y4 (NA — %éABvD(L'*DB — c°VAn"1> (10, X)
where Y4 = €48V X* and the center of mass
C = Cl(ig) = /S VAXE (NA - %éABvDéDB - 1—16VA<CDECDE>> (itg, x)
+ /sz (35(’(3;% _VARKE+ ﬁo)vAn%)
+ /52 <2VA5("6AB(VB§);% - %X"VA(A +2)cVAA + 2)5)
C =C(up) = /52 vAXE (NA - %éABVDéDB - %VA((Q:DE&DE)> (1o, x)
+ /S2 (35{"5;& — VAR uo)VAn"i>
+ /52 <2VA)?keAB(vB§)m — %X"VA(A +2)éVA(A + 2)@)

We prove the following theorem:

Theorem 6.2. On a spacetime with vanishing news, the CWY angular momentum and
center of mass satisfy

J—J=- 2f YA foc1Vam (6.8)
S2
C-C= / (6f,3515(’<ﬁ1 - 2fg§1VA)~(kVAn°1) 6.9)
S2
Proof. Taking the difference of J and J and applying (6.6), we obtain

J= = [ YA NG, x) = Natuo. 0]
SZ
1 . )
+ Z/ yA [CABVDFBD + FapVpCBD — FABVDFBD]
52
+ 2/ YA fes2Vam
s2 -

We observe that [ Y4(FapVpFBP) = 0 and compute

/S YA [Natio, %) = Natuo, )]

i 1 o 3,

(u —uo+ f)(Vam — ZVBPBA) +3mVaf — ZPBAVBf]
A i . 1 B3 . 3, B

= Y fVAm_va PBA+3mVAf_ZPBAV f

A o 1 B 5 35 B
= | Y?|=2fVam — —fV°Pgs— =PpaV°f]|,
52 L 4 4
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where we use [ YAVB Py =0and [ YAV i = 0. Therefore,

J—J= Z/ Y4 [éABvDFBD + FapVpCBP — B Py, — 3ﬁBAva]
52
- 2/ YA fe<1Vam.
52

By Theorem B.1, the first integral vanishes and the result follows.
Taking the difference of C and C and applying (6.6), we obtain

C-C= / VAX [Na o, x) = Na(uo, x)]
SZ
1 T ,
+ Z/ VAXk[CABvDFBD + FugVpCBP — Fypvp FPB
52
1 1
+5Va(CapF®P) — ZVA(FBDFBD)]
+ / (—6fg225("n°1 + (2 fmr — g + uo)VAXkVAn%)
S2
‘We observe that
3 1
/ vA xk [—FABVDFDB - ZVA(FBDFBD)] =0
52
and compute
/ VARH [Na(io. x) — Nalug, )]
S2
Ak - . lopg . 35 B
= \YARD. ¢ (uo—u0+f)(VAm—ZV PBA)+3mVAf—ZPBAV f
S2

= | vAxK
s2 L

T o1 . 3. ..
- [S VAXE| (o = uo = 2/)Varit = 2 V" Ppa = ZPBAva] * /52(6ka111),

1 o 3,
(ito — uo + f)Vam — ZfVBPBA +3mVy f — ZPBAVBfi|

where we use [ VAXkVB Py, = 0.
Putting everything together, we arrive at

c-C

1 ~ o o 1 o o o
=1 / vAxk [CABVDFBD + FapVpCBP 4 SVA(CapFPP) = VP Pya — 3PBAVBf]
S2

+/ (6f451)2’<n°1 - 2f@§1VA)~("VAn"1)
SZ

By Theorem B.2, the first integral vanishes and the result follows. O



Evolution of Angular Momentum and Center of Mass 577

7. Conservation Law of Angular Momentum and a Duality Paradigm for Null
Infinity

7.1. Conservation law of angular momentum. In this subsection, we derive a conserva-
tion law of angular momentum at .#* & la Christodoulou [7].

Suppose I = (— 00, +00) and .#™ is complete extending from spatial infinity (u =
— 00) to timelike infinity (u = + 00). Integrating the formula in Proposition 3.1 from
— 00 to + oo and projecting onto the £ = 1 modes, we obtain

eAEVENA(+00) =1 — €A EVENA(—00) =1 = G=1, (7.1)

where

+00 1 1
G = / gVAVA(ePQCPENEQ) + EEAEVE(CABVDNDB)

—00

Equation (7.1) should be considered as a conservation law for angular momentum that
complements the conservation law for linear momentum of Christodoulou [7, Equation
(13)], which in our notation is

M(+00)¢=0,1 — M(—00)¢=0,1 = —Fi=0,1,

where
L[ AB
F=- NapN (7.2)
8/

and follows from (3.3).
The above discussion can be carried over under the framework of stability of
Minkowski spacetime, provided that we take Rizzi’s definition of angular momentum

[20,21]. Recall from [7,8] that two symmetric traceless 2-tensors X and E are defined
by

li 2y =%, i ¥=E
m A=l X
with
T 1 a3
ou 2 ’

See Definition A.5 for the curvature components and their limits at null infinity.
Rizzi’s definition of angular momentum [20, (3)] is given by (omitting the constant

87
L(Qy)) = /2 Qé) <1A — 2ABVCECB), i=1,2,3 (7.4)
s

where he assumes that the curvature component 8 satisfies lim, _, o 784 = —I4. Here
Qé) corresponds to eABV X! Inthe appendix, we show that /4 and X 4 p correspond to
N4 and —%C 4B in Bondi—Sachs coordinate system. Hence Rizzi’s definition coincides
with (1.2).

Using Bianchi identities, Rizzi derived the evolution formula [20, (4)]
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iL 1
== /2 QA [EABVCECB +3 (EngECA - ZABVCECB)}
S

1
:5/ Q4 (EABVCECB—EABVCECB)+VAQBE§ECA, (1.5)
S2

—

where the second line is obtained by integrating by parts the term 4 ESVB Eca-

Remark 7.1. The definition we take has the opposite sign to [20, (3),(4)]. The discrep-
ancy comes from the fact that Kerr spacetime has angular momentum — ma under our
definition.

According to the main theorem of [9],
B=0(ul"?) (7.6)
as |u| — oo, where B = lim,_, o r2B. (see also [7], the paragraph after equation (8)

where B is denoted by B there) -
Estimate (7.6) and equation (2) of [7]

divE = B (7.7)
imply that
g = 0(ul~?) (7.8)
as |u| — oo and
Y- 5t (7.9)

as u — *oo. )
By (7.8) and (7.9), ffooo g—ﬁdu is finite and furnishes the difference of the angular
momenta at timelike infinity (# — o0) and spatial infinity (1 — —o0).

We can write this in the spirit of [7]. In general, the peeling fails and 8 decays as
B = o(r_%). Christodoulou [8] observed that Bianchi equation nevertheless implies that

R=lim r*DB

Cl.r—o0
exists. Moreover, one has
R=VP+xVQ+2X B, (7.10)

where (P, Q) = lim,_, o0 (3 p, r30) and V, , - are taken with respect to standard metric
o on S2.
In order to exhibit a physically reasonable initial data set that has a complete Cauchy
development without peeling, Christodoulou made the crucial assumption
lim uR=R" #0, (7.11)
U——00

which we adopt here.
From (7.11) he derived [8, (5)]

B = B logr + Br 4 +o0r™
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uniformly in # with 1-forms B, and B on 52 satisfying [8, (6)]
0B,

=0 (7.12)
ou

0B _ 1 (7.13)
du 2 '

Moreover, using Bianchi equation, he derived that

lim rfe=A, #0

C.r—o00
exists. A is a symmetric traceless 2-tensor that is independent of « and satisfies
divA, = —B,. (7.14)

Definition 7.2. For a function f on S, we denote the projection of f on the sum of
zeroth and first eigenspaces of A by f1). Namely, fi1] = fi=0 + fe=1. For a 1-form
wp = VAf + EABVBg, we denote WA[1] = VAf/g=1 + EABVngzl.
Since the spherical tangent vectors d4 have length O(r), we have the correspondence
By =—14. (7.15)
By (7.14), By11 = 0 and we integrate (7.10) to get

uz

1
(La(uz, x) — La(uy, X))y = —5/ VaPi—1 +€asVP Qo1 + 24 B®)11du.
ui

By (7.6) and (7.9), the last term is integrable on (—oo, 00). For the first two terms,
we observe that equations (10, 11) of [8]

oP 1. 1 0E

— =—=divB+-X - — (7.16)
ou 2 2 du

d 1 1 0E
_Q=——cur1§+—2A— (7.17)
du 2 2 du

infer that Po— (u, x) = a; X' + O(|u|~3) and Q1 (u, x) = b; X' + O(ju|~?) for some
constants a;, b; independent of u. Thanks to the main theorem of [9], P — Py—p, O —
Qr—o = O(|u|’%), we have a; = 0, b; = 0. Thus Py—1, Q¢—1 are also integrable on
(—00, 00).

We conclude limy,— o0 La[17 (1, X) — lim,,— —o La[1] (1, x) exists and is given by

1 o0
—3 / (VAPE:I +eapVEQus + (QEABEB)U]) du'.

—00
By (7.3) and Rizzi’s definition (7.4), we can interpret the following formula as a
conservation law of angular momentum

lim (IA — EABVCECB> — lim (IA — EABVCECB>
U—00 (1]

[ u=—oco
1 o0
= 5/ —VAPi—; —eagVE Qs + (EABVCZCB ~ ZagVe ECB)IIICM
-0
(7.18)

From Propositions A.2 and A.6, it follows that the co-closed part of the above con-
servation law is equivalent to the total flux of the classical angular momentum in a
Bondi—Sachs coordinate system.
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7.2. A duality paradigm for null infinity. In this subsection, we describe a duality
paradigm for null infinity which creates a pair of dual spacetimes with the same classical
conserved quantities.

Corollary 7.3 (Corollary 1.7). Given a set of null infinity data (m, No, Cap, Nap) de-
fined on [uy, uz) x S2, there exists a dual set of null infinity data (m*, N*, Cig  Nip)
that has the same (classical) energy, linear momentum, angular momentum, and center
of mass.

Proof. Define C%, = £2(Cap) on [uy, us] x S2. Then Nip = 0uChp = €2(Nap).
Define m*(u, x) by the differential equation

{M*(ul,X) =m(uy, x)

dum* = LVAVEN% . — Nk N*AB
and then define N} by the differential equation

Ni(uy, x) = Na(uy, x)
N} = Vam* = 1VvP(VpVECE, — VAVECE )
+ 1V (Cy N PE) — 1V (C*BP N} ) + 1C4 VO N*PE.

For this subsection alone, we denote the classical conserved quantities of the infinity data
(m,Na,Cap, Nap) by E, Pk Jk C* and denote the classical conserved quantities of
the data (m*, N%, C% 5, N ) by E*, P*F_ J**  C*k we have
E*(u1) = EG), P ) = PH(un)
and since C% DVBCED = CADVBCBD, C}*JEC*DE = CppCPE,
T ) = I @), ¢ ) = ),

It remains to show that the evolutions of the conserved quantities are identical. Recall
that the potentials of C} ; and N ; are given by (—c, ¢) and (—n, n). We observe that
replacing (c, ¢, n, n) by (—c, ¢, —n, n) does not change the following expressions

WE = —l / [PA(A+2)n +nA(A +2)n],
8 S2
9, Pk = —% / XA +2m)* + (A +2)n)* — 4e* BV, n V(A +2)n],
S2
9 J* = é / XEeABIVAcVEA(A +2)n + VacVEA(A +2)n]
S2
8.Ck = % / XA +2)m)? + (A +2)n)* — 4PV anVp(A +2)n]
S2
+ % / [X*(A(A +2)c(A +2)n — A(A +2)n(A +2)¢)]
S2
+ % f [XF(A(A +2)c(A +2)n — A(A +2)n(A +2)c]
S2

This finishes the proof. O
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8. The Case of Quadrupole Moments

In this section, we consider the case of generalized quadrupole moments. Namely, all
c,c,n,n are (—6) eigenfunctions (or £ = 2 spherical harmonics). Therefore, ¢ =

Zc,-j(u)f(’f(j,g = Zgij(u)}zif(j n = Zn,’j(u)f("f(j,il = Zilij(u)f("f(j with

auc,-j = njj and Bugij = QU.

8.1. Classical conserved quantities. Next we compute the evolution of classical angular
momentum and center of mass for quadrupole moments.

Lemma 8.1. Suppose f;; and g;; are both symmetric, traceless 3 x 3 matrices. Then
N 8
xixy2 = 20 2
/Sz(f,]X Xy =5 lzj:fij (8.1)
op AB i 37 Tkl 167 kp
KPS XIX) V(g XEXD) = Zﬁ,g,ke (82)
s

Proof. Both formulae follow from Lemma 5.3 of [6]
vivivkvyl 4
X' X' X" X = E(B,'j&d +8ikdj1 + 8i1d k).
52 ' '

O

Combining the above lemma with Theorem 1.3 and Proposition 4.1, we conclude
that

Proposition 8.2. Supposec = Zcij(u))zif(j, c= Zgij(u)f("f(jn = Zn,-j(u))?"f(j,
n= Zgij(u))zi)}j, then

8 5 5
E= _?(Zn” + Zﬂij)
L L

327 .
k _ . k
WP =5 2t 83)

1671 ipk
Z(c,jnm +cljn]p)e

~ 321471
k
Z Mijnj,€

8.2. CWY angular momentum and center of mass. Next we compute the evolution of
the CWY angular momentum and center of mass for quadrupole moments. We need the
following lemma.

Lemma 8.3. Suppose the potentials of the news tensor are of mode £ = 2. Namely,
1 1 c c
Nap = VaVpn — EAnUAB + E(EACVBV n+epcVaVon)

wheren =3, nij X' X/ andn = 2 Q,.j)?fiff satisfy Y " niip = y_; n;; = 0. Introduce
two £ = 2 spherical harmonics



582 P-N. Chen, J. Keller, M.-T. Wang, Y.-K. Wang, S.-Y. Yau

~ ~ 1
Q=) (unaX' X =33 n,
iJj

ikl

- o~ 1
k1 2
0= E (njn X X)—g E .
ij

ikl

Then
(1) the € = 2 component of Nag N is

48 0 48 0
7 7=
(2) the odd mode component of Naop N AB g
Séiljni’lijﬂklf(m((sﬂ — f(jf(l).

Here €;jy. is the Levi—Civita symbol in three dimensions.

Proof. Note that the even-mode components (¢ = 0, 2, 4) and odd-mode components
(¢ =1,3) of NygNAB are given by
1 1
VaVnVAVE, — E(An)z +VaVpnVAVE, — E(Ai’_l)z

and

1
(VAVE, — EAnaAB)(eACVBVCQ+ egcVaVen)
=2n;;VAX'VEX (excVpVEn+epcVaVin)
=2n;;VAX'VEXT 20, (eac VX VEX! + epc VA XFVEXT)
=8¢k nijn, X" (S — XX
respectively. In the last equality we use the identity €4 BVAX'VpX) = ¢ jkf(k and
VpXIVBXT =58 — XX/
For (1), we compute

4
AgB, 2 2
VaVpnV2V©Pn =20n —8Q+§ Eij ni;.

Since the space of £ = 4 spherical harmonics is spanned by

XXIXR + % (5”’5“ +oikgil 4 5i’3f’<)

(8.4)
! (f(if(fa’d + XXk L XX SR 4 XT XK1+ X0 RS 4 5(")2’5"/’)
7 9

the ¢ = 2 component of n? is %‘Q. Putting these together, we obtain (1).
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In the case of quadrupole moments, the CWY angular momentum and center of mass
take the form:

. 1
Jk = /2 ABYE XK N, — ZCADVBCDB — cVam] (8.5)
S
By 1
ck = /2 VAXKINgA — uVam — ZCADVBCDB
S

1
—EWCDECDE) —2¢ eapVEm], (8.6)

Therefore,
Jk=17 —f XkeABY eV
52

- ~ 1 ~
ck=Cr+ 2/2 X eABY 4 eVpim + i /2 X*eABV4eVEA(A +2)c
S S

where we use (3.2) and (2.7).
The evolution formulae for J* and C¥ are thus

oIk =0,k — /2 XkeABY ,nVgin — /2 XkeABY 4V a,m
S S

9,Ck =9,Ck +2/

XkeABY \nVpim +2/ X*eABY 4 Vo, i
52

S2
1 - 1 -
+ = / X eABYAnVEA(A +2)c + — / XkeABY4eVEA(A +2)n
4 S2 4 S2
By Lemma 2.1, only the £ = 2 mode components of 7, and 9,/ will survive in the

above integrals.
Denote the ¢ = 2 mode of 711 by mig—> = i X*X!. By Lemma 8.3, we get

Py 6
iy = = Z(”liknil +ngn;) — 5kl Z(n,, +n}))
i
By (8.2, we obtain the evolution equation of J* and C*:

Proposition 8.4. Supposec = " ¢;; ()X X/, ¢ = Zgij(u)f(")}/, n=>3n;wX X/,
n= ZQ--(M)Xin, then

= - —<Znu +an,>
5, Pk = _ 32n Z”u

iL,j.p
167 ;
k ~ ~ k
Z(3c,j njp+ 3cl]n]p nijmj, — cijo,mjp)e'’? (8.7)
i,j,p
1611
k ipk
3,Ck = Z(Zn i jp + 2, i jp + 61 Cjp + 6,1 jp)e
iL,j.p

32u7{ Z”u
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where iy, is given by

- 6
Quimpg = 5[2(’%’%1 ) — 5k1 Z(ﬂ,j +n})]
i

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix A. Christodoulou-Klainerman Connection Coefficients and Curvature
Components in Bondi-Sachs Formalism

We write the limit of connection coefficients and curvature components defined in [7-9]
in terms of the Bondi—Sachs metric coefﬁcwnts

We choose the null vector fields L = 3. and L =
satisfy (L, L) = —2.

% (9, — WPap — ¥8,), which
Definition A.1. The second fundamental forms and torsion are defined by

1 -
xaB = {(DaL,0p) = EtngAB + XAB

1 ~
X5 = (DaL,0p) = SUX8AB+ X sp

1
¢a = (DAL, L)
2
Their limit as r — oo are defined by
Y= lim ¥
r—00
= lim r 'y
r—00 -
Z = lim r¢.
r—0o0

They are related to the metric coefficients in the corresponding Bondi—Sachs coordinate
system as follows:

Proposition A.2.

Proof. Starting with g4p = r>

oap +rCap + O(1), the determinant condition gives
try = % and we compute

1 _
XAB =T10AB + ECAB +00™ )
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toget Xap = —%C Ap- Direct computation gives

X4p =" (=0ap +3,Cap) + O(1)
and hence try = —% +0(r~2) and ZAB =rd,C4p+ O(1). The limit of torsion follows
from ¢4 = _%ng—z) +00r7%. O

Definition A.3. The mass aspect and conjugate mass aspect function of Christodoulou—
Klainerman are defined by

1 1
uw=K+ Ztrxtré —dive pu=K+ Ztrxtrl+ dive.

Here K denotes the Gauss curvature of the two-sphere » =const. Their limits are defined
by

N = lim ru
r—00

N = lim rpu.
r—>oo —

We express them in terms of the Bondi—Sachs metric coefficients as follows:
Proposition A.4.
1 1
N =2m+ EVAVBCAB, N =2m — EVAVBCAB
Proof. We compute K = rlz + #VAVBCAB +0( % and }—‘trxtri = —riz + ri3(2m -
%VA VBCAB) and the assertion follows. 0O

We turn to curvature components. The convention of Riemann curvature tensor is

R(X,Y)Z = (DxDy — DyDx — Dix,y))Z
R(X,Y,W,Z) = (R(X,Y)Z, W).

Definition A.5. Define the curvature components
asp = R4, L, 05, L)
1
B, = ER(aA,L, L, L)
1
p = ZR(La Ls Lv L)
1
ofap = ER(aA, dp, L, L)
1
Pa=R(@a. L. L. L)

Here ¢ 4 deA Adx?8 is the area form of the two-sphere with respect to g 4 3. Their limits
are defined by

Ap = lim r o
Aap = MMT ZLap
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B, = lim rg
r—oo —A

P = lim r° 0
r—00

Q0 = lim o
r—>00
BA = lim }"3/3,4
F—> 00
Note that (A, B) were denoted by (A, B) in [7].

We express them in terms of the Bondi—Sachs metric coefficients as follows:

Proposition A.6.
AAB = —20,Nap
B, =V®Nagp
1
P=—-2m— ZCABNAB

1 1
0= cAB <—ZCENDB — EVAVDCDB)
By =—Nyu

Proof.  The formula for A is obtained from (6) of [7], 3—5 = —A, which is the rescaled
limit of the propagation equation Q X = —«a.

The formula for B is obtained fI’OI:l (2) of [7], VBEp = B4, which is the rescaled
limit of the Codazzi equation divy — X - ¢ = % (Vtri —try. {) +B.

The formula for P and Q are obtained from (3) of [7],

1 1
EABVAZB=Q—§E/\E, VAZA=M+P—§2.E,
which is the rescaled limit of the Hodge system

|
cu’rl;:o—z)(/\i, dive =p+p —

Finally, we consider the Codazzi equation

NI —_
|>.<>

o~ 1
dvy+x-¢= E(WUX +tr)(§)—ﬂ.

Its leading order at O(r~?) leads to (1) of [7] and its subleading order at O (r—3) leads
to

1 1 1 1 1
——341C1*+ =CBPVpCap + - VACECE + —VpCPECE | + =CapVpCEP
4 2 4 2 4
2
g( )

We simplify the second term in the parentheses by the identity V(pCpya = VaCpp +
VECspo8p —VECE(pCp)a and the left-hand side becomes & §04IC17+ 1CABVDCBD

Direct computation yields §( V- N A+ 8A|C |2 + 5 C 43VpCBP and the formula
for B follows. 0O
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Appendix B. Integration by Part Formula

In this section, we prove two integration formula that will be used to compute angular
momentum and center of mass in spacetime with vanishing news.

Theorem B.1. Let YA = €ABVX* k = 1,2,3. Let Fap = 2VaVgf — Afoap and
PBA = VBVDCDA — VAVDCDB. Then

1 1 3 1
/2 Y4 (ZCABVDFDB + ZFABVDCDB — ZPBAVBf — ZvBPBAf) =0.
S
Proof. We integrate by parts the last two terms to get
1 1
/2 —EYA(VBVDCAD —VaVPCrp)VEf + EVBYAVBVDCAD - f.
N
1 1 1
= /52 5vBYAchADva + EYAVDCADAf — 5YAchgvAva
1 1
+f —YAVPCupf — =VEYAVPCop Vi f
52 2 2
1 1 1
= /2 _EYAchg(vAva — EAfaAB) + ZYAVDCAD(A +2)f
S

O

Theorem B.2. Let Fap =2V Vg f — Afoap and Pga = VgVPCpa —VaVPCpp.
Then

- 1
/52 vAxk (CABVDFBD +FagVpCBD 4 EVA(CBDFBD) — fvBppa — 3PBAVBf> =0.
Proof. We integrate by parts the last two terms to get
/ VAXK(—2Pg ) VE f
S2

_ / VAR (VP Cpp = VAV Cpp) VP f
S

/ —2XEVPCpaVA F +2VAXIVL CpaAf +4XKVP CppVE
SZ
—2VAXIVPCppVAVE £

= / 2XIVPCpaVA f — VAXKNP CppFap + VAXKVP CpaAf

2

©n

/ —2VPXkCp VA F —2XkCpaVP VA F

2

©n

— VAXKVLCPBF g + VAXKVPCpanSf
~ 1 -
= 22VAXkVDCDAVAf+EAX"CDAFDA
N
—VAXVHCPBFyp + VAXIVP CpaAS
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~ 1 ~
= /52 —vAX CpaVP(A+2) f — EVAX’CVA(CDBFDB)

— VAX*VpCPBFyp.
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