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ABSTRACT

The objective in this work is to develop a machine learning-based framework for process operability using
surrogate responses based on Kriging (also known as Gaussian Process Regression). Currently, the avail-
able operability approaches for nonlinear systems are limited by the problem dimensionality that they
can address, not being computationally tractable for high-dimensional systems. The proposed approach
will use Kriging-based models to substitute the developed first-principles or process simulation-based
models. The built surrogate models can generate responses that are comparable to the first-principles
nonlinear models in terms of accuracy, while reducing the computational effort. To achieve this goal,
a framework for the systematic analysis of highly nonlinear, large-dimensional systems at steady state
is developed. The proposed approach is benchmarked against current operability methods and provides
a new direction in the process operability field employing Kriging models. Two case studies associated
with natural/shale gas conversion are addressed to illustrate the effectiveness of the proposed methods,
namely a membrane reactor for direct methane conversion to fuels and chemicals and a natural gas com-
bined cycle power plant. It is shown that the computational time for operability calculations is signifi-
cantly decreased when using the developed approach, with reductions of up to four orders of magnitude,
while the relative errors with respect to the output responses is below 0.3% for the worst-case scenario
considering all cases. This work thus contributes to machine learning formulations and algorithms for
process operability to enable the improved design, operations and manufacturing of chemical and energy

systems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Process Operability has been developed in the last two decades
as a valuable tool for qualitatively and quantitatively assessing the
design and control interface of industrial processes, subjected to
expected disturbances and process constraints. Process operability
has been extensively applied to steady-state systems and later ex-
tended to dynamic processes (Lima and Georgakis, 2010; Gazzaneo
et al., 2020).

Since the inception of process operability concepts (Vinson
and Georgakis, 2000; Georgakis et al., 2003), several contribu-
tions have been made towards addressing the inherent chal-
lenges that emerged with the input-output operability mapping of
the studied processes. Such challenges include nonlinearity, high-
dimensionality and input-output multiplicity of process models
that are derived to represent chemical/energy processes. Particu-
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larly in the field of process operability, response surface model-
ing (RSM) was proposed for reducing the complexity of operability
calculations for high-dimensional systems (Georgakis and Li, 2010).
Additionally, the operability concepts were extended for the anal-
ysis of plantwide systems by selecting production rate and prod-
uct purity as the key variables of focus (Subramanian and Geor-
gakis, 2005). More recently, a series of nonlinear programming
(NLP)-based approaches were developed to evaluate the feasibil-
ity of achieving desired outputs and calculate what should be the
respective inputs to accomplish this goal (Carrasco and Lima, 2015,
2017a, 2017b). In addition, these same studies (Carrasco and Lima,
2015, 2017a, 2017b) extended the operability framework to con-
sider the concepts of process intensification and modularization,
as a step forward towards using the operability tools for enabling
modular manufacturing. Moreover, mixed-integer linear program-
ming (MILP)-based methods were introduced (Gazzaneo and Lima,
2019; Gazzaneo et al., 2020) employing computational geometry
concepts for evaluating the operability regions for process design
and intensification. Finally, the main process operability algorithms
developed for intensification and modularization were compiled
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into an open-source Operability App in MATLAB (Gazzaneo et al.,
2020) with a user-friendly interface for easy dissemination of the
process operability algorithms.

Despite of these past contributions to the process operabil-
ity field, the challenge regarding tackling nonlinear problems with
high-dimensionality using first-principles models (Carrasco and
Lima, 2017b, 2018) still remains. This task becomes computa-
tionally intractable as it grows in complexity with problem di-
mensionally, creating the need of recurring to parallel comput-
ing (Carrasco and Lima, 2018), an approach that is not always
readily available and highly dependent on the computational in-
frastructure and modeling platform/numerical package used by
practitioners or academic researchers. For such challenging high-
dimensional applications, the idea of substituting the nonlinear
first-principles process model by a surrogate model can be ap-
pealing to perform the operability computations in a more effi-
cient manner. In particular, the NLP-based operability approaches
(Carrasco and Lima, 2017a, 2017b, 2018) for process design and
intensification could benefit of computational time reductions en-
abled by machine learning-based methods. Moreover, communica-
tion challenges have also been reported between process simula-
tion platforms (e.g., Aspen Plus) and numerical packages that are
required to perform process operability calculations (e.g., in MAT-
LAB) (Carrasco and Lima, 2018).

To address these challenges, there is a critical need to de-
velop a systematic approach for assessing process operability that
has the following features: (i) surrogate modeling of the pro-
cesses studied to be able to solve high-dimensional and nonlin-
ear models, while maintaining accuracy; (ii) synergy or integration
with current nonlinear programming (NLP)-based (Carrasco and
Lima, 2017b) and multimodel-based approaches for process op-
erability (Gazzaneo and Lima, 2019); and (iii) facilitated com-
munication between surrogate models developed based on pro-
cess simulators and numerical packages, using the same com-
puting platform for both (e.g, MATLAB or Python). The use of
supervised machine learning-based algorithms known as Krig-
ing (or Gaussian Process Regression) is proposed here as a sur-
rogate to the first-principles models in process operability. Al-
though the implementation of Kriging in the field of Chemical
Engineering is not new, having applications ranging from chem-
ical reaction engineering (Maceiczyk and deMello, 2014), feasi-
bility analysis (Boukouvala and lerapetritou, 2012), process op-
timization (Davis and lerapetritou, 2007), pharmaceutical pro-
cesses (Boukouvala et al.,, 2010), modular flowsheet optimization
(Quirante et al., 2015; Caballero and Grossmann, 2008), to Self-
Optimizing Control (Alves et al., 2018), this proposed direction for
process operability has not yet been reported. This work is struc-
tured as follows: Section 2 discusses process operability and Krig-
ing main concepts; Section 3 addresses the proposed approach,
and Section 4 shows the application of the proposed approach
to two case studies of increased complexity and dimensionality;
lastly, Section 5 contains conclusions and suggestions for future de-
velopments.

2. Previous work: process operability and Kriging
2.1. Process operability

Process operability has emerged as a viable alternative to the
sequential tasks of assessing process design and control, by in-
tegrating both tasks in the early design phase of industrial pro-
cesses (Lima and Georgakis, 2010; Gazzaneo et al., 2020). To per-
form this task, process operability tools were developed to quan-
tify achievability of process control objectives, given the avail-
able limits imposed on the input variables, while considering pro-
cess constraints and expected disturbances that may occur dur-
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ing process operations (Vinson and Georgakis, 2000). In this sec-
tion, process operability definitions for the case where the dis-
turbances are kept at their nominal values are considered, which
corresponds to the main scope of this work. For a complete and
in-depth discussion on the previous operability concepts, including
the presence of disturbances acting on the process, one must re-
fer mainly to Vinson and Georgakis (2000), Georgakis et al. (2003),
Lima et al. (2010), Gazzaneo et al. (2020).

To perform the operability analysis, the main requirement is
that a process model that describes the relationship between
the input (manipulated and/or disturbance) and output variables
should be available (Georgakis et al., 2003). A process model M
with m inputs, p outputs, q disturbances and n states, can be de-
fined as in Eq. (1):

Xs = f(xs,u,d)

_Jy=8Qud
M= hy (X5, x5, y, i, u,d) =0 (1)
hy (X, x5, y. u,u,d) > 0

In which u € R™ are the inputs, y € RP are the outputs, d € R1
are the disturbances and xs; € R" are the state variables. Also, f and
g are nonlinear maps and h; and h, correspond to equality and
inequality process constraints, respectively. Based on the process
model and associated variables, operating spaces/sets were estab-
lished for the operability calculations and quantification of the Op-
erability Index (OI) (Georgakis et al., 2003). These sets are summa-
rized with proper descriptions and mathematical formulations in
Table 1. Refer to Refs. Georgakis et al. (2003), Vinson and Georgakis
(2000) for further details on these sets and other operability def-
initions. Fig. 1 illustrates the main process operability spaces and
the definitions that arise. In Fig. 1 (A), the lower and upper bounds
for the manipulated/design variables are defined within the AIS. By
evaluating these inputs through the process model (M), the out-
puts are calculated generating the AOS (B). From the desired op-
eration with respect to such outputs, the DOS can be defined (C).
The feasible portion of the DOS that is contained within the AOS
is specified as the DOS* (C). Lastly, the DIS can be obtained via an
inverse mapping (M~1), in which its intersection with the AIS is
defined as the DIS* (D).

Especially for process design and intensification purposes, it
is important to note that the task of obtaining the inverse
model/mapping (M~!) is of paramount importance. As stated
above, high-dimensionality, non-linearities, input-output multiplic-
ities, and additional challenges such as infeasibility of the desired
targets (Gazzaneo et al., 2020) are the most common issues to be
faced when performing this task. In order to circumvent these is-
sues, linear and nonlinear programming-based operability methods
were successfully developed (Gazzaneo and Lima, 2019; Carrasco
and Lima, 2017b), respectively. Focusing on the latter, denominated
NLP-based approach, further definitions regarding the feasibility of
the desired inputs and output sets were created. Instead of ana-
lytically calculating (M~1), Carrasco and Lima (2017b) proposed an
NLP-based optimization problem to calculate the discretized inputs
from a specified DOS, using an objective function defined by rela-
tive error minimization. More specifically, the approach consists of
finding a Feasible Desired Input Set (DIS*) that results in a Feasi-
ble Desired Output Set (DOS*), with the latter being optimized to
be as close as possible from the original DOS. For the optimiza-
tion problem of the NLP-based approach, the error minimization
function can be assembled considering the process required con-
straints, intensification/efficiency targets and solved sequentially or
using a bilevel programming approach, as showed by Carrasco and
Lima (2017b). The possible optimization problems of this approach
are adapted in this work for the use of Kriging responses and are
discussed in depth in Section 3.
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Table 1
Steady-state operability sets: definitions and mathematical formulations.
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Operability Set Description

Mathematical Formulation

Available Input Set (AIS)

Manipulated inputs (u € R™) based on the design of the process that is

AlS = {u | uM" < u; <um>; 1 <i <m}

limited by the process constraints (Vinson and Georgakis, 2000).

Expected Disturbance Set (EDS)
variabilities.
Achievable Output Set (AOS)
the AIS.
Desired Output Set (DOS)

Disturbance variables (d € R?) that can represent process uncertainties and
Range of the outputs (y € R") that can be achieved using the inputs inside

Production/target/efficiency requirements for the outputs that do not
necessarily meet the ranges of the AOS.

EDS = {d | d™" < d; <d™™>; 1 <i < q}

AO0S(d) =
fixed }
DOS = {y | ym" <y; <ym* 1 <i<n}

{y|y=M(u,d);ueAlS,dis

Desired Input Set (DIS) Set of inputs required to reach the entire DOS, given a disturbance vector d. DIS(d) = {u |u=M"1(y,d);y e DOS,d
is fixed }
Feasible Desired Output Set (DOS*) Feasible set of desired outputs calculated via relative error minimization DOS* = {y* | y* = M(u*); u* € DIS*}

from the DOS using for example the NLP-based approach (Carrasco and

Lima, 2017b).
Feasible Desired Input Set (DIS*)

Optimal set of inputs that are required to obtain the Feasible Desired Output DIS* =

{u lur =

(w5 w3, u3...u7)}

Set (DOS*), calculated for example via the NLP-based approach. . def

i = Discretized DOS grid size

=

el

i

Available Input Set (AIS)

(DIS)
Desired Input Set

FF e s
+ 13
L

Available Input Set (AIS)

Process Model (M)

r. — — — — — — — —
I Process Inverse Model/Mapping (M-1) I :
NLP-Based Approach

—_—— e —————

Feasible Desired Input Set (DIS*)
b Feasible Desired Output Set (DOS* C
put set (00s*)

Achievable Output Set (AOS)

Desired Output Set (DOS)

Achievable Output Set (AOS)

Fig. 1. Visual exploration of main Process Operability sets and definitions.

With the input-output sets defined above, the Operability Index
(OI) can be calculated as shown in Eq. (2). A process is considered
fully operable when the Ol is 1 and if it is less than 1, some regions
of the DOS are not achievable (Lima and Georgakis, 2010).

(A0S N DOS)
1(DOS)

In which g indicates the measure of regions, varying de-
pending on the dimensionality of the considered sets, for exam-
ple length for 1D systems, area for 2D systems, volume for 3D
systems and hypervolumes for systems of higher dimensionality
(Gazzaneo et al., 2020).

ol = (2)

2.2. Surrogate modeling: Kriging (Gaussian process regression)

Kriging models are employed in this work as a surrogate
to the process first-principles model or simulation-based mod-
els. The Kriging implementation in MATLAB used in this arti-
cle is based on the work of Lophaven et al. (2002a, 2002b) and
similar approaches can be found in Caballero and Gross-
mann (2008); Quirante et al. (2015). For historical purposes, the

works by Sacks et al. (1989) and Forrester et al. (2008) are
also recommended. For a thorough discussion on the sub-
ject, refer to Rasmussen and Nickisch (2010), Jones (2001),
Forrester et al. (2008).

Considering a set of g experiments S = [u ...ug|", with u; € R™
(input variables), and an output vector Y = [y;...yg]7, a Kriging
metamodel is capable of representing a nonlinear function Y (x)
RP with the aid of two terms: a regression (F) and a stochastic
function (z) as shown in Eq. (3).

YY) =Fw) +z@), l=1,....p (3)

The regression model is considered as a linear combination of
functions f; : R™ — R, and typically the regression functions used
are polynomials of orders zero to two (Lophaven et al., 2002b; For-
rester et al., 2008). Additionally, it is assumed that each z; has zero
mean with covariance between any two given points, u and u’ as
in Eq. (4).

Cov [z (), z(u)] = I=1,....p (4)

In which o2 is the process variance for the I'" output and
R(O,u,u’) is a correlation function. There are several correlation

0RO, u, ),
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Fig. 2. Flowchart with the proposed method steps.

functions developed for Kriging models in the literature (Lophaven
et al.,, 2002a; 2002b; Rasmussen and Williams, 2008). For the sake
of simplicity and given the particular characteristic of being con-
tinuously differentiable, in this work, the correlation function as-
sumed is of the form known as squared-exponential or Gaussian
form (pj = 2) as shown in Eq. (5).

RO, u,v') =TT7, Rj(60, uj - u}), (0 = 0)
Rj(6,uj — ;) = exp (—Gj(uj - u;)ﬁ)y (pj=2)

In which 6 are defined as hyperparameters and their values
can indicate if the inputs are highly correlated or not (Alves et al.,
2018) and also how fast the correlation goes to zero as the pro-
cess moves in the j" coordinate direction (Caballero and Gross-
mann, 2008). The parameter p; represents the smoothness of the
correlation (Forrester et al., 2008), and reducing its value increases
the rate at which the correlation initially drops as the distance be-

(5)

tween two given points (u - uj) increases (Forrester et al., 2008).

When p; ~ 0, there is a discontinuity between ?(uj) and f’(u})
(Lima et al., 2020), excluding the possibility of correlation between
two given arbitrary points. Finally, the determination of the hyper-
parameters 6 is a result of an optimization problem with the opti-
mal solution corresponding to the maximum likelihood estimation
(Lophaven et al., 2002b), where |R| is the determinant of the cor-
relation matrix R, as in Eq. (6).

min {y/(0) = Rl¢0? (6)

3. Proposed approach: Kriging-based process operability

The proposed method is depicted in Fig. 2 and will be discussed
step-by-step in this section. The main objective is to develop a
systematic and generic method capable of performing prior pro-
cess operability calculations (Carrasco and Lima, 2017b; Gazzaneo
and Lima, 2019) while maintaining accuracy and reducing compu-
tational effort. In addition, the proposed method should be able to
tackle systems of any dimensionality that present strongly nonlin-
ear behavior, challenges that can be addressed with the help of the

Kriging models. Moreover, this method should facilitate the em-
ployment of the process operability algorithms, avoiding the need
of coupling process modeling tools with numerical packages, as the
surrogate model can be used instead of a first-principles/process
simulator model.

The following steps outlined in Fig. 2 are detailed below for the
developed method:

1. Definition of upper and lower bounds of input variables
(Available Input Set): In this initial step, one must define the
bounds of the input variables (design and/or manipulated vari-
ables). These limits should be as representative to the process
as possible, as the Kriging responses created will generate the
output data according to the points within the limits defined.
Thus, careful selection and inspection of the AIS bounds must
be done, in order to create a sampling space that represents the
operating space of the model/process and avoid potential infea-
sibilities (e.g., lack of convergence of the process model). The
AIS bounds selection should be based on knowledge about the
process/model, such as design limitations and/or manipulated
variable operating regions;

2. Sampling: Using the limits defined in the previous step, a sam-
pling technique is employed in order to generate the input
data. Space-filling techniques such as Latin Hypercube Sampling
(used in this work) are recommended as they have been widely
tested in the literature for different applications (Quirante et al.,
2015; Alves et al., 2018; Lima et al., 2020). In addition, outliers
must be investigated here and deleted from the sampling set
if they are not meaningful (e.g., infeasible cases from process
simulator runs), in order to ensure that the Kriging responses
are generated in the next step with only meaningful data;

3. Surrogate model (Kriging) generation: In this step, the Krig-
ing responses for the p outputs are generated using the input-
output data from the previous step. In this work, the DACE (De-
sign and Analysis of Computer Experiments) MATLAB toolbox is
used (Lophaven et al., 2002a). However, different implementa-
tions may also be employed such as the “scikit-learn” Python
package (Pedregosa et al., 2011), which is based mainly on the
work of Rasmussen and Williams (2008). Other implementa-
tions that could be considered are the MATLAB fitrgp func-
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tion and the Gaussian Processes for Machine Learning toolbox
(Rasmussen and Nickisch, 2010). This step might have the high-
est computational expense since the generation of Kriging sur-
rogates are known to have times up to O(n3), in which n is the
sample size, due to matrix inversion operations needed. There-
fore, the required time to generate the Kriging surrogates can
increase quickly with the sample sizes. However, the expecta-
tion is that this time is still significantly less than using the
corresponding nonlinear, first-principles model for process op-
erability calculations;

. Performance Assessment: After generating the surrogate re-
sponses, performance assessment must be carried out in or-
der to ensure the robustness and precision of the metamod-
els. Several metrics can be employed in this step, such as: R?
fitness, root mean-squared error (RMSE), overall mean-squared
error (OMSE), hold-out and cross validation. Hold-out validation
is useful for large datasets and cross-validation can be used for
smaller ones without being time consuming. Cross-validation
assessment is a more effective approach (Caballero and Gross-
mann, 2008), as the training set is split into k folds and dif-
ferent responses are generated and validated, being able to in-
spect outliers more effectively. A special case of cross valida-
tion is when k =1 and the number of folds corresponds to the
size of the sample: “leave-one-out” cross validation, which can
be employed when the size of the sampling is not extremely
large. In addition, for this particular study, the maximum like-
lihood function that is optimized at the DACE toolbox can also
be used as a metric. Following Lima et al. (2020), the thresh-
old for an acceptable surrogate representation should be below
10~> for the maximum likelihood estimation function value. If
the chosen performance assessment metrics are below the de-
fined tolerances, the user can go to the next step and employ
the surrogate models in the operability framework.

. and 6. Definition of Desired Output Set and operability
framework calculations: At this step, the desired operation
is defined (i.e., Desired Output Set (DOS)) and which problem
type is to be solved, following Carrasco and Lima (2017a). De-
pending on the process, it is of particular interest finding an
operable region regarding the manipulated variables that en-
sure that the DOS (or part of it) is satisfied, finding an optimal
design using design variables towards process intensification, or
even both cases. This problem definition is split into layers of
target-problems (Carrasco and Lima, 2017a). In this work these
problems are reconsidered, but now using Kriging-based mod-
els:P1 - Relative error minimization between desired (DOS)
and feasible (DOS*) output sets: In this problem, the target is
to calculate the DIS* (Desired Feasible Input Set) that minimizes
the relative error between the what is feasible (DOS*) and what
is desired (DOS) in terms of output spaces:

. o ~ \2
P = miny Z% (950 — ij)/yj',k)
j:
s.t. : Surrogate responses (7)
ull:lin < uz < ullcnax

& (u) =<0

One must choose this problem when it is of particular inter-
est defining a feasible input set region for the process studied
for optimal design purposes. This problem can give insights on
what should be the best operable region for a particular tar-
get or the best design for a particular process (Carrasco and
Lima, 2017a). In Eq. (7), j represents a Kriging surrogate pre-
diction of the actual variable y, which was previously calculated
using the nonlinear model of the process. In addition, if there
are any nonlinear constraints, these can be also substituted by
surrogates . Lastly, u;, represents the input variables for the k"
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element of the DOS selected points according to a specified grid
(Carrasco and Lima, 2015).

P2 - P1 + Process intensification and/or efficiency target
maximization: This problem adds at the final step of P1 the
evaluation of a process intensification or efficiency target. This
target can be set as footprint reduction, efficiency maximiza-
tion, or even pollutant emission reduction, for instance. The
mathematical representation of this problem is as follows:

Q= min% [Pltarget ]
s.t.: up € DIS” (8)
Ypi € DOS* ()

In which Q2 represents the function value of the inputs that will
intensify the process while ensuring the level of performance
desired by the DOS*.
P1 and P2 can also be solved simultaneously in a bilevel pro-
gramming approach (Carrasco and Lima, 2018), in conjunc-
tion with parallel programming techniques seeking reduction
of computational time. However, due to the employment of
the Kriging-based models as surrogates to the first-principles
nonlinear models, this work did not need to use any paral-
lel or bilevel programming techniques, simplifying the software
infrastructure. Moreover, note that all target problems devel-
oped (Carrasco and Lima, 2017a) are reformulated to use Krig-
ing models instead of nonlinear, first-principles models. Lastly,
it should be noted that the NLP-based approach can only yield
one set of solutions for the DIS*, but more than one set of such
solutions may exist. When multiple inputs lead to the same
output (i.e., for processes with input-output multiplicities), the
solution of the inverse mapping in the NLP-based approach may
be influenced by the choice of optimization solver as well as
the solver’s initial guess. However, as long as the inverse map-
ping of the DIS* belong to a bijective sub-region of the input
space, the proposed approach does not encounter this chal-
lenge. For the case studies performed in the paper, a modified
version of the Nelder-Mead Simplex algorithm to accept non-
linear constraints and bounds is used as a derivative-free solver
in MATLAB.

7 Active constraint handling: At this step, one must inspect
if there are any lower/upper bound constraints (i.e., inverse-
mapped input variables at the lower/upper bound of the AIS).
If there are any upper bound active constraints, the upper
bounds of the AIS can be increased if possible to further explore
more regions, in case these do not correspond to hard/physical
constraints (e.g., equipment/safety/operation bounds). The same
holds if there are any lower bound active constraints. The limits
can then be changed if needed and the user taken back to Step
1; Otherwise, the user can move on the next step;

8 Evaluate OI (Operability Index): After obtaining all the rele-
vant operability sets (DIS*/DOS*) leading to insights on oper-
ability regions, the Operability Index (OI) is evaluated using the
regions obtained. This evaluation was discussed thoroughly in
the past by several authors such as Georgakis et al. (2003),
Gazzaneo and Lima (2019), Gazzaneo et al. (2020). The objec-
tive in this step is to rank competing designs and/or control
structures, depending on the application of interest, using the
Ol as a metric.

4. Case studies

The case studies below are performed to test the proposed
method. The classical operability approach, using first-principles
nonlinear process models is run and the Kriging-based approach
is validated against it. The objective is to show that the computa-
tional time employing the developed approach is significantly re-
duced while the accuracy of the calculations is maintained. All case
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Tube with catalyst

Sweep Gas (He) Permeate (H>)
Feed (CHy) Retentate (CsHg)

Kinetics:

2CHy = CyH, + 2H, r = k100H4 - kl

Cen,

3CyHy = C¢Hg +3H, 72 =k2Ceom, — K 2
CCzH4

/ CCZH4 CHg

; Ces g C?IZ

Variables and Descriptions
C. Molar concentration of
v component
K Kinetic constant of reaction 1, forward
direction
ko K_ineti_c constant of reaction 2, forward
direction
K Kinetic constant of reaction 1, reverse
1 direction
k’z Kinetic constant of reaction 2, reverse
direction

Fig. 3. DMA-MR schematic.

studies were performed on a PC with the following configuration:
16GB RAM, Intel ®Core i7 4770 processor. To accurately compare
the proposed method with the previous calculations employing
nonlinear first-principles models or process simulators, such com-
parison was made under the same conditions for each problem,
including NLP-solver tolerances, initial estimates and for the exact
same DOS grid generated using the Latin Hypercube algorithm.

4.1. Direct Methane Aromatization Membrane Reactor (DMA-MR)

The first example consists of the steady-state model of the Di-
rect Methane Aromatization Membrane Reactor (DMA-MR) for hy-
drogen and benzene production. This process has been studied as
an application of process intensification and modularization of nat-
ural/shale gas processing (Carrasco and Lima, 2015; 2017a).

The process schematic is depicted in Fig. 3, in which a shell
and tube membrane reactor is used for the methane conversion
to hydrogen and ethylene, followed by ethylene conversion to ben-
zene and additional hydrogen in a two-step reaction mechanism.
Refer to Carrasco and Lima (2015, 2017a) for the full set of differ-
ential equations and kinetic parameters that represent the devel-
oped first-principles nonlinear process model in MATLAB.

The first application example consists of a 2 x 2 (outputs x in-
puts) subsystem associated with this DMA-MR process. Despite of
the low system dimensionality in this first example, this process
model is highly nonlinear due to the presence of the nonlinear re-
action kinetics and the membrane flux in the intensified unit. Such
nonlinearities make the inverse operability mapping task challeng-
ing, and thus this system serves as a good candidate for bench-
marking the computational time and accuracy of the proposed
methods, when compared to the results of the nonlinear operabil-
ity methods that are readily available (Carrasco and Lima, 2015;
2017a).

For this application, a Kriging model is created using as input
variables the tube diameter and tube length, corresponding to the
variables in the AIS. Also, for the DOS, the variables considered are
the methane conversion (Xcy,), and the production rate of benzene
(Feghg)- These variables are selected similarly to previous literature
for benchmark purposes (Carrasco and Lima, 2017a). The assumed

Table 2
AIS sampling limits for DMA-MR.

Lower bound Upper bound

Tube length [cm] 10 300
Tube diameter [cm] 0.1 2
Table 3
Likelihood objective function values.
Variable v
Feons 1.1984 x10-¢
Xcw, 3.3259 x10°6

limits for the AIS are also the same from literature (Carrasco and
Lima, 2017a), except for the upper limit for the tube length, which
is chosen based on the maximum experimental tube length possi-
ble of 300 cm. The limits used for the Kriging sampling procedure
can be seen in Table 2.

With the input limits for the design of experiments being de-
fined, 2000 samples are generated using the Latin Hypercube Sam-
pling (LHS) technique and each one of the generated cases are run
employing the first-principles nonlinear model for calculating the
outputs. With the obtained input-output data, 200 cases were left
out for validation purposes and thus the training set consisted of
1800 cases. The chosen number of samples was based on succes-
sive performance assessments of the Kriging maximum likelihood
objective function and by also using hold-out validation until pre-
cise responses for both output variables were achieved (i.e., in this
case, the value of the maximum likelihood objective function for
the Kriging predictor was below 10~ and R? > 0.999). The final
hold-out validation predictions for this case study are depicted in
Fig. 4 and the value for the optimized DACE objective function
(¥r) likelihood that gives the optimal hyperparameters is given in
Table 3.

After performance assessment, the metamodels are then em-
ployed to obtain the inverse mapping for operability and subse-
quently, the DIS*-DOS* calculations. The same DOS from previ-
ous work (Carrasco and Lima, 2017a) was employed in this task,
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Fig. 5. DIS* and DOS* comparisons: calculations employing Kriging metamodel versus original first-principles nonlinear model.

with limits of 15-25 [mg/h] and 35-45 [%] for the production
rate of benzene and conversion of methane, respectively. An ad-
ditional constraint was imposed to the inverse mapping optimiza-
tion problem to ensure reactor plug flow operation (e.g., L/D > 30).
For comparison purposes, both the NLP-based approach for inverse
mapping and the multimodel approach for OI calculation are em-
ployed using the nonlinear first-principles and the Kriging-based
models, as shown in Figs. 5 and 6, in which both tasks were
performed with accuracy. Note from these figures the small er-
ror obtained when comparing the original nonlinear first-principles
model against the Kriging-based model responses for operability.
Table 4 shows the relative errors between these model responses

Table 4
Relative errors between nonlinear-based and Kriging-based NLP operability ap-
proaches for calculating intensified design variables.

Intensified design variable ~ Nonlinear model  Kriging Relative error [%]
Tube length [cm] 17.2283 17.2205  0.0454
Tube diameter [cm] 0.5634 0.5636 0.0388

for the membrane reactor modular design, confirming the agree-
ment between the responses. Lastly, Table 5 depicts the average
relative error of all DOS* points calculated using the Kriging-based
approach, when compared to the first-principles model. Again,
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Table 5
Relative average error for all DOS* grid points: 2x2 DMA-MR.

Relative average error [%]

Xe, 0.0367
Fooh, 0.2013

note that the relative errors are small, indicating the accuracy of
the developed method.

The overall computational time for obtaining the results in
Tables 4 and 5 when using the first principles nonlinear model for
this 2x2 system was of 5 min 38s, and it has been shown pre-
viously that the computational time for this system is expected
to grow exponentially with problem dimensionality (Carrasco and
Lima, 2018). However, the overall computational time associated
with the Kriging-based method (generation of 2000 points for the
input-output mapping, fitting the Kriging responses and running
the optimization problem) was of 58 s. This represents a decrease
of 5.8 times in computational time. If this computational time eval-
uation is done considering only the process operability calcula-
tions when using the Kriging-based approach against its nonlin-
ear model-based counterpart, this difference becomes even larger.
The required time to obtain the operability sets using the Kriging-
based approach is of only 0.0477s against the 5 min 38s previously
mentioned for the nonlinear model-based method, thus reducing
the computational time by about four orders of magnitude. For
comparison purposes, a previous algorithm developed employing
Mixed-Integer Linear Programming (MILP) for process operability
calculations (Gazzaneo et al., 2018) achieved reduction of compu-
tational time of 3.051 times and relative error of 1.28% with re-
spect to the membrane area calculated using the tube length and
diameter as input variables, considering the same case study with
the same dimensionality as in this work. Hence, the proposed ap-
proach in this work has the potential to enable operability cal-
culations for high-dimensional systems that would not be possi-
ble otherwise due to intractable computational times. Also, the re-
sults above show that the accuracy of the proposed method for
generating the input-output mappings for operability analysis was
not compromised, while the complexity of calculating such inverse
mappings was reduced.

Table 6
AIS sampling limits for NGCC plant.

Lower bound Upper bound

Natural gas flowrate [tonne/h] 0.5 1.5
Steam flowrate [tonne/h] 0.4 4

4.2. Natural Gas Combined Cycle (NGCC) plant

For the second case study, the NGCC plant (Carrasco and
Lima, 2017b) depicted in Fig. 7 is considered as an example of em-
ploying process simulators (in this case, Aspen Plus) as the source
of input-output data for the proposed method. This case can be of
relevance when the user wants to take advantage of the large ther-
modynamic database and built-in models from the simulators that
can be linked to the proposed framework. All of the equipment
and stream conditions were based on the literature (Carrasco and
Lima, 2017b), except when mentioned otherwise. Moreover, the
NGCC plant is also an interesting example of applications that are
capable of processing natural gas in the US with the potential for
modular manufacturing (Carrasco and Lima, 2017b). The 2x2 and
3x8 (outputs x inputs) cases are addressed for the NGCC process
in order to test the proposed method.

4.2.1. NGCC plant (2x2 case)

The considered input variables for the first NGCC plant case
study are the natural gas flowrate and the steam flowrate used in
the steam turbine. The air flowrate is considered based on a ratio
of the natural gas flowrate following the literature (Carrasco and
Lima, 2017b). The Net Plant Power [MW] and Plant Efficiency [%]
are considered (Carrasco and Lima, 2017b) as output variables as
the analysis of these variables may lead to process intensification
and maximization of efficiency targets. The limits for the afore-
mentioned variables are given in Table 6.

With the limits considered for the input variables, 100 samples
are generated using the Latin Hypercube sampling technique. Ad-
ditionally, a COM/OLE communication between MATLAB and Aspen
Plus is employed to run the cases. As the number of points is not
prohibitive for this case, a “leave-one-out” validation is performed.
The results of the leave-one-out validation are depicted in Fig. 8.
Note from this figure the good fit of the Kriging model, with rela-
tive errors of orders of 10~ and 103 with respect to the Kriging
outputs. Table 7 also indicates that the optimal hyperparameters
for the Kriging responses built give an accurate prediction, as the
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Table 7 Table 8
Likelihood objective function value for 2x2 DOS bounds for 2x2 NGCC plant.
NGCC Plant.
Lower Bound  Upper Bound
Variable v Net Plant Power [MW] 0.5 5
Net Plant Power [MW] 9.7533 x10~12 Net Plant Efficiency [%] 40 60

Net Plant Efficiency [%]  2.1676 x10~7

values of the likelihood objective function optimized are below the
suggested threshold from Section 3.

With the Kriging models properly assessed, they can now be
employed in the operability calculations. The DOS considered in
the calculations is given in Table 8. Fig. 9 shows that the machine

learning-based operability approach is capable of successfully ob-
taining the region of operation satisfying the DOS*. Note that, sim-
ilarly to the DMA-MR example, the DOS* obtained for both pro-
cess simulator-based (Aspen Plus) and Kriging-based approaches
are overlapping.
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Table 9
Error analysis of obtained intensified output re-
sponses for 2x2 NGCC plant case study.

Output variable Relative error [%]

1.5070 x10~7
3.5400 %103

Net Plant Power [MW]
Net Plant Efficiency [%]

Table 10
Relative average error for all DOS* grid points: 2x2 NGCC
plant case study.

Relative average error [%]

0.0006
0.0019

Net Plant Power [MW]
Net Plant Efficiency [%]

In order to evaluate the feasibility of the obtained inverse map-
ping, the optimal point that yielded the highest Net Plant Power
and Efficiency is compared for both approaches. It can be seen in
Table 9 that the optimal value obtained with the operability frame-
work employing the Kriging model is accurate when compared to
the nonlinear model in Aspen Plus. In addition, from the average
relative error for all DOS* points shown in Table 10, it can be seen
that the errors when using the proposed Kriging-based approach
are small for both analyzed variables. Thus, the complexity of
employing the process simulator directly with the operability
framework (Carrasco and Lima, 2017a) can be eliminated, with
the process simulator being used only for the input-output data
generation. This can be particularly useful when evaluating the
operability of highly nonlinear and complex problems that were
already modeled using chemical process simulators.

10

Table 11
Computational time for 2x2 NGCC plant: Aspen Plus-
based vs Kriging-based NLP approach.

NLP Model/Time  Time [h] Decrease [times]
Aspen Plus 2.2212 -
Kriging 1.00x 1073 2221.1

The Kriging-based NLP approach is also compared against its
use with the full process simulator (Aspen Plus) model in terms of
computational time. It can be seen in Table 11 that there is a sig-
nificant decrease in computational effort when using the Kriging-
based method. This is an expected result as the Kriging models
only predict the output responses that they were trained for, not
needing to calculate all system states/equations for every nonlinear
solver iteration as needed for simulator models. This fact signifi-
cantly reduces the computational effort for evaluating each point
of the desired operating region.

Fig. 10 shows that the OI evaluation of the Kriging-based ap-
proach yields the same value when compared against the operabil-
ity calculations performed employing the process simulator.

4.2.2. NGCC plant 3x8 case

The same NGCC plant is now considered with 8 input variables
and 3 output variables as a high-dimensional case study, following
the same variables chosen as in Carrasco and Lima (2018). These
variables are shown in Table 12 with their respective AIS bounds
considered. The natural gas feed and HRSG steam feed were ad-
justed to avoid infeasibilities in the AIS regions.

As output variables, the Net Plant Power [MW], Net Plant Ef-
ficiency [%] and Capital Cost [$million] are considered for the
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Fig. 10. OI calculations using Aspen Plus simulation versus Kriging-based model.

Table 12
AIS sampling limits for NGCC plant 3x8 case.

Lower Bound Upper Bound

Natural gas feed [tonne/h] 0.5 1.5
Heat Recovery Steam Generator steam feed 0.4 4
[tonne/h]
Compressor outlet pressure [atm] 10 30
Air feed temperature [K] 273 303
Steam cycle pressure [atm] 100 200
Gas turbine efficiency [%] 0.70 0.85
Air compressor efficiency [%] 0.70 0.85
Steam turbine efficiency [%] 0.70 0.85
Table 13
Root mean-squared errors (RMSE) for NGCC plant 3x8 case out-
puts.
RMSE
Net Plant Power [MW] 0.0023
Net Plant Efficiency [%] 0.0299
Capital Cost [$million] 0.0038

AOS/DOS definitions, following Carrasco and Lima (2018). Consid-
ering the AIS bounds from Table 12, 900 samples are generated
using the LHS and the outputs are obtained running the process
simulator model. With the generated input-output data, a 5-fold
cross-validation is performed using the training data and the RMSE
results are shown in Table 13. Note from this table the RMSE val-
ues indicating that the Kriging models are accurate for operability
calculations. Lastly, Table 14 shows the value of the DACE maxi-
mum likelihood objective function, also indicating the accuracy of
the surrogate model responses.

Table 17

Table 14
Likelihood objective function values for NGCC
plant 3x8 case.

Variable v

Net Plant Power [MW] 1.8632 x10-6
Net Plant Efficiency [%]  9.9704 x10-6
Capital Cost [$million] 3.6557 x10°©

Table 15
DOS bounds for 3x8 NGCC plant case.

Lower Bound  Upper Bound

Net Plant Power [MW] 0.5 5
Net Plant Efficiency [%] 40 60
Capital Cost [$million] 0.1 10

Table 16
Relative error for DOS* intensified design for 3x8 NGCC plant case.

Aspen Plus  Kriging Relative Error [%]
Net plant power [MW] 41171 41159 0.0307
Net plant efficiency [%]  56.6644 56.6327  0.0559
Capital cost [$million] 8.7403 8.7425 0.0254

After ensuring the accuracy of the generated Kriging responses,
a DOS is selected based on target operation, considering as basis
the work of Carrasco and Lima (2018). The desired operating range
selected for the output variables is shown in Table 15.

The inverse-mapping NLP-based algorithm was run using
Kriging-based models for a 500-point grid generated for the DOS,
with the bounds defined in Table 15 and LHS to generate the
grid. A similar approach was followed for the input data gener-

Relative error for DIS* intensified design for 3x8 NGCC plant case.

Input Variable Aspen Plus  Kriging Relative error [%]
Natural gas flowrate [kg/h] 500 500.0001 1.9159x10~>
HRSG flowrate [kg/h] 400 400 4.2300x10~7

Air compressor pressure [atm] 18.3676 19.2354 47248
Atmospheric air inlet temperature [K] 273 273 1.3900x10~7
HRSG cycle pressure [atm] 184.0897 184.6187  0.2873

Gas turbine efficiency 0.8500 0.8500 2.3100x10-8

Air compressor efficiency 0.8500 0.8500 1.7400%10-6
Steam turbine efficiency 0.8500 0.8500 4.5900x10-¢

1
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Table 18
Computational time for 3x8 NGCC Plant case: Aspen
Plus-based vs Kriging-based NLP approach.

NLP Model/Time  Time [h] Decrease [times]
Aspen Plus 31.2800 -
Kriging 0.0815 383.8
Table 19
Average relative error for all DOS* grid points: 8x3 NGCC
Plant.

Average relative error [%]

Net plant power [MW] 0.1281
Net plant efficiency [%] 0.1732
Capital cost [$ million] 0.2742

ation. Problem P2 is considered in this case study, in which the
most efficient modular design is chosen based on maximization
of the Net Plant Efficiency. In order to compare the accuracy and
show the gain in terms of computational time, the same problem
is run using the full process simulator model for the NLP-Based
approach. In Tables 16 and 17, the values obtained for the inten-
sified NGCC design for both process simulator-based and Kriging-
based NLP calculations are compared. Note from these tables that
the relative errors between the two runs are small, confirming the
accuracy of the proposed approach for high-dimensional systems.
In Table 18, the computational time needed to run the NLP-based
approach using the process simulator and the Kriging models are
shown. Again one can see that there is a significant decrease in
computational time for the proposed approach, enabling the calcu-
lation of process operability metrics for high-dimensional systems.
Table 19 shows the average relative error for all 500 points of the
DOS* grid calculated, indicating that the mapping of the operabil-
ity regions is done accurately for the desired region using surro-
gate models. Lastly, it is important to note that the calculations
performed with the Kriging-based approach are done using only
input-output data from the process simulator model. Thus, prob-
lems of model convergence and communication issues between
software platforms (process simulator and numerical packages) are
therefore mitigated/eliminated.

5. Conclusions

In this work, a systematic method was proposed using Kriging-
based models for process operability. It has been shown that the
proposed method can generate accurate results (compared to the
generated results with the nonlinear first-principles model solu-
tions previously developed) while reducing the complexity and
computational effort of operability calculations. The results indi-
cated that a unified approach that depends only on the sampled
data and on the accuracy of the surrogate model fitness is pro-
duced, allowing the evaluation of complex systems in terms of di-
mensionality and nonlinearity. Two case studies, using a numerical
package for a single unit operation and a process simulator for a
complete flowsheet as modeling platform were performed to show
the effectiveness of the proposed approach for operability calcu-
lations regardless of the data source. Future work is expected to
expand the proposed methods to dynamic systems, as a way to re-
duce the computational effort for enabling online operability cal-
culations, as well as towards using new Kriging formulations for
larger datasets and dimensionalities.
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