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The objective in this work is to develop a machine learning-based framework for process operability using 

surrogate responses based on Kriging (also known as Gaussian Process Regression). Currently, the avail- 

able operability approaches for nonlinear systems are limited by the problem dimensionality that they 

can address, not being computationally tractable for high-dimensional systems. The proposed approach 

will use Kriging-based models to substitute the developed first-principles or process simulation-based 

models. The built surrogate models can generate responses that are comparable to the first-principles 

nonlinear models in terms of accuracy, while reducing the computational effort. To achieve this goal, 

a framework for the systematic analysis of highly nonlinear, large-dimensional systems at steady state 

is developed. The proposed approach is benchmarked against current operability methods and provides 

a new direction in the process operability field employing Kriging models. Two case studies associated 

with natural/shale gas conversion are addressed to illustrate the effectiveness of the proposed methods, 

namely a membrane reactor for direct methane conversion to fuels and chemicals and a natural gas com- 

bined cycle power plant. It is shown that the computational time for operability calculations is signifi- 

cantly decreased when using the developed approach, with reductions of up to four orders of magnitude, 

while the relative errors with respect to the output responses is below 0.3% for the worst-case scenario 

considering all cases. This work thus contributes to machine learning formulations and algorithms for 

process operability to enable the improved design, operations and manufacturing of chemical and energy 

systems. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Process Operability has been developed in the last two decades 

s a valuable tool for qualitatively and quantitatively assessing the 

esign and control interface of industrial processes, subjected to 

xpected disturbances and process constraints. Process operability 

as been extensively applied to steady-state systems and later ex- 

ended to dynamic processes ( Lima and Georgakis, 2010; Gazzaneo 

t al., 2020 ). 

Since the inception of process operability concepts ( Vinson 

nd Georgakis, 20 0 0; Georgakis et al., 2003 ), several contribu- 

ions have been made towards addressing the inherent chal- 

enges that emerged with the input-output operability mapping of 

he studied processes. Such challenges include nonlinearity, high- 

imensionality and input-output multiplicity of process models 

hat are derived to represent chemical/energy processes. Particu- 
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arly in the field of process operability, response surface model- 

ng (RSM) was proposed for reducing the complexity of operability 

alculations for high-dimensional systems ( Georgakis and Li, 2010 ). 

dditionally, the operability concepts were extended for the anal- 

sis of plantwide systems by selecting production rate and prod- 

ct purity as the key variables of focus ( Subramanian and Geor- 

akis, 2005 ). More recently, a series of nonlinear programming 

NLP)-based approaches were developed to evaluate the feasibil- 

ty of achieving desired outputs and calculate what should be the 

espective inputs to accomplish this goal ( Carrasco and Lima, 2015, 

017a, 2017b ). In addition, these same studies ( Carrasco and Lima, 

015, 2017a, 2017b ) extended the operability framework to con- 

ider the concepts of process intensification and modularization, 

s a step forward towards using the operability tools for enabling 

odular manufacturing. Moreover, mixed-integer linear program- 

ing (MILP)-based methods were introduced ( Gazzaneo and Lima, 

019; Gazzaneo et al., 2020 ) employing computational geometry 

oncepts for evaluating the operability regions for process design 

nd intensification. Finally, the main process operability algorithms 

eveloped for intensification and modularization were compiled 
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nto an open-source Operability App in MATLAB ( Gazzaneo et al., 

020 ) with a user-friendly interface for easy dissemination of the 

rocess operability algorithms. 

Despite of these past contributions to the process operabil- 

ty field, the challenge regarding tackling nonlinear problems with 

igh-dimensionality using first-principles models ( Carrasco and 

ima, 2017b, 2018 ) still remains. This task becomes computa- 

ionally intractable as it grows in complexity with problem di- 

ensionally, creating the need of recurring to parallel comput- 

ng ( Carrasco and Lima, 2018 ), an approach that is not always 

eadily available and highly dependent on the computational in- 

rastructure and modeling platform/numerical package used by 

ractitioners or academic researchers. For such challenging high- 

imensional applications, the idea of substituting the nonlinear 

rst-principles process model by a surrogate model can be ap- 

ealing to perform the operability computations in a more effi- 

ient manner. In particular, the NLP-based operability approaches 

 Carrasco and Lima, 2017a, 2017b, 2018 ) for process design and 

ntensification could benefit of computational time reductions en- 

bled by machine learning-based methods. Moreover, communica- 

ion challenges have also been reported between process simula- 

ion platforms (e.g., Aspen Plus) and numerical packages that are 

equired to perform process operability calculations (e.g., in MAT- 

AB) ( Carrasco and Lima, 2018 ). 

To address these challenges, there is a critical need to de- 

elop a systematic approach for assessing process operability that 

as the following features: (i) surrogate modeling of the pro- 

esses studied to be able to solve high-dimensional and nonlin- 

ar models, while maintaining accuracy; (ii) synergy or integration 

ith current nonlinear programming (NLP)-based ( Carrasco and 

ima, 2017b ) and multimodel-based approaches for process op- 

rability ( Gazzaneo and Lima, 2019 ); and (iii) facilitated com- 

unication between surrogate models developed based on pro- 

ess simulators and numerical packages, using the same com- 

uting platform for both (e.g., MATLAB or Python). The use of 

upervised machine learning-based algorithms known as Krig- 

ng (or Gaussian Process Regression) is proposed here as a sur- 

ogate to the first-principles models in process operability. Al- 

hough the implementation of Kriging in the field of Chemical 

ngineering is not new, having applications ranging from chem- 

cal reaction engineering ( Maceiczyk and deMello, 2014 ), feasi- 

ility analysis ( Boukouvala and Ierapetritou, 2012 ), process op- 

imization ( Davis and Ierapetritou, 2007 ), pharmaceutical pro- 

esses ( Boukouvala et al., 2010 ), modular flowsheet optimization 

 Quirante et al., 2015; Caballero and Grossmann, 2008 ), to Self- 

ptimizing Control ( Alves et al., 2018 ), this proposed direction for 

rocess operability has not yet been reported. This work is struc- 

ured as follows: Section 2 discusses process operability and Krig- 

ng main concepts; Section 3 addresses the proposed approach, 

nd Section 4 shows the application of the proposed approach 

o two case studies of increased complexity and dimensionality; 

astly, Section 5 contains conclusions and suggestions for future de- 

elopments. 

. Previous work: process operability and Kriging 

.1. Process operability 

Process operability has emerged as a viable alternative to the 

equential tasks of assessing process design and control, by in- 

egrating both tasks in the early design phase of industrial pro- 

esses ( Lima and Georgakis, 2010; Gazzaneo et al., 2020 ). To per- 

orm this task, process operability tools were developed to quan- 

ify achievability of process control objectives, given the avail- 

ble limits imposed on the input variables, while considering pro- 

ess constraints and expected disturbances that may occur dur- 
2 
ng process operations ( Vinson and Georgakis, 20 0 0 ). In this sec-

ion, process operability definitions for the case where the dis- 

urbances are kept at their nominal values are considered, which 

orresponds to the main scope of this work. For a complete and 

n-depth discussion on the previous operability concepts, including 

he presence of disturbances acting on the process, one must re- 

er mainly to Vinson and Georgakis (20 0 0) , Georgakis et al. (2003) ,

ima et al. (2010) , Gazzaneo et al. (2020) . 

To perform the operability analysis, the main requirement is 

hat a process model that describes the relationship between 

he input (manipulated and/or disturbance) and output variables 

hould be available ( Georgakis et al., 2003 ). A process model M 

ith m inputs, p outputs, q disturbances and n states, can be de- 

ned as in Eq. (1) : 

 = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ x s = f ( x s , u, d ) 
y = g ( x s , u, d ) 
h 1 ( ̇ x s , x s , y, ˙ u , u, d ) = 0 
h 2 ( ̇ x s , x s , y, ˙ u , u, d ) ≥ 0 

(1) 

In which u ∈ R m are the inputs, y ∈ R p are the outputs, d ∈ R q 

re the disturbances and x s ∈ R n are the state variables. Also, f and 

are nonlinear maps and h 1 and h 2 correspond to equality and 

nequality process constraints, respectively. Based on the process 

odel and associated variables, operating spaces/sets were estab- 

ished for the operability calculations and quantification of the Op- 

rability Index (OI) ( Georgakis et al., 2003 ). These sets are summa- 

ized with proper descriptions and mathematical formulations in 

able 1 . Refer to Refs. Georgakis et al. (2003), Vinson and Georgakis 

20 0 0) for further details on these sets and other operability def- 

nitions. Fig. 1 illustrates the main process operability spaces and 

he definitions that arise. In Fig. 1 (A), the lower and upper bounds 

or the manipulated/design variables are defined within the AIS. By 

valuating these inputs through the process model (M), the out- 

uts are calculated generating the AOS (B). From the desired op- 

ration with respect to such outputs, the DOS can be defined (C). 

he feasible portion of the DOS that is contained within the AOS 

s specified as the DOS ∗ (C). Lastly, the DIS can be obtained via an

nverse mapping ( M 
−1 ), in which its intersection with the AIS is 

efined as the DIS ∗ (D). 

Especially for process design and intensification purposes, it 

s important to note that the task of obtaining the inverse 

odel/mapping ( M 
−1 ) is of paramount importance. As stated 

bove, high-dimensionality, non-linearities, input-output multiplic- 

ties, and additional challenges such as infeasibility of the desired 

argets ( Gazzaneo et al., 2020 ) are the most common issues to be 

aced when performing this task. In order to circumvent these is- 

ues, linear and nonlinear programming-based operability methods 

ere successfully developed ( Gazzaneo and Lima, 2019; Carrasco 

nd Lima, 2017b ), respectively. Focusing on the latter, denominated 

LP-based approach, further definitions regarding the feasibility of 

he desired inputs and output sets were created. Instead of ana- 

ytically calculating ( M 
−1 ), Carrasco and Lima (2017b) proposed an 

LP-based optimization problem to calculate the discretized inputs 

rom a specified DOS, using an objective function defined by rela- 

ive error minimization. More specifically, the approach consists of 

nding a Feasible Desired Input Set (DIS ∗) that results in a Feasi- 
le Desired Output Set (DOS ∗), with the latter being optimized to 

e as close as possible from the original DOS. For the optimiza- 

ion problem of the NLP-based approach, the error minimization 

unction can be assembled considering the process required con- 

traints, intensification/efficiency targets and solved sequentially or 

sing a bilevel programming approach, as showed by Carrasco and 

ima (2017b) . The possible optimization problems of this approach 

re adapted in this work for the use of Kriging responses and are 

iscussed in depth in Section 3 . 



V. Alves, V. Gazzaneo and F.V. Lima Computers and Chemical Engineering 163 (2022) 107835 

Table 1 

Steady-state operability sets: definitions and mathematical formulations. 

Operability Set Description Mathematical Formulation 

Available Input Set (AIS) Manipulated inputs ( u ∈ R m ) based on the design of the process that is 
limited by the process constraints ( Vinson and Georgakis, 2000 ). 

AIS = 

{
u | u min 

i 
≤ u i ≤ u max 

i 
;1 ≤ i ≤ m 

}
Expected Disturbance Set (EDS) Disturbance variables ( d ∈ R q ) that can represent process uncertainties and 

variabilities. 

EDS = 

{
d | d min 

i 
≤ d i ≤ d max 

i 
;1 ≤ i ≤ q 

}
Achievable Output Set (AOS) Range of the outputs ( y ∈ R n ) that can be achieved using the inputs inside 

the AIS. 

AOS (d) = { y | y = M(u, d) ;u ∈ AIS, d is 

fixed } 
Desired Output Set (DOS) Production/target/efficiency requirements for the outputs that do not 

necessarily meet the ranges of the AOS. 

DOS = 

{
y | y min 

i 
≤ y i ≤ y max 

i 
;1 ≤ i ≤ n 

}
Desired Input Set (DIS) Set of inputs required to reach the entire DOS, given a disturbance vector d . DIS (d) = 

{
u | u = M 

−1 (y, d) ; y ∈ DOS , d 
is fixed } 

Feasible Desired Output Set (DOS ∗) Feasible set of desired outputs calculated via relative error minimization 

from the DOS using for example the NLP-based approach ( Carrasco and 

Lima, 2017b ). 

DOS ∗ = { y ∗ | y ∗ = M ( u ∗) ;u ∗ ∈ DIS ∗} 

Feasible Desired Input Set (DIS ∗) Optimal set of inputs that are required to obtain the Feasible Desired Output 

Set (DOS ∗), calculated for example via the NLP-based approach. 

DIS ∗ = 

{
u ∗ | u ∗ = 

(
u ∗1 , u 

∗
2 , u 

∗
3 . . . u 

∗
i 

)}
i 

def = Discretized DOS grid size 

Fig. 1. Visual exploration of main Process Operability sets and definitions. 
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With the input-output sets defined above, the Operability Index 

OI) can be calculated as shown in Eq. (2) . A process is considered

ully operable when the OI is 1 and if it is less than 1, some regions

f the DOS are not achievable ( Lima and Georgakis, 2010 ). 

I = 

μ( AOS ∩ DOS ) 

μ( DOS ) 
(2) 

In which μ indicates the measure of regions, varying de- 

ending on the dimensionality of the considered sets, for exam- 

le length for 1D systems, area for 2D systems, volume for 3D 

ystems and hypervolumes for systems of higher dimensionality 

 Gazzaneo et al., 2020 ). 

.2. Surrogate modeling: Kriging (Gaussian process regression) 

Kriging models are employed in this work as a surrogate 

o the process first-principles model or simulation-based mod- 

ls. The Kriging implementation in MATLAB used in this arti- 

le is based on the work of Lophaven et al. (20 02a, 20 02b) and

imilar approaches can be found in Caballero and Gross- 

ann (2008) ; Quirante et al. (2015) . For historical purposes, the 
3 
orks by Sacks et al. (1989) and Forrester et al. (2008) are 

lso recommended. For a thorough discussion on the sub- 

ect, refer to Rasmussen and Nickisch (2010) , Jones (2001) , 

orrester et al. (2008) . 

Considering a set of g experiments S = [ u 1 . . . u g ] 
T , with u i ∈ R m 

input variables), and an output vector Y = [ y 1 . . . y g ] 
T , a Kriging

etamodel is capable of representing a nonlinear function Y (x ) ∈ 

 
p with the aid of two terms: a regression (F ) and a stochastic 

unction (z) as shown in Eq. (3) . 

 
 l (u ) = F(u ) + z l (u ) , l = 1 , . . . , p (3)

The regression model is considered as a linear combination of 

unctions f j : R 
m → R , and typically the regression functions used 

re polynomials of orders zero to two ( Lophaven et al., 2002b; For- 

ester et al., 2008 ). Additionally, it is assumed that each z l has zero

ean with covariance between any two given points, u and u ′ as 
n Eq. (4) . 

ov 
[
z l (u ) , z l (u 

′ ) 
]

= σ 2 
l R (θ, u, u ′ ) , l = 1 , . . . , p (4)

In which σ 2 is the process variance for the l th output and 

 (θ, u, u ′ ) is a correlation function. There are several correlation 
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Fig. 2. Flowchart with the proposed method steps. 
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unctions developed for Kriging models in the literature ( Lophaven 

t al., 20 02a; 20 02b; Rasmussen and Williams, 20 08 ). For the sake

f simplicity and given the particular characteristic of being con- 

inuously differentiable, in this work, the correlation function as- 

umed is of the form known as squared-exponential or Gaussian 

orm (p j = 2) as shown in Eq. (5) . 

 (θ, u, u ′ ) = 

∏ m 

j=1 R j 

(
θ, u j − u ′ 

j 

)
, (θ ≥ 0) 

 j 

(
θ, u j − u ′ 

j 

)
= exp 

(
−θ j 

(
u j − u ′ 

j 

)p j )
, 
(
p j = 2 

) (5) 

In which θ are defined as hyperparameters and their values 

an indicate if the inputs are highly correlated or not ( Alves et al.,

018 ) and also how fast the correlation goes to zero as the pro-

ess moves in the j th coordinate direction ( Caballero and Gross- 

ann, 2008 ). The parameter p j represents the smoothness of the 

orrelation ( Forrester et al., 2008 ), and reducing its value increases 

he rate at which the correlation initially drops as the distance be- 

ween two given points 

(
u j − u ′ 

j 

)
increases ( Forrester et al., 2008 ). 

hen p j ≈ 0 , there is a discontinuity between ˆ Y 
(
u j 

)
and ˆ Y 

(
u ′ 
j 

)
 Lima et al., 2020 ), excluding the possibility of correlation between 

wo given arbitrary points. Finally, the determination of the hyper- 

arameters θ is a result of an optimization problem with the opti- 

al solution corresponding to the maximum likelihood estimation 

 Lophaven et al., 2002b ), where | R | is the determinant of the cor-

elation matrix R , as in Eq. (6) . 

in 
θ

{ 

ψ(θ ) ≡ | R | 1 g σ 2 
} 

(6) 

. Proposed approach: Kriging-based process operability 

The proposed method is depicted in Fig. 2 and will be discussed 

tep-by-step in this section. The main objective is to develop a 

ystematic and generic method capable of performing prior pro- 

ess operability calculations ( Carrasco and Lima, 2017b; Gazzaneo 

nd Lima, 2019 ) while maintaining accuracy and reducing compu- 

ational effort. In addition, the proposed method should be able to 

ackle systems of any dimensionality that present strongly nonlin- 

ar behavior, challenges that can be addressed with the help of the 
4 
riging models. Moreover, this method should facilitate the em- 

loyment of the process operability algorithms, avoiding the need 

f coupling process modeling tools with numerical packages, as the 

urrogate model can be used instead of a first-principles/process 

imulator model. 

The following steps outlined in Fig. 2 are detailed below for the 

eveloped method: 

1. Definition of upper and lower bounds of input variables 

(Available Input Set): In this initial step, one must define the 

bounds of the input variables (design and/or manipulated vari- 

ables). These limits should be as representative to the process 

as possible, as the Kriging responses created will generate the 

output data according to the points within the limits defined. 

Thus, careful selection and inspection of the AIS bounds must 

be done, in order to create a sampling space that represents the 

operating space of the model/process and avoid potential infea- 

sibilities (e.g., lack of convergence of the process model). The 

AIS bounds selection should be based on knowledge about the 

process/model, such as design limitations and/or manipulated 

variable operating regions; 

2. Sampling: Using the limits defined in the previous step, a sam- 

pling technique is employed in order to generate the input 

data. Space-filling techniques such as Latin Hypercube Sampling 

(used in this work) are recommended as they have been widely 

tested in the literature for different applications ( Quirante et al., 

2015; Alves et al., 2018; Lima et al., 2020 ). In addition, outliers 

must be investigated here and deleted from the sampling set 

if they are not meaningful (e.g., infeasible cases from process 

simulator runs), in order to ensure that the Kriging responses 

are generated in the next step with only meaningful data; 

3. Surrogate model (Kriging) generation: In this step, the Krig- 

ing responses for the p outputs are generated using the input- 

output data from the previous step. In this work, the DACE (De- 

sign and Analysis of Computer Experiments) MATLAB toolbox is 

used ( Lophaven et al., 2002a ). However, different im plementa- 

tions may also be employed such as the “scikit-learn” Python 

package ( Pedregosa et al., 2011 ), which is based mainly on the 

work of Rasmussen and Williams (2008) . Other implementa- 

tions that could be considered are the MATLAB fitrgp func- 
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tion and the Gaussian Processes for Machine Learning toolbox 

( Rasmussen and Nickisch, 2010 ). This step might have the high- 

est computational expense since the generation of Kriging sur- 

rogates are known to have times up to O (n 3 ) , in which n is the

sample size, due to matrix inversion operations needed. There- 

fore, the required time to generate the Kriging surrogates can 

increase quickly with the sample sizes. However, the expecta- 

tion is that this time is still significantly less than using the 

corresponding nonlinear, first-principles model for process op- 

erability calculations; 

4. Performance Assessment: After generating the surrogate re- 

sponses, performance assessment must be carried out in or- 

der to ensure the robustness and precision of the metamod- 

els. Several metrics can be employed in this step, such as: R 2 

fitness, root mean-squared error (RMSE), overall mean-squared 

error (OMSE), hold-out and cross validation. Hold-out validation 

is useful for large datasets and cross-validation can be used for 

smaller ones without being time consuming. Cross-validation 

assessment is a more effective approach ( Caballero and Gross- 

mann, 2008 ), as the training set is split into k folds and dif-

ferent responses are generated and validated, being able to in- 

spect outliers more effectively. A special case of cross valida- 

tion is when k = 1 and the number of folds corresponds to the

size of the sample: “leave-one-out” cross validation, which can 

be employed when the size of the sampling is not extremely 

large. In addition, for this particular study, the maximum like- 

lihood function that is optimized at the DACE toolbox can also 

be used as a metric. Following Lima et al. (2020) , the thresh- 

old for an acceptable surrogate representation should be below 

10 −5 for the maximum likelihood estimation function value. If 

the chosen performance assessment metrics are below the de- 

fined tolerances, the user can go to the next step and employ 

the surrogate models in the operability framework. 

5. and 6. Definition of Desired Output Set and operability 

framework calculations: At this step, the desired operation 

is defined (i.e., Desired Output Set (DOS)) and which problem 

type is to be solved, following Carrasco and Lima (2017a) . De- 

pending on the process, it is of particular interest finding an 

operable region regarding the manipulated variables that en- 

sure that the DOS (or part of it) is satisfied, finding an optimal 

design using design variables towards process intensification, or 

even both cases. This problem definition is split into layers of 

target-problems ( Carrasco and Lima, 2017a ). In this work these 

problems are reconsidered, but now using Kriging-based mod- 

els: P1 - Relative error minimization between desired (DOS) 

and feasible (DOS ∗) output sets: In this problem, the target is 

to calculate the DIS ∗ (Desired Feasible Input Set) that minimizes 

the relative error between the what is feasible (DOS ∗) and what 

is desired (DOS) in terms of output spaces: 

∅ k = min u ∗
k 

n ∑ 

j=1 

((
ˆ y j,k − y ∗

j,k 

)
/ ̂ y j,k 

)2 
s.t. : Surrogate responses 

u min 
k 

≤ u ∗
k 

≤ u max 
k 

ˆ c 1 
(
u ∗
k 

)
≤ 0 

(7) 

One must choose this problem when it is of particular inter- 

est defining a feasible input set region for the process studied 

for optimal design purposes. This problem can give insights on 

what should be the best operable region for a particular tar- 

get or the best design for a particular process ( Carrasco and 

Lima, 2017a ). In Eq. (7) , ˆ y represents a Kriging surrogate pre- 

diction of the actual variable y , which was previously calculated 

using the nonlinear model of the process. In addition, if there 

are any nonlinear constraints, these can be also substituted by 

surrogates ˆ c . Lastly, u represents the input variables for the k th 
k 

5 
element of the DOS selected points according to a specified grid 

( Carrasco and Lima, 2015 ). 

P2 - P1 + Process intensification and/or efficiency target 

maximization: This problem adds at the final step of P1 the 

evaluation of a process intensification or efficiency target. This 

target can be set as footprint reduction, efficiency maximiza- 

tion, or even pollutant emission reduction, for instance. The 

mathematical representation of this problem is as follows: 

� = min u ∗
PI 
[ PI target ] 

s.t. : u ∗PI ∈ DIS ∗

ˆ y PI ∈ DOS ∗( ̂  y ) 
(8) 

In which � represents the function value of the inputs that will 

intensify the process while ensuring the level of performance 

desired by the DOS ∗. 
P1 and P2 can also be solved simultaneously in a bilevel pro- 

gramming approach ( Carrasco and Lima, 2018 ), in conjunc- 

tion with parallel programming techniques seeking reduction 

of computational time. However, due to the employment of 

the Kriging-based models as surrogates to the first-principles 

nonlinear models, this work did not need to use any paral- 

lel or bilevel programming techniques, simplifying the software 

infrastructure. Moreover, note that all target problems devel- 

oped ( Carrasco and Lima, 2017a ) are reformulated to use Krig- 

ing models instead of nonlinear, first-principles models. Lastly, 

it should be noted that the NLP-based approach can only yield 

one set of solutions for the DIS ∗, but more than one set of such

solutions may exist. When multiple inputs lead to the same 

output (i.e., for processes with input-output multiplicities), the 

solution of the inverse mapping in the NLP-based approach may 

be influenced by the choice of optimization solver as well as 

the solver’s initial guess. However, as long as the inverse map- 

ping of the DIS ∗ belong to a bijective sub-region of the input 

space, the proposed approach does not encounter this chal- 

lenge. For the case studies performed in the paper, a modified 

version of the Nelder-Mead Simplex algorithm to accept non- 

linear constraints and bounds is used as a derivative-free solver 

in MATLAB. 

7 Active constraint handling: At this step, one must inspect 

if there are any lower/upper bound constraints (i.e., inverse- 

mapped input variables at the lower/upper bound of the AIS). 

If there are any upper bound active constraints, the upper 

bounds of the AIS can be increased if possible to further explore 

more regions, in case these do not correspond to hard/physical 

constraints (e.g., equipment/safety/operation bounds). The same 

holds if there are any lower bound active constraints. The limits 

can then be changed if needed and the user taken back to Step 

1; Otherwise, the user can move on the next step; 

8 Evaluate OI (Operability Index): After obtaining all the rele- 

vant operability sets (DIS ∗/DOS ∗) leading to insights on oper- 
ability regions, the Operability Index (OI) is evaluated using the 

regions obtained. This evaluation was discussed thoroughly in 

the past by several authors such as Georgakis et al. (2003) , 

Gazzaneo and Lima (2019) , Gazzaneo et al. (2020) . The objec- 

tive in this step is to rank competing designs and/or control 

structures, depending on the application of interest, using the 

OI as a metric. 

. Case studies 

The case studies below are performed to test the proposed 

ethod. The classical operability approach, using first-principles 

onlinear process models is run and the Kriging-based approach 

s validated against it. The objective is to show that the computa- 

ional time employing the developed approach is significantly re- 

uced while the accuracy of the calculations is maintained. All case 
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Fig. 3. DMA-MR schematic. 

s

1

t

n

p

i

s

4

r

d

a

u

a

t

z

R

e

o

p

t

m

a

n

i

m

m

i

2

v

v

t

(

f

Table 2 

AIS sampling limits for DMA-MR. 

Lower bound Upper bound 

Tube length [cm] 10 300 

Tube diameter [cm] 0.1 2 

Table 3 

Likelihood objective function values. 

Variable ψ

F C 6 H 6 1.1984 ×10 −6 

X CH 4 3.3259 ×10 −6 

l

L

i

b

c

fi

p

e

o

o
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s

o

c

c
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h
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tudies were performed on a PC with the following configuration: 

6GB RAM, Intel ®Core i7 4770 processor. To accurately compare 

he proposed method with the previous calculations employing 

onlinear first-principles models or process simulators, such com- 

arison was made under the same conditions for each problem, 

ncluding NLP-solver tolerances, initial estimates and for the exact 

ame DOS grid generated using the Latin Hypercube algorithm. 

.1. Direct Methane Aromatization Membrane Reactor (DMA-MR) 

The first example consists of the steady-state model of the Di- 

ect Methane Aromatization Membrane Reactor (DMA-MR) for hy- 

rogen and benzene production. This process has been studied as 

n application of process intensification and modularization of nat- 

ral/shale gas processing ( Carrasco and Lima, 2015; 2017a ). 

The process schematic is depicted in Fig. 3 , in which a shell 

nd tube membrane reactor is used for the methane conversion 

o hydrogen and ethylene, followed by ethylene conversion to ben- 

ene and additional hydrogen in a two-step reaction mechanism. 

efer to Carrasco and Lima (2015, 2017a) for the full set of differ- 

ntial equations and kinetic parameters that represent the devel- 

ped first-principles nonlinear process model in MATLAB. 

The first application example consists of a 2 x 2 (outputs x in- 

uts) subsystem associated with this DMA-MR process. Despite of 

he low system dimensionality in this first example, this process 

odel is highly nonlinear due to the presence of the nonlinear re- 

ction kinetics and the membrane flux in the intensified unit. Such 

onlinearities make the inverse operability mapping task challeng- 

ng, and thus this system serves as a good candidate for bench- 

arking the computational time and accuracy of the proposed 

ethods, when compared to the results of the nonlinear operabil- 

ty methods that are readily available ( Carrasco and Lima, 2015; 

017a ). 

For this application, a Kriging model is created using as input 

ariables the tube diameter and tube length, corresponding to the 

ariables in the AIS. Also, for the DOS, the variables considered are 

he methane conversion ( X CH 4 ), and the production rate of benzene 

 F C 6 H 6 ). These variables are selected similarly to previous literature 

or benchmark purposes ( Carrasco and Lima, 2017a ). The assumed 
6 
imits for the AIS are also the same from literature ( Carrasco and 

ima, 2017a ), except for the upper limit for the tube length, which 

s chosen based on the maximum experimental tube length possi- 

le of 300 cm. The limits used for the Kriging sampling procedure 

an be seen in Table 2 . 

With the input limits for the design of experiments being de- 

ned, 20 0 0 samples are generated using the Latin Hypercube Sam- 

ling (LHS) technique and each one of the generated cases are run 

mploying the first-principles nonlinear model for calculating the 

utputs. With the obtained input-output data, 200 cases were left 

ut for validation purposes and thus the training set consisted of 

800 cases. The chosen number of samples was based on succes- 

ive performance assessments of the Kriging maximum likelihood 

bjective function and by also using hold-out validation until pre- 

ise responses for both output variables were achieved (i.e., in this 

ase, the value of the maximum likelihood objective function for 

he Kriging predictor was below 10 −5 and R 2 ≥ 0 . 999 ). The final

old-out validation predictions for this case study are depicted in 

ig. 4 and the value for the optimized DACE objective function 

 ψ) likelihood that gives the optimal hyperparameters is given in 

able 3 . 

After performance assessment, the metamodels are then em- 

loyed to obtain the inverse mapping for operability and subse- 

uently, the DIS ∗-DOS ∗ calculations. The same DOS from previ- 

us work ( Carrasco and Lima, 2017a ) was employed in this task, 
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Fig. 4. Hold-out validation for DMA-MR Kriging models. 

Fig. 5. DIS ∗ and DOS ∗ comparisons: calculations employing Kriging metamodel versus original first-principles nonlinear model. 
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Table 4 

Relative errors between nonlinear-based and Kriging-based NLP operability ap- 

proaches for calculating intensified design variables. 

Intensified design variable Nonlinear model Kriging Relative error [%] 

Tube length [cm] 17.2283 17.2205 0.0454 

Tube diameter [cm] 0.5634 0.5636 0.0388 

f

m

r

a

ith limits of 15–25 [mg/h] and 35–45 [%] for the production 

ate of benzene and conversion of methane, respectively. An ad- 

itional constraint was imposed to the inverse mapping optimiza- 

ion problem to ensure reactor plug flow operation (e.g., L/D ≥ 30 ). 

or comparison purposes, both the NLP-based approach for inverse 

apping and the multimodel approach for OI calculation are em- 

loyed using the nonlinear first-principles and the Kriging-based 

odels, as shown in Figs. 5 and 6 , in which both tasks were

erformed with accuracy. Note from these figures the small er- 

or obtained when comparing the original nonlinear first-principles 

odel against the Kriging-based model responses for operability. 

able 4 shows the relative errors between these model responses 
7

or the membrane reactor modular design, confirming the agree- 

ent between the responses. Lastly, Table 5 depicts the average 

elative error of all DOS ∗ points calculated using the Kriging-based 

pproach, when compared to the first-principles model. Again, 
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Fig. 6. OI calculations using first-principles model versus Kriging-based model. Small relative error of 1.7% is obtained between calculations. 

Table 5 

Relative average error for all DOS ∗ grid points: 2x2 DMA-MR. 

Relative average error [%] 

X CH 4 0.0367 

F C 6 H 6 0.2013 
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Table 6 

AIS sampling limits for NGCC plant. 

Lower bound Upper bound 

Natural gas flowrate [tonne/h] 0.5 1.5 

Steam flowrate [tonne/h] 0.4 4 
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ote that the relative errors are small, indicating the accuracy of 

he developed method. 

The overall computational time for obtaining the results in 

ables 4 and 5 when using the first principles nonlinear model for 

his 2x2 system was of 5 min 38s, and it has been shown pre-

iously that the computational time for this system is expected 

o grow exponentially with problem dimensionality ( Carrasco and 

ima, 2018 ). However, the overall computational time associated 

ith the Kriging-based method (generation of 20 0 0 points for the 

nput-output mapping, fitting the Kriging responses and running 

he optimization problem) was of 58 s. This represents a decrease 

f 5.8 times in computational time. If this computational time eval- 

ation is done considering only the process operability calcula- 

ions when using the Kriging-based approach against its nonlin- 

ar model-based counterpart, this difference becomes even larger. 

he required time to obtain the operability sets using the Kriging- 

ased approach is of only 0.0477s against the 5 min 38s previously 

entioned for the nonlinear model-based method, thus reducing 

he computational time by about four orders of magnitude. For 

omparison purposes, a previous algorithm developed employing 

ixed-Integer Linear Programming (MILP) for process operability 

alculations ( Gazzaneo et al., 2018 ) achieved reduction of compu- 

ational time of 3.051 times and relative error of 1.28% with re- 

pect to the membrane area calculated using the tube length and 

iameter as input variables, considering the same case study with 

he same dimensionality as in this work. Hence, the proposed ap- 

roach in this work has the potential to enable operability cal- 

ulations for high-dimensional systems that would not be possi- 

le otherwise due to intractable computational times. Also, the re- 

ults above show that the accuracy of the proposed method for 

enerating the input-output mappings for operability analysis was 

ot compromised, while the complexity of calculating such inverse 

appings was reduced. 
8 
.2. Natural Gas Combined Cycle (NGCC) plant 

For the second case study, the NGCC plant ( Carrasco and 

ima, 2017b ) depicted in Fig. 7 is considered as an example of em- 

loying process simulators (in this case, Aspen Plus) as the source 

f input-output data for the proposed method. This case can be of 

elevance when the user wants to take advantage of the large ther- 

odynamic database and built-in models from the simulators that 

an be linked to the proposed framework. All of the equipment 

nd stream conditions were based on the literature ( Carrasco and 

ima, 2017b ), except when mentioned otherwise. Moreover, the 

GCC plant is also an interesting example of applications that are 

apable of processing natural gas in the US with the potential for 

odular manufacturing ( Carrasco and Lima, 2017b ). The 2x2 and 

x8 (outputs x inputs) cases are addressed for the NGCC process 

n order to test the proposed method. 

.2.1. NGCC plant (2x2 case) 

The considered input variables for the first NGCC plant case 

tudy are the natural gas flowrate and the steam flowrate used in 

he steam turbine. The air flowrate is considered based on a ratio 

f the natural gas flowrate following the literature ( Carrasco and 

ima, 2017b ). The Net Plant Power [MW] and Plant Efficiency [%] 

re considered ( Carrasco and Lima, 2017b ) as output variables as 

he analysis of these variables may lead to process intensification 

nd maximization of efficiency targets. The limits for the afore- 

entioned variables are given in Table 6 . 

With the limits considered for the input variables, 100 samples 

re generated using the Latin Hypercube sampling technique. Ad- 

itionally, a COM/OLE communication between MATLAB and Aspen 

lus is employed to run the cases. As the number of points is not 

rohibitive for this case, a “leave-one-out” validation is performed. 

he results of the leave-one-out validation are depicted in Fig. 8 . 

ote from this figure the good fit of the Kriging model, with rela- 

ive errors of orders of 10 −5 and 10 −3 with respect to the Kriging 

utputs. Table 7 also indicates that the optimal hyperparameters 

or the Kriging responses built give an accurate prediction, as the 
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Fig. 7. NGCC simplified process flow diagram based on ( Carrasco and Lima, 2017b ). 

Fig. 8. NGCC leave-one-out cross-validation for output variables. 

Table 7 

Likelihood objective function value for 2x2 

NGCC Plant. 

Variable ψ

Net Plant Power [ MW ] 9.7533 ×10 −12 

Net Plant Efficiency [%] 2.1676 ×10 −7 

v

s

e

t  

Table 8 

DOS bounds for 2x2 NGCC plant. 

Lower Bound Upper Bound 

Net Plant Power [MW] 0.5 5 

Net Plant Efficiency [%] 40 60 

l

t

i

c

a

alues of the likelihood objective function optimized are below the 

uggested threshold from Section 3 . 

With the Kriging models properly assessed, they can now be 

mployed in the operability calculations. The DOS considered in 

he calculations is given in Table 8 . Fig. 9 shows that the machine
9

earning-based operability approach is capable of successfully ob- 

aining the region of operation satisfying the DOS ∗. Note that, sim- 

larly to the DMA-MR example, the DOS ∗ obtained for both pro- 

ess simulator-based (Aspen Plus) and Kriging-based approaches 

re overlapping. 
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Fig. 9. DOS ∗ comparison: Aspen Plus vs Kriging metamodels for the 2x2 NGCC plant case study. 

Table 9 

Error analysis of obtained intensified output re- 

sponses for 2x2 NGCC plant case study. 

Output variable Relative error [%] 

Net Plant Power [MW] 1.5070 ×10 −7 

Net Plant Efficiency [%] 3.5400 ×10 −5 

Table 10 

Relative average error for all DOS ∗ grid points: 2x2 NGCC 

plant case study. 

Relative average error [%] 

Net Plant Power [MW] 0.0006 

Net Plant Efficiency [%] 0.0019 
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Table 11 

Computational time for 2x2 NGCC plant: Aspen Plus- 

based vs Kriging-based NLP approach. 

NLP Model/Time Time [h] Decrease [times] 

Aspen Plus 2.2212 - 

Kriging 1 . 00 × 10 −3 2221.1 

u
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n
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n

s
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In order to evaluate the feasibility of the obtained inverse map- 

ing, the optimal point that yielded the highest Net Plant Power 

nd Efficiency is compared for both approaches. It can be seen in 

able 9 that the optimal value obtained with the operability frame- 

ork employing the Kriging model is accurate when compared to 

he nonlinear model in Aspen Plus. In addition, from the average 

elative error for all DOS ∗ points shown in Table 10 , it can be seen

hat the errors when using the proposed Kriging-based approach 

re small for both analyzed variables. Thus, the complexity of 

mploying the process simulator directly with the operability 

ramework ( Carrasco and Lima, 2017a ) can be eliminated, with 

he process simulator being used only for the input-output data 

eneration. This can be particularly useful when evaluating the 

perability of highly nonlinear and complex problems that were 

lready modeled using chemical process simulators. 
10 
The Kriging-based NLP approach is also compared against its 

se with the full process simulator (Aspen Plus) model in terms of 

omputational time. It can be seen in Table 11 that there is a sig- 

ificant decrease in computational effort when using the Kriging- 

ased method. This is an expected result as the Kriging models 

nly predict the output responses that they were trained for, not 

eeding to calculate all system states/equations for every nonlinear 

olver iteration as needed for simulator models. This fact signifi- 

antly reduces the computational effort for evaluating each point 

f the desired operating region. 

Fig. 10 shows that the OI evaluation of the Kriging-based ap- 

roach yields the same value when compared against the operabil- 

ty calculations performed employing the process simulator. 

.2.2. NGCC plant 3x8 case 

The same NGCC plant is now considered with 8 input variables 

nd 3 output variables as a high-dimensional case study, following 

he same variables chosen as in Carrasco and Lima (2018) . These 

ariables are shown in Table 12 with their respective AIS bounds 

onsidered. The natural gas feed and HRSG steam feed were ad- 

usted to avoid infeasibilities in the AIS regions. 

As output variables, the Net Plant Power [MW], Net Plant Ef- 

ciency [%] and Capital Cost [$million] are considered for the 
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Fig. 10. OI calculations using Aspen Plus simulation versus Kriging-based model. 

Table 12 

AIS sampling limits for NGCC plant 3x8 case. 

Lower Bound Upper Bound 

Natural gas feed [tonne/h] 0.5 1.5 

Heat Recovery Steam Generator steam feed 

[tonne/h] 

0.4 4 

Compressor outlet pressure [atm] 10 30 

Air feed temperature [K] 273 303 

Steam cycle pressure [atm] 100 200 

Gas turbine efficiency [%] 0.70 0.85 

Air compressor efficiency [%] 0.70 0.85 

Steam turbine efficiency [%] 0.70 0.85 

Table 13 

Root mean-squared errors (RMSE) for NGCC plant 3x8 case out- 

puts. 

RMSE 

Net Plant Power [MW] 0.0023 

Net Plant Efficiency [%] 0.0299 

Capital Cost [$million] 0.0038 

A

e

u

s

c
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u

c

m

t

Table 14 

Likelihood objective function values for NGCC 

plant 3x8 case. 

Variable ψ

Net Plant Power [MW] 1.8632 ×10 −6 

Net Plant Efficiency [%] 9.9704 ×10 −6 

Capital Cost [$million] 3.6557 ×10 −6 

Table 15 

DOS bounds for 3x8 NGCC plant case. 

Lower Bound Upper Bound 

Net Plant Power [MW] 0.5 5 

Net Plant Efficiency [%] 40 60 

Capital Cost [$million] 0.1 10 

Table 16 

Relative error for DOS ∗ intensified design for 3x8 NGCC plant case. 

Aspen Plus Kriging Relative Error [%] 

Net plant power [MW] 4.1171 4.1159 0.0307 

Net plant efficiency [%] 56.6644 56.6327 0.0559 

Capital cost [$million] 8.7403 8.7425 0.0254 

a

t

s

K

w

g

OS/DOS definitions, following Carrasco and Lima (2018) . Consid- 

ring the AIS bounds from Table 12 , 900 samples are generated 

sing the LHS and the outputs are obtained running the process 

imulator model. With the generated input-output data, a 5-fold 

ross-validation is performed using the training data and the RMSE 

esults are shown in Table 13 . Note from this table the RMSE val-

es indicating that the Kriging models are accurate for operability 

alculations. Lastly, Table 14 shows the value of the DACE maxi- 

um likelihood objective function, also indicating the accuracy of 

he surrogate model responses. 
Table 17 

Relative error for DIS ∗ intensified design for 3x8 

Input Variable Aspe

Natural gas flowrate [kg/h] 500 

HRSG flowrate [kg/h] 400 

Air compressor pressure [atm] 18.36

Atmospheric air inlet temperature [K] 273 

HRSG cycle pressure [atm] 184.0

Gas turbine efficiency 0.850

Air compressor efficiency 0.850

Steam turbine efficiency 0.850

11 
After ensuring the accuracy of the generated Kriging responses, 

 DOS is selected based on target operation, considering as basis 

he work of Carrasco and Lima (2018) . The desired operating range 

elected for the output variables is shown in Table 15 . 

The inverse-mapping NLP-based algorithm was run using 

riging-based models for a 500-point grid generated for the DOS, 

ith the bounds defined in Table 15 and LHS to generate the 

rid. A similar approach was followed for the input data gener- 
NGCC plant case. 

n Plus Kriging Relative error [%] 

500.0001 1.9159 ×10 −5 

400 4.2300 ×10 −7 

76 19.2354 4.7248 

273 1.3900 ×10 −7 

897 184.6187 0.2873 

0 0.8500 2.3100 ×10 −8 

0 0.8500 1.7400 ×10 −6 

0 0.8500 4.5900 ×10 −6 
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Table 18 

Computational time for 3x8 NGCC Plant case: Aspen 

Plus-based vs Kriging-based NLP approach. 

NLP Model/Time Time [h] Decrease [times] 

Aspen Plus 31.2800 - 

Kriging 0.0815 383.8 

Table 19 

Average relative error for all DOS ∗ grid points: 8x3 NGCC 

Plant. 

Average relative error [%] 

Net plant power [MW] 0.1281 

Net plant efficiency [%] 0.1732 

Capital cost [$ million] 0.2742 
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tion. Problem P2 is considered in this case study, in which the 

ost efficient modular design is chosen based on maximization 

f the Net Plant Efficiency. In order to compare the accuracy and 

how the gain in terms of computational time, the same problem 

s run using the full process simulator model for the NLP-Based 

pproach. In Tables 16 and 17 , the values obtained for the inten- 

ified NGCC design for both process simulator-based and Kriging- 

ased NLP calculations are compared. Note from these tables that 

he relative errors between the two runs are small, confirming the 

ccuracy of the proposed approach for high-dimensional systems. 

n Table 18 , the computational time needed to run the NLP-based 

pproach using the process simulator and the Kriging models are 

hown. Again one can see that there is a significant decrease in 

omputational time for the proposed approach, enabling the calcu- 

ation of process operability metrics for high-dimensional systems. 

able 19 shows the average relative error for all 500 points of the 

OS ∗ grid calculated, indicating that the mapping of the operabil- 

ty regions is done accurately for the desired region using surro- 

ate models. Lastly, it is important to note that the calculations 

erformed with the Kriging-based approach are done using only 

nput-output data from the process simulator model. Thus, prob- 

ems of model convergence and communication issues between 

oftware platforms (process simulator and numerical packages) are 

herefore mitigated/eliminated. 

. Conclusions 

In this work, a systematic method was proposed using Kriging- 

ased models for process operability. It has been shown that the 

roposed method can generate accurate results (compared to the 

enerated results with the nonlinear first-principles model solu- 

ions previously developed) while reducing the complexity and 

omputational effort of operability calculations. The results indi- 

ated that a unified approach that depends only on the sampled 

ata and on the accuracy of the surrogate model fitness is pro- 

uced, allowing the evaluation of complex systems in terms of di- 

ensionality and nonlinearity. Two case studies, using a numerical 

ackage for a single unit operation and a process simulator for a 

omplete flowsheet as modeling platform were performed to show 

he effectiveness of the proposed approach for operability calcu- 

ations regardless of the data source. Future work is expected to 

xpand the proposed methods to dynamic systems, as a way to re- 

uce the computational effort for enabling online operability cal- 

ulations, as well as towards using new Kriging formulations for 

arger datasets and dimensionalities. 
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