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Abstract. We consider a compressible Euler system with singular velocity alignment, known as
the Euler-alignment system, describing the flocking behaviors of large animal groups. We establish a
local well-posedness theory for the system, as well as a global well-posedness theory for small initial
data. We also show the asymptotic flocking behavior, where solutions converge to a constant steady
state exponentially in time.
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1. Introduction. In this paper, we study the following Cauchy problem

∂tρ+∇ · (ρu) = 0, (1.1)

∂t(ρu) +∇ · (ρu⊗ u) +∇p(ρ) = −βρu− ρ
∫

Ω

φ(x− y)(u(x)− u(y))ρ(y)dy, (1.2)

in (0,∞)× Ω with initial conditions

ρ|t=0 = ρ0(x), u|t=0 = u0(x), x ∈ Ω. (1.3)

The spatial domain Ω can be either the whole space RN or the torus TN , where N
denotes the dimension. ρ and u are the unknown density and velocity, respectively.
The pressure is given by the power law p(ρ) = ργ with γ ≥ 1, and the damping
coefficient β ≥ 0. The last term in (1.2) represents the nonlocal velocity alignment,
where φ is called the communication weight, measuring the strength of the alignment
interactions.

System (1.1)-(1.2) can be formally derived from a mean field M -particle Newto-
nian interaction system of the type

Ẋi(t) = Vi(t), 1 ≤ i ≤M,

V̇i(t) =
1

M

∑
j 6=i

F
(
t,Xi(t)−Xj(t), Vi(t)− Vj(t)

)
− βVi(t), (1.4)

with the interacting force F (t, x, v) = −φ(x)v. It is known as the Cucker-Smale model
[10] which describes the flocking phenomenon for animal groups. Other celebrated
models that lie in the framework of (1.4) range from the classical mechanics with
Coulomb force in 3D [17] F (t, x, v) = x/|x|3, to modeling the social behavior of
agents, for example, wealth distribution in [11] and pedestrian flow in [13].
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Taking the mean field limit of the particle system (1.4), one obtains, in the meso-
scopic level, the Vlasov type kinetic equation

∂tf+v ·∇xf+∇v
(∫∫

Ω×Ω

F (t, x−y, v−v′)f(t, y, v′)dydv′f(t, x, v)
)
−β∇v ·(vf) = 0.

The rigorous derivation of the mean field model with different backgrounds has been
studied extensively in the last decades, for example in [1, 2, 3, 5, 7, 16, 17, 20], to
name a few.

The compressible Euler systems like (1.7)-(1.8) serve as hydrodynamic limits of
the kinetic equations. Different choices of Ansatz lead to different pressure laws.
For instance, mono-kinetic Ansatz f(t, x, v) = ρ(t, x)δu(t,x)(v) implies the pressure-

less system p(ρ) ≡ 0; local Maxwellian f(t, x, v) = ρ(t, x) 1

(2π)
N
2
e−|v−u(t,x)|2/2 leads to

linear pressure p(ρ) = ρ; and the Ansatz f(t, x, v) = χ|v−u(t,x)|2≤ρ2/N (t,x)(x, v), which

comes from the minimization of kinetic energy
∫∫

v2

2 f(t, x, v)dxdv under the restric-

tion ‖f(t, x, v)‖L∞ ≤ 1, would yield the nonlinear pressure p(ρ) = ρ
N+2
N . Rigorous

justifications of hydrodynamic limits on Cucker-Smale model can be found in [15, 18].
It is well-known that for the compressible Euler system (1.7)-(1.8) with β = φ = 0,

only local existence of smooth solutions could be expected, and shock waves will form
in finite time. Velocity damping helps in preventing the formation of shocks (see
[27, 31, 34]).

When the communication weight φ is bounded and has a positive lower bound
(or decays sufficiently slow at infinity in the whole space case), the nonlocal velocity
alignment has a damping effect, which could restrain shock formation, for a class of
subcritical initial data. See [4, 28, 30] for threshold conditions for the pressureless
systems, and [8] for isothermal pressure p(ρ) = ρ with small initial data. For the
case where the communication weight is not positive, such as in the pedestrian and
material flow case, an additional damping effect is required to prove the global smooth
solution for small initial data in [6, 32, 33].

We are interested in the case when the communication weight φ is singular at the
origin. A prototype choice of φ would be

φ(x) =
cα

|x|N+2α
, cα =

22αΓ(α+ N
2 )

π
N
2 |Γ(−α)|

. (1.5)

for α ∈ (0, 1), where the constant cα is related to the fractional Laplacian operator,
which in RN reads

L = (−∆)
1
2 , L2αf = cαP.V.

∫
RN

f(x)− f(y)

|x− y|N+2α
dy, 0 < α < 1. (1.6)

Note that (1.6) holds in Ω = TN by viewing f as a periodic function in RN .
By considering a purturbation of the constant solution ρ ≡ 1, u ≡ 0, the system

(1.1)-(1.2) with φ defined in (1.5) can be reformulated into

∂tρ+∇ · (ρu) = 0, (1.7)

∂t(ρu) +∇ · (ρu⊗ u) +∇p(ρ) = −βρu− ρL2αu− ρL2α((ρ− 1)u) + ρuL2αρ. (1.8)

On can observe a linear fractional viscosity term −L2αu in (1.8), which has a regular-
ization effect. Such effect has been captured beautifully in 1D, where global regularity
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can be shown for all smooth initial data away from vacuum (see [29] for the effect
of the vacuum), for the pressureless system with α ∈ (0, 1) [12, 19, 25, 26], and for
the isentropic system (p(ρ) = ργ) with α ∈ ( 5

6 , 1) [9]. The multi-dimensional system,
however, is much less understood, due to the lack of an auxiliary quantity, first intro-
duced in [4], that nicely captures the commutator structure (or cancelation property)
in −L2α((ρ − 1)u) + uL2αρ, so that it is dominated by the linear dissipation. To
our best knowledge, the only global result in multi-dimension is for the pressureless
system with small initial data [24].

The main goal of this paper is to establish a global theory for the system (1.1)-(1.2)
in multi-dimension with pressure. First, we establish a local well-posedness theory,
together with a regularity criterion. The singular kernel leads to a regularization
effect for the velocity u. Next, we prove global regularity for small initial data. The
main subtlety is to make use of the pressure to generate dissipation for the density
(the idea was introduced in [27]), and to control the last two terms in (1.8) together
with the velocity dissipation. Finally, we show an exponential convergence of the
solution towards the constant steady state ρ ≡ 1 and u ≡ 0, when Ω = TN . Unlike
the pressureless dynamics, where the asymptotic density profile is not necessarily
uniformly distributed (e.g. [24]), the presence of pressure enforces the steady state to
be a constant ρ ≡ 1. The exponential decay is obtained by a careful examination on
the physical energy.

The arrangement of this paper is the following. In section 2, we state the main
results, together with several preliminary lemmas. In section 3, we establish the local
well-posedness theory and regularity criterion, using energy method. In section 4, we
show global well-posedness for small initial data. Finally, in section 5, we prove the
exponential decay of the solution when the domain is a torus.

Here in the following we introduce several notations used throughout the paper.
We will repeatedly use C as a generic positive constant. Unless specified, C can
depend on parameters γ, β, s,N , etc, but is independent of t and data (ρ, u). Denote
Cλ := Cλ(Ω) be the Hölder space, for λ ∈ (0, 1), and Cλ = C1,λ−1 for λ ∈ (1, 2). For
λ = 1, we use C1 to represent C1,ε for simple notations. See Remark 2.4 for more
details. For simplicity, we write

∫
fdx :=

∫
Ω
fdx.

2. Preliminaries and main results.

2.1. Reformulation of the problem. We start by reformulating the Cauchy
problem of the compressible Euler system (1.1)-(1.3) with respect to the constant
solution ρ ≡ 1 and u ≡ 0, following the idea in [27].

Introduce a new variable σ, defined as follows

σ = σ(ρ) :=

{
ln ρ γ = 1,
2
√
γ

γ−1 (ρ
γ−1
2 − 1) γ > 1.

(2.1)

Inversely, ρ can be expressed by

ρ = ρ(σ) :=

 eσ γ = 1(
γ−1
2
√
γσ + 1

) 2
γ−1

γ > 1
(2.2)
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The equation (1.7)-(1.8) are transformed into the following equivalent system:

∂tσ + u · ∇σ +

(
γ − 1

2
σ +
√
γ

)
∇ · u = 0, (2.3)

∂tu+ u · ∇u+

(
γ − 1

2
σ +
√
γ

)
∇σ

=− βu− L2αu− L2α((ρ(σ)− 1)u) + uL2α(ρ(σ)− 1). (2.4)

subject to the initial data

σ|t=0 = σ0(x) = σ(ρ0(x)) u|t=0 = u0(x), x ∈ Ω, (2.5)

One can check that the C1 solution of (2.3)-(2.5) is equivalent to the solution of
(1.1)-(1.3), if the density is positive, namely

ρmin(t) := inf
x∈Ω

ρ(t, x) = inf
x∈Ω

ρ(σ(t, x)) > 0.

2.2. Main results. We study local and global well-posedness of the system
(2.3)-(2.5).

The first result concerns the local well-posedness of the system.

Theorem 2.1 (Local well-posedness). Let s > N
2 + max{1, 2α}, assume that

(σ0(x), u0(x)) ∈ (Hs(Ω))N+1 and infx∈Ω ρ(σ0(x)) > 0. Then, there exist a unique
classical solution (σ, u) of the Cauchy problem (2.3)-(2.5) satisfying

σ ∈ C([0, T ], Hs(Ω)), u ∈ C([0, T ], (Hs(Ω))N ) ∩ L2([0, T ], (Hs+α(Ω))N ) (2.6)

for some finite T > 0. Moreover, (2.6) holds for any time T if and only if∫ T

0

(
‖∇u(t, ·)‖L∞ + ‖σ(t, ·)‖Cmax{1,2α}

)
dt < +∞. (2.7)

Remark 2.1. Theorem 2.1 holds for any smooth initial data, as long as density
stays away from vacuum, in which case the linear dissipation −L2αu plays a dominate
role in the alignment force. Note that the last two terms in (2.4) can be viewed as a
commutator

L2α((ρ(σ)− 1)u)− uL2α(ρ(σ)− 1) = [L2α, u](ρ(σ)− 1). (2.8)

One needs to make good use of this commutator structure in order to obtain the
desired dissipative estimates. With the singular alignment force, the solution u gains
regularity instantly. This is a major difference compared with the regular (bounded)
alignment force.

Next, we turn to the global well-posedness theory. One standard approach is to
show that the Beale-Kato-Majda type regularity criterion (2.7) holds in all finite time.
However, it is generally difficult to validate such criterion (except in 1D with the aid
of an additional structure [9]).

We focus on global regularity for small initial data. We will show that the small-
ness propagates in time, and hence condition (2.7) holds in all finite time.
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Theorem 2.2 (Global well-posedness for small data). Let s >
max

{
N
2 + max{1, 2α}, 2− α

}
. Assume either Ω = RN and β > 0, or Ω = TN

and β ≥ 0. There exists a small parameter δ0 > 0, such that if

‖σ0‖2Hs + ‖u0‖2Hs ≤ δ2
0 , (2.9)

then the Cauchy problem (2.3)-(2.5) has a unique global classical solution (σ, u).

Remark 2.2. The damping is needed when Ω = RN in order to provide enough
control on ‖u‖L2 . It is not required when Ω = TN as ‖u‖L2 can be controlled by
dissipation via Poincaré inequality. See Remark 4.1 for discussions on asymptotic
flocking behaviors and convergence rate.

Our final result is on the asymptotic behavior of the system. We show the flocking
phenomenon with fast alignment in the case Ω = TN .

Theorem 2.3 (Large-time behavior). Assume Ω = TN , β ≥ 0, and (ρ, u) be the
classical solution to the system (1.1)-(1.3) satisfying (ρ, u) ∈ L∞((0,+∞)×TN ). We
further assume the initial data (ρ0, u0) satisfies

1

|TN |

∫
TN
ρ0(x)dx = 1, (2.10)

and for the case β = 0, we assume additionally∫
TN

ρ0(x)u0(x)dx = 0. (2.11)

Then there exists constants µ = µ(α, ‖ρ‖L∞ , ‖u‖L∞) and C =
C(α, ρ0, u0, ‖ρ‖L∞ , ‖u‖L∞) such that∫

ρ(t, x)|u(t, x)|2dx+

∫
(ρ(t, x)− 1)2dx ≤ Ce−µt. (2.12)

Moreover, if (2.9) is satisfied for the corresponding (σ, u) system (2.3)-(2.5), then
there exists constants µ = µ(α, δ0) and C = C(α, δ0) such that

‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs ≤ Ce−µt. (2.13)

Remark 2.3. Conditions (2.10) and (2.11) is naturally required to obtain (2.12),
due to the conservation of mass, and the conservation of momentum (when β = 0),
respectively. These two conditions can be easily removed by scaling on ρ and shifting
on u, and the estimate (2.12) will be replaced by∫

ρ(t, x)|u(t, x)− ū|2dx+

∫
(ρ(t, x)− ρ̄)2dx ≤ Ce−µt,

where ρ̄ is the average density, and ū is the average velocity.
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2.3. Elementary estimates. Next, we state the fractional Leibniz rule and
commutator estimates that will be used. We refer to e.g. [22, Theorem 1.2], [23,
Lemma 6.1] for more details.

Lemma 2.1 (Fractional Leibniz rule). For λ > 0, there exists a constant C =
C(λ,N) such that

‖Lλ(fg)‖L2 ≤ C(‖Lλf‖L2‖g‖L∞ + ‖Lλg‖L2‖f‖L∞), (2.14)

Lemma 2.2 (Commutator estimates). For λ > 1, there exists a constant C =
C(λ,N) such that

‖[Lλ, f ]g‖L2 ≤C(‖Lλf‖L2‖g‖L∞ + ‖∇f‖L∞‖Lλ−1g‖L2), (2.15)

‖[Lλ, f, g]‖L2 ≤C(‖Lλ−1f‖L2‖∇g‖L∞ + ‖∇f‖L∞‖Lλ−1g‖L2), (2.16)

where

[Lλ, f ]g = Lλ(fg)− fLλg, [Lλ, f, g] = Lλ(fg)− fLλg − gLλf.

For λ ∈ (0, 1], there exists a constant C = C(λ,N) such that

‖[Lλ, f ]g‖L2 ≤ C‖Lλf‖L∞‖g‖L2 , (2.17)

The following composition estimate is useful for handling the nonlinear mappings
between σ and ρ. It indicates that σ and ρ have the same regularity if ρ is away from
zero.

Lemma 2.3 (Composition estimates). Let λ > 0. There exists a constant C =
C(γ, λ, ‖σ‖L∞ , ρ−1

min) such that

‖Lλ(ρ(σ)− 1)‖L2 ≤ C(γ, λ, ‖σ‖L∞ , ρ−1
min)‖Lλσ‖L2 . (2.18)

Proof. We make use of the following composition estimate, the proof of which
can be found, for instance, in [21, Theorem A.1.].

‖Lλ(ρ(σ))‖L2 ≤ C‖ρ‖Cdλe(supp(σ))(1 + ‖σ‖λL∞)‖Lλσ‖L2 .

The term ‖ρ‖Cdλe(supp(σ)) can be estimated via definition (2.2). For γ = 1, ddλe

dσdλe
ρ =

eσ. Then,

‖ρ‖Cdλe(supp(σ)) ≤ exp (‖σ‖L∞) .

For γ > 1, we have∣∣∣∣ ddλedσdλe
ρ

∣∣∣∣ ≤ C(γ, λ)(ρ(σ))1−dλe γ−1
2 ≤

{
C(γ, λ)(1 + ‖σ‖L∞)

2
γ−1−dλe dλe ≤ 2

γ−1

C(γ, λ)ρ
−(dλe− 2

γ−1 )

min dλe > 2
γ−1

Therefore, we conclude that

‖ρ‖Cdλe(supp(σ)) ≤ C(γ, λ, ‖σ‖L∞ , ρ−1
min).

Remark 2.4. A similar estimate holds when we replace L2 by L∞ in (2.18).

‖Lλ(ρ(σ)− 1)‖L∞ ≤ C(γ, λ, ‖σ‖L∞ , ρ−1
min)‖σ‖Cλ . (2.19)

We will make use of this estimate for λ ∈ (0, 2). Note that (2.19) needs to be slightly
modified when λ = 1, where ‖σ‖C1 should be replaced by ‖σ‖C1+ε for any ε > 0
(and the constant depends on ε). For the sake of simplicity, we will keep the compact
notation ‖σ‖C1 throughout the paper.
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3. Local well-posedness. The local well-posedness theory of the system (2.3)-
(2.5) can be established by using standard iteration scheme and the compactness
argument. For simplicity, in this section we will give only the a priori energy estimates,
and omit the detailed construction of approximation solutions.

We start with the L2 energy estimate.

Lemma 3.1 (L2 estimate). Let (σ, u) be the classical solution of (2.3) − (2.4).
Then the following estimate holds

1

2

d

dt

(
‖σ‖2L2 + ‖u‖2L2

)
+β‖u‖2L2 +

ρmin

2
‖Lαu‖2L2 (3.1)

≤C(‖σ‖L∞ , ρ−1
min)(‖∇ · u‖L∞ + ‖σ‖C2α)(‖u‖2L2 + ‖∇σ‖2L2).

Proof. Firstly, by multiplying (2.3) and (2.4) by σ and u respectively, summing
up and integrating over Ω, we obtain

1

2

d

dt

∫ (
|σ|2 + |u2|

)
dx+ β‖u‖2L2 = −

∫
L2αu · udx (3.2)

−
∫ (

σu · ∇σ + u · ∇u · u
)

dx−
∫ (γ − 1

2
σ +
√
γ
)
∇ · (σu)dx

−
∫
L2α((ρ(σ)− 1)u) · udx+

∫
uL2α(ρ(σ)− 1) · udx =

5∑
i=1

Ii.

We estimate Ii item by item. The commutator estimate (2.17) is used for I4, and the
composition estimate (2.19) is used for I4 and I5.

I1 = −
∫
L2αu · udx = −

∫
|Lαu|2dx;

I2 = −
∫ (

σu · ∇σ + u · ∇u · u
)

dx = −
∫
σu · ∇σdx+

1

2

∫
|u|2∇ · udx

≤ ‖σ‖L∞‖u‖L2‖∇σ‖L2 +
1

2
‖∇ · u‖L∞‖u‖2L2

≤ C(‖σ‖L∞ + ‖∇ · u‖L∞)(‖∇σ‖2L2 + ‖u‖2L2);

I3 =
γ − 1

2

∫
σu · ∇σdx ≤ C‖σ‖L∞(‖∇σ‖2L2 + ‖u‖2L2);

I4 = −
∫
L2α((ρ(σ)− 1)u) · udx = −

∫
Lα((ρ(σ)− 1)u) · Lαudx

= −
∫

(ρ(σ)− 1)Lαu · Lαudx−
∫

[Lα, ρ(σ)− 1]u · Lαudx

≤ (1− ρmin)‖Lαu‖2L2 + C‖Lα(ρ(σ)− 1)‖L∞‖u‖L2‖Lαu‖L2

≤
(

1− ρmin

2

)
‖Lαu‖2L2 + C(‖σ‖L∞ , ρ−1

min)‖σ‖Cα‖u‖2L2 ;

I5 =

∫
uL2α(ρ(σ)− 1) · udx ≤ ‖L2α(ρ(σ)− 1)‖L∞‖u‖2L2

≤ C(‖σ‖L∞ , ρ−1
min)‖σ‖C2α‖u‖2L2 .

Collecting the above estimates into (3.2), we obtain the L2-estimate of (σ, u) (3.1).
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Next,we provide the Ḣs energy estimate.

Lemma 3.2 (Ḣs energy estimate). Let (σ, u) be a classical solution of (2.3)−(2.4).
Then the following estimate holds for s > N

2 + max{1, 2α}

1

2

d

dt

(
‖Lsσ‖2L2 + ‖Lsu‖2L2

)
+ β‖Lsu‖2L2 +

ρmin

2
‖Ls+αu‖2L2 (3.3)

≤ C(‖σ‖L∞ , ρ−1
min)(‖∇u‖L∞ + ‖σ‖Cmax{1,2α})(‖u‖2Hs + ‖Lsσ‖2L2 + ‖Ls+α−1σ‖2L2).

Proof. We apply Ls to (2.3), (2.4), multiply the resulting identities by Lsσ, Lsu
respectively, and integrate over Ω to obtain

1

2

d

dt

∫ (
|Lsσ|2 + |Lsu|2

)
dx+ β‖Lsu‖2L2

= −
∫
Ls+2αu · Lsudx−

∫ (
Ls(u · ∇σ)Lsσ + Ls(u · ∇u) · Lsu

)
dx

− γ − 1

2

∫ (
Ls(σ∇ · u)Lsσ + Ls(σ∇σ) · Lsu

)
dx

−
∫
Ls+2α((ρ(σ)− 1)u) · Lsudx+

∫
Ls(uL2α(ρ(σ)− 1)) · Lsudx

=

5∑
i=1

Ji. (3.4)

We directly get

J1 = −
∫
Ls+2αu · Lsudx = −

∫ ∣∣∣Ls+αu∣∣∣2dx. (3.5)

Applying the commutator estimate (2.15), we get

J2 = −
∫ (
Ls(u · ∇σ)Lsσ + Ls(u · ∇u) · Lsu

)
dx

= −
∫ (

u · Ls∇σLsσ + [Ls, u] · ∇σLsσ + u · Ls∇u · Lsu+ [Ls, u] · ∇u · Lsu
)

dx

=

∫ (1

2
∇ · u|Lsσ|2 − [Ls, u] · ∇σLsσ +

1

2
∇ · u|Lsu|2 − [Ls, u] · ∇u · Lsu

)
dx

≤ 1

2
‖∇ · u‖L∞(‖Lsσ‖2L2 + ‖Lsu‖2L2) + ‖[Ls, u] · ∇σ‖L2‖Lsσ‖L2

+ ‖[Ls, u] · ∇u‖L2‖Lsu‖L2

≤ 1

2
‖∇ · u‖L∞(‖Lsσ‖2L2 + ‖Lsu‖2L2) + C(‖Lsu‖L2‖∇σ‖L∞

+ ‖∇u‖L∞‖Ls−1∇σ‖L2)‖Lsσ‖L2

+ C(‖Lsu‖L2‖∇u‖L∞ + ‖∇u‖L∞‖Ls−1∇u‖L2)‖Lsu‖L2

≤ C(‖∇u‖L∞ + ‖∇σ‖L∞)(‖Lsσ‖2L2 + ‖Lsu‖2L2). (3.6)



THE EULER-ALIGNMENT SYSTEM 163

Similarly we can do the estimates for J3,

J3 = −γ − 1

2

∫ (
Ls(σ∇ · u)Lsσ + Ls(σ∇σ) · Lsu

)
dx

= −γ − 1

2

∫ (
σ∇ · (LsuLsσ) + [Ls, σ](∇ · u)Lsσ + [Ls, σ]∇σ · Lsu

)
dx

≤ C‖∇σ‖L∞(‖Lsσ‖2L2 + ‖Lsu‖2L2) + C(‖Lsσ‖L2‖∇ · u‖L∞
+ ‖∇σ‖L∞‖Ls−1∇ · u‖L2)‖Lsσ‖L2

+ C(‖Lsσ‖L2‖∇σ‖L∞ + ‖∇σ‖L∞‖Ls−1∇σ‖L2)‖Lsu‖L2

≤ C(‖∇ · u‖L∞ + ‖∇σ‖L∞)(‖Lsσ‖2L2 + ‖Lsu‖2L2). (3.7)

The estimates for J4 and J5 have to be handled together, applying commutator esti-
mates (2.15) and (2.16), one obtains

J4 + J5

=−
∫
Ls+2α((ρ(σ)− 1)u) · Lsudx+

∫
Ls(uL2α(ρ(σ)− 1)) · Lsudx

=−
∫ (
Ls+α((ρ(σ)− 1)u)− Ls−α(uL2α(ρ(σ)− 1))

)
· Ls+αudx

=−
∫

(ρ(σ)− 1)Ls+αu · Ls+αudx

+

∫ (
[Ls+α, u, ρ(σ)− 1]− [Ls−α, u]

(
L2α(ρ(σ)− 1)

))
· Ls+αudx

≤ (1− ρmin)‖Ls+αu‖2L2

+
(
‖Ls+α−1u‖L2‖∇(ρ(σ)− 1)‖L∞ + ‖∇u‖L∞‖Ls+α−1(ρ(σ)− 1)‖L2

)
‖Ls+αu‖L2

+
(
‖Ls−αu‖L2‖L2α(ρ(σ)− 1)‖L∞ + ‖∇u‖L∞‖Ls+α−1(ρ(σ)− 1)‖L2

)
‖Ls+αu‖L2 .

We remark that in the third equality, there is a cancelation of the term∫
uLs+α(ρ(σ)− 1) · Ls+αudx, (3.8)

which itself can not be controlled. This is the place where the commutator structure
(2.8) is crucially used.

Next, we apply the composition estimates (2.18), (2.19), and use the facts s−α <
s, s+ α− 1 < s to get

J4 + J5 ≤
(

1− ρmin

2

)
‖Ls+αu‖2L2 + C(‖σ‖L∞ , ρ−1

min)(‖∇u‖L∞ + ‖σ‖Cmax{1,2α})

× (‖Ls+α−1u‖2L2 + ‖Ls−αu‖2L2 + ‖Ls+α−1σ‖2L2)

≤
(

1− ρmin

2

)
‖Ls+αu‖2L2 + C(‖σ‖L∞ , ρ−1

min)(‖∇u‖L∞ + ‖σ‖Cmax{1,2α})

× (‖u‖2Hs + ‖Ls+α−1σ‖2L2) (3.9)

Finally, we plug in the estimates (3.5)-(3.9) to (3.4) and finish the Ḣs estimate (3.3).

With the energy estimates above, we are ready to prove the local well-posedness
theory.
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Proof of Theorem 2.1. We combine the estimates (3.1) and (3.3) for the full Hs

estimate

1

2

d

dt

(
‖σ‖2Hs + ‖u‖2Hs

)
+β‖u‖2Hs +

ρmin

2
‖u‖2Hs+α (3.10)

≤C(‖σ‖L∞ , ρ−1
min)(‖∇u‖L∞ + ‖σ‖Cmax{1,2α})(‖u‖2Hs + ‖σ‖2Hs).

For s > N
2 + max{1, 2α}, Sobolev embedding implies

‖∇u‖L∞ + ‖σ‖Cmax{1,2α} ≤ C(‖u‖Hs + ‖σ‖Hs) ≤
√

2C(‖u‖2Hs + ‖σ‖2Hs)1/2.

As ‖σ0‖L∞ and ρ−1
min(0) are bounded, there exists a time T0 such that ‖σ(t, ·)‖L∞

and ρ−1
min(t) are uniformly bounded for t ∈ [0, T0]. Then, there is a universal constant

C(T0) such that

C(‖σ(t, ·)‖L∞ , ρ−1
min(t)) ≤ C(T0).

Consequently, we have

1

2

d

dt

(
‖σ‖2Hs + ‖u‖2Hs

)
≤ C(T0)

(
‖σ‖2Hs + ‖u‖2Hs

)3/2

, ∀ t ∈ [0, T0].

Standard ODE theory implies the existence of time T ≤ T0 such that ‖σ‖2Hs + ‖u‖2Hs
is bounded for t ∈ [0, T ].

Integrating (3.10) in time, we get∫ T

0

‖u(t, ·)‖2Hs+αdt

≤ max
t∈[0,T ]

ρ−1
min(t)

(
‖σ0‖2Hs + ‖u0‖2Hs + 2C(T0)

∫ T

0

(
‖σ‖2Hs + ‖u‖2Hs

)
dt

)
< +∞,

which implies u ∈ L2([0, T ], (Hs+α)N ).
Finally, we show that the regularity (2.6) holds as long as condition (2.7) is

satisfied. Applying the Gronwall’s inequality on (3.10), we get

‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs

≤
(
‖σ0‖2Hs + ‖u0‖2Hs

)
exp

[∫ t

0

C(‖σ‖L∞ , ρ−1
min)(‖∇u‖L∞ + ‖σ‖Cmax{1,2α})dt

]
.

Therefore, the solution exists up to time T as long as∫ T

0

C(‖σ‖L∞ , ρ−1
min)(‖∇u‖L∞ + ‖σ‖Cmax{1,2α})dt < +∞. (3.11)

From (1.1), we get (∂t + u · ∇)ρ = −(∇ · u)ρ. Therefore, we can bound ρ(t, x) by

ρmin(0) exp

[
−
∫ t

0

‖∇ · u(τ, ·)‖L∞dτ

]
≤ ρ(t, x) ≤ ‖ρ0‖L∞ exp

[∫ t

0

‖∇ · u(τ, ·)‖L∞dτ

]
.

Hence, if (2.7) holds, ρ−1
min(t) is bounded for t ∈ [0, T ]. Also, using the relation (2.1),

we have that ‖σ(t, ·)‖L∞ is bounded for t ∈ [0, T ]. Hence, C(‖σ‖L∞ , ρ−1
min) is bounded

by a universal constant, and condition (3.11) is reduced to (2.7). This finishes the
proof.
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4. Global regularity for small data. In this section, we discuss the global
well-posedness of the system (2.3)-(2.5), with small initial data

‖σ0‖2Hs + ‖u0‖2Hs ≤ δ2
0 ,

for a small parameter δ0 > 0 to be chosen.
We will show that the solution stays small. In particular, the following lemma

suffices to show Theorem 2.2.

Lemma 4.1 (Propagation of smallness). Assume (σ, u) is a classical solution of
(2.3)-(2.5), such that

sup
0≤t≤T

(
‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs

)
≤ δ2, (4.1)

where δ > 0 is sufficiently small. Then the solution stays small, namely, there exists
a universal constant C0 > 1, such that

‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs ≤ C2
0 (‖σ0‖2Hs + ‖u0‖2Hs), ∀ t ∈ [0, T ]. (4.2)

Proof of Theorem 2.2. Let δ be the small parameter in Lemma 4.1. Let Tmax be
the maximum time that the solution stays small, namely

Tmax := inf
{
t ≥ 0 : ‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs > δ2

}
.

Suppose Tmax <∞, then by continuity argument,

‖σ(Tmax, ·)‖2Hs + ‖u(Tmax, ·)‖2Hs = δ2..

However, if we pick δ0 <
δ
C0

, from Lemma 4.1 we get

‖σ(Tmax, ·)‖2Hs + ‖u(Tmax, ·)‖2Hs ≤ C2
0 (‖σ0‖2Hs + ‖u0‖2Hs) ≤ C2

0δ
2
0 < δ2.

This leads to a contradiction. Therefore, Tmax = +∞, finishing the proof.

We are left to show Lemma 4.1. Recall the Hs estimate (combination of Lemmas
3.1 and 3.2)

d

dt

(
‖σ‖2Hs + ‖u‖2Hs

)
+ β‖u‖2Hs +

1

4
‖Lαu‖2Hs ≤ Cδ(‖u‖2Hs + ‖∇σ‖2Hs−1). (4.3)

It is slightly different from (3.10), as we will comment in the following.
First, the smallness condition (4.1) and Sobolev embedding implies

‖∇u‖L∞ + ‖σ‖Cmax{1,2α} < Cδ.

Second, picking δ small enough, we have ρmin > 1
2 and ‖σ‖L∞ < Cδ. Then,

C(‖σ‖L∞ , ρ−1
min) has a uniform bound. Therefore, we can drop its dependence on

σ. Finally, as we assume s > 2−α so that s+α−1 ∈ (1, s), the term ‖Ls+α−1σ‖L2 in
(3.3) can be controlled by ‖∇σ‖Hs−1 . It does not depend on ‖σ‖L2 . This is important
as we do not have dissipation estimate on ‖σ‖L2 .

To show (4.2), we need to control the right hand side of (4.3).
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The term ‖u‖2Hs can be controlled by the damping or the dissipation. If β > 0,

then we can pick δ < β
2C , such that

Cδ‖u‖2Hs ≤
β

2
‖u‖2Hs .

If β = 0, we can use the dissipation term to control ‖∇u‖2Hs−1 . The ‖u‖2L2 can only
be controlled in the case Ω = TN by Poincare inequality ‖u‖L2 ≤ C‖∇u‖L2 , which
implies ‖u‖Hs ≤ C‖Lαu‖Hs . Similarly, we can pick δ small enough so that

Cδ‖u‖2Hs ≤
1

8
‖Lαu‖2Hs .

To sum up, there exists a positive number ν > 0, such that

d

dt

(
‖σ‖2Hs + ‖u‖2Hs

)
+ ν‖u‖2Hs+α ≤ Cδ‖∇σ‖

2
Hs−1 . (4.4)

To control the remaining term ‖∇σ‖2Hs−1 , we adopt the idea introduced in [27],
using cross terms to obtain dissipation estimates for σ.

Lemma 4.2 (Dissipation estimates for σ).

d

dt

∫
u · ∇σdx+

3
√
γ

4
‖∇σ‖2L2 ≤ C‖u‖2Hs , (4.5)

d

dt

∫
Ls−1u · ∇Ls−1σdx+

√
γ

2
‖Lsσ‖2L2 ≤ C‖u‖2Hs+α + Cδ‖∇σ‖2L2 . (4.6)

Proof. First, we can directly calculate to obtain

d

dt

∫
u · ∇σdx = −

∫
σt∇ · udx+

∫
ut · ∇σdx.

The two terms separately are

−
∫
σt∇ · udx =

∫ (
u · ∇σ +

(
γ − 1

2
σ +
√
γ

)
∇ · u

)
(∇ · u)dx

≤‖u‖L∞‖∇σ‖L2‖∇ · u‖L2 +

(
γ − 1

2
‖σ‖L∞ +

√
γ

)
‖∇ · u‖2L2

≤C‖∇ · u‖2L2 + Cδ‖∇σ‖2L2
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and

∫
ut · ∇σdx =−√γ‖∇σ‖2L2 − β

∫
u · ∇σdx

−
∫
u · ∇u · ∇σdx− γ − 1

2

∫
σ∇σ · ∇σdx−

∫
L2αu · ∇σdx

−
∫
L2α((ρ(σ)− 1)u) · ∇σdx+

∫
uL2α(ρ(σ)− 1) · ∇σdx

≤−
7
√
γ

8
‖∇σ‖2L2 + C(‖u‖2L2 + ‖u · ∇u‖2L2 + ‖L2αu‖2L2)

+ C(‖L2α((ρ(σ)− 1)u)‖2L2 + ‖uL2α(ρ(σ)− 1)‖2L2)

≤−
7
√
γ

8
‖∇σ‖2L2 + C‖u‖2H2α

+ C
(
‖L2αu‖L2‖ρ(σ)− 1‖L∞ + ‖u‖L∞‖L2α(ρ(σ)− 1)‖L2

)2

≤−
7
√
γ

8
‖∇σ‖2L2 + C‖u‖2Hs .

The fractional Leibniz rule (2.14) is used in the second last inequality, followed by the
estimates

‖L2α(ρ(σ)− 1)‖L2 ≤ C‖σ‖Ḣ2α < δ, ‖u‖L∞ ≤ C‖u‖Hs .

Sum up the above estimates, and choose δ small enough so that Cδ‖∇σ‖2L2 in the

first term is absorbed by
√
γ

8 ‖∇σ‖
2
L2 in the second term. We end up with (4.5).

Now we prove (4.6), by a direct computation we obtain

d

dt

∫
Ls−1u · ∇Ls−1σdx = −

∫
Ls−1σtLs−1∇ · udx+

∫
Ls−1ut · ∇Ls−1σdx.

For the first term, apply the Leibniz rule (2.14) and get

−
∫
Ls−1σtLs−1∇ · udx

=
√
γ

∫
|Ls−1∇ · u|2dx+

∫
Ls−1(u · ∇σ)Ls−1∇ · udx

+
γ − 1

2

∫
Ls−1(σ∇ · u)Ls−1∇ · udx

≤C‖Lsu‖2L2 + C‖Lsu‖L2

(
‖Ls−1u‖L2‖∇σ‖L∞ + ‖Ls−1∇σ‖L2‖u‖L∞

)
+ C‖Lsu‖L2

(
‖Ls−1∇ · u‖L2‖σ‖L∞ + ‖Ls−1σ‖L2‖∇ · u‖L∞

)
≤C‖Lsu‖2L2 + Cδ(‖Ls−1u‖2L2 + ‖Lsσ‖2L2 + ‖Ls−1σ‖2L2).

≤C‖u‖2Hs + Cδ(‖Lsσ‖2L2 + ‖∇σ‖2L2).
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For the second term,∫
Ls−1ut · ∇Ls−1σdx

=−√γ‖∇Ls−1σ‖2L2 − β
∫
Ls−1u · ∇Ls−1σdx−

∫
Ls−1+2αu · ∇Ls−1σdx

−
∫
Ls−1(u · ∇u) · ∇Ls−1σdx− γ − 1

2

∫
Ls−1(σ∇σ) · ∇Ls−1σdx

−
∫
Ls−1+2α((ρ(σ)− 1)u) · ∇Ls−1σdx+

∫
Ls−1(uL2α(ρ(σ)− 1)) · ∇Ls−1σdx

≤ −
3
√
γ

4
‖Lsσ‖2L2 + C‖Ls−1u‖2L2 + C‖Ls−1+2αu‖2L2

+ C(‖Ls−1(u · ∇u)‖2L2 + ‖Ls−1(σ∇σ)‖2L2)

+ C
∥∥Ls−1+2α((ρ(σ)− 1)u)− Ls−1(uL2α(ρ(σ)− 1))

∥∥2

L2 =:

3∑
i=1

Ki.

Since s− 1 + 2α < s+ α, K1 can be simply estimated by

K1 ≤ −
3
√
γ

4
‖Lsσ‖2L2 + C‖u‖2Hs+α ,

We estimate K2 by using the fractional Leibniz rule (2.14),

K2 ≤C
(
‖Ls−1u‖2L2‖∇u‖2L∞ + ‖Ls−1∇u‖2L2‖u‖2L∞

+ ‖Ls−1σ‖2L2‖∇σ‖2L∞ + ‖Ls−1∇σ‖2L2‖σ‖2L∞
)

≤Cδ(‖u‖2Hs + ‖Lsσ‖2L2 + ‖∇σ‖2L2).

For K3, we use a similar cancelation as (3.8), and apply commutator estimates

K3 ≤C‖[Ls−1+2α, u](ρ(σ)− 1)‖2L2 + C‖[Ls−1, u]L2α(ρ(σ)− 1)‖2L2

≤C
(
‖Ls−1+2αu‖L2‖ρ(σ)− 1‖L∞ + ‖∇u‖L∞‖Ls−2+2α(ρ(σ)− 1)‖L2

)2
+ C

(
‖Ls−1u‖L2‖L2α(ρ(σ)− 1)‖L∞ + ‖∇u‖L∞‖Ls−2+2α(ρ(σ)− 1)‖L2

)2
≤Cδ‖u‖2Hs + C‖∇u‖2L∞‖Ls−2+2ασ‖2L2 ≤ Cδ‖u‖2Hs .

Note that as s > N
2 +max{1, 2α} and s > 2−α, one can easily check 0 < s−2+2α < s.

In the last inequality, we have used ‖Ls−2+2ασ‖L2 < ‖σ‖Hs < δ, and ‖∇u‖L∞ ≤
C‖u‖Hs .

Collect all the estimates of Ki, i = 1, 2, 3, and choose δ small so that the ‖Lsσ‖L2

term in K2 be absorbed in to K1, We end up with the desired estimate (4.6).

Adding (4.5) and (4.6) and pick δ small enough, we get

d

dt

∫ (
u · ∇σ + Ls−1u · ∇Ls−1σ

)
dx+

√
γ

2
‖∇σ‖2Hs−1 ≤ C‖u‖2Hs , (4.7)

which can be used to control the term ‖∇σ‖Hs−1 in (4.4). Indeed, multiplying (4.7)

by
4Cδ
√
γ

, adding it to (4.4), and choosing δ small, we obtain

d

dt
Y (t) +

ν

2
‖u‖2Hs+α + Cδ‖∇σ‖2Hs−1 ≤ 0, (4.8)
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where

Y (t) := ‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs +
4Cδ
√
γ

∫
(u · ∇σ + Ls−1u · ∇Ls−1σ)dx.

Note that if δ is small enough, Y (t) ≥ 0 and is equivalent to ‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs .
Indeed, there exists a constant C0 > 1 such that

C−1
0

(
‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs

)
≤ Y (t) ≤ C0

(
‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs

)
. (4.9)

Integrating (4.8) directly in time, we have

Y (t) +

∫ t

0

(ν
2
‖u(τ, ·‖2Hs+α + Cδ‖∇σ(τ, ·)‖2Hs−1

)
dτ ≤ Y (0). (4.10)

With the help of (4.9), we obtain that for any t ∈ [0, T ],

‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs ≤ C0Y (t) ≤ C0Y (0) ≤ C2
0

(
‖σ0‖2Hs + ‖u0‖2Hs

)
.

This ends the proof of Lemma 4.1.

Remark 4.1. Another outcome of (4.10) is that∫ ∞
0

(
‖u(t, ·)‖2Hs+α + ‖∇σ(t, ·)‖2Hs−1

)
dt ≤ Y (0) < +∞.

Therefore, ‖u‖Hs and ‖∇σ‖Hs−1 decay to zero as t → ∞. In particular, ‖u‖L∞ → 0
implies the flocking phenomenon (to be more precise, velocity alignment). Note that
our estimates does not imply any decay for ‖σ‖L2 . The convergence rate of ‖u‖Hs
and ‖∇σ‖Hs−1 will also depend on the long time behavior of ‖σ‖L2 . More discussions
and results for the case Ω = TN will be offered in the next section.

5. Long time behavior. In this part, we study the large-time behavior of global
classical solutions (ρ, u) to the system (1.1)-(1.3) for the case Ω = TN . Without lose
of generality we assume |TN | = 1.

Firstly, in order to obtain the dissipation estimate of ρ, we denote the function

h(ρ) =

∫ ρ

1

zγ − 1

z2
dz =


ρ ln ρ− ρ+ 1, γ = 1,

1

γ − 1
ργ − γ

γ − 1
ρ+ 1, γ > 1,

so that h(1) = h′(1) = 0 and p′(ρ) = h′′(ρ)ρ. One can easily check that when ρ is
close to 1, h(ρ) ∼ (ρ− 1)2. Indeed, we state the following lemma.

Lemma 5.1 ([14]). Let δ > 0 be a small parameter, and |ρ− 1| < δ. Then, there
exists constants c1, c2, depending only on δ, such that

c1(ρ− 1)2 ≤ h(ρ) ≤ c2(ρ− 1)2. (5.1)

Now, we are ready to prove Theorem 2.3.
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Step 1: Dissipation of the physical energy. Let (ρ, u) be a global classical solutions
to (1.1)-(1.2), we will establish the decay estimate of the physical energy:

d

dt

∫ (1

2
ρ|u|2+h(ρ)

)
dx+β

∫
ρ|u|2dx+

1

2

∫∫
φ(x−y)(u(x)−u(y))2ρ(x)ρ(y)dxdy ≤ 0.

(5.2)
Using the symmetry of φ(·) and equation (1.1)-(1.2), it is obtained that

d

dt

∫
ρ|u|2dx =

∫
ρt|u|2 + 2

∫
ρu · utdx

= −
∫

div(ρu)|u|2dx− 2

∫
ρu
(
u · ∇u+

∇p(ρ)
ρ

+ βu+

∫
φ(x− y)(u(x)− u(y))ρ(y)dy

)
= −2

∫
u · ∇p(ρ)dx− 2β

∫
ρ|u|2dx− 2

∫∫
ρ(x)u(x)φ(x− y)(u(x)− u(y))ρ(y)dxdy

= −2
∫
u · ∇p(ρ)dx− 2β

∫
ρ|u|2dx−

∫∫
φ(x− y)(u(x)− u(y))2ρ(x)ρ(y)dxdy. (5.3)

Furthermore, applying the definition of h(ρ) , we can compute that

d

dt

∫
h(ρ)dx =

∫
h′(ρ)ρtdx = −

∫
h′(ρ)div(ρu)dx =

∫
h′′(ρ)ρ∇ρ · udx =

∫
u · ∇p(ρ)dx.

(5.4)
Combining (5.3)-(5.4), we obtain (5.2).

Step 2: Dissipation of ‖ρ−1‖L2 . We first define a stream function ψ which solves
the Poisson equation

−∆ψ = ρ− 1,

∫
TN

ψdx = 0.

It is uniquely defined on TN since ρ− 1 has zero mean (condition (2.10)).
Similar as Lemma 4.2, we introduce a small cross-term to the physical energy,

and define

Vε =

∫ (1

2
ρ|u|2 + h(ρ) + ερu · ∇ψ

)
dx.

Note that the cross term can be controled by∣∣∣∣∫ ρu · ∇ψdx

∣∣∣∣ ≤ ‖ρ‖ 1
2

L∞‖
√
ρu‖L2‖∇ψ‖L2 ≤ 1

2

∫
ρ|u|2dx+

C‖ρ‖L∞
2

∫
(ρ− 1)2dx,

(5.5)

where Poincaré inequality is used so that ‖∇ψ‖L2 ≤ C‖∇⊗2ψ‖L2 ≤ C‖ρ − 1‖L2 .
Then, it follows from (5.1), (5.5) and for a sufficient small ε that there exists a
constant C1 > 0 which depends on ε and ‖ρ‖L∞ , such that

1

C1

(∫
ρ|u|2dx+

∫
|ρ− 1|2dx

)
≤ Vε ≤ C1

(∫
ρ|u|2dx+

∫
(ρ− 1)2dx

)
, (5.6)

namely, Vε is equivalent to the physical energy.
Applying (5.2), It is easy to check that

d

dt
Vε +Wε ≤ 0, (5.7)
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where

Wε = β

∫
ρ|u|2dx+

1

2

∫∫
φ(x− y)(u(x)− u(y))2ρ(x)ρ(y)dxdy + ε

∫
∇ψ · ∇p(ρ)dx

+ ε

∫
∇ψ · ∇(ρu⊗ u)dx− ε

∫
ρu · ∇ψtdx

+ ε

∫∫
∇ψ(x) · φ(x− y)(u(x)− u(y))ρ(x)ρ(y)dxdy =

6∑
i=1

Li.

We investigate further for the terms L1 to L6 in Wε. Notice that L1 and L2 are
positive. The positivity of L3 can be obtained in the following:

L3 = −ε
∫

∆ψ
(
p(ρ)− p(1)

)
dx = ε

∫
(ρ− 1)(p(ρ)− p(1))dx ≥ ε

∫
(ρ− 1)2dx,

where we have used the fact that ργ−1
ρ−1 ≥ 1 for any ρ ≥ 0 and γ ≥ 1. This term

produces dissipation for ‖ρ− 1‖L2 .

L4 can be controlled by the dissipation as follows

|L4| = ε

∣∣∣∣∫ ∇⊗∇ψ : (ρu⊗ u)dx

∣∣∣∣ ≤ ε‖ρ− 1‖L2‖ρu⊗ u‖L2

≤ ε

4
‖ρ− 1‖2L2 + ε‖ρu⊗ u‖2L2 ≤

ε

4
‖ρ− 1‖2L2 + ε‖ρ‖L∞‖u‖2L∞

∫
ρ|u|2dx.

The term L5 can be estimated in the following

|L5| =
∣∣∣ε∫ ρu · ∇(−∆)−1∇ · (ρu)dx

∣∣∣ ≤ ε‖ρu‖L2‖∇(−∆)−1∇ · (ρu)‖L2

≤ ε‖ρu‖2L2 ≤ ε‖ρ‖L∞
∫
ρ|u|2dx.

Finally, for L6 we have

|L6| =
ε

2

∣∣∣∣∫∫ (∇ψ(x)−∇ψ(y)
)
φ(x− y) · (u(x)− u(y))ρ(x)ρ(y)dxdy

∣∣∣∣
≤ θε

∫∫
|∇ψ(x)−∇ψ(y)|2

|x− y|n+2α
dxdy

+
C

θ
ε‖ρ‖2L∞

∫∫
φ(x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy,

where the first part∫∫
|∇ψ(x)−∇ψ(y)|2

|x− y|n+2α
dxdy = ‖∇ψ‖2

Ḣα
≤ C‖ψ‖2

Ḣ2 ≤ C‖ρ− 1‖2L2 , ∀ α ∈ (0, 1).

Then, choosing θ appropriately, we obtain that

|L6| ≤
ε

4
‖ρ− 1‖2L2 + Cε‖ρ‖2L∞

∫∫
φ(x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy.
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Collecting all the estimates of Li, and picking ε small enough (which depends on
‖ρ‖L∞ and ‖u‖L∞), we get a lower bound on Wε

Wε ≥
(
β − Cε‖ρ‖L∞‖u‖2L∞ − ε‖ρ‖L∞

)∫
ρ|u|2dx

+
(1

2
− Cε‖ρ‖2L∞

)∫∫
φ(x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy +

ε

2

∫
(ρ− 1)2dx.

≥ β

2

∫
ρ|u|2dx+

1

4

∫∫
φ(x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy +

ε

2

∫
(ρ− 1)2dx.

(5.8)

When there is no damping, namely β = 0, we can use the second term in (5.8) to
produce dissipation for the kinetic energy.

Lemma 5.2. There exists a constant C̃ > 0, depending on α, such that

1

4

∫∫
φ(x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy ≥ C̃

∫
ρ|u|2dx. (5.9)

Proof. Write the integral on the left hand side of (5.9) in T2N

1

4

∫∫
T2N

φ(x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy

=
1

4

∫∫
T2N

φP (x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy

with periodic kernel φP

φP (x) =
∑
k∈ZN

φ(x+ k), ∀ x ∈ TN .

Clearly, φP has a positive lower bound (e.g. φP (x) > min
‖x‖∞< 1

2

φ(x) > 0). Let us denote

the bound by φm. It only depends on α (and TN as well, but we have set |TN | = 1
here). Then, we have

1

4

∫∫
T2N

φP (x− y)ρ(x)ρ(y)(u(x)− u(y))2dxdy

≥ φm
4

∫∫
T2N

ρ(x)ρ(y)(u(x)− u(y))2dxdy

=
φm
2

(∫
TN

ρ(x)dx

∫
TN

ρ(x)|u(x)|2dx−
∣∣∣∣∫

TN
ρ(x)u(x)dx

∣∣∣∣2
)

=
φm
2

∫
TN

ρ|u|2dx,

where we have used (2.10) and (2.11). This implies (5.9) with C̃ = φm
2 .

Thus, we deduce that

Wε ≥
(β

2
+ C̃

)∫
ρ|u|2dx+

ε

2

∫
(ρ− 1)2dx. (5.10)

Step 3: The decay estimate. Combining the inequalities in (5.6), (5.7) and (5.10), we
deduce that there exists a constant µ > 0, which depend on γ and ε, such that

d

dt
Vε + µVε ≤ 0.
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Applying Gronwall’s inequality and (5.6), we get the desired exponential decay∫
ρ|u|2dx+

∫
(ρ− 1)2dx ≤ C1Vε(t) ≤ C1Vε(0)e−µt

≤ C2
1

(∫
ρ0|u|20dx+

∫
(ρ0 − 1)2dx

)
e−µt.

This finishes the proof of (2.12),
Step 4: Decay on higher order norms. To obtain exponential decay for ‖σ‖Hs and
‖u‖Hs , we start with the control on ‖σ‖L2 . From the relation (2.1), we have

‖σ‖2L2 =

∫
(σ(ρ)− σ(1))2dx ≤ ‖σ′‖2L∞(supp(ρ))

∫
(ρ− 1)2dx ≤ C‖ρ− 1‖2L2 ,

where σ′(ρ) =
√
γρ

γ−3
2 is bounded provided that ρ is bounded and ρmin > 0. This is

guaranteed by Theorem 2.2 with a small enough δ0. Therefore, we have

‖σ(t, ·)‖2L2 ≤ Ce−µt.

Next, recall the estimate (4.8) and add Cδ‖σ‖2L2 on both sides of the inequality

d

dt
Y (t) +

ν

2
‖u‖2Hs+α + Cδ‖σ‖2Hs ≤ Cδ‖σ‖2L2 ,

Apply (4.9) and get

d

dt
Y (t) + µ1Y (t) ≤ Cδ‖σ‖2L2 ≤ Cδe−µt,

where we can choose µ1 = C−1
0 min{ν2 , Cδ}. This implies

Y (t) ≤
(
Y (0) + Cδ

)
e−min{µ1,µ}t.

Using (4.9) again, we conclude

‖σ(t, ·)‖2Hs + ‖u(t, ·)‖2Hs ≤ C0Y (t) ≤ C0

(
Y (0) + Cδ

)
e−min{µ1,µ}t ≤ Cδ0e−min{µ1,µ}t.

This ends the proof of (2.13).
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