

1
2
3
4 Does removal of federal subsidies discourage urban development? An
5 evaluation of the US Coastal Barrier Resources Act

7 Kyle Onda^{1*}, Jordan Branham¹, Todd K. BenDor¹, Nikhil Kaza¹, David Salvesen²

⁸ ¹ Department of City and Regional Planning, University of North Carolina at Chapel Hill, Chapel
⁹ Hill, North Carolina, United States of America

² Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America

14 *Corresponding Author

15 E-mail: konda@unc.edu (KO)

19 **Abstract**

20 Urban development relies on many factors to remain viable, including infrastructure, services,
21 and government provisions and subsidies. However, in situations involving federal or state level
22 policy, development responds not just to one regulatory signal, but also to multiple signals from
23 overlapping and competing jurisdictions. The 1982 U.S. Coastal Barrier Resources Act (CoBRA)
24 offers an opportunity to study when and how development restrictions and economic
25 disincentives protect natural resources by stopping or slowing urban development in
26 management regimes with distributed authority and responsibility. CoBRA prohibits federal
27 financial assistance for infrastructure, post-storm disaster relief, and flood insurance in
28 designated sections (CoBRA units) of coastal barriers. How has CoBRA's removal of these
29 subsidies affected rates and types of urban development? Using building footprint and real estate
30 data ($n=1,385,552$ parcels), we compare density of built structures, land use types, residential
31 house size, and land values within and outside of CoBRA units in eight Southeast and Gulf Coast
32 states. We show that CoBRA is associated with reduced development rates in designated coastal
33 barriers. We also demonstrate how local responses may counteract withdrawal of federal
34 subsidies. As attention increases towards improving urban resilience in high hazard areas, this
35 work contributes to understanding how limitations on infrastructure and insurance subsidies can
36 affect outcomes where overlapping jurisdictions have competing goals.

37

38

Introduction

39 Decades of US government policy have prompted extensive private development in
40 hazardous coastal areas, where there is substantial risk to life and property¹. In particular, federal
41 financial assistance has been key to facilitating the construction of critical physical
42 infrastructure, including highways and bridges, water supply and wastewater treatment facilities,
43 beach stabilization projects, disaster assistance, and subsidized flood insurance.²⁻⁴ After a major
44 coastal storm or hurricane impacts a coastal barrier, federal disaster relief helps rebuild damaged
45 properties and infrastructure.⁵⁻⁷ Federal financial assistance has helped to perpetuate a cycle of
46 coastal development, rising rates of hazard-related destruction, and subsidized post-disaster
47 redevelopment.^{4,8,9}

48

49 This study evaluates the long-term effects of withdrawing federal subsidies for urban
50 infrastructure and flood insurance on urban development in sensitive coastal barriers. How
51 effective are policies that aim to limit development in hazardous or environmentally sensitive
52 areas by eliminating infrastructure and disaster recovery funding? How do these restrictions fare
53 under management regimes with distributed authority and responsibility?

54

55 In this paper, we focus on the unique case created by the 1982 U.S. Coastal Barrier
56 Resources Act (“CoBRA”; 16 U.S.C. 3501 et seq.)¹⁰, which prohibits federal financial
57 assistance (e.g., loans, grants, flood insurance, rebates, subsidies, or financial guarantees) for
58 roads, bridges, utilities, erosion control, and post-storm disaster relief in statutorily designated
59 sections of US coastal barriers. These areas, which we will call “CoBRA units,” comprise the
60 John H. Chafee Coastal Barrier Resources System.¹¹

61
62 Homeowners in CoBRA units are ineligible for subsidized flood insurance through the
63 National Flood Insurance program (NFIP), while homeowners in adjacent, non-CoBRA areas
64 are eligible. Moreover, CoBRA units may be subject to other types of development
65 disincentives (e.g., additional subsidy restrictions) and land protections (e.g., zoning) enacted by
66 other entities such as local and state government, private agencies, and other federal agencies.
67 However, some CoBRA units may also be subject to development *incentives*, possibly the result
68 of local governments replacing the federal subsidies removed by CoBRA.

69
70 The intent of this paper is to explore the impact of CoBRA on designated coastal
71 barriers. In particular, we investigate the extent to which development has remained low in
72 CoBRA units, in areas with other land use controls, and in areas with restrictions from both
73 CoBRA and local land use controls. We also examine relationships between CoBRA and
74 residential property values, and associations between development densities within and outside
75 of CoBRA units.

76
77 We employ a cross-sectional approach to analyze differences in development across
78 different combinations of development disincentives. We then compare distributions of building
79 density, land use, house size, and land values across different combinations of development
80 disincentives and regulations. Our study area extends 2 km inland from the coastlines of the
81 eight Gulf Coast and Southeast states (Alabama, Florida, Georgia, Louisiana, Mississippi, North
82 Carolina, South Carolina, and Texas). This area comprises 76% of all land in CoBRA units and
83 81% of land in Otherwise Protected Areas (OPA units), discussed below (Table 2).

84

85 Our analysis reveals a nuanced relationship between CoBRA and development patterns,
86 including instances where the removal of federal subsidies may have been either counteracted
87 or reinforced by state and local responses. This work has implications for understanding how
88 the removal of development subsidies can affect desired outcomes in light of overlapping
89 jurisdictions with competing goals and distributed authority and responsibility.

90

91 **Background**

92 **Growth management and coastal development risk**

93 There are many ways that government policy might be designed to reduce development
94 risks, including attempts to restrict urban development in areas facing high risks of coastal
95 hazards. Studies of urban management regimes and growth control policies have typically
96 focused on understanding where development occurs and the characteristics of development in
97 relation to urban services and targeted subsidy provisions.^{12–14} However, much of this work has
98 characterized growth management programs as being designed and implemented across large
99 areas, often by a single agency, without considering heterogeneity in implementation.

100

101 In their classic study on implementation, Pressman and Wildavsky argue that programs
102 fail because implementing agencies are thwarted by inter and intra organizational politicking and
103 signaling after policies and programs have been adopted.¹⁵ Within the context of large-scale
104 infrastructure provision, multiple entities are often responsible for infrastructure financing and
105 regulation, each of which may have competing agendas and different incentives. As a result,

106 development patterns typically respond to multiple, regulatory and investment signals (e.g., US
107 federal and state infrastructure funding) from overlapping and competing jurisdictions.¹⁶⁻¹⁸ Few
108 studies have explored instances where differential implementations of development management
109 policies arise from interactions among jurisdictions at different levels (e.g., federal, state, and
110 local). How effective are policies that aim to limit development in hazardous or environmentally
111 sensitive areas by eliminating infrastructure and disaster recovery funding? How do these
112 restrictions fare under management regimes with distributed authority and responsibility? Using
113 the 1982 Coastal Barrier Resources Act as a case study, this study evaluates the long-term effects
114 of withdrawing federally-funded urban infrastructure and flood insurance subsidies for
115 development on sensitive coastal barriers.

116

117 **The 1982 U.S. Coastal Barrier Resources Act (“CoBRA”)**

118 As an environmental policy, the 1982 U.S. Coastal Barrier Resources Act represents a
119 novel vehicle for exploring the role of federal subsidies in promoting or inhibiting development
120 in environmentally sensitive areas. CoBRA’s purpose is to 1) minimize loss of life, 2) reduce
121 wasteful expenditures of federal revenues and 3) protect fish, wildlife, and other natural
122 resources.

123

124 The prohibitions on federal expenditures went into effect immediately after the law’s
125 passage (October 18, 1982), while those for federal flood insurance did not become effective
126 until one year later (October 1, 1983). Congress initially designated 186 CoBRA units, totaling
127 some 453,000 acres (~183323 ha) along 666 miles (~1072 km) of shoreline of the Atlantic and
128 Gulf coasts. CoBRA was expanded and modified by Congress in 1990 to include “Otherwise

129 Protected Areas" (OPAs), areas identified by Congress as being protected by other means (such
130 as National and State parks), and for which federal subsidies other than flood insurance would
131 be allowed.¹⁹

132

133 Flood insurance refers to the federally subsidized National Flood Insurance Program or
134 "NFIP". Communities that meet certain federal standards for floodplain management may
135 participate in the NFIP. Homeowners and renters in participating communities are eligible to
136 (voluntarily) purchase flood insurance from the Federal Emergency Management Agency
137 (FEMA). Some 22,000 communities participate in the NFIP.²⁰ In addition, under FEMA's
138 Community Rating System, communities can implement activities that go beyond the minimum
139 requirements of NFIP and in return, policyholders in those communities may qualify for
140 discounts on their federal flood insurance premiums. As of 2017, over 1400 communities
141 participate in CRS.²¹

142

143 Congress retains the sole authority to modify CoBRA unit boundaries upon the
144 recommendation of the US Fish and Wildlife Service (FWS). Areas initially designated for
145 inclusion were those (in 1982) with a) less than one walled and roofed building per five acres
146 (~2 ha) of "fastland" (i.e., land above mean high tide), b) areas lacking urban infrastructure,
147 vehicle access, water supply, wastewater disposal, and electric service to each lot, and c) areas
148 that were not part of a development of 100 or more lots. In addition, designated units had to
149 have at least one-quarter mile (0.4 km) of oceanfront.²² Little community input was taken when
150 designating units; some units were withdrawn from, and others added to, the system over time,

151 with each change requiring an act of the US Congress.²³ Since the 1990 amendments, the Act
152 has otherwise remained largely unchanged.

153

154 **CoBRA, policy resistance, and development pressure**

155 Several studies have questioned the effectiveness of CoBRA. Investigations of random
156 samples of CoBRA units by the United States Governmental Accountability Office (GAO) in
157 1992 and 2007 identified continuing development in many CoBRA units, which was facilitated
158 by numerous, documented actions by local, state, and federal agencies. Case studies have
159 discovered efforts by state and local governments to encourage development in CoBRA units,
160 sometimes by substituting their own subsidies for those withdrawn by the federal
161 government.^{22,24-26} However, with the exception of the GAO's 2007 study, no efforts have been
162 made to comprehensively track or explain development in CoBRA units, and no studies have
163 attempted to systematically account for other factors that may influence development in coastal
164 areas, such as state or local development incentives or restrictions.

165

166 While the research available on CoBRA has been meager (particularly over the last ten
167 years^{27,28}), the act nevertheless provides the conceptual basis for considering analogues and
168 generating hypotheses about the impact of CoBRA on development in designated coastal
169 barriers. Retrospective analysis can now help understand how, for over 30 years, CoBRA has
170 shaped development patterns.

171

172 While CoBRA does not regulate land use, it transfers some of the cost of development
173 (e.g., infrastructure and flood insurance) to the private sector or to state and local governments.

174 CoBRA designation is structurally similar to growth management instruments, such as urban
175 service and growth boundaries, which have been widely used to restrict urban expansion and
176 protect natural resources, such as farmland.^{29,30} Urban service boundaries (USBs) do not
177 prohibit development, but instead set expectations that services, such as sanitary sewers and
178 water supply, are not publicly provided outside their specified areas. There is conflicting
179 evidence regarding the effectiveness of USBs in containing low density urban expansion and
180 requisite infrastructure development.^{31,32}

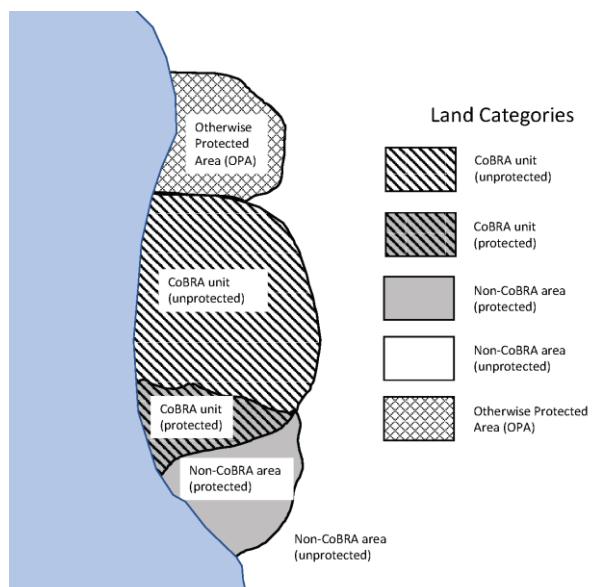
181

182 Similarly, urban growth boundaries (UGBs) seek to restrict the area where
183 development can occur in a jurisdiction. Like USBs, UGBs also preserve amenities (e.g.
184 open space) whose value are internalized into higher land and housing prices, where
185 development is allowed,³³ or increased development densities.^{34–36} However, these effects
186 are diluted when political pressure and built-in mechanisms for changes to UGB geographic
187 delineations weaken the market signal intended to concentrate development intensity into
188 core urban centers.^{37,38} We contend that the same pressures in USBs and UGBs can occur in
189 CoBRA units that border expanding urban areas--an effect that can be mediated by regional
190 development pressure (i.e., regional economic growth).

191

192 **Hypotheses**

193 In this paper, we use a cross-sectional approach to analyze differences in development
194 across different combinations of development disincentives. Since CoBRA units were almost
195 exclusively designated in areas with development densities lower than one structure per five
196 acres (~2 ha) as of 1982, there is the potential that land that was designated was unattractive for


197 development in the first place and potentially correlated with becoming part of CoBRA. We do
198 not attempt to resolve this endogeneity problem and instead present our findings as exploratory
199 and descriptive.

200

201 We conceptualize three levels of restrictions and regulations affecting coastal
202 development (explained in more detail in the Study Area section), which can be configured to
203 categorize coastal land into five categories or types, shown in Table 1 and depicted in Fig 1. The
204 three restrictions include NFIP eligibility, other federal expenditures (e.g., for roads or sewer
205 systems), and restrictions on urban development (e.g., designation as protected lands). Table 1
206 also shows our four hypotheses (H1 – H4) based on our five categories of land.

207

208 **Fig 1: Depiction of land categories and their overlaps**

209

210

211 **Table 1: Land categories by coastal development disincentive/regulations and hypotheses (H1-4)**

Land Category	Eligible for flood insurance (NFIP)?	Eligible for other federal spending?	Is urban dev. unrestricted?	H1: CoBRA reduces dev. intensity	H2: CoBRA interacts with protected areas	H3: CoBRA creates a luxury effect for dev. parcels	H4: Dev. pressure spills into CoBRA units
Non-CoBRA area, unprotected (Type 1)	Yes	Yes	Yes				If high dev. rate, then Type 1&4 dev. rates are similar
Non-CoBRA area, protected (Type 2)	Yes	Yes	No	Less dev. than Type 1			
OPA (Type 3)	No	Yes	No	Less dev. than Type 1	More dev. than Type 5		
CoBRA unit, unprotected (Type 4)	No	No	Yes	Less dev. than Type 1		Dev. property values: higher than Type 1	
CoBRA unit, protected (Type 5)	No	No	No	Less dev. than Type 1	Less dev. than Type 2 and 4	Dev. property values: Higher than Type 2	

212 “Protected” status = areas specified in USGS Protected Areas Database, which includes lands protected or managed for purposes of

213 government use, recreation, and habitat conservation. “dev.” = development or developed. OPA = Otherwise Protected Areas.

214

215 We aim to test four hypotheses (H1-4; Table 1). We first (H1) hypothesize that CoBRA
216 affects land markets by increasing development costs (and therefore decreasing development
217 extent) in CoBRA units as a result of higher, non-subsidized infrastructure and flood insurance
218 costs. However, CoBRA's impact might be weaker than outright protection through designation
219 as a conservation area such as a park (e.g., by state or local government). Thus, we expect that
220 parcels in unprotected CoBRA units and OPAs (as documented in the USGS Protected Areas
221 Database, described below) experienced less extant overall development than non-CoBRA areas,
222 where the CoBRA and non-CoBRA areas are not subject to other restrictions on land use.

223

224 Second (H2), we expect that withdrawal of federal subsidies acts synergistically with
225 direct development restrictions (e.g., easements or other land use controls), resulting in less
226 overall development in CoBRA units where the restrictions apply, than in CoBRA units where
227 they do not. We also expect less development in protected CoBRA units than in protected non-
228 CoBRA areas, as only the CoBRA units face the additional cost of non-federally subsidized
229 infrastructure, disaster recovery, and flood insurance. The OPAs also offer a salient contrast, by
230 providing explicit federal recognition of some, but not all areas with development restrictions,
231 and withdrawing flood insurance subsidies from them. We expect land in OPAs, by virtue of
232 being eligible for federal subsidies other than flood insurance, to be marginally more developed,
233 than protected CoBRA units that are subject to restrictions, but not recognized as OPAs.

234

235 Third (H3), we expect there to be countervailing influences of CoBRA on property
236 values. The withdrawal of federal subsidies under CoBRA, coupled with other development
237 restrictions (e.g., easements or other land use controls),-should tend to depress land values and

238 increase development costs. However, in some cases, the low-density and secluded nature of
239 land in CoBRA could make these areas attractive to development.³⁹ Under these circumstances,
240 we suspect the property values for comparable properties may be higher in CoBRA units than in
241 non-CoBRA areas.

242

243 Our final hypothesis (H4) concerns the regional heterogeneity and spatial dependence of
244 CoBRA's effects. In cases where development pressures are strong enough due to lack of
245 developable land in neighboring, non-CoBRA areas, or where other actors – such as local or state
246 governments – assume the burden of replacing foregone federal subsidies, we hypothesize that
247 development rates in unprotected CoBRA units would resemble those in *proximate*, unprotected
248 non-CoBRA areas. This suggests a range of potential situations, including CoBRA units that
249 develop very little, if at all, and others that develop at comparable rates as nearby non-CoBRA
250 areas.

251

252 **Materials and Methods**

253 **Study Area**

254 Our study concerns the coastline along the U.S Gulf Coast and Southeast Coast in eight states,
255 Alabama, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, and Texas
256 (Table 2). In order to compare development patterns within CoBRA units to comparable non-
257 CoBRA areas, we first restricted our study area to land within 2 km of our study states'
258 coastlines. Looking beyond areas proximate to coastal barriers could lead to statistical
259 misspecification problems as significantly different economic and social dynamics affect inland
260 and coastal barrier development patterns.⁴⁰

261 **Table 2: Extent of Coastal Barrier Resources System units (“CoBRA units”) and Otherwise**
 262 **Protected Areas (OPAs) in eight study states. Fastland refers to land above the mean high**
 263 **tide line.**

	Unit count		Fastland (ha)		Shore length (km)	
	CoBRA	OPA	CoBRA	OPA	CoBRA	OPA
Alabama	4	6	3,586	6,333	33	27
Florida	68	63	54,354	116,809	375	375
Georgia	6	7	13,729	98,095	35	121
Louisiana	17	4	18,803	6,830	315	175
Mississippi	6	1	494	2,058	107	63
North Carolina	9	7	15,425	43,422	69	241
South Carolina	16	7	25,853	9,897	33	77
Texas	17	18	116,475	174,942	270	227
Sample total	143	113	248,719	458,387	1,242	1,306
Entire CBRS	585	277	329,215	566,040	2,282	2,042
% of entire system represented	24%	41%	76%	81%	54%	64%

264 We overlaid GIS shapefiles delineating CoBRA units and OPAs⁴¹, as well as the USGS
 265 Protected Areas Database⁴², which is a geospatial database of protected areas that are
 266 “...dedicated to the preservation of biological diversity and to other natural (including
 267 extraction), recreation and cultural uses, managed for these purposes through legal or other
 268 effective means.” This procedure resulted in land area being sampled and classified from 85
 269 coastal counties, 77 of which contained at least one CoBRA unit.

270
 271 Our primary units of analysis were individual land parcels. We retrieved these geospatial
 272 cadastral data from the National Parcel Data Portal, a proprietary aggregation of county-based
 273 georeferenced parcel polygons available from Boundary Solutions, Inc.⁴³ Nearly 46% of the total
 274 area of our study parcels is overlapped by CoBRA units or OPAs, and 62% of the total area is
 275 within a protected area or in a CoBRA unit. Using these overlays, we classified each parcel into
 276 one of the five development disincentive categories (Table 1): unprotected, non-CoBRA areas

277 (Type 1), protected, non-CoBRA areas (Type 2), OPAs (Type 3), unprotected, CoBRA units
278 (Type 4), and protected CoBRA units (Type 5). Where parcels were split by CoBRA units,
279 OPAs, or protected areas, we classified the parcel as the category for which it had the greatest
280 portion of its area within.

281

282 **Data**

283 For parcels within our sample area, we sourced current property characteristics from the
284 2016 vintage of the ZTRAX transactions database produced by Zillow, which is made available
285 to researchers upon request, subject to a Data Use Agreement.⁴⁴ Using county assessor parcel ID
286 numbers, we matched ZTRAX real estate data to the parcel polygons. The variables retrieved
287 from ZTRAX for this analysis include a nationally standardized land use code (which we
288 summarize into eight different categories, as described in the “Land Use Comparison” sub-
289 section), the year built of each structure on a parcel (if any), the most recent sales price in USD,
290 the recording date of the most recent sale, and the square footage of each structure on the parcel
291 (see Supplementary Table 1).

292

293 In order to create an inventory of development density, we counted structures within
294 parcels and measured the percentage of each parcel covered by structures using spatial
295 intersection queries from the *sf* package in the R statistics software⁴⁵. Our source for structures
296 and building footprints is a dataset of 125,192,184 computer generated building footprints in all
297 50 US states in GeoJSON format, which was produced and distributed by Microsoft, Inc. under
298 the Open Data Commons Open Database License⁴⁶. These footprints were generated from high-
299 resolution aerial photographs taken between 2014 and 2016.

300

301 **Land Use Comparison**

302 Using ZTRAX's nationally harmonized land use categorization, we classified each parcel
303 into one of eight summary land use categories: *government/military*, *residential-single family*,
304 *residential-multipamily*, *other developed*, *open space*, *agriculture*, *zoned vacant lots*, and *other or*
305 *not classified*. We then computed the proportional cross-tabulation of total area represented by
306 parcels by development disincentive category (see Table 1) and by land use category.

307

308 *Government/military* includes government offices, military facilities, and government-
309 owned land restricted to the public. Urban or developed land uses are divided into *Residential-*
310 *single family*, *residential-multipamily*, and *other-developed land uses*. *Residential-single family*
311 includes detached residences and mobile homes. *Residential-multipamily* includes apartments,
312 duplexes, townhomes, condominiums, and mobile homes. *Other-developed* includes all other
313 kinds of development other than government or agricultural, including non-governmental
314 institutions, commercial, industrial, and recreational structures.

315

316 Undeveloped land has many land use categories represented in ZTRAX, which we
317 aggregate to *open space*, *agriculture*, *zoned vacant lots*, and *other or not classified* land uses.
318 *Open space* refers to land designated as parks, conservation areas, and similar open space areas
319 with defined land uses. *Agriculture* refers to any agricultural use. *Zoned vacant lots* refer to
320 parcels that have been zoned for – and are often surrounded by – residential, commercial,
321 industrial, or institutional structures, but have no structures on them. *Other or not classified*

322 parcels do not have designated land uses and generally represent unused, undeveloped, but not
323 necessarily protected land.

324

325 **Parcel Characteristic Comparison**

326 We estimated a series of linear regression equations of the form in Equation 1.

327
$$y_{ij} = \alpha_j + \Sigma \beta C_i + \epsilon \quad (1)$$

328 In Equation 1, i indicates parcel, j indicates county, α_j indicates county fixed effects, and C is a
329 vector of dummy variables indicating whether parcel i is in each of the development disincentive
330 categories. These regressions constructed confidence intervals around the difference in the
331 average value of y between parcels in unprotected, non-CoBRA areas (Type 1; base category)
332 and each of the other categories. We estimated regression equations for five dependent variables:

- 333 1. % area of parcel covered by structures [for only developed parcels (parcels with at least
334 one structure)]. This is a relative measure of building form and extent.
- 335 2. % area of parcel covered by structures [for all parcels]. This is the measure we use to
336 determine and generalize development extent and/or development rate.
- 337 3. log(residential area (m²)) [residential units only]. This measure indicates relative housing
338 size.
- 339 4. log(most recent sales price (inflation adjusted to 2016 USD)/(residential area (m²)))
340 [residential units only]. This measure normalizes land values to residential units per area.
- 341 5. (residential area (m²))/(parcel area (m²)) [residential units only]. This measure normalizes
342 residential construction extent at the parcel level.

343 We estimated these regressions with and without county fixed effects to assess if different
344 patterns emerge at an overall level or when controlling for local conditions. We also estimated a

345 series of Hierarchical Linear Models (HLM) as a check on the robustness on our models with
346 county fixed effects; we fit a multi-level random intercept model, with parcels nested in counties
347 and counties nested in states.

348
$$y_{ics} = \alpha_{cs} + \Sigma \beta_i T_i + \epsilon_{ics}$$

349
$$\alpha_{cs} = \gamma_s + u_{cs}$$

350
$$\gamma_s = \delta + \eta_s$$

351 Where T_i are the treatments of interest and c and s refer to counties and states respectively. We
352 find no substantial differences in estimates or significance levels and therefore choose to present
353 our fixed effects results given their ease of interpretation. The results of the HLM are presented
354 in Supplementary Table 3.

355

356 **Regional Heterogeneity**

357 We probed for regional heterogeneity in the patterns of development within and outside
358 of CoBRA units by conducting a cluster analysis at the county level (on land within each county
359 that is within the study area, excising land that is outside the study area). Our aim was to explore
360 whether there was variation in the development of land in CoBRA units compared with
361 neighboring, non-CoBRA areas.

362

363 We first removed from counties any area that is open water, although we left wetlands, which
364 have been dredged and filled for development in many areas. To remove open water from county
365 polygons, we employed the 2016 National Land Class Dataset (NLCD), whose 30m raster land
366 cover data is consistent across the United States.⁴⁷ For each county that has at least one CoBRA
367 unit, we construct the following variables:

368 1. The inverse hyperbolic sine transform (arcsinh) of (structures/hectare in non-CoBRA
369 areas)

370 2. The inverse hyperbolic sine transform (arcsinh) of structures/hectare in CoBRA units and
371 structures/hectare in OPAs

372 3. Proportion of area in CoBRA that is designated as OPA (for the rest of our analysis, we
373 consider OPA and CoBRA units to be exclusive)

374 We then standardized these variables to a common scale, constructed a distance matrix based
375 on Manhattan distances, and clustered the counties with Ward's hierarchical clustering
376 algorithm.⁴⁸ We used the resulting dendrogram to generate three clusters corresponding to
377 distinct development patterns across system and non-CoBRA areas within counties.

378

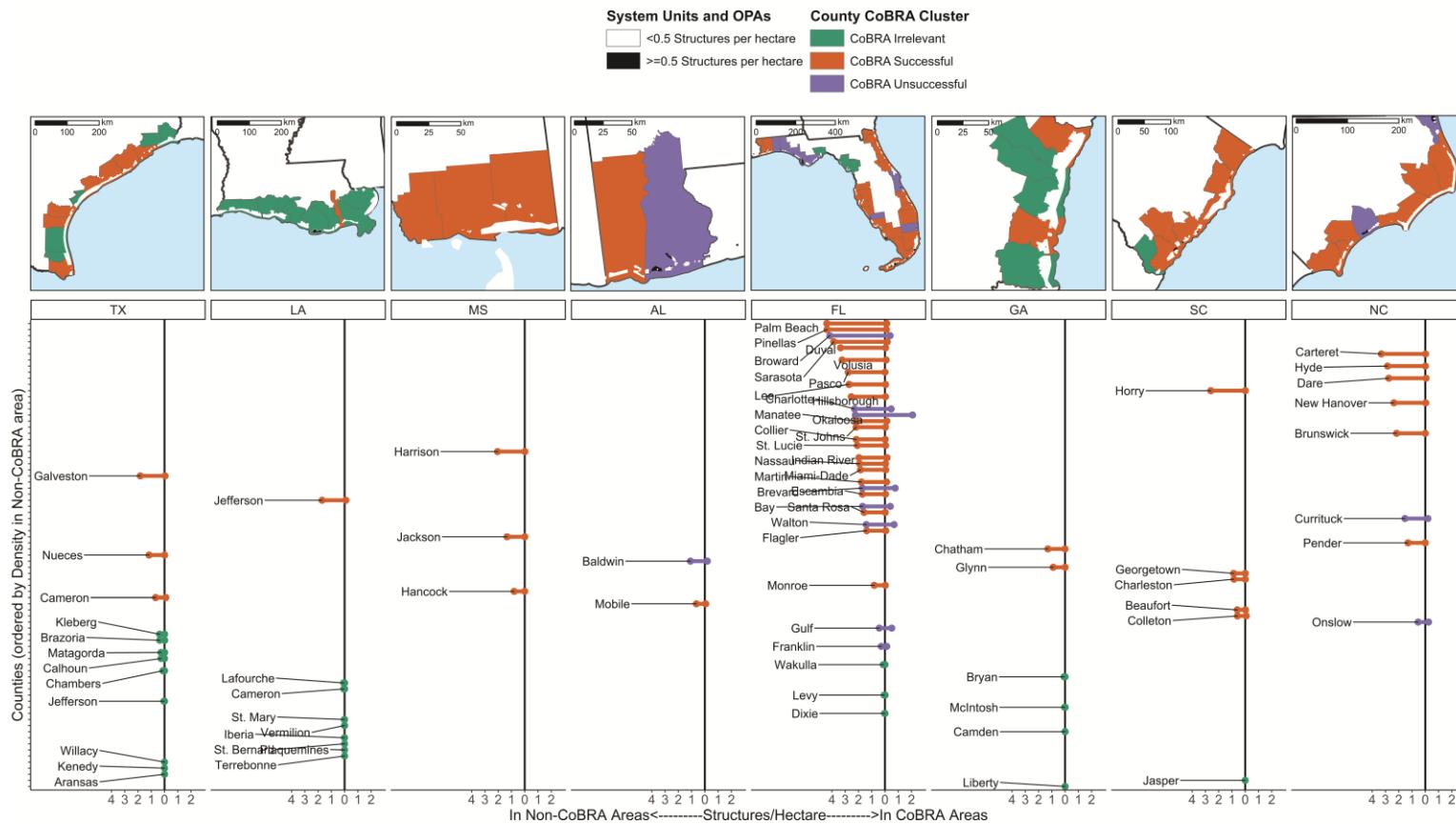
379 Data management and analysis was performed in ArcGIS 10.4 and the R statistical
380 software⁴⁹, with geospatial data processing in R performed using functions from the *sf* package⁴⁵.
381 Maps were produced in ArcGIS 10.4, and figures produced with R using ggplot2. Replication
382 code and data (excepting restricted parcel boundaries and data) are available from the UNC
383 Dataverse.⁵⁰

384

385 Results and Discussion

386 Overall, we found that development rates remained lower and qualitatively different in
387 CoBRA units compared to non-CoBRA areas (H1). However, there are significant outliers (H3
388 and H4). As of 2016, 34 of the 257 CoBRA units (13%) in our study area had development
389 densities that would have precluded their designation if CoBRA were enacted today (i.e., greater
390 than one dwelling unit per five acres [~ 2 ha] of fastland).

391


392 This pattern of local exceptions to a generally effective policy is consistent with
393 heterogeneity in program implementation or effectiveness (H4). Effectiveness could be
394 undermined by federal agencies circumventing or otherwise ignoring CoBRA, state and local
395 government agencies filling in subsidy gaps (H3), or by developers providing infrastructure
396 directly.²⁰⁻²³ Alternatively, a relatively ineffective policy may be strengthened by
397 complementary actions of other agencies.

398

399 Cluster analysis of the 77 counties in our eight states with CoBRA units identified three types of
400 counties describing general patterns of development densities within and outside of CoBRA
401 units, suggesting substantial regional variability in the effectiveness of CoBRA (H3 and H4; Fig
402 2).

403

404 **Fig 2: Panel A: Counties with CoBRA units or OPA locations in each of the eight study**
405 **states. Panel B: Density of built structures (2016) in CoBRA units (right) and non-CoBRA**
406 **areas (left) by county. Although our analysis extent covers only areas within 2 km of the**
407 **coastline in counties with CoBRA units, for legibility this figure depicts the entire counties**
408 **that were part of our analysis. CoBRA units in white or black (for high density) Legend**
409 **coloring in both panels depicts results of cluster analysis of development rates (n=77**
410 **counties with CoBRA units) into three categories, where CoBRA could be identified as**
411 **Successful, Unsuccessful, and Irrelevant.**

414 Twenty-one counties formed a cluster that we call, “CoBRA Irrelevant,” where coastal
415 development density in both CoBRA units and adjacent non-CoBRA areas was very low,
416 suggesting an absence of development pressure that could have yielded significant
417 development. Another 45 counties formed a cluster we call, “CoBRA Successful,” characterized
418 by near-zero development in CoBRA units and significant development in nearby non-CoBRA
419 areas (H1). We use the term “successful” here cautiously, as the CoBRA units in these areas
420 may represent land that was particularly costly or unsuitable for development with or without
421 the federal funding prohibited by CoBRA. However, despite this endogeneity concern, this set
422 of counties can be characterized as having a strong difference in development rates within and
423 outside of CoBRA units between 1980 and 2016.

424

425 The remaining 11 counties formed a cluster characterized by significant development
426 within system-units relative to nearby non-CoBRA areas, which we refer to as, “CoBRA
427 Unsuccessful.” Notably, these 11 counties exist entirely in Florida (8), Alabama (1), and North
428 Carolina (2) (see maps in Fig 2). While this clustering within three states may indicate
429 overriding roles played by specific state policies, it is important to note that, in these states,
430 there are an additional 30 counties with CoBRA units that remain undeveloped. Additionally, it
431 is difficult to study state-level impacts without having high-quality data on policy changes over
432 time (as state policies affecting activities in CoBRA units have been dynamic), which is beyond
433 the scope of the current study.

434

435 The counties in this “CoBRA Unsuccessful” cluster exhibited a wide range of
436 development densities in non-CoBRA areas, from among the densest (e.g., 10.28/ha in Broward

437 County, FL) to the sparsest (e.g., 1.07/ha in Gulf County, FL). It is possible that, in counties
438 with lower densities in non-CoBRA areas, CoBRA units held more developable or desirable
439 land than the non-CoBRA areas, such that the incentives to develop could override the lack of
440 federal subsidies (H3/H4). However, since a similar dynamic does not regularly appear in the
441 highest-density counties, most of which are in the “CoBRA successful” cluster (see Fig 2B),
442 development pressure spillovers from proximate land may not be the primary driver of the
443 development of CoBRA units (H4). Instead, we hypothesize that a combination of local
444 conditions, including the actions of state and local government agencies, may play significant
445 roles (H4).

446

447 One important policy that appears to interact with CoBRA-related federal funding
448 withdrawals is federal, state and local direct development restrictions (H2). Within non-CoBRA
449 areas, the average parcel size is six-times larger in protected areas than unprotected areas,
450 suggesting that protection could be discouraging the subdivision of land that generally precedes
451 urban development (Table 3).

452

453 An alternative explanation is that development restrictions that we characterize in this
454 study as “protection,” create a luxury effect (H3) that tends to incentivize development of
455 homes on larger lots.³⁶ CoBRA may act in complementary ways, as average parcel sizes in
456 CoBRA units and OPAs are 2.5 – 15 times larger than parcels in protected, non-CoBRA areas.
457 OPAs, which combine federal flood insurance program prohibitions with notable federal and
458 state protections such as State and National Parks, Wildlife Refuges, and military installations,
459 have the largest average parcel sizes. However, this may be almost completely endogenous, as

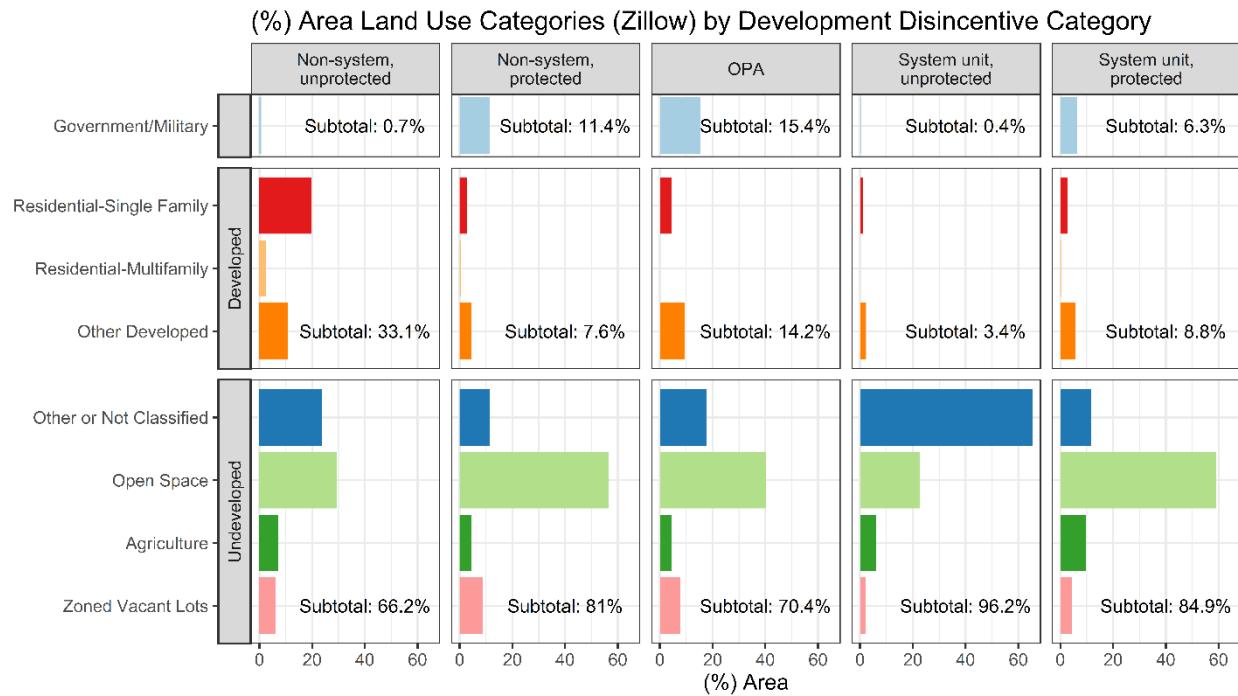
460 such large protected parcels that are unlikely to be sold to private developers were the most
461 likely to be designated as OPAs in the first place.

462

463 **Table 3. Areal extent (within study zone extending 2 km inland from coastline) and sample**
464 **size of parcels in five development disincentive categories (from Table 1)**

Category	Area (ha)	Coverage of study area (%)	Parcels (count)	Average parcel size (ha)
Non-CoBRA area, unprotected (Type 1)	459,905	38	1,228,760	0.3
Non-CoBRA area, protected (Type 2)	195,473	16	110,886	1.8
OPA (Type 3)	244,823	20	9,196	26.6
CoBRA unit, unprotected (Type 4)	243,994	20	21,879	11.2
CoBRA unit, protected (Type 5)	76,769	6	14,831	5.2
Total	1,220,964	100	1,385,552	0.9

465


466 Parcels in protected CoBRA units are almost three-times larger, on average, than parcels
467 in protected, non-CoBRA areas. This finding is consistent with federal subsidy withdrawal
468 increasing development costs (H1) and thereby discouraging subdivision and development to a
469 greater degree than local protections, such as park designations, do on their own (H2). When
470 accounting for the land uses on these parcels (Fig 3), the interaction between CoBRA
471 regulations and protection becomes clearer. When comparing protected, non-CoBRA areas with
472 protected CoBRA units, most land in unprotected units is “Not Classified” or “Other,”
473 indicating unparcelized and undeveloped land owned by states, counties, and municipalities, but
474 not designated for any particular land use. In contrast, land in protected units is mostly
475 designated as open space, such as parks. This could have important ramifications for future
476 development patterns. It is possible that local protections (as opposed to large-scale state and

477 federal protections, typically represented in the OPA category) have been prompted by CoBRA
478 designation itself (H2), particularly in areas that were otherwise attractive for development. This
479 is an avenue for future study leveraging historical land ownership and protection records.

480

481

482 **Fig 3: Relative extents of different types of land cover and land use among development**
 483 **disincentive categories. Urban land use is aggregated into *single-family residential*,**
 484 ***multifamily residential*, and *other developed* (including unitary parcels of mobile home**
 485 **parks, planned unit developments, and institutional residences). Undeveloped land use is**
 486 **aggregated into *open space* (designated parks, wildlife areas, conservation areas etc.),**
 487 ***agriculture* (any agricultural use), *zoned vacant lots* (referring to vacant lots that are**
 488 **nevertheless zoned to permit residential, commercial, industrial, or institutional land**
 489 **uses), and *other or not classified* (where parcels do not have designated land uses, they are**
 490 **generally not formally parcelized by county tax assessors and represent undeveloped and**
 491 **unused land). Government- and military-owned land may or may not have structures, but**
 492 **are generally exempt from local government development restrictions as well as some**
 493 **CoBRA subsidy restrictions.**

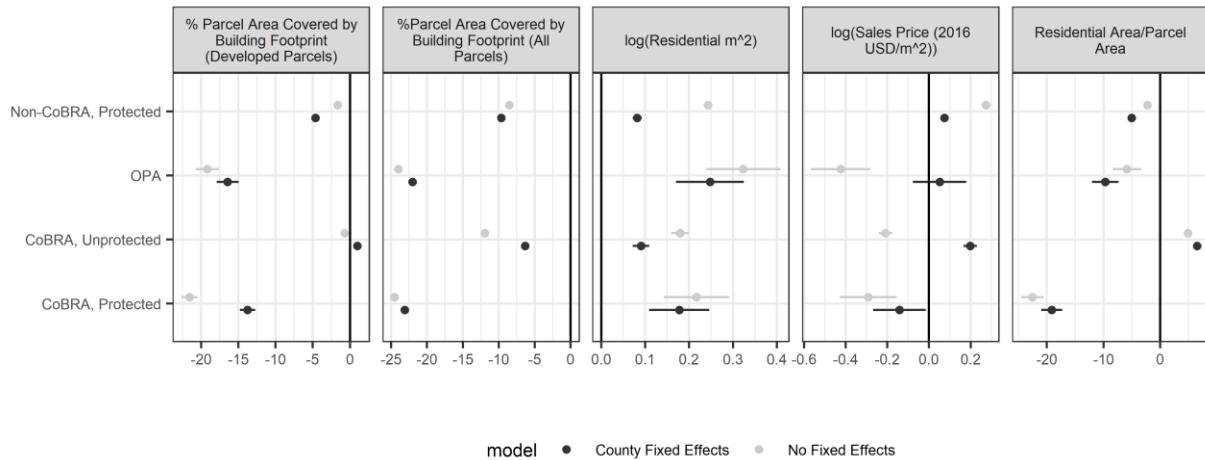
494

495 We present regression results (Fig 4; for full regression results see Supplementary Table
496 2) with and without county fixed effects. The regressions without fixed effects show estimated
497 average differences between each development disincentive category and unprotected, non-
498 CoBRA areas across the entire sample. The regressions with county effects show the average of
499 estimated differences between the categories *within each county*, thus accounting for differences
500 between counties in the overall levels of each of the outcome metrics.

501

502 Among “developed” parcels (i.e., containing structures), unprotected CoBRA units
503 (Type 4) show statistically ambiguous differences with unprotected, non-CoBRA areas (Type 1)
504 in terms of percentage of land area covered by structures (H1; Fig 4a). Overall, unprotected
505 CoBRA units experience slightly reduced development intensity (1% less parcel area covered
506 by structures). However, when controlling for the county of observations (county fixed effects)
507 CoBRA units experience slightly higher (1% more parcel area covered by structures)
508 development intensity than non-CoBRA areas. This indicates that on average, parcels in
509 unprotected CoBRA units with any development tend to have structures with smaller footprints
510 relative to the parcel size than non-CoBRA areas, but this may have to do with correlations
511 between the type of development that occurs in CoBRA units and overall development pressure
512 and density in counties. When controlling for county (i.e., when comparing more spatially
513 proximate CoBRA units and non-CoBRA areas), the relationship is reversed, indicating that in a
514 given region, parcels in CoBRA units tend to have a larger proportion of their area covered by
515 structures.

516


517 Protection is associated with reduced development intensity on built-upon parcels in
518 non-CoBRA areas by less than 5 percent, while protection in CoBRA units is associated with
519 12-25 percent increases in intensity (H2; Fig 4b). This interaction between CoBRA and other
520 protections is even stronger when considering residential area densities (Fig 4e), where
521 protected CoBRA units (Type 5) have lower densities than any other category, while
522 unprotected CoBRA units (Type 4) have the highest residential densities. Thus, in this respect,
523 protection appears to strengthen the impact of CoBRA and is associated with a reduction in
524 development intensity when it does occur (H2).

525

526 This finding highlights a way in which federal policies, such as CoBRA, can be
527 strengthened by the regulatory actions of other agencies. While CoBRA and other protections
528 are independently associated with reductions in development and development intensity, when
529 parcels have both types of policies applied, they experience even lower development intensity
530 on average. That is, localities wishing to limit development in coastal barriers may find more
531 success applying policy tools such as zoning and limits on infrastructure in CoBRA areas than
532 non-CoBRA areas.

533

534 **Fig 4: Regression results. Dependent variables: (a) The percentage of parcel covered by**
 535 **structure footprints, among only parcels with structures. (b) The percentage of parcel**
 536 **covered by structure footprints, among all parcels. (c) The natural logarithm of residential**
 537 **area (sq. m.) among parcels with residential land uses. (d) The natural logarithm of the**
 538 **most recent inflation-adjusted sales price per square meter for residential parcels. (e) The**
 539 **residential living area divided by the parcel area for residential parcels. Parcels are units**
 540 **of analysis. The base category is *non-CoBRA, unprotected* areas (Type 1). Dots represent**
 541 **point estimates and error bars indicate 95% confidence intervals. The x-axis is the effect**
 542 **size (i.e., the average difference between parcels in the indicated category from parcels in**
 543 **the base category). County fixed effects refer to regressions that use dummy variables to**
 544 **control for the county in which parcels are located.**

545
 546 However, CoBRA units and all protected areas experience larger average house sizes
 547 ($\log[m^2]$; Fig 4c). Moreover, controlling for individual counties (fixed effects), CoBRA unit
 548 designation is associated with significantly higher property sales prices (Fig 4d). Thus, while
 549 residential development in CoBRA units is less common than in non-CoBRA areas, the
 550 development that does occur tends to be of larger, more expensive houses, which suggests luxury

551 effects (H3). This is consistent with the literature on the impact of parks and natural areas on
552 property values, wherein such amenities are valued by consumers, and this value is expressed in
553 sales prices⁵¹. We speculate that CoBRA might affect property values and development by
554 providing large natural amenities with relatively low development intensity. It is also possible
555 that, by restricting NFIP eligibility, any development that occurred in CoBRA units was
556 necessarily initiated by those who could afford alternative insurance coverage, and that the
557 income or wealth required to do so is correlated with willingness and ability to pay for larger
558 and/or more expensive properties.

559

560 When controlling for protected status and system designation across all parcels in our
561 study area, unprotected, non-CoBRA areas (Type 1) experience higher development intensities
562 (% parcel covered by built structures) than unprotected CoBRA units (Type 4; H1; Fig 4b).
563 Protected parcels in non-CoBRA areas experience a similar decrease in development intensity as
564 unprotected parcels in CoBRA units. OPAs and protected CoBRA units are developed much less
565 intensively than all other categories (H2), although much of this effect is likely due to the
566 endogenous designation of CoBRA units in previously undeveloped areas.

567

568 Conclusion

569 Our results suggest strong relationships between CoBRA designation and resulting
570 development density and land use. However, these results should not be interpreted causally due
571 to the endogeneity with which CoBRA units were drawn around undeveloped areas. Even so,
572 CoBRA designation is associated with lower development density, higher proportions of vacant

573 land, and larger average house size relative to non-CoBRA areas. This confirms much of our first
574 hypothesis, H1: CoBRA is associated with lower development rates.

575

576 Moreover, the differences in house size, development propensity, and house sales prices
577 (when controlling for the county) within CoBRA relative to unprotected areas outside CoBRA
578 appear to be indistinguishable from the differences observed as a result of independent
579 development restrictions initiated by other federal agencies and non-federal actors in areas such
580 as parks, wildlife refuges, or conservation areas. This confirms parts of our second hypothesis
581 (H2: CoBRA interacts with protected areas), and even suggests that CoBRA designation appears
582 to have similar outcomes as designation as a protected area. Moreover, we provide evidence that
583 CoBRA and other protections applied together may reduce development more than either alone.

584

585 While CoBRA designation shifts infrastructure costs to the private sector, our finding that
586 protection and CoBRA are associated with equally expensive homes, suggests that CoBRA may
587 create a strong seclusion effect that incentivizes luxury development patterns representing
588 substantial property risk in coastal barriers.³⁹ However, our county fixed effects models
589 demonstrate that this effect – which we suggested in our third hypothesis (H3: CoBRA creates a
590 luxury effect for developed parcels) – may be mitigated at the community level. This regionally-
591 dependent behavior suggests that the luxury effect may be mitigated by direct development
592 restrictions, highlighting the potential importance of state and local land use policy in enabling,
593 complementing, or counteracting federal policy goals.

594

595 Within the same county, there does not appear to be a direct relationship between the
596 extent of development in CoBRA units and non-CoBRA areas. Counties with high development
597 in CoBRA units do not necessarily have high non-CoBRA development rates, and many highly
598 developed counties have little to no development in CoBRA units. This suggests that the primary
599 determinant of development in CoBRA units is not scarcity of developable land in non-CoBRA
600 areas. One possible explanation is that more complex spatial and political relationships are at
601 play, rather than simply the spillover effects of our fourth hypothesis (H4; That is, in areas with
602 high development pressure, development will eventually spill into CoBRA units).

603

604 In lieu of a direct spillover effect, we speculate that high development rates in CoBRA
605 units could instead be the result of local or state development policies or subsidy substitutions.
606 To determine this exact relationship, future work should consider the timing and spatial
607 dependencies of development and policy within and around CoBRA units. This same work
608 should consider the roles of changing state-level policies as well.

609

610 Is CoBRA achieving its statutory objective of reducing development in designated
611 coastal barrier areas? Our results suggest that CoBRA has been successful in decreasing
612 development rates and the total amount of development – the vast majority of CoBRA units
613 remain undeveloped. Likewise, independent protection of coastal barriers has also been effective.
614 However, CoBRA designation and other forms of protection appear to interact in preventing
615 development, decreasing land values, and development densities. The particular regulatory
616 mechanisms that may be complementary of, or offsetting to, CoBRA need to be investigated
617 more fully with studies tracing local policies and development over time.

618 **Acknowledgements**

619 We thank Zillow, Inc. for granting access to their ZTRAX real estate database. We also thank
620 Teresa Fish, Katie Niemi, and Dana Wright from the U.S. Fish and Wildlife Service for valuable
621 information and data regarding the history and enforcement of the Coastal Barrier Resources
622 Act. The results and opinions are those of the authors and do not reflect the position of Zillow or
623 the U.S. Fish and Wildlife Service.

624

625 **Author Contributions**

626 T.K.B., N.K., and D.S. conceptualized the research objectives and questions. K.O., N.K., and
627 T.K.B. contributed to the research design. N.K., K.O. and J.B. collected and prepared data for
628 analysis. K.O. led data analysis with input from all authors. K.O., T.K.B. and N.K. jointly wrote
629 the manuscript with contributions from all authors.

630

631 **Competing Interests**

632 The authors have declared that no competing interests exist.

633

634 **References**

635

- 636 1. Arkema, K. K. *et al.* Coastal habitats shield people and property from sea-level rise and
637 storms. *Nat. Clim. Change* **3**, 913 (2013).
- 638 2. Glavovic, B. C. & Smith, and G. P. *Adapting to Climate Change: Lessons from Natural
639 Hazards Planning*. (Springer Science & Business, 2014).

640 3. Burby, R. J. *et al.* Unleashing the power of planning to create disaster-resistant communities.
641 *J. Am. Plann. Assoc.* **65**, 247–258 (1999).

642 4. Beatley, T. & and Anna Schwab, D. B. *An Introduction to Coastal Zone Management*.
643 (Island Press, 2002).

644 5. Gillis, J. & Barringer, F. As Coasts Rebuild and U.S. Pays, Repeatedly, the Critics ask Why.
645 *N. Y. Times Online Accessed On* **8**, (2012).

646 6. Bagstad, K. & and John D'Agostino, K. S. Taxes, subsidies and insurance as drivers of U.S.
647 coastal development. *Ecol. Econ.* **63**, 285–298 (2007).

648 7. Burby, R. Hurricane Katrina and the Paradoxes of Government Disaster Policy: Bringing
649 About Wise Governmental Decisions for Hazardous Areas. *Ann. Am. Acad. Pol. Soc. Sci.*
650 **604**, 171–191 (2006).

651 8. Leichenko, R. & Thomas, A. Coastal Cities and Regions in a Changing Climate: Economic
652 Impacts, Risks and Vulnerabilities. *Geogr. Compass* **6**, 327–339 (2012).

653 9. Berke, P. & and Ward Lyles, G. S. Planning for Resiliency: An Evaluation of Coastal State
654 Hazard Mitigation Plans. *Nat. Hazards Rev.* **2**, (2012).

655 10. *Coastal Barrier Resources Act.* 16 vol. 3501 et seq. (1982).

656 11. U.S. Fish and Wildlife Service. Coastal Barrier Resources System.
657 <https://www.fws.gov/CBRA/>.

658 12. Knaap, G. J. The Price Effects of Urban Growth Boundaries in Metropolitan Portland,
659 Oregon. *Land Econ.* **61**, 26–35 (1985).

660 13. Cunningham, C. R. Growth Controls, Real Options, and Land Development. *Rev. Econ. Stat.*
661 **89**, 343–58 (2007).

662 14. Ding, C., Knaap, G. J. & Hopkins, L. D. Managing urban growth with urban growth
663 boundaries: A theoretical analysis. *J. Urban Econ.* **46**, 53–68 (1999).

664 15. Pressman, N. & Wildavsky, A. *Implementation*. (University of California Press, 1973).

665 16. Hopkins, L. *Urban Development: The logic of making plans*. (Island Press, 2001).

666 17. Finn, D., D, H. L. & Wempe, and M. The Information System of Plans Approach: Using
667 and Making Plans for Landscape Protection. *Landsc. Urban Plan.* **81**, 132–45 (2007).

668 18. Kaza, N. & Hopkins, and L. In What Circumstances Should Plans Be Public? *J. Plan. Educ.*
669 *Res.* **28**, 491–502 (2009).

670 19. *Coastal Barrier Improvement Act.* 16 vol. 3503 (1990).

671 20. Horn, D. P. & Webel, B. *Introduction to the National Flood Insurance Program (NFIP)*. 31
672 <https://fas.org/sgp/crs/homesec/R44593.pdf>.

673 21. Federal Insurance and Mitigation Administration. Fact Sheet Community Rating System.
674 (2017).

675 22. Salvesen, D. The coastal barrier resources act: Has it discouraged coastal development?
676 *Coast. Manag.* **33**, 181–195 (2005).

677 23. US Fish and Wildlife Service. Historical Changes to the Coastal Barrier Resources Act.
678 <https://www.fws.gov/cbra/Historical-Changes-to-CBRA.html>.

679 24. Croft, B. T. & Boyd, A. FEMA strikes down second appeal on beach nourishment. 13–14
680 (2013).

681 25. Millemann, B. A. *The Coastal Barrier Resources Act: Accomplishments, Challenges and*
682 *Future Opportunities*. (Natural Resources Defense Council, 2010).

683 26. Jones, E. & Stolzenberg, and W. *Building in the Coastal Barrier Resources System*.
684 (National Wildlife Federation, 1990).

685 27. Crawford, T. W., Marcucci, D. J. & Bennett, A. Impacts of residential development on
686 vegetation cover for a remote coastal barrier in the Outer Banks of North Carolina, USA. *J.*
687 *Coast. Conserv.* **17**, 431–443 (2013).

688 28. Pilkey, O. H. & Neal, W. J. North Topsail Beach, North Carolina: A model for maximizing
689 coastal hazard vulnerability. *Am. Most Vulnerable Coast. Communities Geol. Soc. Am. Spec.*
690 *Pap.* **460**, 73–90 (2009).

691 29. Dempsey, J. A. & Plantinga, A. J. How well do urban growth boundaries contain
692 development? Results for Oregon using a difference-in-difference estimator. *Reg. Sci. Urban*
693 *Econ.* **43**, 996–1007 (2013).

694 30. Weitz, J. & Moore, T. Development inside urban growth boundaries: Oregon's empirical
695 evidence of contiguous urban form. *J. Am. Plann. Assoc.* **64**, 424–440 (1998).

696 31. Bengston, D. N., Fletcher, J. O. & Nelson, K. C. Public policies for managing urban growth
697 and protecting open space: policy instruments and lessons learned in the United States.
698 *Landsc. Urban Plan.* **69**, 271–286 (2004).

699 32. Dawkins, C. J. & Nelson, and A. C. Urban Containment Policies and Housing Prices: An
700 International Comparison with Implications for Future Research. *Land Use Policy* **19**, 1–12
701 (2002).

702 33. Brueckner, J. K. Growth Controls and Land Values in an Open City. *Land Econ.* **66**, 237–
703 248 (1990).

704 34. Miller, T. I. Must growth restrictions eliminate moderate-priced housing? *J. Am. Plann.*
705 *Assoc.* **52**, 319–325 (1986).

706 35. Nelson, A. C. Smart growth - central city vitality and higher quality of life. in (ed. Wachter,
707 S.) (US Department of Housing and Urban Development, 2000).

708 36. Troy, P. N. Environmental stress and urban policy. in (eds. Jenks, M., Burton, E. &
709 Williams, K.) (Chapman & Hall, 1996).

710 37. Knaap, G. J. The urban growth boundary in Metropolitan Portland, Oregon: Research,
711 rhetoric, and reality. *PAS Memo No.*, (2001).

712 38. Pendall, R., Martin, J. and F. & W. Holding the line: Urban containment. in *the United States*
713 (Institution, 2002).

714 39. William C. Garntner, Daniel E. Chappelle & T.C. Girard. The Influence of Natural
715 Resources Characteristics on Property Value: A Case Study. *J. Travel Res.* **35**, 64–71 (1996).

716 40. Crossett, K., Ache, B., Pacheco, P. & Haber, K. National coastal population report,
717 population trends from 1970 to 2020. *NOAA State Coast Rep. Ser. US Dep. Commer. Wash.*
718 (2013).

719 41. U.S. Fish and Wildlife Service. Digital CBRS Boundaries. *Coastal Barrier Resources*
720 System <https://www.fws.gov/cbra/maps/boundaries.html> (2018).

721 42. U.S. Geological Survey. Protected Areas Database of the U.S. (PAD-US). *National Gap*
722 *Analysis Project (GAP) | Protected Areas Data Portal* <https://gapanalysis.usgs.gov/padus/>
723 (2016).

724 43. Boundary Solutions, Inc. National Parcelmap Data Portal. *National Parcel Layer Content*
725 *Service Provider* www.boundarysolutions.com (2018).

726 44. Zillow Group, Inc. ZTRAX: Zillow Transaction and Assessor Dataset, 2017-Q4.
727 <http://zillow.com/ztrax> (2017).

728 45. Pebesma, E. Simple Features for R: Standardized Support for Spatial Vector Data. *R J.*
729 (2018).

730 46. Microsoft. USBuildingFootprints. *Github*
731 <https://github.com/Microsoft/USBuildingFootprints>.

732 47. Dannenberg, M. P., Hakkenberg, C. R. & Song, C. Consistent Classification of Landsat Time
733 Series with an Improved Automatic Adaptive Signature Generalization Algorithm. *Remote*
734 *Sens.* **8**, (2016).

735 48. Ward Jr, J. H. Hierarchical grouping to optimize an objective function. *J. Am. Stat. Assoc.*
736 **58**, 236–244 (1963).

737 49. R Development Core Team. *R: A Language and Environment for Statistical Computing*.
738 (2017).

739 50. Onda, Kyle, Branham, Jordan, BenDor, Todd K. & Kaza, Nikhil. Replication Data for: Does
740 Removal of Federal Subsidies Discourage Urban Development? An Evaluation of the US
741 Coastal Barrier Resources Act. *UNC Dataverse V1* (2020)
742 doi:<https://doi.org/10.15139/S3/9KGNJY>.

743 51. John Crompton. The impact of parks on property values: A review of the empirical evidence.
744 *J. Leis. Res.* **33**, 1–31 (2001).

745

746 Supplementary Table 1: Parcel characteristics retrieved from ZTRAX

Variable	Notes
AssessorParcelNumber	ID key used to match ZTRAX data to parcel polygons from NPDP
PropertyLandUseStndCode	An alphanumeric land use code corresponding to a more detailed land use description
YearBuilt	The year the structure (for which multiple may exist for one parcel) was constructed
SalesPriceAmount	The most recent sales price
RecordingDate	The date the most recent sale was recorded at the applicable county office. Sales may be recorded months after the actual transfer takes place, but the field for the actual sale date was completely missing for parcels in our study area.
BuildingAreaSqFt	The square footage of the structure as considered for real estate transactions. Generally “finished” square footage.

748 Supplementary Table 2: Regression results. Each dependent variable has two regression models, one without (odd numbered) and one
 749 with (even numbered) county fixed effects. Coefficients represent mean differences in the dependent variable (columns) between
 750 development disincentive category (rows) and base category of non-CoBRA, unprotected land (Type 1). Standard errors shown below
 751 coefficients in parentheses. * p<0.1, ** p<0.05, ***p<0.01

752

Structure footprint/parcel area (%) [parcels with buildings only]		Structure footprint/parcel area (%) [all parcels]		log(Residential area) (m ²)		Residential area / parcel area (%)		log(Sales price (2016 USD)/residential area (m ²)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(11)	
County fixed effects?	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes
Non-CoBRA, protected (Type 2)	-1.666*** (0.11)	-4.663*** (0.11)	-8.542*** (0.09)	-9.672*** (0.09)	0.243*** (0.01)	0.082*** (0.01)	-2.253*** (0.13)	-5.042*** (0.13)	0.274*** (0.01)	0.074*** (0.01)
OPA (Type 3)	-19.184*** (0.79)	-16.442*** (0.75)	-23.997*** (0.33)	-21.997*** (0.31)	0.323*** (0.04)	0.248*** (0.04)	-5.861*** (1.27)	-9.692*** (1.19)	-0.425*** (0.07)	0.051 (0.07)
CoBRA unit, unprotected (Type 4)	-0.729*** (0.26)	0.963*** (0.25)	-11.944*** (0.19)	-6.352*** (0.18)	0.180*** (0.01)	0.091*** (0.01)	4.924*** (0.29)	6.538*** (0.28)	-0.209*** (0.02)	0.198*** (0.02)
CoBRA unit, protected (Type 5)	-21.551*** (0.55)	-13.754*** (0.53)	-24.518*** (0.22)	-23.082*** (0.21)	0.217*** (0.04)	0.177*** (0.04)	-22.563*** (1.02)	-19.139*** (0.94)	-0.292*** (0.07)	-0.141** (0.06)
Intercept	31.581*** (0.02)	18.419*** (0.11)	25.9*** (0.02)	14.234*** (0.10)	7.548*** (0.00)	7.422*** (0.00)	33.103*** (0.02)	18.884*** (0.12)	4.937*** (0.00)	5.044*** (0.01)
Observations	1,121,063	1,121,063	1,406,187	1,406,187	587,586	587,586	909,381	909,381	352,385	352,385
Adjusted R ²	0.002	0.158	0.021	0.206	0.004	0.185	0.001	0.179	0.002	0.188
F Statistic	591***	2,799***	7,534***	4,606***	617***	2,783***	278***	2,825***	217***	2,210***

753

754 Supplementary Table 3: Hierarchical Linear Regression results. Coefficients represent mean differences in the dependent variable
 755 (columns) between development disincentive category (rows) and base category of non-CoBRA, unprotected land (Type 1). Standard
 756 errors shown below coefficients in parentheses. * p<0.1, ** p<0.05, ***p<0.01

<i>Dependent variable:</i>					
	Structure footprint/parcel area (%) [parcels with buildings only] (1)	Structure footprint/parcel area (%) [all parcels] (2)	log(Residential area) (m ²) (3)	Residential area / parcel area (%) (4)	log(Sales price (2016 USD)/residential area (m ²) (5)
Non-CoBRA, protected (Type 2)	-4.653*** (0.110)	-9.667*** (0.089)	0.082*** (0.005)	-5.034*** (0.126)	0.074*** (0.010)
OPA (Type 3)	-16.494*** (0.749)	-22.004*** (0.304)	0.248*** (0.039)	-9.716*** (1.192)	0.051 (0.065)
CoBRA unit, unprotected (Type 4)	0.948*** (0.252)	-6.362*** (0.179)	0.091*** (0.010)	6.537*** (0.278)	0.198*** (0.016)
CoBRA unit, protected (Type 5)	-13.756*** (0.526)	-23.072*** (0.213)	0.177*** (0.035)	-19.124*** (0.943)	-0.143** (0.064)
Constant	21.045*** (3.625)	15.146*** (3.086)	5.135*** (0.117)	22.780*** (3.502)	7.184*** (0.101)
Observations	1,121,063	1,406,187	587,586	909,381	352,385

757