

1 **A National Inventory and Analysis of US Transfer of Development
2 Rights Programs**

4 Todd K. BenDor^{1*}
5 Jordan Branham¹
6 Andrew Whittemore¹
7 Evangeline Linkous²
8 Dylan Timmerman¹

9
10 ¹Department of City and Regional Planning
11 University of North Carolina at Chapel Hill
12 New East Building, Campus Box #3140
13 Chapel Hill, NC 27599-3140

14
15 ²School of Public Affairs
16 University of South Florida
17 4202 East Fowler Ave.
18 Tampa, FL 33620-8100

20 *Corresponding Author – email: bendor@unc.edu, phone: 919-843-5990
21

22 **Keywords:** Transfer of development rights; density transfer; market-based incentives; land use
23 policy; urban density; flexible zoning

25 **Acknowledgements:** This paper is based upon work graciously supported by the USDA Office of
26 Environmental Markets (OEM; Agricultural Market and Economic Research Grant No. 58-0111-18-
27 012), through the U.S. National Science Foundation under Coastal SEES Grant No. 1427188 and
28 Geography and Spatial Sciences Grant No. 1660450.

32 **Abstract**

33 Transfer of development rights (TDR) programs shift development intensity between land parcels.
34 Jurisdictions, most commonly local municipal or county governments, employ TDR to protect
35 resources such as farmland or historical properties and to encourage infill and redevelopment where
36 deemed appropriate. However, while championed by economists and others seeking to reduce
37 conflicts between land development and preservation, TDR program adoption has varied widely
38 across the US. What demographic, economic, or environmental factors are associated with TDR
39 program establishment? This paper describes a census of 375 TDR programs in the United States,
40 documenting primary program attributes and adoption year and categorizing their functions and
41 typology. Using logistic regression, we analyze program spatial patterns and factors predicting
42 program implementation. We find that areas that are coastal, more liberal, have higher home values,
43 in home-rule states, and in states with state-wide growth management programs, are all significantly
44 more likely to implement TDR programs.

45

46 **Introduction**

47 Over the last few decades, urban planners have developed a number of strategies that leverage
48 markets to achieve planning goals, and transfer of development rights (TDR) programs are a prime
49 example (Wright and Czerniak 2000). Local governments create and administer TDR programs to
50 supplement conventional zoning and growth management practices. TDR programs are land use
51 management tools that allow property owners to buy and sell development rights in order to better
52 align development patterns with planning priorities (McConnell and Walls 2009; Nelson et al. 2011).

53

54 Specifically, TDR programs offer a means of compensation to property owners in return for the
55 permanent preservation of ecological, agricultural, or cultural resources on their properties. In doing
56 so, TDR programs can help to align landowner incentives with municipal policy, increasing
57 development opportunities in some areas, while preserving land or other natural resources elsewhere
58 (Nelson et al. 2011). TDR programs can thus, in theory, smooth what would otherwise be a
59 politically difficult process.

60

61 Although TDR programs have become more commonplace over the last two decades, TDR
62 program implementation and success has been uneven around the country, with wide variation in
63 the number of trades and amount of land preserved under adopted programs (Nelson et al. 2011;
64 Linkous and Chapin 2014). Some localities have seen very little or no trading, while other TDR
65 programs have enabled significant land conservation and infill development.

66

67 This study seeks to understand why, and for what purposes, TDR programs are adopted by
68 investigating an array of local demographic and environmental characteristics. We begin by
69 reviewing research on TDR programs before laying out our methodology, findings, and discussion.

70 **Understanding transfer of development rights**

71 *TDR program mechanics*

72 TDR programs have taken many forms given the variety of different planning priorities that exist
73 across US localities. Conventional TDR programs enable the movement of development rights from
74 so-called ‘sending sites’ in rural or urban preservation areas to ‘receiving sites’ in areas capable of
75 handling new development (Nelson et al. 2011). Historically, such transfers are from rural areas to
76 already urbanized areas, though some programs focus on historic preservation goals through urban-
77 to-urban transfers, others on rural development goals through rural-to-rural transfers, and yet others
78 on different goals and types of transfers (Linkous and Chapin 2014; Linkous 2016). Local
79 governments can thus design TDR programs to facilitate their own planning goals, whether these
80 are economic development, resource conservation, or historic preservation.

81

82 Transfer of development rights programs are possible because in the United States, as in other
83 countries that have inherited British common law traditions, the ownership of land involves a
84 bundle of rights including the rights to sell, lease and develop property (Nelson et al. 2011). TDR
85 programs operate by allowing property owners to sell or purchase some or all of the development
86 rights associated with land ownership. A property owner who sells development rights retains the
87 right to buy, sell, or lease their property, along with other rights; however, a permanent conservation
88 easement runs with the land from which development rights are sold, meaning the owner no longer
89 possesses the right to develop the land in accordance with the property’s zoning classification
90 (Machemer and Kaplowitz 2000). A property owner who has purchased development rights and
91 applied them to a parcel they own in a receiving area adds to the existing development potential of
92 their land in accordance with any development bonuses allowed under the local government’s TDR
93 program.

94

95 The redistribution of development rights enabled by TDR not only serves to manage the fiscal
96 windfall/wipeout effects of land regulation, it is also used to address property rights concerns. TDR
97 can be seen as providing an economically viable use for property impacted by land use regulations,
98 thus mitigating the local government's liability for a regulatory taking (Linkous 2016). This is
99 especially relevant where local governments seek to reduce development potential, such as the
100 downzoning of rural lands or the limiting of development on historic properties. Although the
101 viability of TDR in addressing the U.S. Constitution's Fifth Amendment's "takings" prohibition (i.e.,
102 public confiscation of private property without compensation) is not fully established by case law,
103 and depends to some degree on the existence of a market for development rights that ensures
104 economic viability, TDR is nevertheless seen as a practical and political tool for balancing planning
105 and property rights interests, and is used in states like Florida, where strong property rights
106 protections are in place (Linkous 2016).

107

108 Conventionally, a TDR program designates sending areas from which property owners can sell
109 development rights, receiving areas to which development rights may be transferred, and the
110 procedures through which these activities take place. Local planning activities might designate
111 agricultural land, environmentally-sensitive lands, historic properties, rural conservation and open
112 space areas, or other areas where limited development is desired, to be sending areas (Nelson et al.
113 2011). Plans may designate urban-designated areas, redevelopment zones, or other areas identified
114 for growth as receiving areas, and specify the amount of bonus density that these areas can receive in
115 terms of additional housing units, density, or floor area (Nelson et al. 2011). New York City, for
116 example, has set up a number of TDR 'special districts' that designate where and how many

117 development rights can be transferred in order to encourage an urban form consistent with the
118 purposes of each district (Been and Infranca 2012).

119

120 Sending areas and receiving areas can overlap with existing zoning districts or be new districts
121 mapped by the TDR ordinance (Nelson et al. 2011). Their boundaries depend upon the extent of
122 areas targeted for conservation and on areas deemed appropriate for densification (Machemer and
123 Kaplowitz 2000). For example, a TDR program aimed at conserving highly productive agricultural
124 land and stimulating investment in existing urbanized areas may designate a rural sending area that
125 encompasses the productive agricultural land and a downtown receiving area. A program aimed at
126 historic conservation and stimulating high-density redevelopment may only allow transfers within a
127 single urban district. TDR programs can also use additional restrictions regarding the spatial
128 relationship of sending and receiving parcels; for example, some programs require that parcels must
129 be adjacent or under the same ownership, in order to limit the amount of density that can
130 accumulate in any one area (Machemer and Kaplowitz 2000).

131

132 Linkous and Chapin (2014) sorted TDR programs into three broad categories:

133 1. Conventional TDR programs transfer development potential from rural to urban areas, focusing
134 on preserving agricultural and environmentally sensitive land, including wetlands, slopes,
135 forests, natural viewsheds, animal habitats, and open space. Their focus is more on *preserving*
136 sending areas than on developing the receiving areas.

137 2. Hybrid TDR programs transfer development potential from rural to urban or fringe locations.
138 Although these programs incorporate preservation goals, hybrid TDR programs place a
139 strong emphasis on incentivizing *development* because they designate receiving areas in fringe
140 locations where there is heightened demand for or fewer barriers to new development..

141 These programs typically promote smart and compact growth patterns, often through new
142 town or village development forms.

143 3. *Rural TDR programs* are designed to shift development between a rural sending area and a
144 rural receiving area. These programs create a mix of compact communities and conserved
145 lands with a goal of accommodating growth while permanently protecting resource lands.

146

147 *The promise of TDR programs*

148 TDR programs have been lauded for offering numerous advantages over conventional zoning and
149 other conservation tools. First, TDR differs from the more conventional conservation tool of
150 purchase of development rights (PDR) in that TDR involves a transfer, rather than a permanent
151 retirement, of development rights. The retirement of development rights can be costly for local
152 governments and dependent upon the availability of grants and tax revenues (Kaplowitz et al. 2008).
153 Concurrently, the profit motives driving development rights transfers, which are initiated by private
154 landowners and developers (Kaplowitz et al. 2008), function as a powerful incentive for participation
155 in TDR markets. TDR programs also complement growth management strategies by enabling both
156 conservation and development intensification in areas that local plans determine to be appropriate
157 for these activities. While these goals can be accomplished through conventional rezonings, TDR
158 programs reduce the controversial nature of rezonings that produce 'wipe-outs' in lost property
159 value for owners of down-zoned parcels and 'windfalls' for owners of up-zoned parcels (see
160 Hagman and Misczynski 1978). In summary, TDR programs are voluntary, driven by private funds,
161 and allow less politicized and more permanent conservation and development alternatives than
162 conventional zoning (Machemer and Kaplowitz 2000).

163

164 TDR programs can also lead to a more efficient allocation of development rights. Levinson (1997),
165 for example, pointed out that not all property owners had the intent or ability to develop their
166 properties to the maximum allowed height, while some property owners would inevitably prefer to
167 exceed the maximum allowed height. Therefore, a TDR program setting could, in theory, lead to an
168 allocation of development rights in line with property owners' intentions, while not creating
169 densities exceeding those of a full build-out scenario with a conventional height limit.

170

171 **Evaluations of American TDR Programs**

172 Literature evaluating the successes and shortcomings of TDR programs is extensive and has grown
173 over time as more localities have adopted new programs. Foremost, studies note that while TDR
174 programs resemble other market-based approaches to natural resource conservation, such as
175 pollution trading (Dales 1968; Boyd et al. 2003), the potential of TDR relative to similar programs is
176 limited for at least three reasons, according to one Brookings Institution study (Fulton et al. 2004).
177 The first has to do with the unique nature of land development as a relatively permanent decision,
178 meaning that development rights cannot be transferred back to their source, unlike with pollution
179 credits. Second, because such decisions are voluntary and essentially happen once for any given
180 property, it is difficult to predict when a TDR program will begin to fulfill its goals. Thirdly, land
181 markets feature a relatively small number of buyers and sellers (Fulton et al. 2004). In short, a
182 vibrant market for development rights transfers is very difficult to create.

183

184 Nelson et al. (2011) compiled the most comprehensive study of TDR programs in the United States,
185 surveying 3,500 communities. Their survey revealed that there were only 239 programs, most of
186 which were principally concerned with conservation of natural, agricultural, or historic resources;

187 downtown development, urban design, housing and other development-oriented programs were a
188 small minority.

189

190 There is mounting evidence pointing to numerous barriers to TDR program success, which may also
191 create hurdles for initial program adoption. Some studies have found certain local characteristics that
192 make for a successful program, and these characteristics are hardly universal. Pruetz and Standridge
193 (2008) analyzed the 20 most successful programs across the US (measured as total area of land
194 preserved), finding that all of these programs existed in jurisdictions with significant demand for
195 development that had carefully chosen receiving areas based upon factors such as the availability of
196 existing infrastructure and minimal opposition to new development. Other factors, like strict
197 regulations for sending areas and support for rural preservation were also shared by a majority of
198 these highly successful programs.

199

200 One recent study (Linkous and Chapin 2014) found a number of challenges for TDR programs that
201 may well deter many jurisdictions from seeing TDR as a good strategy for achieving growth
202 management goals. The study found that the state's first generation of conventional rural-to-urban
203 TDR programs – from the 1970s – were largely inactive because they were inadequately linked to
204 market conditions and thus failed to facilitate many transfers. More recent programs that designated
205 receiving areas on the urbanizing fringes of cities or in rural areas were more effective in conserving
206 thousands of acres of rural land but at the cost of encouraging increased sprawl in greenfield areas.
207 Private and public actors also face a variety of transaction costs in managing TDR programs,
208 involving research, negotiations, contracts, and administration (Shahab, Clinch, and O'Neill 2018;
209 Shahab, Clinch, and O'Neill 2019).

210

211 Thus, despite the various theoretical advantages of TDR programs, a variety of challenges prevent
212 widespread program adoption. Furthermore, not all localities that have adopted TDR programs
213 possess the characteristics necessary for successful implementation. This leads to the question of the
214 type of jurisdictions that do adopt TDR programs. Although a deep body of research investigates the
215 reasons for local government adoption of related planning strategies, little research specifically
216 investigates the adoption rationale for TDR. Linkous et al. (2019) tackle this question, drawing on
217 the literature assessing reasons for local government adoption of growth management, sustainability,
218 and market-based planning tools to identify variables that may predict adoption of TDR; their
219 framework identifies geographic, sociodemographic, economic, political, governmental, planning
220 capacity, and interdependent factors. Based on a study of Florida county TDR programs, they found
221 that jurisdictions adopting TDR programs tended to be larger in geographic size, have higher
222 agricultural product sales, home rule authority, a greater proportion of Republican voters, as well as
223 voter-supported conservation ballot measures, leading the authors to suggest that market-based
224 planning mechanisms such as TDR were more popular among political conservatives.

225

226 Similarly, in this paper, we seek to address the question: what demographic, economic, or
227 environmental factors are associated with TDR program establishment? However, we address this
228 question at the national scale, assessing the range of operating TDR programs across the US and the
229 types of communities that adopt them.

230

231 **Data**

232 To census all US TDR programs (active and, to the extent possible, inactive), we drew on two
233 primary sources of data: 1) prior efforts in the literature to document TDR programs, and 2) local
234 government code and ordinance databases.

235

236

237

238 *Prior efforts to document TDR programs*

239 We began by following up on the 239 programs originally identified in the comprehensive text on
240 TDR program development and applications by Nelson, Pruetz, and Woodruff (2011), *The TDR*
241 *Handbook: Designing and Implementing Transfer of Development Rights Programs*. This database – which was
242 built on earlier work by Puetz (1997, 2003) – also documented information on methods of
243 implementation and program function. We also drew on work by Linkous and Chapin (2014), who
244 catalogued 31 county-scale TDR programs in Florida and created a typology describing how
245 programs evolved to meet different conservation and development objectives (described below).

246 Finally, we obtained data from Puetz's (2019) *Smart Preservation* website, which contains an updated
247 list of 257 TDR programs, as well as program descriptions. We agglomerated and updated each of
248 these databases, checking the current (2019) status of each of these programs through direct contact
249 with local government staff.

250

251 *Municipal code database search*

252 Second, we collected data from the five leading web hosting services for municipal and county code
253 and ordinance documents, including Municode (2020), Quality Code Publishing (2020; “Qcode”),
254 Sterling Codifiers (2020), Code Publishing (2020), and American Legal Publishing (2020). Together,
255 these publishers include more than 7,000 municipal and county codes across the United States,
256 spanning communities with a wide range of geographies and jurisdictional sizes and capacities. The
257 use of code databases is a relatively nascent technique for understanding local government
258 regulatory efforts on a broad scale (e.g., see efforts by Scheider [2020], who studied municipal

259 regulatory responses to bedbug infestations). Mirroring search techniques employed by Linkous and
260 Chapin (2014), we searched all listings (across all available states) for TDR ordinances, include
261 search terms: “TDR”, “transferable development rights”, transfer of development rights”, “density
262 transfer”, and “transfer”.

263

264 Efforts were made to verify the existence and status of all programs. Planning and municipal staff
265 were contacted in all programs a minimum of three times to gather data on the status of programs.
266 Responses were obtained from 85.3 percent of the programs (n= 320), with the remainder still
267 maintained in the database. In cases where discrepancies were found between information from our
268 secondary sources discussed above and the individual TDR ordinances, we relied on the codified
269 ordinance language (as it may have been more recently updated) and discussions with program staff.
270 Programs that exclusively enabled same-site transfers to protect environmental features such as
271 wetlands were not included because these programs are more akin to clustering provisions.

272

273 *Database and TDR program typologies*

274 We compiled the characteristics of identified TDR programs, including the jurisdiction and state in
275 which the program was created (including the type of jurisdiction and geographic identification for
276 mapping purposes; each program was assigned a geographic ID that corresponded to respective
277 jurisdictional types of U.S. Census geospatial boundary data, described below), the presence or
278 absence of a state statute that enables or guides TDR ordinances, the program’s name, the ordinance
279 or code section that codifies the program, the year of adoption and termination (if applicable), and
280 the type of TDR program. In some cases, we were unable to locate the ordinance section (6
281 programs) and date of adoption or modification (17 programs). Moreover, data acquisition problems
282 also occurred for programs that had been repealed and removed from codes (and therefore, not

283 included in the regression portion of the analysis in this paper). This limitation could be overcome in
284 future research through additional direct contact with administrators within those jurisdictions,
285 although in some cases local governments did not maintain historical records of program evolution
286 and activity.

287

288 We employed the program typology from Linkous and Chapin (2014), who categorize programs by
289 the types of sending and receiving areas established: conventional, hybrid, and rural. However, we
290 add a fourth category of urban to account for programs aimed at intra-urban transfers, an approach
291 Linkous and Chapin's work on county-level TDR programs for growth management did not
292 include. In this category, *Urban TDR programs* focus on redeveloping urban landscapes and are
293 typically designed to preserve historic landmarks and promote redevelopment.

294

295 *Mapping and co-variate data*

296 To map TDR programs, we joined program information with geospatial boundary data –
297 specifically, the 2017 US Census TIGER/Line boundaries of county, county subdivision, municipal,
298 and census tract boundaries (US Census Bureau 2017b) – based on programs' Federal Information
299 Processing Standard (FIPS) codes (identifying municipality or county). Four of the five regional
300 programs have unique administrative boundaries; geographic boundary data for New Jersey's
301 Highlands and Pinelands, New York's Central Pine Barrens, and the Tahoe region were acquired
302 from agency websites (New Jersey Highlands Council 2020; Pinelands Commission 2020; TRPA
303 2020) or agency contacts (Suffolk County Water Authority and Central Pine Barrens Commission
304 2020). The other regional program, Puget Sound, comprises four participating counties: King,
305 Pierce, Snohomish, and Kitsap.

306

307 To understand the demographic, economic, environmental, and governance factors associated with
308 TDR program establishment, we collected a variety of covariate data (Table 1). Selection of
309 explanatory variables was informed by the framework identified by Linkous et al. (2019), but
310 adapted to the national context based on data availability. For example, we excluded staff planning
311 capacity data since this information is not available for many non-Florida jurisdictions. We drew also
312 on the work of BenDor et al. (2021) that identifies variables associated with water quality trading
313 programs, an environmental market that frequently operates at similar scales and in similar locales to
314 TDR programs. Tract-level population, population change, white population, urban population, and
315 occupied housing units, as well as county-level population, land area, and municipal land area, are
316 drawn from US Census Bureau Decennial Census data acquired via Social Explorer (2000, 2010).
317 Similarly, the US Census Bureau's (2017a) American Community Survey 5-year estimates, acquired
318 via Social Explorer, provide tract-level population with a college degree, seasonal vacant homes,
319 home ownership, housing value, and year-built information.

320 **[Insert Table 1]**

321

322 **Methodology**

323 *Data processing and sampling*

324 TDR programs have non-uniform geographies and vary in the size of the areas they cover, ranging
325 from small townships (e.g., Mount Joy Township, Pennsylvania; 28.02 mi² [72.6 km²]) to multi-
326 county regions (e.g., Puget Sound, Washington). For our overall unit of analysis, we selected US
327 Census tracts (2010 boundaries), which allow for a wide exploration of explanatory variables without
328 sacrificing demographic and geographic specificity.

329

330 All data was summarized to the tract level, using spatial queries from the *sf* package (Pebesma 2018)
331 in the R statistical software (v. 3.6; R Core Team 2019), which was used for all data management and
332 analysis (see Supplementary Material 1 for access to this article's data and analytical code). Most
333 explanatory variables were acquired with a native resolution at the tract-level; data with a native
334 resolution at the state- and county-level were summarized to the tract level using FIPS codes.
335 Location within a municipality was defined by overlaying geospatial Census-designated Place
336 boundaries (subset to only include incorporated municipalities) with tract boundaries; tracts that
337 were covered by a municipality were assigned to that jurisdiction. TDR programs were assigned to
338 tracts using a spatial join query, where only tracts that fall within the boundaries of a program were
339 assigned its attributes. Supplementary Material 2 offers more details on transformations and outlier
340 removal.

341

342 In assigning TDR programs to US Census tracts, it was important that we account for statistical bias
343 affecting our standard error estimator, which could alter our analysis as a result of the spatial
344 clustering of contiguous tracts within a program. To do this, we based our analysis on a 10 percent
345 sample of tracts (stratified by states, each with at least one program; yielding a total of $n=5,874$
346 tracts), a rate that ensures a low probability that clustered tracts can bias our analysis (i.e., we were
347 unlikely to sample a large number of observations from a single TDR program). For our regression
348 analysis, we also removed repeated programs ($n=34$ programs), as well as programs in New York
349 City (11 programs), which are relatively unique in their design and adoption, (NYCPlanning 2015)
350 and generally operate in very tightly-defined sections of the City.

351

352 *Logistic regression*

353 We used standard, binary logistic regression modeling to test whether there is a significant,
354 predictive relationship between our demographic, economic, and environmental covariates and the
355 existence (binary) of a TDR program in the local government that is home to a given Census tract.
356 We tested the fit of these logistic regressions using the model's accuracy (i.e., count- R^2), accuracy
357 over the "no information rate" (i.e., accuracy over a null model, which is useful when dependent
358 variables are unbalanced; Kuhn 2008), and the receiver operating characteristics (ROC) curve
359 (Fawcett 2006).

360

361 The ROC is a graphical curve that displays the true and false positive rates and threshold settings in
362 order to measure the performance of binary classifiers. The area under the ROC curve (AUROC)
363 measures how each classifier compares to a random model in terms of its ability to predict a binary
364 outcome. An AUROC of near 1 indicates a perfect measure of prediction while one near 0 indicates
365 that the model is predicting the opposite result that it should. An AUROC of 0.5 indicates the
366 model cannot separate between the two outcomes. Generally, models that achieve AUROCs over
367 0.75-0.8 are considered strong predictive models (Fawcett 2006).

368

369 **Results**

370 **[Insert Figure 1]**

371 *TDR program inventory*

372 Our census of TDR programs revealed 375 programs (of which 34 have been repealed), spread
373 widely across 38 US states and Washington, D.C. (Figure 1), with clustering in Florida (87
374 programs), California (42), Pennsylvania (37), Washington (29), and New York (26). In terms of
375 scale, these programs primarily operate at the municipal (71.2 percent) and county (27.5 percent)
376 levels, along with five regional programs in New Jersey's Pinelands and Highlands, Long Island's

377 Pine Barrens (New York), Washington's Puget Sound, and California's Lake Tahoe Basin (Figure
378 2a). Among our total database of programs, we identified 67 (17.9%) through our search of
379 municipal code databases (i.e., beyond those identified in Nelson, Pruetz, and Woodruff [2011],
380 Linkous and Chapin [2014], and Pruetz's [2019]; Figure 2b).

381 **[Insert Figure 2]**

382 The heyday for program establishment was largely during the 20-year period between 1992 and
383 2011, when 64.5 percent of all programs were adopted (Figure 2c). This time frame aligns with the
384 planning profession's emphasis on smart growth policy, of which TDR is an emblematic tool
385 (Chapin 2012). In terms of program typology (Figure 2d), *Conventional TDRs* – which focus on
386 preserving agricultural and environmentally sensitive land – are the most prevalent type of program
387 (209), making up 55.7 percent of all identified programs. The dominance of Conventional TDR
388 speaks to the fact that this is the most long-standing approach to the tool. *Hybrid TDRs* – which
389 place an emphasis on compact development in fringe receiving areas – are the second most frequent
390 program type observed, with 80 identified (21.3 percent). *Urban TDRs*, which focus on *redeveloping*
391 urban landscapes and shifting unused development potential entirely within an urban area, account
392 for 60 programs (16.0 percent; all at the municipal scale). *Rural TDRs*, a relatively new form of TDR
393 which seeks to shift development between rural sending and receiving areas to create desirable
394 future development patterns, account for 26 programs (6.9 percent).

395

396 Finally, Figure 2e shows the distribution of both primary and secondary program functions (while
397 we only depict the primary and secondary purposes here, our database contains up to six program
398 justifications). While most programs were established with more than one goal in mind, 32.0 percent
399 of programs highlight environmental/ecological conservation as their primary purpose, while 24.3
400 percent of programs are aimed at farmland preservation. This again relates to the dominance of the

401 original, conventional approach to TDR, which focused on land preservation in rural and
402 environmental areas. Many programs do not have a secondary purpose (30.7 percent); however,
403 among those that do, open space (20.8 percent) and environmental/ecological conservation (18.8
404 percent) are the most commonly cited.

405

406 *Logistic regressions*

407 **[Insert Figure 3]**

408 The results of our logistic regression analysis are shown in Figure 3, which depicts the effects (with
409 confidence intervals) of demographic, economic, political, and environmental factors on the odds of
410 a TDR program existing in a given US Census tract ($n=5,540$ tracts, 334 tracts dropped due to
411 missingness of one or more covariates; Table 2 shows the full regression output table.). A
412 collinearity test revealed no problematic linear relationships between the variables (all variance
413 inflation factors [VIFs] < 4 ; see Supplementary Material 3 and Table S3).

414

415 This model has a nuanced fit to the data; the area under the receiver operator characteristic
416 (AUROC) curve is 0.839, indicating a strong fit to the data (Fawcett 2006). However, while the
417 model's accuracy (87.3 percent) significantly exceeds that of a null model (84.6 percent; $p < 0.001$;
418 proportional t-test), examination of the model's sensitivity (31.9 percent) and specificity (97.4
419 percent) indicates that the model's accuracy varies regarding how well it predicts tracts with and
420 without a TDR program, respectively. We hypothesize that this is largely due to the relatively low
421 proportion of tracts with a TDR program (15.4 percent; $n=855$ tracts).

422

423 While quite a few of the covariates that we test appear to have statistically significant relationships
424 with TDR program existence, most of these relationships are relatively weak. County population

425 (measured in 1000s), jurisdictional land area, home ownership rate, median year of house
426 construction, and race (percentage white population) all have minute relationships with TDR
427 program adoption, with effects on the TDR odds ratio between 0.99 and 1.02, thereby indicating a
428 <2 percent change based on a unit change in any of these independent covariates.

429

430 Our model identifies several variables that are strongly associated with TDR program adoption.
431 First, the presence of the tract in a coastal county (regardless of whether it was in a municipality or
432 not) increases odds of TDR adoption by 44.4 percent. Following Linkous et al. (2019), coastline is
433 used as a measure of valued community environmental attributes, a factor thought to be associated
434 with TDR adoption. Second, we observe a strong, positive relationship between median housing
435 value (measured in 1000s; log transformed) and TDR adoption (OR = 1.968). Although their
436 Florida model did not find a similar relationship, Linkous et al. (2019) predicted that higher housing
437 values would be associated with TDR adoption due to issues of real estate market demand and
438 potential exclusionary dynamics associated with growth management tools.

439

440 Third, our indicator of county-level political ideology (scaled -1 [strongly liberal] to 1 [strongly
441 conservative]; Tausanovich and Warshaw 2013) is strongly, negatively associated with TDR
442 adoption; a neutral (index=0) or strongly conservative (index=1) tract will have 79.5 percent lower
443 odds of a TDR program than a strongly liberal (index=-1) or neutral (index=0) county, respectively.
444 As pointed out by Linkous et al. (2019), market-based instruments are thought to be associated with
445 conservative political ideologies, but growth management and environmental policies are associated
446 with Democratic voters. Our finding suggests that TDR adoption is more politically aligned with
447 liberal contexts.

448

449 Finally, we observed strong relationships to state-level growth management and devolution of
450 governance policies; tracts in states with state-wide growth management policies see a 235.0 percent
451 increase in odds of TDR program adoption. Additionally, tracts in “strong” Dillon’s Rule states –
452 those that do not automatically devolve police power to any local governments – see 43.9 percent
453 lower odds of a TDR program, while tracts in “weak” Dillon’s Rule states – those that devolve
454 policy power authority to some local governments – see a 68.6 percent odds decrease.

455

456 **Discussion and Conclusions**

457 Our survey revealed that US county or local governments have, to date, implemented a total of 375
458 TDR programs, although not all of these remain active. This represents an increase of 63% more
459 programs than Nelson et al.’s (2011) survey revealed a decade ago. However, the total number of
460 programs still represents a small share given the thousands of jurisdictions in the US. In spite of the
461 theoretical benefits of TDR, our research demonstrates that practical application remains limited.
462 This is exacerbated by the apparent decrease in new program adoption since 2007.

463

464 The observed slowdown in TDR adoption may relate to the association of TDR with smart growth,
465 a policy framework that is on the ebb given emerging concerns of climate, energy, and social justice
466 as central to contemporary planning. However, TDR’s potential relevance to issues of flood zone
467 retreat and shifting littoral property rights perspectives may breathe new life into the tool, as is
468 already evident in places like Miami that are experimenting with new adaptation applications for
469 TDR. The recent decline in adoption of TDR may also be explained by market conditions. Given
470 that a strong market for development is necessary to sustain development rights transfers (Pruetz
471 and Standridge 2008), the appeal of TDR programs may have declined with the 2008 financial crisis .
472 However, some anecdotal evidence from Florida, where three local governments identified TDR

473 transactions in the pipeline after years of program stagnation, points to a resurgence in use of the
474 tool as real estate responds to competitive current market conditions.

475

476 We categorized programs according to Linkous and Chapin's (2014) typology of conventional,
477 hybrid, and rural programs, also adding urban programs as a fourth category. Our findings show that
478 TDR programs have remained diverse in their aims, as Nelson et al. (2011) found a decade ago. We
479 also find that programs are most commonly implemented by county and sub-county local
480 governments and are not being widely used as tools for regional growth management. This is also
481 consistent with Nelson et al.'s (2011) findings.

482

483 We turn to a discussion of the role of state context in local government TDR adoption. Nearly 59%
484 of TDR programs (operating and repealed) are in just five states: Florida, California, Pennsylvania,
485 Washington, and New York. A state-level factor strongly associated with TDR adoption is the
486 existence of statewide growth management legislation. Of the five states that boast the majority of
487 TDR programs, two (Florida and Washington) have state growth management programs in place
488 (Anthony 2004). Local jurisdictions in states with growth management legislation were nearly three
489 and a half times as likely to adopt TDR programs than those in states without it. This is
490 unsurprising, and likely stems from the enthusiasm and requirements for action on conservation at
491 various levels of government in states with such legislation. Our analysis also revealed that local
492 governments in "strong" Dillon's Rule states – in which local governments cannot pursue TDR
493 without state enabling legislation or state-specific case law precedents (Nelson et al. 2011) – have a
494 43.9% lower chance of adopting TDR. This effect is also present in "weak" Dillon's Rule states.
495 This is consistent with Linkous et al.'s (2019) finding that home rule was associated with a higher
496 odds of program adoption in Florida.

497

498 The combined findings that TDR adoption is positively associated with state growth management
499 rules and negatively associated with strong Dillon's Rule frameworks suggests that state institutional
500 contexts that encourage or allow use of diverse planning tools foster a more experimental or
501 entrepreneurial local policy environment, one in which innovative tools like TDR are more likely to
502 be used. Of the five states with the highest number of TDR programs, four (FL, WA, PA, NY) are
503 also among the 25 total US states that have had TDR enabling statutes enacted since 2009 or earlier
504 (Nelson et al. 2011). However, three of those five (NY, PA, WA) have fully adopted Dillon's Rule
505 for all municipalities ("strong" Dillon's Rule implementation), and CA has a limited ("weak")
506 implementation of Dillon's Rule. Overall, our research does not present clear guidance about the
507 role of state governance in local government adoption of TDR, except to point to an important role
508 for enabling and growth management legislation.

509

510 We also found that the presence of tracts in coastal counties is strongly associated with TDR
511 program adoption. Linkous et al. (2019) used the coastline variable as a proxy for highly-valued
512 environmental amenities, a factor that may vary from place-to-place. The unique contribution of
513 waterfront land—both from an environmental and community quality of life perspective—is well
514 established and presents some possible explanations. Coastal locales are often subject to coastal
515 conservation legislation, which reduces vulnerability and protects a variety of environmentally
516 sensitive ecosystems around shorelines, estuaries, and wetlands (e.g., Onda et al. 2020; Parsons
517 1992). TDR may be used to support local compliance with coastal protection mandates.
518 Concurrently, coastal locales often derive large shares of their economic revenue from conservation-

519 related tourism and recreation (Kubo et al. 2020; Guo et al. 2017), further incentivizing use of
520 planning strategies that protect vital resources.¹

521
522 Linkous et al. (2019) also hypothesize that coastal areas are also typically more urbanized, and that
523 the increasing sophistication of land management needs and real estate markets in more developed
524 areas may underlie the relationship between coastal communities and TDR. The planning needed to
525 continue to limit development in coastal areas through adaptable tools like TDR will only increase in
526 an era of growing attention to sea level rise and flood risks.

527
528 We next turn to a discussion of the local factors associated with TDR adoption, focusing first on
529 political factors. Our analysis revealed that county-level political orientation plays a large role in
530 determining the odds that local governments implement a TDR program. Under Tausanovich and
531 Warshaw's (2013) index of county government political ideology, which ranges from most liberal at -
532 1 to most conservative at 1, an increase of 1 (i.e. a strong shift towards county government
533 conservatism) is associated with a 79.5% decrease in the odds of TDR program adoption.

534
535 This parallels findings about state growth management programs; while both Republican and
536 Democratic led states have pursued these programs, the first to do so were usually Democratic-
537 leaning states (Anthony 2004). Despite the theoretical appeal of market-based approaches for
538 managing conservation in conservative jurisdictions, it is also notable that previous studies have
539 shown that adoption and success of TDR programs depends on strong local support for
540 conservation in the first place (Pruetz and Standridge 2008; Linkous et al. 2019). An enthusiasm gap

¹ Interestingly, our model found only a very weak relationship between TDR adoption and higher-value agricultural production, another potential indicator of community values around natural resources.

541 between relatively more and less conservative areas when it comes to conservation could explain the
542 relative lack of appeal of TDR programs in more conservative areas. These findings do somewhat
543 conflict with those of Linkous et al.'s (2019), who found that a higher percentage of Republican
544 voters was associated with program adoption in Florida, a finding they attribute to conservative
545 support for market-based instruments. Our analysis was national in scope, and it may well be the
546 case that the relationship of TDR program adoption to political ideology varies somewhat from state
547 to state. Overall, it appears that the political perceptions and palatability around TDR align more
548 closely with liberal growth management regimes rather than conservative, market-centric contexts.

549

550 Finally, we turn to a discussion of the role of local development conditions in TDR adoption.
551 Unsurprisingly, we discovered a strong positive relationship between home values and TDR
552 program adoption. TDR relies on a strong real estate market, which creates developer demand for
553 transferred rights that allow for more development, and incentives sending area landowners to
554 participate by elevating prices through increased demand. However, similar to Linkous, et al. (2019),
555 we also no significant relationships between TDR adoption and local population and population
556 growth rates, lending support to their conclusion that TDR is not used in response to growth
557 pressure.

558

559 The evidence here suggests that growth may not be a sufficient rationale for TDR program
560 adoption, which appears to instead be informed more by the supply and demand dynamics
561 associated with higher housing values. This nuanced relationship of TDR to growth and
562 development dynamics merits additional inquiry.

563

564 Overall, our results point to political support for growth management, unique environmental
565 attributes such as coastal proximity, and the development-driven factor of higher-value real estate
566 values as major drivers of markets for development right transfers. TDR may be best understood as
567 just one more strategy that local governments employ in states and regions that are already
568 supportive of conservation and that are equipped with the legal context and market conditions that
569 support private sector interest in development rights sales.

570

571 **Implications for Future Research**

572 The analysis conducted in this project suggests future opportunities for additional work, particularly
573 geared towards better understanding the propensity of jurisdictions to adopt programs with specific
574 aims (e.g., urban TDR programs vs. traditional TDR programs, or historic preservation vs. managed
575 retreat). Multinomial logistic regression techniques could be used to better understand if program
576 type or goals strongly affect program adoption tendencies. Questions about the political and
577 governance context associated with TDR remain. We also see value in research that can explain the
578 relationship between TDR and higher home values, but the lack of relationship to population
579 growth. If this relationship is causal, it could indicate that TDR programs, like other tools of land
580 use regulation and growth management (Fischel 2005), can have exclusionary and inequitable effects.

581

582 While our dataset has facilitated a broad analysis of TDR program existence, it does not enable us to
583 delve into the specifics of program operations or success once implemented. Future research could
584 use this database as a starting point for examining the extent of transfers taking place, the amount
585 and nature of land preserved, and the development outcomes associated with TDR transactions.

586

587 Finally, our research revealed a need for improved local data collection and tracking of TDR
588 program evolution and transaction activity. Local governments with older programs often indicated
589 limited institutional knowledge of program adoption dates or changes to TDR policies over time.
590 TDR transactions are often not tracked at all by local governments, and those that do track activity
591 do so through a variety of approaches including lists, tabular data, resolutions, deeds, and permits.
592 Several of these approaches to documenting TDR transactions present inconsistent or limited data.
593 For example, the linkages between sending area credits and receiving area credits are often not
594 identified, the prices of credits are often not documented because they occur through private party
595 transactions, and very few programs tag data with geospatial information. These data deficiencies
596 limit the richness of potential research on the tool, but present opportunities by which practitioners
597 and academics can identify process improvements and data collection best practices to create more
598 viable TDR programs moving forward.

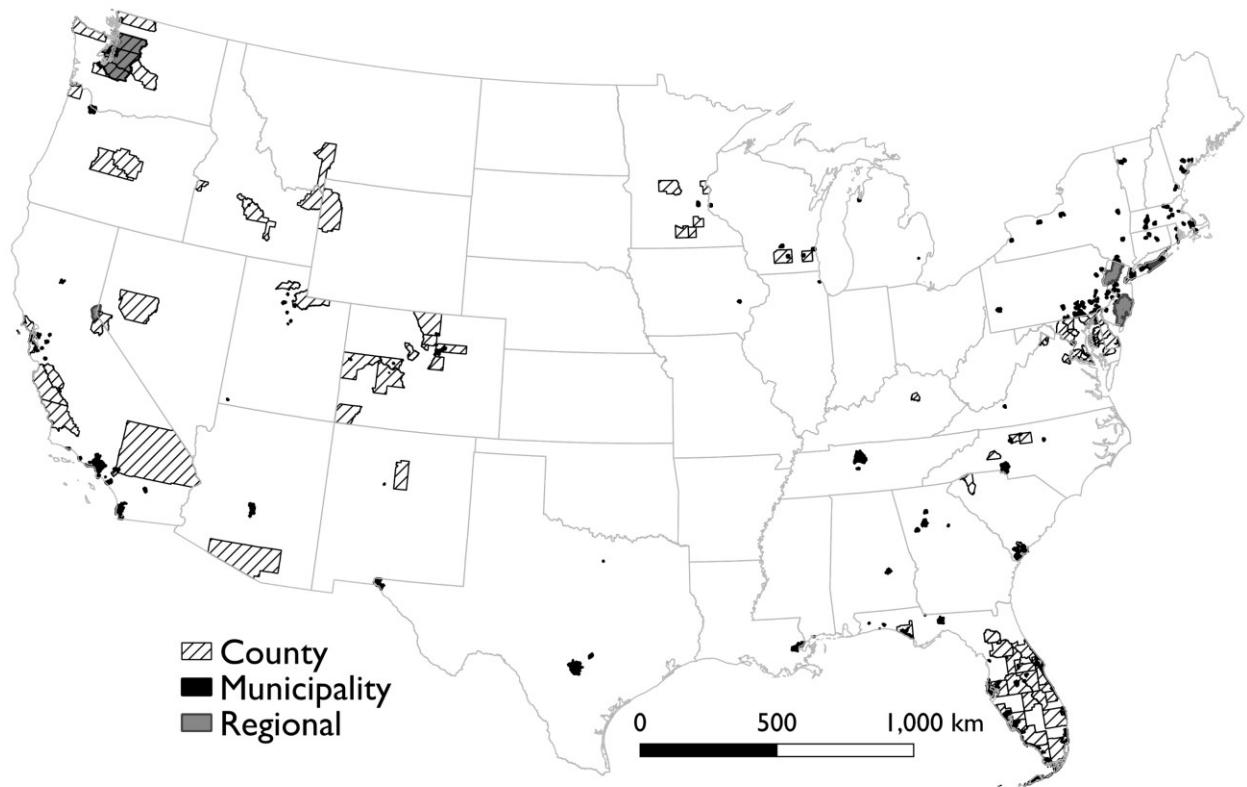
599

600 **References**

- 601 American Legal Publishing. 2020. "Ordinance Codification." Cincinnati, Ohio: American Legal
602 Publishing. <https://www.amlegal.com/codification-services/ord-codification/>
- 603 Anthony, Jerry. 2004. "Do State Growth Management Strategies Reduce Sprawl." *Urban Affairs
604 Review* 39(3): 376-97.
- 605 Been, Vicki, and John Infranca. 2012. "Transferable Development Rights: 'Post-Zoning'?" *Brooklyn
606 Law Review* 78: 435-466.
- 607 BenDor, Todd K., Jordan Branham, Dylan Timmerman*, and Becca Madsen. 2021. Predicting the
608 existence and performance of US Water quality trading programs. *Water* 13: 185
- 609 Boyd, J., D. Burtraw, A. McConnell, V. Krupnick, R. Newell, K. Palmer, J. Sanchirico, and M. Walls.
610 2003. "Trading Cases: Five Examples of the Use of Markets in Environmental and Resource
611 Management." In *The RFF Reader in Environmental and Resource Policy*, edited by Wallace E.
612 Oates, 37:56–65. Washington, D.C.: Resources for the Future.
- 613 Brandywine Conservancy. (2014). "Brandywine Creek Greenway Strategic Action Plan:
614 Implementation Tool Kit." Chadds Ford, PA: Brandywine Conservancy
615 [https://www.brandywine.org/sites/default/files/media/Strategic%20Action%20Plan%20P
art%203%20-%20Tool%20Kit.pdf](https://www.brandywine.org/sites/default/files/media/Strategic%20Action%20Plan%20P
616 art%203%20-%20Tool%20Kit.pdf)
- 617 Chapin, Tim. 2012. "Introduction: From Growth Controls, to Comprehensive Planning, to Smart
618 Growth: Planning's Emerging Fourth Wave." *Journal of the American Planning Association* 78(1):
619 5-15.
- 620 Code Publishing. 2020. "Customers by Municipality." Seattle, WA: Code Publishing.
621 <https://www.codebook.com/listing/>
- 622 Dales, Jon Harkness. 1968. *Pollution, Property and Prices*. Toronto: University of Toronto Press
- 623 Fawcett, Tom. 2006. "An Introduction to ROC Analysis". *Pattern Recognition Letters* 27(8): 861–874.

- 624 Fischel, W. 2005. *The Homeroverter Hypothesis*. Cambridge, MA: Harvard University Press.
- 625 Fulton, William et al. 2004. "TDRs and other market based land mechanisms: How they work and
626 their role in shaping metropolitan growth." Washington, DC: Brookings Institution.
- 627 https://www.brookings.edu/wp-content/uploads/2016/06/20040629_fulton.pdf.
- 628 Guo, Zhimei, Derrick Robinson, and Diane Hite 2017.. "Economic Impact of Mississippi and
629 Alabama Gulf Coast Tourism on the Regional Economy." *Ocean & Coastal Management* 145:
630 52–61. <https://doi.org/10.1016/j.ocecoaman.2017.05.006>.
- 631 Hagman, D. G., & Mischynski, D. J. 1978. *Windfalls for wipeouts*. Chicago, IL: American Society
632 Planning Association.
- 633 Hamstead, Zoe, and Todd BenDor. 2010. "Over-Compliance in Water Quality Trading Programs:
634 Findings from a Qualitative Case Study in North Carolina." *Environment and Planning C:
635 Government and Policy* 28: 1–17.
- 636 Kaplowitz, Michael D., Patricia Machemer, and Rick Pruetz. 2008. "Planners' experiences in
637 managing growth using transferable development rights (TDR) in the United States." *Land
638 Use Policy* 25: 378-387.
- 639 Kelsey H, Dwayne E. Porter, Geoffrey I. Scott, Matthew J. Neet, David L. White. (2004). "Using
640 geographic information systems and regression analysis to evaluate relationships between
641 land use and fecal coliform bacterial pollution." *Journal of Experimental Marine Biology and
642 Ecology* 298 (2):197–209
- 643 Kubo, Takahiro, Shinya Uryu, Hiroya Yamano, Takahiro Tsuge, Takehisa Yamakita, and Yoshihisa
644 Shirayama. 2020. "Mobile Phone Network Data Reveal Nationwide Economic Value of
645 Coastal Tourism under Climate Change." *Tourism Management* 77: 104010.
646 <https://doi.org/10.1016/j.tourman.2019.104010>.

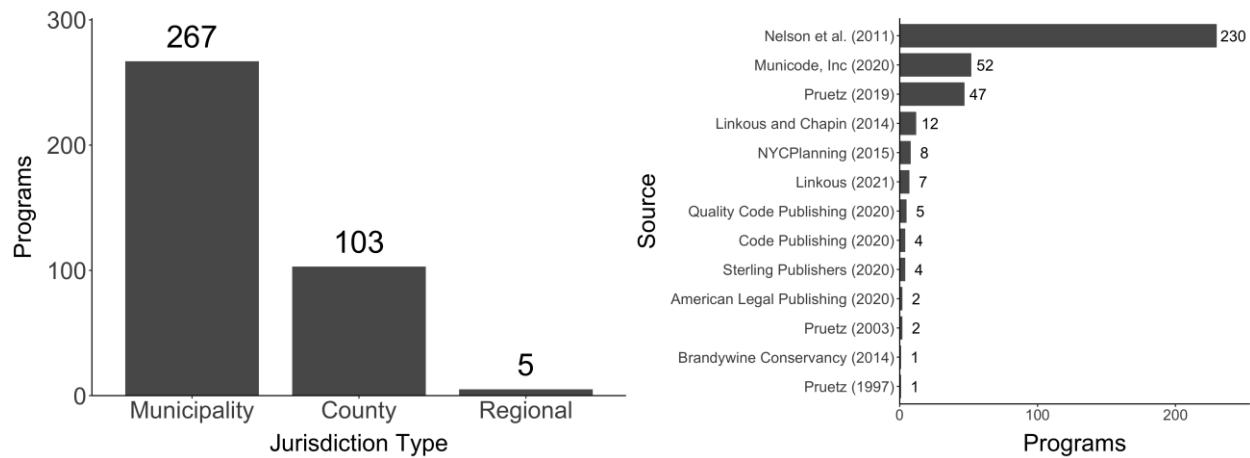
- 647 Kuhn, Max. 2008. "Building Predictive Models in R Using the Caret Package." *Journal of Statistical*
648 *Software* 28 (5): 1–26. <http://dx.doi.org/10.18637/jss.v028.i05>.
- 649 Levinson, Arik. 1997. "Why oppose TDRs?: Transferable development rights can increase overall
650 development." *Regional Science and Urban Economics* 27: 283-296.
- 651 Linkous, Evangeline R. 2016. "Transfer of development rights in theory and practice: The
652 restructuring of TDR to incentivize development." *Land Use Policy* 51: 162-171.
- 653 Linkous, Evangeline R. 2017. "Transfer of Development Rights and Urban Land Markets."
654 *Environment and Planning A* 49 (5): 1122–1145.
- 655 Linkous, Evangeline R., Lucie Laurian, and Stephen Neely. 2019. "Why do counties adopt transfer
656 of development rights programs?" *Journal of Environmental Planning and Management* 62(13):
657 2352-2374.
- 658 Linkous, Evangeline R. and Timothy S. Chapin. 2014. "TDR Program Performance in Florida."
659 *Journal of the American Planning Association* 80(3): 253-267. DOI:
660 10.1080/01944363.2014.985697
- 661 Machemer, Patricia, and Michael Kaplowitz. 2000. "Transferable Development Rights: A Market-
662 Based Land Use Control." In *Property Rights, Economics, and the Environment*, edited by Michael
663 D. Kaplowitz, 143-174. Stamford: JAI Press.
- 664 Machemer, Patricia, and Michael Kaplowitz. 2002. "A Framework for Evaluating Transferable
665 Development Rights Programmes." *Journal of Environmental Planning and Management* 45 (6):
666 773-795.
- 667 Mansfield ER, Helms BP. (1982). "Detecting multicollinearity." *The American Statistician* 36 (3):158
- 668 McConnell, Virginia, and Margaret Walls. 2009. "Policy monitor: Transferable development rights."
669 *Review of Environmental Economics and Policy* 3 (2): 288-303.

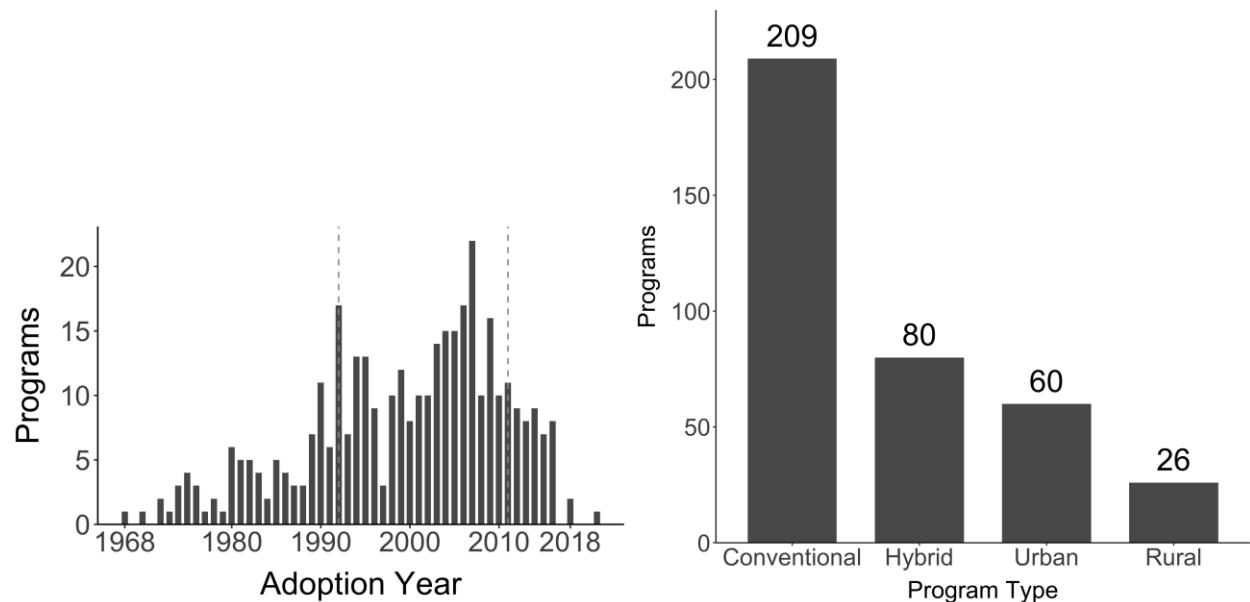

- 670 MIT Election Data and Science Lab. 2018. “U.S. President Precinct-Level Returns 2016” (dataset).
- 671 Harvard Dataverse. Accessed June 1, 2020. <https://doi.org/10.7910/DVN/LYWX3D>
- 672 Municode. 2019. “Code Library.” Tallahassee, FL: Municode. <https://library.municode.com/>.
- 673 National Agricultural Statistics Service (NASS). 2015. “Ag Census Web Map.” Washington D.C:
- 674 U.S. Department of Agriculture (USDA). Accessed March 1, 2020.
- 675 <https://www.nass.usda.gov/AgCensus/index.php>.
- 676 Nelson, Arthur C., et al. 2011. *The TDR Handbook: Designing and Implementing Transfer of Development*
- 677 *Rights Programs*. Island Press. ProQuest Ebook Central,
- 678 <http://ebookcentral.proquest.com/lib/unc/detail.action?docID=3317535>.
- 679 New Jersey Highlands Council. 2020. “Interactive Maps and GIS Data” (dataset). New Jersey
- 680 Highlands Council. Accessed March 1, 2020. <https://www.nj.gov/njhighlands/gis/>.
- 681 NOAA Office of Coastal Management. 2018. “Coastal Counties” (dataset). National Oceanic and
- 682 Atmospheric Administration. Accessed June 1, 2020.
- 683 <https://inport.nmfs.noaa.gov/inport/item/54371>
- 684 NYCPlanning. 2015. “A Survey of Transferable Development Rights Mechanisms in New York
- 685 City.” New York, NY: Department of City Planning.
- 686 Onda, Kyle, Jordan Branham, Todd K. BenDor, Nikhil Kaza, and David Salvesen. 2020. “Does
- 687 Removal of Federal Subsidies Discourage Urban Development? An Evaluation of the US
- 688 Coastal Barrier Resources Act.” PLOS ONE 15 (6): e0233888.
- 689 <https://doi.org/10.1371/journal.pone.0233888>.
- 690 Parsons, George R. 1992. “The Effect of Coastal Land Use Restrictions on Housing Prices: A
- 691 Repeat Sale Analysis.” Journal of Environmental Economics and Management 22 (1): 25–37.
- 692 [https://doi.org/10.1016/0095-0696\(92\)90017-Q](https://doi.org/10.1016/0095-0696(92)90017-Q).

- 693 Pebesma, Edzar. 2018. "Simple Features for R: Standardized Support for Spatial Vector Data." *The*
694 *R Journal* 10 (1): 439–46.
- 695 Pinelands Commission. 2020. "Pinelands Interactive Map." State of New Jersey Pinelands
696 Commission. Accessed March 1, 2020.
697 <https://nj.gov/pinelands/home/maps/interactivemap/>.
- 698 Pruetz, Rick. 1997. *Saved By Development: Preserving Environmental Areas, Farmland and Historic Landmarks*
699 *With Transfer of Development Rights*. Burbank, CA: Arje Press.
- 700 Pruetz, Rick. 2003. *Beyond Takings and Givings: Saving Natural Areas, Farmland, and Historic Landmarks*
701 *with Transfer of Development Rights and Density Transfer Charges*. Burbank, CA: Arje Press.
- 702 Pruetz, Rick. 2019. "TDR Updates". Smart Preservation. <http://smartpreservation.net/tdr-updates/>.
- 703 Pruetz, Rick, and Noah Standridge. 2008. "What makes transfer of development rights work?
704 Success factors from research and practice." *Journal of the American Planning Association* 75 (1):
705 78-87.
- 706 Quality Code Publishers. 2020. "Online Codes." Seattle, WA: Quality Code Publishers.
707 <https://www.qcode.us/contact.html>
- 708 R Core Team. 2019. R: A Language and Environment for Statistical Computing (version 3.6.0).
709 Vienna, Austria: R Foundation for Statistical Computing.
- 710 Richardson Jr., Jesse J., Meghan Zimmerman Gough, and Robert Puentes. 2003. "Is Home Rule the
711 Answer? Clarifying the Influence of Dillon's Rule on Growth Management." Washington
712 D.C: The Brookings Institution Center on Urban and Metropolitan Policy.
- 713 Schneider, Daniel. 2019. "They're Back: Municipal Responses to the Resurgence of Bed Bug
714 Infestations." *Journal of the American Planning Association* 85 (2): 96–113.

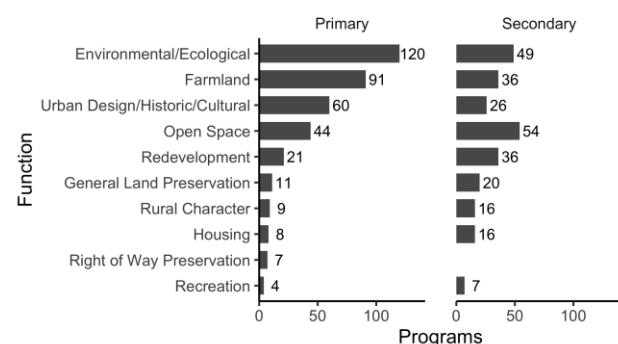
- 716 Shahab, S., Clinch, J.P. and O'Neill, E., 2018. Estimates of transaction costs in transfer of
717 development rights programs. *Journal of the American Planning Association*, 84(1), pp.61-75.
- 718 Shahab, S., Clinch, J.P. and O'Neill, E., 2019. An analysis of the factors influencing transaction costs
719 in transferable development rights programmes. *Ecological Economics*, 156, pp.409-419.
- 720 Sterling Codifiers. 2020. "Codes by Municipality." Sterling Codifiers: Weiser, Idaho.
721 <https://www.sterlingcodifiers.com/#codes>
- 722 Suffolk County Water Authority, and Central Pine Barrens Commission. 2020. "Central Pine
723 Barrens Unofficial Draft Boundaries" (dataset). New York Central Pine Barrens
724 Commission. Accessed March 15, 2020.
- 725 Tahoe Regional Planning Association (TRPA). 2020. "Maps and Spatial Data" (dataset). Tahoe
726 Regional Planning Agency. <https://www.trpa.org/maps/?highlight=data>.
- 727 U.S. Census Bureau. 2000. "Total Population (2000 on 2010 Geographies)" (dataset). *2000 Census*.
728 Prepared by Social Explorer. Accessed April 15, 2020.
729 <https://www.socialexplorer.com/tables/RC2000>.
- 730 U.S. Census Bureau. 2010. "Total Population, Population Density, and Land Area" (dataset). *2010
731 Census*. Prepared by Social Explorer. Accessed April 15, 2020.
732 <https://www.socialexplorer.com/tables/C2010>.
- 733 U.S. Census Bureau. 2017a. "Median Year Structure Built, Median House Value for All Owner-
734 Occupied Housing Units, Vacancy Status, Occupancy Status, Educational Attainment for
735 Population 25 Years and Over." *2017 American Community Survey (ACS)*. Prepared by Social
736 Explorer. Accessed April 15, 2020. https://www.socialexplorer.com/tables/ACS2017_5yr
- 737 U.S. Census Bureau. 2017b. "TIGER/Line Shapefiles" (dataset). U.S. Census Bureau. Accessed
738 March 1, 2020. <https://www.census.gov/cgi-bin/geo/shapefiles/index.php>.

- 740 USEPA. 2013. "Smart Location Mapping: Interactive Maps and Data for Measuring Location
741 Efficiency and the Built Environment (version 2.0)" (dataset). Washington D.C: US
742 Environmental Protection Agency. Accessed March 1, 2020.
743 <https://www.epa.gov/smartgrowth/smart-location-mapping>.
744 Wright, John B. and Robert J. Czerniak. 2000. "The rising importance of voluntary methods of land
745 use control in planning." *Journal of Planning Education and Research* 19 (4): 419-423.
746
747

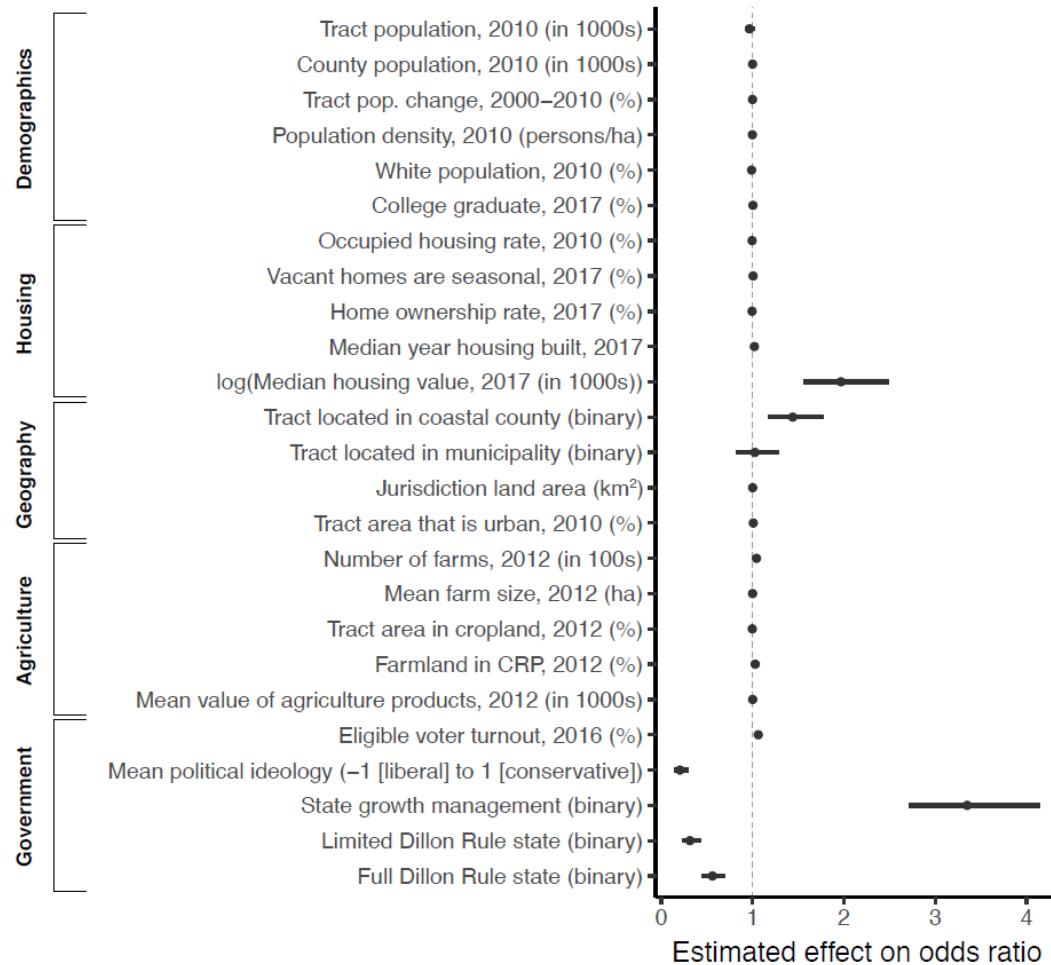

748 **Figure 1.** Map of US transfer of development rights (TDR) Programs (n=375)


749

750


751 **Figure 2.** Transfer of development rights (TDR) program jurisdictional types/scales (a), literature
 752 and database sources (b), adoption years (c), typologies (d), and primary/secondary functions (e).

753



754

755

756 **Figure 3.** Logistic regression depicting the effects of demographic, economic, and environmental
757 factors on the odds ratios (OR) of transfer of development rights (TDR) program existence.
758 ($n=5,540$ tracts).

759

760

761 **Table 1.** Data and data sources. Notes: ACS indicates the U.S. Census Bureau's American
 762 Community Survey 5-year estimates (2017). NASS indicates the USDA's National Agricultural
 763 Statistics Service (2015). "Tracts" indicates US Census tract boundaries (2010)

Variable	Variable description	Native resolution	Source	
Demographics	Tract population (2010, and 2000-2010 % change)	Total population for 2000 and 2010 used to calculate percentage change in population, former adjusted for interpretability (divided by 1000)	Tracts	US Census Bureau, Decennial Census (2000; 2010)
	County population, 2010 (in 1000s)	Total county population for 2010, adjusted for interpretability (divided by 1000)	County	US Census Bureau, Decennial Census (2000; 2010)
	Population density, 2010 (persons/ha)	Calculated as the number of people per hectare (Derived from SLD variables: 2010 population [US Decennial Census] & total land area in acres [US Census, Navteq Water and Oceans])	Data summarized by SLD to tracts	EPA Smart Location Database (SLD; 2013)
	White population, 2010 (%)	Percentage of the total population that is white	Tracts	US Census Bureau, Decennial Census (2010)
	College graduate, 2017 (%)	Percentage of the population 25 years and over that has a bachelor's degree or higher	Tracts	US Census Bureau, ACS (2017)
Housing	Occupied housing rate, 2010 (%)	Percentage of total housing units that are occupied	Tracts	US Census Bureau, Decennial Census (2010)
	Vacant homes are seasonal, 2017 (%)	The percentage of vacant homes that are used for seasonal, recreational, or occasional use	Tracts	US Census Bureau, ACS (2017)
	Home ownership rate, 2017 (%)	Percentage of non-vacant housing units that are owner occupied	Tracts	US Census Bureau, ACS (2017)
	Median year housing built, 2017	Median year housing was built	Tracts	US Census Bureau, ACS (2017)
	log (Median housing value, 2017 (in 1000s))	Median value of housing in 1000s (USD), adjusted for interpretability (divided by 1000) and log transformed	Tracts	US Census Bureau, ACS (2017)
Geography	Tract located in coastal county (binary)	Binary variable indicating whether tract is in a county that shares at least one border with the coast or an estuary	County	NOAA Office of Coastal Management (2018)
	Tract located in municipality (binary)	Binary variable indicating whether the tract is located within an incorporated municipality	Tract	U.S. Census Bureau TIGER/Line Shapefiles (2017)
	Jurisdiction land area (km ²)	If tract is located in municipality, the land area of the municipality; if located outside a municipality, the land area of the county	Municipality / County	US Census Bureau, Decennial Census (2010)
	Tract area that is urban, 2010 (%)	Population living in urbanized area (50,000 or more people) divided by the total tract population	Tract	US Census Bureau, Decennial Census (2010)
Agriculture	Number of farms, 2012 (in 100s)	Total number of farms, adjusted for interpretability (divided by 100)	County	NASS (2015)
	Mean farm size, 2012 (ha)	Average amount of hectares of land in farms	County	NASS (2015)
	Tract area in cropland, 2012 (%)	Percentage of total tract land area used for the production of crops	County	NASS (2015)
	Farmland in CRP, 2012, (%)	Percentage of farmland enrolled in the Conservation Reserve, Wetlands Reserve, Farmable Wetlands, or Conservation Reserve Enhancement Programs	County	NASS (2015)

	Mean value of agriculture products, 2012 (in 1000s)	Average value of agricultural products sold per farm, in 2012 US dollars, divided by 1,000 to improve interpretability.	County	NASS (2015)
Government	Eligible voter turnout, 2016 (%)	Total votes cast in 2016 presidential election, divided by the total voting age population	County	MIT Election Data and Science Lab (2018)
	Mean political ideology	Study estimated average policy preferences of constituencies using multilevel regression with post-stratification (MRP); ideology scores range from -1 (liberal) to 1 (conservative).	County	Tausanovitch and Warshaw (2013)
	State growth management (binary)	Binary variable indicating whether state has a growth management program or legislation	State	Richardson, Jr., Gough, and Puentes (2003)
	Dillon's Rule (limited/full) [two binary variables]	Three-level categorical variable indicating whether state has fully adopted Dillon's Rule (2), adopted it for some types of local government (1), or it is not a Dillon Rule state (0)	State	Richardson, Jr., Gough, and Puentes (2003)

764

765

766 **Table 2:** Full output of logistic regression depicting the effects of demographic, economic, and
 767 environmental factors on the odds ratios (OR) of transfer of development rights (TDR) program
 768 existence. (n=5,540 tracts). AUROC indicates the area under the receiver operator characteristic
 769 curve.

		OR [95% interval]
Demographics	Tract population, 2010 (in 1000s)	0.967 [0.917; 1.019]
	County population, 2010 (in 1000s)	1.000 [1.000; 1.000]***
	Tract population change, 2000-2010 (%)	1.000 [0.996; 1.003]
	Population density, 2010 (persons/ha)	0.998 [0.995; 1.001]
	White population, 2010 (%)	0.990 [0.985; 0.994]***
	College graduate, 2017 (%)	1.004 [0.997; 1.012]
Housing	Occupied housing rate, 2010 (%)	0.996 [0.984; 1.007]
	Vacant homes are seasonal, 2017 (%)	1.006 [1.002; 1.010]***
	Home ownership rate, 2017 (%)	0.995 [0.990; 1.000]**
	Median year housing built, 2017	1.020 [1.013; 1.027]***
Geography	log (median housing value, 2017 (in 1000s))	1.963 [1.561; 2.477]***
	Tract located in coastal county (binary)	1.444 [1.171; 1.781]***
	Tract located in municipality (binary)	1.022 [0.814; 1.283]
	Jurisdiction land area (km ²)	1.001 [1.001; 1.002]***
Agriculture	Tract area that is urban, 2010 (%)	1.009 [1.005; 1.013]***
	Number of farms, 2012 (in 100s)	1.043 [1.035; 1.052]***
	Mean farm size, 2012 (ha)	1.001 [1.000; 1.001]***
	Tract area in cropland, 2012 (%)	0.997 [0.989; 1.005]
	Farmland in CRP, 2012 (%)	1.029 [0.983; 1.075]
	Mean value of agriculture products, 2012 (in 1000s)	1.001 [1.001; 1.002]***
Government	Eligible voter turnout, 2016 (%)	1.062 [1.051; 1.074]***
	Mean political ideology (-1 [liberal] to 1 [conservative])	0.205 [0.139; 0.301]***
	State growth management (binary)	3.356 [2.721; 4.150]***
	Limited Dillon's Rule state (binary)	0.314 [0.227; 0.431]***
	Full Dillon's Rule state (binary)	0.559 [0.449; 0.695]***
	Intercept	0.000 [0.000; 0.000]***
AUROC		0.840
Log Likelihood		-1773.317

770
 771