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Dedicated loader proteins play essential roles in bacterial DNA replication by
opening ring-shaped DnaB-family helicases and chaperoning ssDNA into a central motor
chamber as a prelude to DNA unwinding. Although unrelated in sequence, the E. coli
DnaC and bacteriophage A P loaders feature a similar overall architecture: a globular
domain linked to an extended lasso/grappling hook element, located at their amino and
carboxy termini, respectively. Both loaders remodel a closed DnaB ring into nearly
identical right-handed open conformations. The sole element shared by the loaders is a
single alpha helix, which binds to the same site on the helicase. Physical features of the
loaders establish that DnaC and A P evolved independently to converge, through

molecular mimicry, on a common helicase opening mechanism.
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Specialized Factors Load the DnaB Bacterial Replicative Helicase onto the

Replication Origin

The regulated loading of ring-shaped hexameric helicases onto chromosomal
origins is an essential feature of DNA replication in all cellular domains of life [1-3].
Helicase deposition requires specialized factors known as helicase loaders, which
operate during the initiation of DNA replication [4—-8]. In bacteria, several helicase loaders
have been studied, including Escherichia coli (E. coli) DnaC [4], bacteriophage A P,
Bacillus subtilis (B. subtilis) Dnal [5], and DciA/DopE, a recently described class of
proteins which appear in bacteria that lack orthologs of DnaC or Dnal [6,7,9]. Helicase

loading is also critical to assembly of eukaryal and archaeal replisomes [1,2,8].

The assembly of the bacterial replicative helicase (Figure 1), which is known as
DnaB in most bacteria or DnaC in B. subtilis (henceforth called DnaB), onto origin DNA
occurs during the initiation phase of DNA replication [8,10-14]. Our view of replication
initiation in bacteria is informed by studies with primary and secondary chromosomes of
bacteria, plasmids, and phages [15-27], and have implied the involvement of four classes
of factors (Table 1): 1) a DNA sequence called a replication origin, where DNA synthesis
will begin [13,20,28,29], 2) a replication initiator protein (E. coli: DnaA [10,12,30-32], V.
cholerae: DnaA, RctB [18,21,23,25,33-37], plasmids: RepE, Pi, TrfA [38—40], phage
lambda (A): O [41-49]), 3) a DnaB-family replicative helicase [4,12—-14,50], and, finally, 4)
a helicase loader (E. coli: DnaC [4,10,16,51-55], phage A: P [43,45-48,56-59], V.
cholerae: DciA [6,9]). The multi-step process for initiating DNA replication begins with the

recognition and binding of multiple copies of the initiator protein to dsDNA sites at the
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replication origin; once bound, initiator proteins associate into a complex protein-DNA
ensemble [4,10,12,19,31,60,61]. One of the outputs of the initiation phase of DNA
replication is the melting of an A-T rich segment of the replication origin termed the DNA
unwinding element (DUE) by the DnaA or the A O initiator proteins [13,30,31], an event
that provides single DNA strands (ssDNA) as substrates for DnaB loading. DnaB
hexamers assemble into two-tiered rings formed by the amino (NTD) and carboxy-
terminal domains (CTD) of the helicase; a so-termed ‘linker helix’ element (LH) connects
these domains and packs against another alpha helix, termed the docking helix (DH), of
a neighboring DnaB subunit to give rise to a domain-swapped oligomer [62—64] (Figure
2). The two DnaB tiers circumscribe an internal chamber into which one of the ssDNA
strands from the replication origin will be loaded. One layer is formed out of six NTDs,
which assemble into two different ‘trimer-of-dimers’ configurations that display pseudo-
three-fold symmetry. These arrangements arise from alternative packing orientations for
NTD dimers, which create several types of subunit interfaces of likely varying stability
[62,65]. The CTD tier assembles out of six C-terminal domains (CTD) of DnaB, each of
which harbors a RecA-like ATPase domain. In contrast to the NTD, the CTD layer

exhibits a pseudo-six-fold arrangement, with a single type of interface.

Helicase loading onto ssDNA can be conceptually divided into four stages (Figure
1). During assembly, DnaB transitions between three conformations: closed planar, open
right-handed spiral, and closed right-handed spiral [62-68]. In addition, the NTD and
CTD layers of each of these conformers are found in one of two arrangements: dilated or
constricted (Figures 2A-2B); these conformers differ on inter-protomer contacts. The

isolated hexameric helicase, in both dilated and constricted closed-planar configurations,
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populates Stage |I. Formation of the helicase*helicase loader complex leads to Stage II,
while engagement of the helicase+loader complex with origin-derived ssDNAcinitiator
(DnaA or A O) populates Stage Ill. The ATPase and ssDNA translocation activities of the
helicase are suppressed during these latter two stages [56,58,69-71], with the
DnaA/replication origin complex also playing a role in loading or positioning the
helicase/loader complex using direct contacts between DnaA and DnaB [69-71] (the
involvement of contacts between other bacterial replication initiators and DnaB remains
to be clarified). Recently, cryogenic electron microscopy (cryo-EM) analyses of two
distinct bacterial helicasesloader complexes (E. coli DnaB+sDnaC and E. coli DnaB+AP,
Figure 1: Stages llI-lll, and Figure 3) have shown that the helicase adopts an open right-
handed spiral configuration, promoted, and stabilized by interactions with the helicase
loaders [65,68]. The transition to Stage IV is accompanied by eviction of the loader and
initiator from the complex on DNA, which relieves inhibition of DnaB’s activities. Notably,
in Stage lll, the configuration of the DnaB-bound loader is nearly identical to the closed

spiral form seen in the loader-free helicase of Stage IV [65,67].

Helicase loading in bacteria occurs by one of at least two reported mechanisms
[72], termed: a) ring breaking, where DnaB hexamers are physically opened [73], and b)
ring making, in which hexamers are assembled [5]. It is now clear that both E. coli DnaC
and phage A P are ring breakers: each loader binds to and delivers a pre-formed helicase
hexamer to its cognate origin [4,43,45-47,56,58,74]. DnaC and A P are similar in that
both are essential for their respective organisms and both bind to ssDNA [56,58,75-77].
A P also can displace DnaC from E. coli DnaB, implying that their respective binding sites

overlap [58,74]. These congruencies might imply a common ancestry; however, DnaC
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and AP are unrelated in sequence and enzymatic function (e.g., DnaC is a known ATPase
[10,53,75-77], whereas A P is not [78]). Moreover, although each loading system requires
ejection of the loader from the DNA complex for DnaB to transition to the translocation-
competent form, eviction occurs by distinct mechanisms. For DnaC, nucleotide dynamics
in its AAA+ ATPase domain, along with RNA synthesis by the DnaG primase, are
significant features in eviction [10,52,53,76,77,79]. By contrast, removal of A P requires
the host DnaK/DnaJ/GrpE chaperone machinery [31-34]. Helicase loading is also a
feature during restart of DNA replication after it has prematurely been halted in response
to DNA damage and involves a distinct set of proteins (PriA, PriB, PriC, and DnaT); the
reader is referred to the literature for a more complete treatment of helicase loading during

replication restart [80-82].

Here, we compare recent structures of two bacterial helicase loaders: E. coli DnaC
[65] and phage A P [68] bound to the same E. coli DnaB helicase (Figure 3). This
comparison provides an opportunity to understand the mechanisms of the two loaders
and to extract central principles associated with DnaB opening and loading onto ssDNA.
A recent crystal structure of the interaction domains of DnaB and DnaC [83] comports
with the EM analyses of the complete complexes. A new study of DciA<DnaB interactions
also points to some conserved elements of helicase opening in this system as well [9].
Further study will be required to establish the mechanistic relationships, if any, between
the DciA and B. subtilis Dnal/DnaB/DnaD loaders [5,84,85] and the better understood E.

coli DnaC [65] and A P [68] systems.
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Though unrelated by sequence and fold, E. coli DnaC and A P exhibit analogous

global architectures

Inspection of the E. coli DnaB+DnaC (BC) and the E. coli DnaB+phage A P (BP)
complexes shows that the two loaders engage the carboxy-terminal (CTD) ATPase
surface of DnaB to form a three-layered ensemble [65,68,83]. One layer corresponds to
an oligomeric form of the helicase loader (hexameric for DnaC and pentameric for A P),
while the second and third correspond to the NTD and CTD tiers of DnaB (Figures 3A-
B). Although six copies of DnaC are present in the E. coli BC complex and five A P
protomers are found in the BP assembly, the stoichiometries seen in the cryo-EM
structures do not necessarily preclude the possibility that complexes with fewer copies of
the loader might be active in supporting helicase loading. Significantly, each loader
adopts a distinct and unrelated structure, yet the monomers of both exhibit a similar
overall architecture: a globular domain fused to an extended segment that forms a

lasso/grappling hook element (Figures 3C-D).

The globular domain of DnaC consists of an AAA+ ATPase module that is fused
to a ~75 residue N-terminal segment (Figure 3C)[65,83]. The amino-terminal segment
of DnaC consists of a long a-helix that extends along the CTD of a DnaB protomer and
initiates from a helix-loop-helix element that packs against the LH linker helix from one
DnaB subunit and the DH docking helix from another. Notably, the N-terminal segment
provides the only contacts between DnaC and the DnaB helicase. The six copies of the
globular DnaC AAA+ domain assemble into an open spiral like that seen in related
ATPases such as DnaA and archaeal/eukaryal MCM helicases [86—92]. In the absence

of ssDNA, five of the six nucleotide-binding sites in DnaC are populated with an ATP
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analog (ADP-<BeF3), whereas the sixth (which sits at the gap in the DnaC spiral) engages
ADP, likely because its catalytic center lacks important functional contacts from a
neighboring protomer. Rationalizing this arrangement of nucleotides is the prior finding
that the ATP form of DnaC suppresses DnaB’s helicase activity and as it stabilizes the

ssDNA complex [52].

For the A P loader, only the C-terminal ~125 residues were resolved in EM density
maps [68]. This region consists of an a-helical globular domain fused to an extended
segment of ~45 residues (Figure 3D). The A P extension forms a sub-structure
analogous to, but distinct from, that seen in DnaC [65,83], terminating in a single a-helix
that packs against the LH and DH elements of two adjacent subunits of DnaB. Both the
globular domain and the grappling hook/lasso segment of A P contact two consecutive
subunits of the DnaB hexamer. These interactions are repeated in the five copies of A P
in the BP complex to create an open helical arrangement of loaders; the breached
interface of the DnaB hexamer precludes binding of a sixth copy of A P. The low resolution
(4.1 A) of the BP EM maps in the region of the loader limits analysis of interfaces between
A\ P protomers; nevertheless, an extensive interface between the five A P protomers does

not appear to form.

E. coli DnaC and phage AP reconfigure DnaB into an open right-handed spiral

Despite their evolutionarily distinct structures and contacts with DnaB, both DnaC
and A P reconfigure the helicase into highly similar, open-spiral configurations (root mean

square deviation (RMSD) of ~2.2 A, calculated from 2611 Co positions that span the
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DnaB hexamer) [65,68]. The DnaB NTDs also both adopt a constricted configuration,
albeit with a spiral (as opposed to planar) shape that bears a split between one of the
subunit interfaces. The similarity between DnaB in the two loader complexes is also
evident from the average helical pitch and twist values of the open spirals in both the NTD
(~2.8 A and 60.0° for BC vs. ~2.6 A and 59.9° for BP) and CTD layers (~19.3 A and
~55.3° for BC vs. ~16 A and ~56° for BP). Changes induced by each loader rupture one
of the DnaB subunit interfaces at both the NTD and CTD layers to create openings (15-

20 A) of sufficient size to allow ssDNA access to the internal chamber.

Changes to the helical pitch and twist of the DnaB hexamer within each loader
complex combine to alter the configuration of the ssDNA-binding site in the helicase.
Superposition of DnaB from each loader complex reveals significant changes in the
position of DNA binding residues in comparison to that when DnaB is bound to ssDNA
(Figure 4) [65]. When bound to ssDNA and the loader, the CTD of each DnaB protomer
projects three residues (E. coli: R403, E404, G406) on a DNA binding loop into the
helicase pore to contact ssDNA. In the loader-only complexes, reconfiguration of the
CTD layer shifts the positions of the alpha-carbons of these residues by ~10-30 A (in BC)

or ~5-20 A (in BP).

The disposition and nucleotide occupancy of the six RecA-type ATPase sites in
DnaB are also altered in the complexes with DnaC and A P [65,68]. ATPase activity by
DnaB relies on ‘composite’ nucleotide binding sites, wherein residues from two adjacent
subunits contribute to a single catalytic center [63,64,67,93]. In both helicase*loader
complexes, five of the six ATPase sites in DnaB are occupied by ADP, while the sixth,

which sits at the breach in the CTD ring, is vacant; when bound to just ssDNA, this
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constellation of sites are filled with a nucleoside triphosphate analog (ADP+BeF3) instead.
The alterations in CTD orientation appear to have remodeled the five ADP-filled sites of
the loader-bound helicase into non-optimal catalytic configurations as well, although the

resolution of the structures prevents a more precise evaluation of these changes [65,68].

Two distinct helicase loader complexes with a shared function

The BC and BP complexes reveal how the evolutionarily distinct structural
elements of DnaC and A P converged on a common helicase-opening strategy [65,68].
In both loader complexes, the lasso/grappling hook segments of DnaC and A P provide
key contacts to opening the DnaB helicase (Figure 5). Superposition of the two
complexes on a DnaB monomer reveals that the only segment in common between the
two loaders is a single o helix at the extreme amino-terminus of DnaC, or the carboxy-
terminus of A P. In both complexes, this helix disrupts interactions between the LH linker
helix of one DnaB protomer and the DH docking helix on an adjacent subunit; each DnaB
protomer undergoes this interaction save for the one at the breach in the spiral. Insertion
of the loader o helix between the DnaB LH and DH elements reconfigures the CTD, and
concomitantly the NTD, tiers, from the closed planar to the open spiral form to allow
ssDNA to access the internal chamber of DnaB. Notably, in the BC structure, the N-
terminal lasso/grappling hook element represents the sole point of contact between DnaC
and DnaB; indeed, the isolated region harbors significant capacity to promote helicase

loading [66].
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It was surprising to find that the AAA+ ATPase domains of DnaC make no contact
with DnaB, and thus, play no direct role in helicase opening (Figure 3A)[65]. By
comparison, the AAA+ ATPases of the evolutionarily related clamp loaders — which open
and chaperone the ring-shaped  and PCNA proteins onto DNA to aid polymerase
processivity — engage their client clamps directly [94-98]. For DnaC, the ATPase
elements appear to play a role in sensing the binding of ssDNA to the helicase and in
enhancing the efficiency of the DnaB-opening reaction [66]. AAA+ ATPases are often
pre-formed oligomers [99,100], unusually, in solution, DnaC is monomeric [54], however,
six copies oligomerize on DnaB in a manner stabilized by ATP [54,65]. Without ssDNA,
the nucleotide-binding sites of DnaC in the BC complex are filled with ATP and captured
in a configuration that is poised, but sub-optimal for catalysis. After sensing ssDNA, the
nucleotides sites on the DnaC oligomer are filled with ADP, as would be expected
following hydrolysis. ATP hydrolysis after ssDNA loading does not appear to allow DnaC
to dissociate from DnaB but may diminish stability of the DnaC oligomer. Biochemical
studies suggest that DnaG recruitment and primer synthesis are needed to promote loss

of DnaC from the complex [55,74,101].

In contrast to the modest interface between helicase and loader in the BC complex
[65,68], A P forms an extensive interface with DnaB that encompasses both the globular
and lasso/grappling hook segments (Figure 3B). A P is also a monomer in solution and
five copies assemble onto DnaB in the BP loader complex [68], however, few contacts
between loader subunits are seen. Inspection of the two loader complexes indicate that
the positioning of their C-terminal o helices between DnaB’s LH and DH elements may

be sufficient for opening and that an extensive interface is dispensable for helicase
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opening. This has been confirmed for DnaC [66], and we speculate that the extensive
interface between the DnaB and the globular domain of A P may form because of
interacting with the opened helicase, rather than as its driver as previously proposed [68].
If so, then, what might be the functional role(s) for the extensive interface between A P
and DnaB? Biochemical studies provide a potential explanation for the structural
dichotomy. It is known that A P can displace DnaC from a preformed BC complex [58];
the extensive interface in the BP complex may aid displacement as part of a biological
strategy to appropriate the host replication machinery away from the bacterial
chromosome and toward the phage genome. Alternatively, the extensive interface in the
BP complex may serve as a functional analogue to the extensive AAA+ interaction
between DnaC globular domains in the BC complex. Regardless, in both the BC and BP

complexes, overall stability is achieved by oligomerization, but by distinct means [65,68].

Although they feature some global architectural parallels, neither the globular
domains of DnaC and A P nor the extended lasso/grappling hook regions display any
similarity in sequence [65,68]. Underscoring the dissimilarity is the opposing chain
polarity of the grappling hook segments as they run across the surface of DnaB: DnaC
runs N-to-C whereas A P runs C-to-N (Figures 3C-3D and Figure 5). The finding that a
single functionally significant c-helix in DnaC and A P exhibits a divergent protein chain
direction confirms their lack of evolutionary kinship and instead reflects a form of
molecular mimicry that arose through convergent evolution. Molecular mimicry in
bacterial DNA replication initiation joins other examples from protein synthesis [102—104],
gene expression [105], apoptosis [106], host pathogen interactions [107—109], virally

encoded proteins[110], and immunity and autoimmunity [111].
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A recently described protein known as DciA serves as the primary helicase loader

in bacteria that lack DnaC/Dnal

Outside of DnaC and A P, Ferat and co-workers have reported that most bacteria
lack homologs of DnaC (or the unrelated Dnal loader) and that helicase loading in these
organisms instead appears to depend on a distinct protein called DciA [6] (Table 1). A
structure of DciA from Vibrio cholerae (VcDciA) shows that the protein is composed of an
~110 aa N-terminal globular domain followed by a ~40 aa disordered C-terminal segment.
Interestingly, the fold of the DciA globular domain is related to the N-terminal domain of
the replication initiator, DnaA, as well as the C-terminal domain of the y/t/DnaX clamp
loader subunit and the FIiK flagellar hook-length control protein. VcDciA appears to
stimulate the loading of the VcDnaB helicase onto DNA through a DciAz:DnaBe
intermediate; the LH-DH nexus that is targeted by DnaC and A P has been suggested to
serve as an important point of contact in this complex as well [9]. It has been proposed
that VcDnaB may adopt an open spiral in solution and may harbor residues that specify
loader preference. Given the widespread nature of the DciA system, additional chapters

of the helicase loader story clearly remain to be written.

Concluding Remarks

In all cellular organisms, the regulated association of the replicative helicase with
replication origins sets the stage for the initiation of DNA replication [1-8] (Table 1 and

Figure 1). However, significant differences are now evident in mechanisms by which
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origin unwinding and helicase loading take place in bacteria as compared to archaea and
eukaryotes. In bacterial replication systems, the current model holds that the initiator
protein not only marks an origin for initiation, but also melts that origin, enabling the
replicative helicase+loader complex to load onto the resultant ssDNA [8,12,13,31,112].
By contrast, in archaea and eukaryotes, the helicase is loaded by an initiator complex
around duplex DNA, which is then subsequently melted by the helicase itself [113—118].
These distinct mechanisms are remarkable given that replication initiation machinery in
all three domains of life is predicated on a related AAA+ fold [8,13,86]. Why the two
approaches arose during evolution is unclear but may reflect an adaption to the two
different families of hexameric helicases — one based on a RecA ATPase fold, and
another based on a AAA+ ATPase domain [119-123] — that have been employed to
support replication in bacteria as compared to archaea and eukaryotes. Structural
analyses of two bacterial loaders bound to the E. coli DnaB helicase have for the first time
illuminated the rich detail and diversity of helicase-ring opening as well as DNA
association (Figures 2, 3, 4 and Figure 5). However, despite the insights gained from
these models, several fundamental questions about replication initiation and helicase

loading remain to be addressed (Outstanding Questions).
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Tables, Figures, and Figure legends

E. coli phage A V. cholerae

origin DNA | OriC OriA OriC-l/ll
initiator DnaA (0) DnaA/RctB
helicase| DnaB DnaB DnaB
loader DnaC P DciA

Table 1. Molecules involved in various bacterial DNA replication initiation systems.
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Initiatore
Origin DNA

Stage | Stage Il Stage llI Stage IV

Isolated helicase Helicasesloader complex Helicase*loaderDNA complex Translocating helicase

Figure 1. Loading of the Bacterial DnaB Replicative Helicase at a Replication Origin.
The DnaB loading pathway passes through at least four stages (|, Il, lll, and IV). DnaB
sub-domains are depicted according to their overall shape (amino-terminal domain
(NTD): a mushroom-like shape; carboxy-terminal domain (CTD): sphere; both in varying
shades of gray). The Linker-Helix (LH, pink) and Docking-Helix (DH, yellow) elements
are depicted in a ribbon and transparent cylinder representation. The DnaC helicase
loader is shown as a blue ribbon. The DNA strands, one of which is in included in the
central DnaB chamber, and the second excluded, are colored in chocolate brown and
light brown, respectively.
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Figure 2. Overview of the DnaB replicative helicase. DnaB adopts at least two distinct
configurations, termed dilated (A) and constricted (B) [62-64]. DnaB sub-domains are
depicted according to their overall shape (amino-terminal domain (NTD): a mushroom-
like shape; carboxy-terminal domain (CTD): sphere; both in varying shades of gray).
Superimposed on these shapes of DnaB are ribbon representations, colored in gray and
light cyan of the NTD and CTD tiers, respectively, in various poses of the dilated (A, PDB
= 2R6A) and constricted (B, PDB = 4NMN) forms of DnaB. The linker and docking helices
are depicted as cylinders, and colored pink and yellow, respectively.
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Figure 3. E. coli DnaB Complexed with the DnaC (A) and A P (B) Helicase Loaders.
Protomers of the DnaC and A P helicase loaders are colored in alternating shades of blue
(DnaC) and green (A P). The E. coli DnaB helicase in each loader complex is represented
in a surface rendering, with the amino-terminal domain (NTD) and the carboxy-terminal
domain (CTD) layers colored in darker and lighter shades of gray, respectively. Linker-
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helices (LH) and docking-helices (DH) are in colored in red and orange, respectively. The
DnaB hexamers from the loader complexes are superimposed on the CTD of the
protomer at the bottom of the spiral in this pose. The primary sequence of each loader
and DnaB is represented as a linear schematic, with salient features annotated and
colored to match the molecular representations. Only the carboxy terminal domain of A
P was visible in the EM maps of the BP complex (the missing segment is depicted as a
dashed line). The terminal helix of each loader (DnaC: N-terminal; A P: C-terminal) are
depicted as ribbons and transparent cylinders. The amino (N) and carboxy (C) termini of
each loader is indicated in each panel.



476
477

478
479
480
481
482
483
484
485
486

487
488

D B
Cc 49A $C 3
121 A ,
‘*ﬁ/ E A ‘k\

" 30A AN
186A§, e -
B U a6 A Sl E

23A F F
A

DnaB-loader DnaB-loadersSSDNA

Figure 4. The ssDNA Binding Site is Altered in the Loader Bound Form of DnaB.
The BC complex without ssDNA (PDB = 6QEL) was superimposed (RMSD = 0.85 A) onto
the C-terminal domain of chain F of the ssDNA bound complex (PDB = 6QEM). The large
spheres represent the CTDs of the BC complex with (light brown) and without (cyan)
ssDNA. The alpha carbons of arginine 403, which makes a key contact to ssDNA in the
BC complex, are depicted as smaller spheres for the ssDNA complex (brown) and apo
complex (dark cyan). Distances between the alpha carbons of arginine 403 from
equivalent DnaB subunits are shown. The six chains from the ssDNA-bound complex
are identified by letters (A, B, C, etc.). Poses in panels A and B are related by a 90°
rotation about the horizontal axis.



489
490

491
492
493
494
495
496
497
498
499
500
501
502
503

504

DnaB
Closed-Planar

Open-Spiral

Figure 5. Convergent Evolution/Molecular Mimicry in the Mechanism of Opening
of the E. coli DnaB Replicative Helicase by the E. coli DhaC and A P Helicase
Loaders. The DnaC and A P helicase loaders are shown in a ribbon representation,
colored light blue (DnaC) and green (A P), with their respective amino and carboxy termini
marked. For clarity, only one copy of each loader is shown. The DnaB hexamer from
each loader complex is superimposed on the carboxy-terminal domain (CTD) of the
protomer at the bottom of the spiral in this pose; the docking helix element was excluded
from the alignment to produce an RMSD of 1.3 A. For clarity, only the CTD tier of DnaB,
represented as a set of spheres, colored in varying shades of gray, is shown. The linker
(LH) and docking (DH) helices are depicted as a ribbon and transparent cylinder. The LH
and DH from the closed-planar form of DnaB are colored yellow and pink, respectively;
the corresponding elements from the DnaC and A P loader-bound DnaB are in orange
and red, respectively. The black arrow signifies direction of motion of the LH and DH
elements on binding the DnaC and A P loaders.
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» The initiation of DNA replication is a tightly regulated process in all cellular
domains of life and involves regulated recruitment and assembly of essential factors,

including the replicative hexameric helicase complex, to replication origins.

* A crucial step during the replication initiation phase of DNA replication is loading

of hexameric, ring-shaped replicative helicases onto DNA.

* In bacteria, the DnaB family of replicative helicases comprise six identical
subunits which collectively create a central chamber to bind one of the ssDNA strands od
dsDNA. The translocation of DnaB on ssDNA ahead of the DNA polymerase in the

replisome separates the two strands to provide substrates for DNA synthesis.

* Recent structure determinations of two bacterial helicase loaders bound to the
same DnaB helicase offers an opportunity to extract fundamental principles associated

with DnaB opening and loading onto ssDNA.

* E. coli DnaC and bacteriophage A P evolved independently to converge, through

molecular mimicry, on a common helicase opening mechanism.
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* Is origin melting an emergent property that completely occurs completely through

formation of the initiator-DNA complex?

* Does the DnaB bacterial replicative helicase also contribute to opening of the

replication bubble as seen with the eukaryotic replicative helicase [117]?

* What mechanisms ensure the loading of two, and only two, helicases per initiation

event?
* What mediates helicase loading in opposite orientations?
* What mechanisms promote the eviction of the helicase loaders?

* What, if any, of the mechanisms implemented by the DciA and DopE loader are

in common with those used by DnaC or A P?
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Glossary

Replication origin — DNA sequence on a chromosome where DNA synthesis will begin.
In bacteria, replication origins are up to hundreds of base-pairs in length and
contain segments that are bound in a duplex state by the DnaA initiator protein, as
well as segments that are melted (e.g., the DNA unwinding element (DUE) [124]
DnaA trios [125] by the initiator [13,20,28,29].

DnaA — The bacterial replication initiator protein (E. coli: 467 amino acids) is comprised
of four structural domains. Domain | harbors a K homology (KH) domain, domain
Il'is a linker element, domain Il encompasses the AAA+ ATPase functionality, and
domain IV encodes a double-stranded helix-turn-helix DNA binding domain
[10,12,30-32].

DnaB - The replicative helicase found in Gram-negative bacterial (E. coli: 471 amino
acids) [4,12-14,50]. It is related to the DnaC helicase found in Gram-positive
organisms.

DnaC — The replicative helicase loader found in certain Gram-negative bacteria (E. coli
245 amino acids) [4,10,16,51-55]. This analog of this protein in Gram-positive
species is Dnal.

Phage A O — The replication initiator protein (299 amino acids) used by phage A. A O
specifically recognizes a series of dsDNA binding sites in the phage A replication
origin [41-49].

Phage A P — The helicase loader protein (233 amino acids) used by phage A to assemble
the DnaB helicase at the phage A replication origin [43,45-48,56-59].

Replisome — A large (1-2 MDa) multi-protein complex that mediates synthesis of both
strands (leading and lagging) of DNA. The replisome consists of 2-3 DNA
polymerases, the replicative helicase, the sliding clamp, and the sliding clamp
loader. Other proteins such as single-stranded DNA binding protein, gyrase,
RNAse H, and DNA ligase interface with the replisome to support leading and
lagging strand synthesis [126—129] .

Domain-swapped oligomer — An unusual architectural feature of some oligomeric
protein ensembles wherein members of the assembly exchange a structural
domain in a manner akin to a handshake between two persons. Swapping involves
replacement of intra-monomer interactions between two sub-domains with nearly
identical inter-monomer contacts. Such an oligomer becomes structurally
intertwined because of the domain swapping [130-135].

Phosphate - Loop (P-loop) NTPases — Together with the Rossman fold family, P-loop
NTPases encompass two major families of nucleotide handling proteins; proteins
in this family couple the energy of nucleotide binding and hydrolysis to some
chemical or mechanical transformation [123,136—138] . In concert with the crucial
role played by ATP and other nucleotides in biology, P-loop NTPases family
represent between 10 - 20% of all proteins in genomes in all cellular domains of
life [137]. Members of this family share a conserved overall fold consisting of a
four- or five-stranded beta-sheet sandwiched between two layers of alpha-helices;
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this domain also exhibits two conserved amino acid sequence motifs termed the
Walker A and Walker B (so named after John Walker, who first observed them in
the F1 ATPases [139,140]). The Walker A sequence motif, which is the P-loop
itself, is a glycine-rich loop terminated by a threonine or serine (GxxGxGK[T/S],
where x = any residue); the backbone of this element makes a close approach to
the B and y phosphates of ATP, while the lysine and the threonine/serine contact
the Bphosphate and an associated Mg?* ion, respectively. The Walker B sequence
motif is a run of hydrophobic residues terminated by an aspartate residue (hhhhD;
h = hydrophobic residue); the Walker B aspartate residue contributes to positioning
the Mg ion and its associated water molecules. Sequence and structural analyses
of P-loop NTPase family proteins highlight two major sub-divisions: the kinase —
GTPase (KG) and the ASCE (additional strand catalytic glutamate) families. The
ASCE grouping is further sub-classified into the RecA/F1-F, ATPases, AAA+
ATPases, ABC ATPases, nucleic acid helicases, PilT/FtsK ATPases, apoptotic
NTPases, and the NACHT ATPases [123,137].

RecA-like ATPases — A sub-class of the ASCE sub-division of the P-loop NTPases.

Members of this family adopt oligomeric configurations, and include the RecA
recombinase, the DnaB replicative helicase, the F1 sub-structure of ATP synthase,
and the Rho helicase, [114,123,136,137]. All the elements found in the ASCE sub-
class are seen in the RecA-like ATPases, as well as some additional structural
elements. Amongst these is an arginine finger that enables stimulation of ATP
hydrolysis in trans of nucleotide bound primarily by a neighboring subunit of the
oligomer.

AAA+ ATPases — A sub-class of the ASCE sub-division of the P-loop NTPases. AAA+

(ATPases Associated with various Activities) are a large family of oligomeric, often
ring-shaped, motors and switches with crucial functions in DNA replication,
transcription, chaperones, proteases, and beyond [89,100,141]. This family of
ATPases folds into a two-domain structure, one of which corresponds to the ASCE
core domain (the second is a small helical domain). Residues and motifs
conserved in this sub-class surround the general volume occupied by nucleotide.
ATP binding sites are formed at subunit interfaces. Most of the contacts to bound
nucleotide arise from one subunit at the interface, but the binding site is only
completed by participation of residues (e.g., arginine finger) from a neighboring
subunit.

Convergent evolution — a form of molecular evolution in which unrelated molecules

independently evolve similar shapes or properties that reflect intrinsic structural or
chemical constraints. Convergent evolution in the active sites of proteins has been
documented in several enzymes [108]. It is axiomatic that a common ancestor is
not present with examples of convergent evolution; by contrast, a common
ancestor is an essential feature of divergent evolution [142,143].

Molecular mimicry — Close structural resemblance between two molecular entities.

Mimicry can arise from divergent or convergent evolution [144].
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379 Text Box:

380 Loading Bacterial Hexameric Replicative Helicases onto DNA
381 Ring-breakers — Loading factors that physically open hexameric helicase rings. E. coli

382 DnaC and A P are two examples of replicative helicase loaders that bind to a pre-
383 formed closed DnaB ring and breach one its six subunit interfaces to enable
384 ssDNA to enter an internal chamber.

385 Ring-makers — Loading factors that assemble helicase monomers into hexameric rings.
386 B. subtilis Dnal is a bacterial helicase loader that is reported to operate in this
387 manner.

388 Mechanisms of bacterial helicase loaders in the DciA/DopE families remain to be
389 established. Distinct loading mechanisms with other hexameric helicases have
390 also been described, including self-regulated ring closure for the transcription
391 terminator Rho ATPase and chaperoned ring-closure for the MCM2-7 complex in
392 eukaryotic DNA replication (reviewed in [114]).

393
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Dedicated loader proteins play essential roles in bacterial DNA replication by
opening ring-shaped DnaB-family helicases and chaperoning ssDNA into a central motor
chamber as a prelude to DNA unwinding. Although unrelated in sequence, the E. coli
DnaC and bacteriophage A P loaders feature a similar overall architecture: a globular
domain linked to an extended lasso/grappling hook element, located at their amino and
carboxy termini, respectively. Both loaders remodel a closed DnaB ring into nearly
identical right-handed open conformations. The sole element shared by the loaders is a
single alpha helix, which binds to the same site on the helicase. Physical features of the
loaders establish that DnaC and A P evolved independently to converge, through

molecular mimicry, on a common helicase opening mechanism.

Keywords

DnaB, DnaC, A P, DciA, DNA Replication, helicase loading, convergent evolution,

molecular mimicry.
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Specialized Factors Load the DnaB Bacterial Replicative Helicase onto the

Replication Origin

The regulated loading of ring-shaped hexameric helicases onto chromosomal
origins is an essential feature of DNA replication in all cellular domains of life [1-3].
Helicase deposition requires specialized factors known as helicase loaders, which
operate during the initiation of DNA replication [4—8]. In bacteria, several helicase loaders
have been studied, including Escherichia coli (E. coli) DnaC [4], bacteriophage A P,
Bacillus subtilis (B. subtilis) Dnal [5], and DciA/DopE, a recently described class of
proteins which appear in bacteria that lack orthologs of DnaC or Dnal [6,7,9]. Helicase

loading is also critical to assembly of eukaryal and archaeal replisomes [1,2,8].

The assembly of the bacterial replicative helicase (Figure 1), which is known as
DnaB in most bacteria or DnaC in B. subtilis (henceforth called DnaB), onto origin DNA
occurs during the initiation phase of DNA replication [8,10-14]. Our view of replication
initiation in bacteria is informed by studies with primary and secondary chromosomes of
bacteria, plasmids, and phages [15-27], and have implied the involvement of four classes
of factors (Table 1): 1) a DNA sequence called a replication origin, where DNA synthesis
will begin [13,20,28,29], 2) a replication initiator protein (E. coli: DnaA [10,12,30-32], V.
cholerae: DnaA, RctB [18,21,23,25,33-37], plasmids: RepE, Pi, TrfA [38—40], phage
lambda (A): O [41-49]), 3) a DnaB-family replicative helicase [4,12—-14,50], and, finally, 4)
a helicase loader (E. coli: DnaC [4,10,16,51-55], phage A: P [43,45-48,56-59], V.
cholerae: DciA [6,9]). The multi-step process for initiating DNA replication begins with the

recognition and binding of multiple copies of the initiator protein to dsDNA sites at the
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replication origin; once bound, initiator proteins associate into a complex protein-DNA
ensemble [4,10,12,19,31,60,61]. One of the outputs of the initiation phase of DNA
replication is the melting of an A-T rich segment of the replication origin termed the DNA
unwinding element (DUE) by the DnaA or the A O initiator proteins [13,30,31], an event
that provides single DNA strands (ssDNA) as substrates for DnaB loading. DnaB
hexamers assemble into two-tiered rings formed by the amino (NTD) and carboxy-
terminal domains (CTD) of the helicase; a so-termed ‘linker helix’ element (LH) connects
these domains and packs against another alpha helix, termed the docking helix (DH), of
a neighboring DnaB subunit to give rise to a domain-swapped oligomer [62—64] (Figure
2). The two DnaB tiers circumscribe an internal chamber into which one of the ssDNA
strands from the replication origin will be loaded. One layer is formed out of six NTDs,
which assemble into two different ‘trimer-of-dimers’ configurations that display pseudo-
three-fold symmetry. These arrangements arise from alternative packing orientations for
NTD dimers, which create several types of subunit interfaces of likely varying stability
[62,65]. The CTD tier assembles out of six C-terminal domains (CTD) of DnaB, each of
which harbors a RecA-like ATPase domain. In contrast to the NTD, the CTD layer

exhibits a pseudo-six-fold arrangement, with a single type of interface.

Helicase loading onto ssDNA can be conceptually divided into four stages (Figure
1). During assembly, DnaB transitions between three conformations: closed planar, open
right-handed spiral, and closed right-handed spiral [62—-68]. In addition, the NTD and
CTD layers of each of these conformers are found in one of two arrangements: dilated or
constricted (Figures 2A-2B); these conformers differ on inter-protomer contacts. The

isolated hexameric helicase, in both dilated and constricted closed-planar configurations,
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populates Stage |I. Formation of the helicase*helicase loader complex leads to Stage I,
while engagement of the helicasesloader complex with origin-derived ssDNAcinitiator
(DnaA or A O) populates Stage Ill. The ATPase and ssDNA translocation activities of the
helicase are suppressed during these latter two stages [56,58,69-71], with the
DnaA/replication origin complex also playing a role in loading or positioning the
helicase/loader complex using direct contacts between DnaA and DnaB [69-71] (the
involvement of contacts between other bacterial replication initiators and DnaB remains
to be clarified). Recently, cryogenic electron microscopy (cryo-EM) analyses of two
distinct bacterial helicase*loader complexes (E. coli DnaB*DnaC and E. coli DnaBeAP,
Figure 1: Stages lI-lll, and Figure 3) have shown that the helicase adopts an open right-
handed spiral configuration, promoted, and stabilized by interactions with the helicase
loaders [65,68]. The transition to Stage IV is accompanied by eviction of the loader and
initiator from the complex on DNA, which relieves inhibition of DnaB’s activities. Notably,
in Stage Ill, the configuration of the DnaB-bound loader is nearly identical to the closed

spiral form seen in the loader-free helicase of Stage IV [65,67].

Helicase loading in bacteria occurs by one of at least two reported mechanisms
[72], termed: a) ring breaking, where DnaB hexamers are physically opened [73], and b)
ring making, in which hexamers are assembled [5]. It is now clear that both E. coli DnaC
and phage A P are ring breakers: each loader binds to and delivers a pre-formed helicase
hexamer to its cognate origin [4,43,45-47,56,58,74]. DnaC and A P are similar in that
both are essential for their respective organisms and both bind to ssDNA [56,58,75-77].
A P also can displace DnaC from E. coli DnaB, implying that their respective binding sites

overlap [58,74]. These congruencies might imply a common ancestry; however, DnaC
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and AP are unrelated in sequence and enzymatic function (e.g., DnaC is a known ATPase
[10,53,75-77], whereas A P is not [78]). Moreover, although each loading system requires
ejection of the loader from the DNA complex for DnaB to transition to the translocation-
competent form, eviction occurs by distinct mechanisms. For DnaC, nucleotide dynamics
in its AAA+ ATPase domain, along with RNA synthesis by the DnaG primase, are
significant features in eviction [10,52,53,76,77,79]. By contrast, removal of A P requires
the host DnaK/DnaJ/GrpE chaperone machinery [31-34]. Helicase loading is also a
feature during restart of DNA replication after it has prematurely been halted in response
to DNA damage and involves a distinct set of proteins (PriA, PriB, PriC, and DnaT); the
reader is referred to the literature for a more complete treatment of helicase loading during

replication restart [80-82].

Here, we compare recent structures of two bacterial helicase loaders: E. coli DnaC
[65] and phage A P [68] bound to the same E. coli DnaB helicase (Figure 3). This
comparison provides an opportunity to understand the mechanisms of the two loaders
and to extract central principles associated with DnaB opening and loading onto ssDNA.
A recent crystal structure of the interaction domains of DnaB and DnaC [83] comports
with the EM analyses of the complete complexes. A new study of DciA«DnaB interactions
also points to some conserved elements of helicase opening in this system as well [9].
Further study will be required to establish the mechanistic relationships, if any, between
the DciA and B. subtilis Dnal/DnaB/DnaD loaders [5,84,85] and the better understood E.

coli DnaC [65] and A P [68] systems.



119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

Though unrelated by sequence and fold, E. coli DnaC and A P exhibit analogous

global architectures

Inspection of the E. coli DnaB+<DnaC (BC) and the E. coli DnaBsphage A P (BP)
complexes shows that the two loaders engage the carboxy-terminal (CTD) ATPase
surface of DnaB to form a three-layered ensemble [65,68,83]. One layer corresponds to
an oligomeric form of the helicase loader (hexameric for DnaC and pentameric for A P),
while the second and third correspond to the NTD and CTD tiers of DnaB (Figures 3A-
B). Although six copies of DnaC are present in the E. coli BC complex and five A P
protomers are found in the BP assembly, the stoichiometries seen in the cryo-EM
structures do not necessarily preclude the possibility that complexes with fewer copies of
the loader might be active in supporting helicase loading. Significantly, each loader
adopts a distinct and unrelated structure, yet the monomers of both exhibit a similar
overall architecture: a globular domain fused to an extended segment that forms a

lasso/grappling hook element (Figures 3C-D).

The globular domain of DnaC consists of an AAA+ ATPase module that is fused
to a ~75 residue N-terminal segment (Figure 3C)[65,83]. The amino-terminal segment
of DnaC consists of a long a-helix that extends along the CTD of a DnaB protomer and
initiates from a helix-loop-helix element that packs against the LH linker helix from one
DnaB subunit and the DH docking helix from another. Notably, the N-terminal segment
provides the only contacts between DnaC and the DnaB helicase. The six copies of the
globular DnaC AAA+ domain assemble into an open spiral like that seen in related
ATPases such as DnaA and archaeal/eukaryal MCM helicases [86-92]. In the absence

of ssDNA, five of the six nucleotide-binding sites in DnaC are populated with an ATP
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analog (ADP+BeF3), whereas the sixth (which sits at the gap in the DnaC spiral) engages
ADP, likely because its catalytic center lacks important functional contacts from a
neighboring protomer. Rationalizing this arrangement of nucleotides is the prior finding
that the ATP form of DnaC suppresses DnaB’s helicase activity and as it stabilizes the

ssDNA complex [52].

For the A P loader, only the C-terminal ~125 residues were resolved in EM density
maps [68]. This region consists of an a-helical globular domain fused to an extended
segment of ~45 residues (Figure 3D). The A P extension forms a sub-structure
analogous to, but distinct from, that seen in DnaC [65,83], terminating in a single a-helix
that packs against the LH and DH elements of two adjacent subunits of DnaB. Both the
globular domain and the grappling hook/lasso segment of A P contact two consecutive
subunits of the DnaB hexamer. These interactions are repeated in the five copies of A P
in the BP complex to create an open helical arrangement of loaders; the breached
interface of the DnaB hexamer precludes binding of a sixth copy of A P. The low resolution
(4.1 A) of the BP EM maps in the region of the loader limits analysis of interfaces between
A\ P protomers; nevertheless, an extensive interface between the five A P protomers does

not appear to form.

E. coli DnaC and phage AP reconfigure DnaB into an open right-handed spiral

Despite their evolutionarily distinct structures and contacts with DnaB, both DnaC
and A P reconfigure the helicase into highly similar, open-spiral configurations (root mean

square deviation (RMSD) of ~2.2 A, calculated from 2611 Ca positions that span the
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DnaB hexamer) [65,68]. The DnaB NTDs also both adopt a constricted configuration,
albeit with a spiral (as opposed to planar) shape that bears a split between one of the
subunit interfaces. The similarity between DnaB in the two loader complexes is also
evident from the average helical pitch and twist values of the open spirals in both the NTD
(~2.8 A and 60.0° for BC vs. ~2.6 A and 59.9° for BP) and CTD layers (~19.3 A and
~55.3° for BC vs. ~16 A and ~56° for BP). Changes induced by each loader rupture one
of the DnaB subunit interfaces at both the NTD and CTD layers to create openings (15-

20 A) of sufficient size to allow ssDNA access to the internal chamber.

Changes to the helical pitch and twist of the DnaB hexamer within each loader
complex combine to alter the configuration of the ssDNA-binding site in the helicase.
Superposition of DnaB from each loader complex reveals significant changes in the
position of DNA binding residues in comparison to that when DnaB is bound to ssDNA
(Figure 4) [65]. When bound to ssDNA and the loader, the CTD of each DnaB protomer
projects three residues (E. coli: R403, E404, G406) on a DNA binding loop into the
helicase pore to contact ssDNA. In the loader-only complexes, reconfiguration of the
CTD layer shifts the positions of the alpha-carbons of these residues by ~10-30 A (in BC)

or ~5-20 A (in BP).

The disposition and nucleotide occupancy of the six RecA-type ATPase sites in
DnaB are also altered in the complexes with DnaC and A P [65,68]. ATPase activity by
DnaB relies on ‘composite’ nucleotide binding sites, wherein residues from two adjacent
subunits contribute to a single catalytic center [63,64,67,93]. In both helicasesloader
complexes, five of the six ATPase sites in DnaB are occupied by ADP, while the sixth,

which sits at the breach in the CTD ring, is vacant; when bound to just ssDNA, this
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constellation of sites are filled with a nucleoside triphosphate analog (ADP+BeF3) instead.
The alterations in CTD orientation appear to have remodeled the five ADP-filled sites of
the loader-bound helicase into non-optimal catalytic configurations as well, although the

resolution of the structures prevents a more precise evaluation of these changes [65,68].

Two distinct helicase loader complexes with a shared function

The BC and BP complexes reveal how the evolutionarily distinct structural
elements of DnaC and A P converged on a common helicase-opening strategy [65,68].
In both loader complexes, the lasso/grappling hook segments of DnaC and A P provide
key contacts to opening the DnaB helicase (Figure 5). Superposition of the two
complexes on a DnaB monomer reveals that the only segment in common between the
two loaders is a single o helix at the extreme amino-terminus of DnaC, or the carboxy-
terminus of A P. In both complexes, this helix disrupts interactions between the LH linker
helix of one DnaB protomer and the DH docking helix on an adjacent subunit; each DnaB
protomer undergoes this interaction save for the one at the breach in the spiral. Insertion
of the loader o helix between the DnaB LH and DH elements reconfigures the CTD, and
concomitantly the NTD, tiers, from the closed planar to the open spiral form to allow
ssDNA to access the internal chamber of DnaB. Notably, in the BC structure, the N-
terminal lasso/grappling hook element represents the sole point of contact between DnaC
and DnaB; indeed, the isolated region harbors significant capacity to promote helicase

loading [66].
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It was surprising to find that the AAA+ ATPase domains of DnaC make no contact
with DnaB, and thus, play no direct role in helicase opening (Figure 3A)[65]. By
comparison, the AAA+ ATPases of the evolutionarily related clamp loaders — which open
and chaperone the ring-shaped  and PCNA proteins onto DNA to aid polymerase
processivity — engage their client clamps directly [94-98]. For DnaC, the ATPase
elements appear to play a role in sensing the binding of ssDNA to the helicase and in
enhancing the efficiency of the DnaB-opening reaction [66]. AAA+ ATPases are often
pre-formed oligomers [99,100], unusually, in solution, DnaC is monomeric [54], however,
six copies oligomerize on DnaB in a manner stabilized by ATP [54,65]. Without ssDNA,
the nucleotide-binding sites of DnaC in the BC complex are filled with ATP and captured
in a configuration that is poised, but sub-optimal for catalysis. After sensing ssDNA, the
nucleotides sites on the DnaC oligomer are filled with ADP, as would be expected
following hydrolysis. ATP hydrolysis after ssDNA loading does not appear to allow DnaC
to dissociate from DnaB but may diminish stability of the DnaC oligomer. Biochemical
studies suggest that DnaG recruitment and primer synthesis are needed to promote loss

of DnaC from the complex [55,74,101].

In contrast to the modest interface between helicase and loader in the BC complex
[65,68], A P forms an extensive interface with DnaB that encompasses both the globular
and lasso/grappling hook segments (Figure 3B). A P is also a monomer in solution and
five copies assemble onto DnaB in the BP loader complex [68], however, few contacts
between loader subunits are seen. Inspection of the two loader complexes indicate that
the positioning of their C-terminal a helices between DnaB’s LH and DH elements may

be sufficient for opening and that an extensive interface is dispensable for helicase
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opening. This has been confirmed for DnaC [66], and we speculate that the extensive
interface between the DnaB and the globular domain of A P may form because of
interacting with the opened helicase, rather than as its driver as previously proposed [68].
If so, then, what might be the functional role(s) for the extensive interface between A P
and DnaB? Biochemical studies provide a potential explanation for the structural
dichotomy. It is known that A P can displace DnaC from a preformed BC complex [58];
the extensive interface in the BP complex may aid displacement as part of a biological
strategy to appropriate the host replication machinery away from the bacterial
chromosome and toward the phage genome. Alternatively, the extensive interface in the
BP complex may serve as a functional analogue to the extensive AAA+ interaction
between DnaC globular domains in the BC complex. Regardless, in both the BC and BP

complexes, overall stability is achieved by oligomerization, but by distinct means [65,68].

Although they feature some global architectural parallels, neither the globular
domains of DnaC and A P nor the extended lasso/grappling hook regions display any
similarity in sequence [65,68]. Underscoring the dissimilarity is the opposing chain
polarity of the grappling hook segments as they run across the surface of DnaB: DnaC
runs N-to-C whereas A P runs C-to-N (Figures 3C-3D and Figure 5). The finding that a
single functionally significant a-helix in DnaC and A P exhibits a divergent protein chain
direction confirms their lack of evolutionary kinship and instead reflects a form of
molecular mimicry that arose through convergent evolution. Molecular mimicry in
bacterial DNA replication initiation joins other examples from protein synthesis [102—-104],
gene expression [105], apoptosis [106], host pathogen interactions [107-109], virally

encoded proteins[110], and immunity and autoimmunity [111].
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A recently described protein known as DciA serves as the primary helicase loader

in bacteria that lack DnaC/Dnal

Outside of DnaC and A P, Ferat and co-workers have reported that most bacteria
lack homologs of DnaC (or the unrelated Dnal loader) and that helicase loading in these
organisms instead appears to depend on a distinct protein called DciA [6] (Table 1). A
structure of DciA from Vibrio cholerae (VcDciA) shows that the protein is composed of an
~110 aa N-terminal globular domain followed by a ~40 aa disordered C-terminal segment.
Interestingly, the fold of the DciA globular domain is related to the N-terminal domain of
the replication initiator, DnaA, as well as the C-terminal domain of the y/1/DnaX clamp
loader subunit and the FIiK flagellar hook-length control protein. VcDciA appears to
stimulate the loading of the VcDnaB helicase onto DNA through a DciAs:DnaBs
intermediate; the LH-DH nexus that is targeted by DnaC and A P has been suggested to
serve as an important point of contact in this complex as well [9]. It has been proposed
that VcDnaB may adopt an open spiral in solution and may harbor residues that specify
loader preference. Given the widespread nature of the DciA system, additional chapters

of the helicase loader story clearly remain to be written.

Concluding Remarks

In all cellular organisms, the regulated association of the replicative helicase with
replication origins sets the stage for the initiation of DNA replication [1-8] (Table 1 and

Figure 1). However, significant differences are now evident in mechanisms by which
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origin unwinding and helicase loading take place in bacteria as compared to archaea and
eukaryotes. In bacterial replication systems, the current model holds that the initiator
protein not only marks an origin for initiation, but also melts that origin, enabling the
replicative helicase+loader complex to load onto the resultant ssDNA [8,12,13,31,112].
By contrast, in archaea and eukaryotes, the helicase is loaded by an initiator complex
around duplex DNA, which is then subsequently melted by the helicase itself [113—118].
These distinct mechanisms are remarkable given that replication initiation machinery in
all three domains of life is predicated on a related AAA+ fold [8,13,86]. Why the two
approaches arose during evolution is unclear but may reflect an adaption to the two
different families of hexameric helicases — one based on a RecA ATPase fold, and
another based on a AAA+ ATPase domain [119-123] — that have been employed to
support replication in bacteria as compared to archaea and eukaryotes. Structural
analyses of two bacterial loaders bound to the E. coli DnaB helicase have for the first time
illuminated the rich detail and diversity of helicase-ring opening as well as DNA
association (Figures 2, 3, 4 and Figure 5). However, despite the insights gained from
these models, several fundamental questions about replication initiation and helicase

loading remain to be addressed (Outstanding Questions).
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Glossary

Replication origin — DNA sequence on a chromosome where DNA synthesis will begin.
In bacteria, replication origins are up to hundreds of base-pairs in length and
contain segments that are bound in a duplex state by the DnaA initiator protein, as
well as segments that are melted (e.g., the DNA unwinding element (DUE) [124]
DnaA trios [125] by the initiator [13,20,28,29].

DnaA — The bacterial replication initiator protein (E. coli: 467 amino acids) is comprised
of four structural domains. Domain | harbors a K homology (KH) domain, domain
Il is a linker element, domain Il encompasses the AAA+ ATPase functionality, and
domain IV encodes a double-stranded helix-turn-helix DNA binding domain
[10,12,30-32].

DnaB - The replicative helicase found in Gram-negative bacterial (E. coli: 471 amino
acids) [4,12-14,50]. It is related to the DnaC helicase found in Gram-positive
organisms.

DnaC — The replicative helicase loader found in certain Gram-negative bacteria (E. coli:
245 amino acids) [4,10,16,51-55]. This analog of this protein in Gram-positive
species is Dnal.

Phage A O — The replication initiator protein (299 amino acids) used by phage A. A O
specifically recognizes a series of dsDNA binding sites in the phage A replication
origin [41-49].

Phage A P — The helicase loader protein (233 amino acids) used by phage A to assemble
the DnaB helicase at the phage A replication origin [43,45—-48,56-59].

Replisome — A large (1-2 MDa) multi-protein complex that mediates synthesis of both
strands (leading and lagging) of DNA. The replisome consists of 2-3 DNA
polymerases, the replicative helicase, the sliding clamp, and the sliding clamp
loader. Other proteins such as single-stranded DNA binding protein, gyrase,
RNAse H, and DNA ligase interface with the replisome to support leading and
lagging strand synthesis [126—-129] .

Domain-swapped oligomer — An unusual architectural feature of some oligomeric
protein ensembles wherein members of the assembly exchange a structural
domain in a manner akin to a handshake between two persons. Swapping involves
replacement of intra-monomer interactions between two sub-domains with nearly
identical inter-monomer contacts. Such an oligomer becomes structurally
intertwined because of the domain swapping [130-135].

Phosphate - Loop (P-loop) NTPases — Together with the Rossman fold family, P-loop
NTPases encompass two major families of nucleotide handling proteins; proteins
in this family couple the energy of nucleotide binding and hydrolysis to some
chemical or mechanical transformation [123,136—-138] . In concert with the crucial
role played by ATP and other nucleotides in biology, P-loop NTPases family
represent between 10 - 20% of all proteins in genomes in all cellular domains of
life [137]. Members of this family share a conserved overall fold consisting of a
four- or five-stranded beta-sheet sandwiched between two layers of alpha-helices;
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this domain also exhibits two conserved amino acid sequence motifs termed the
Walker A and Walker B (so named after John Walker, who first observed them in
the F1 ATPases [139,140]). The Walker A sequence motif, which is the P-loop
itself, is a glycine-rich loop terminated by a threonine or serine (GxxGxGK[T/S],
where x = any residue); the backbone of this element makes a close approach to
the B and y phosphates of ATP, while the lysine and the threonine/serine contact
the Bphosphate and an associated Mg?* ion, respectively. The Walker B sequence
motif is a run of hydrophobic residues terminated by an aspartate residue (hhhhD;
h = hydrophobic residue); the Walker B aspartate residue contributes to positioning
the Mg ion and its associated water molecules. Sequence and structural analyses
of P-loop NTPase family proteins highlight two major sub-divisions: the kinase —
GTPase (KG) and the ASCE (additional strand catalytic glutamate) families. The
ASCE grouping is further sub-classified into the RecA/Fi-Fo ATPases, AAA+
ATPases, ABC ATPases, nucleic acid helicases, PilT/FtsK ATPases, apoptotic
NTPases, and the NACHT ATPases [123,137].

RecA-like ATPases — A sub-class of the ASCE sub-division of the P-loop NTPases.

Members of this family adopt oligomeric configurations, and include the RecA
recombinase, the DnaB replicative helicase, the F1 sub-structure of ATP synthase,
and the Rho helicase, [114,123,136,137]. All the elements found in the ASCE sub-
class are seen in the RecA-like ATPases, as well as some additional structural
elements. Amongst these is an arginine finger that enables stimulation of ATP
hydrolysis in trans of nucleotide bound primarily by a neighboring subunit of the
oligomer.

AAA+ ATPases — A sub-class of the ASCE sub-division of the P-loop NTPases. AAA+

(ATPases Associated with various Activities) are a large family of oligomeric, often
ring-shaped, motors and switches with crucial functions in DNA replication,
transcription, chaperones, proteases, and beyond [89,100,141]. This family of
ATPases folds into a two-domain structure, one of which corresponds to the ASCE
core domain (the second is a small helical domain). Residues and motifs
conserved in this sub-class surround the general volume occupied by nucleotide.
ATP binding sites are formed at subunit interfaces. Most of the contacts to bound
nucleotide arise from one subunit at the interface, but the binding site is only
completed by participation of residues (e.g., arginine finger) from a neighboring
subunit.

Convergent evolution — a form of molecular evolution in which unrelated molecules

independently evolve similar shapes or properties that reflect intrinsic structural or
chemical constraints. Convergent evolution in the active sites of proteins has been
documented in several enzymes [108]. It is axiomatic that a common ancestor is
not present with examples of convergent evolution; by contrast, a common
ancestor is an essential feature of divergent evolution [142,143].

Molecular mimicry — Close structural resemblance between two molecular entities.

Mimicry can arise from divergent or convergent evolution [144].
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Text Box:
Loading Bacterial Hexameric Replicative Helicases onto DNA

Ring-breakers — Loading factors that physically open hexameric helicase rings. E. coli
DnaC and A P are two examples of replicative helicase loaders that bind to a pre-
formed closed DnaB ring and breach one its six subunit interfaces to enable
ssDNA to enter an internal chamber.

Ring-makers — Loading factors that assemble helicase monomers into hexameric rings.
B. subtilis Dnal is a bacterial helicase loader that is reported to operate in this
manner.

Mechanisms of bacterial helicase loaders in the DciA/DopE families remain to be
established. Distinct loading mechanisms with other hexameric helicases have
also been described, including self-regulated ring closure for the transcription
terminator Rho ATPase and chaperoned ring-closure for the MCM2-7 complex in
eukaryotic DNA replication (reviewed in [114]).



394
395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

» The initiation of DNA replication is a tightly regulated process in all cellular
domains of life and involves regulated recruitment and assembly of essential factors,

including the replicative hexameric helicase complex, to replication origins.

* A crucial step during the replication initiation phase of DNA replication is loading

of hexameric, ring-shaped replicative helicases onto DNA.

* In bacteria, the DnaB family of replicative helicases comprise six identical
subunits which collectively create a central chamber to bind one of the ssDNA strands od
dsDNA. The translocation of DnaB on ssDNA ahead of the DNA polymerase in the

replisome separates the two strands to provide substrates for DNA synthesis.

* Recent structure determinations of two bacterial helicase loaders bound to the
same DnaB helicase offers an opportunity to extract fundamental principles associated

with DnaB opening and loading onto ssDNA.

* E. coli DnaC and bacteriophage A P evolved independently to converge, through

molecular mimicry, on a common helicase opening mechanism.



410
411

412

413

414

415

416

417

418

419

420

421

* Is origin melting an emergent property that completely occurs completely through

formation of the initiatorrDNA complex?

* Does the DnaB bacterial replicative helicase also contribute to opening of the

replication bubble as seen with the eukaryotic replicative helicase [117]?

* What mechanisms ensure the loading of two, and only two, helicases per initiation

event?
* What mediates helicase loading in opposite orientations?
* What mechanisms promote the eviction of the helicase loaders?

* What, if any, of the mechanisms implemented by the DciA and DopE loader are

in common with those used by DnaC or A P?
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Figure legends

E. coli phage A V. cholerae

origin DNA| OriC OriA OriC-l/l
initiator  DnaA O DnaA/RctB
helicase| DnaB DnaB DnaB
loader DnaC P DciA

Table 1. Molecules involved in various bacterial DNA replication initiation systems.
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Isolated helicase Helicasesloader complex Helicasesloader-DNA complex Translocating helicase

Figure 1. Loading of the Bacterial DnaB Replicative Helicase at a Replication Origin.
The DnaB loading pathway passes through at least four stages (I, Il, lll, and IV). DnaB
sub-domains are depicted according to their overall shape (amino-terminal domain
(NTD): a mushroom-like shape; carboxy-terminal domain (CTD): sphere; both in varying
shades of gray). The Linker-Helix (LH, pink) and Docking-Helix (DH, yellow) elements
are depicted in a ribbon and transparent cylinder representation. The DnaC helicase
loader is shown as a blue ribbon. The DNA strands, one of which is in included in the
central DnaB chamber, and the second excluded, are colored in chocolate brown and
light brown, respectively.
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Figure 2. Overview of the DnaB replicative helicase. DnaB adopts at least two distinct
configurations, termed dilated (A) and constricted (B) [62—64]. DnaB sub-domains are
depicted according to their overall shape (amino-terminal domain (NTD): a mushroom-
like shape; carboxy-terminal domain (CTD): sphere; both in varying shades of gray).
Superimposed on these shapes of DnaB are ribbon representations, colored in gray and
light cyan of the NTD and CTD tiers, respectively, in various poses of the dilated (A, PDB
= 2R6A) and constricted (B, PDB = 4NMN) forms of DnaB. The linker and docking helices
are depicted as cylinders, and colored pink and yellow, respectively.
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Figure 3. E. coli DnaB Complexed with the DnaC (A) and A P (B) Helicase Loaders.
Protomers of the DnaC and A P helicase loaders are colored in alternating shades of blue
(DnaC) and green (A P). The E. coli DnaB helicase in each loader complex is represented
in a surface rendering, with the amino-terminal domain (NTD) and the carboxy-terminal
domain (CTD) layers colored in darker and lighter shades of gray, respectively. Linker-
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helices (LH) and docking-helices (DH) are in colored in red and orange, respectively. The
DnaB hexamers from the loader complexes are superimposed on the CTD of the
protomer at the bottom of the spiral in this pose. The primary sequence of each loader
and DnaB is represented as a linear schematic, with salient features annotated and
colored to match the molecular representations. Only the carboxy terminal domain of A
P was visible in the EM maps of the BP complex (the missing segment is depicted as a
dashed line). The terminal helix of each loader (DnaC: N-terminal; A P: C-terminal) are
depicted as ribbons and transparent cylinders. The amino (N) and carboxy (C) termini of
each loader is indicated in each panel.
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Figure 4. The ssDNA Binding Site is Altered in the Loader Bound Form of DnaB.
The BC complex without ssDNA (PDB = 6QEL) was superimposed (RMSD = 0.85 A) onto
the C-terminal domain of chain F of the ssDNA bound complex (PDB = 6QEM). The large
spheres represent the CTDs of the BC complex with (light brown) and without (cyan)
ssDNA. The alpha carbons of arginine 403, which makes a key contact to ssDNA in the
BC complex, are depicted as smaller spheres for the ssDNA complex (brown) and apo
complex (dark cyan). Distances between the alpha carbons of arginine 403 from
equivalent DnaB subunits are shown. The six chains from the ssDNA-bound complex
are identified by letters (A, B, C, etc.). Poses in panels A and B are related by a 90°
rotation about the horizontal axis.
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Figure 5. Convergent Evolution/Molecular Mimicry in the Mechanism of Opening
of the E. coli DnaB Replicative Helicase by the E. coli DnaC and A P Helicase
Loaders. The DnaC and A P helicase loaders are shown in a ribbon representation,
colored light blue (DnaC) and green (A P), with their respective amino and carboxy termini
marked. For clarity, only one copy of each loader is shown. The DnaB hexamer from
each loader complex is superimposed on the carboxy-terminal domain (CTD) of the
protomer at the bottom of the spiral in this pose; the docking helix element was excluded
from the alignment to produce an RMSD of 1.3 A. For clarity, only the CTD tier of DnaB,
represented as a set of spheres, colored in varying shades of gray, is shown. The linker
(LH) and docking (DH) helices are depicted as a ribbon and transparent cylinder. The LH
and DH from the closed-planar form of DnaB are colored yellow and pink, respectively;
the corresponding elements from the DnaC and A P loader-bound DnaB are in orange
and red, respectively. The black arrow signifies direction of motion of the LH and DH
elements on binding the DnaC and A P loaders.
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