

1 Differential residential perspectives on *in situ* protection and retreat as
2 strategies for climate adaptation

3

4

5 **Nora Louise Schwaller***

6 **Todd K. BenDor**

7 Department of City and Regional Planning

8 University of North Carolina at Chapel Hill

9 CB #3140, New East Building

10 Chapel Hill, NC 27599-3140

11 *Corresponding author (Schwaller): nschwall@live.unc.edu; phone: 240-682-0787; fax: 919-

12 962-5206

13

14

15

16

17

18

19 Acknowledgements: This paper is based upon work graciously supported by the U.S. National
20 Science Foundation under Coastal SEES Grant No. 1427188 and Geography and Spatial
21 Sciences Grant No. 1660450. This research was approved under UNC IRB #16-1107 and all
22 experiments comply with the current laws of the United States.

23 1. Introduction

24 Coastal communities are uniquely vulnerable to damage and disruption due to climate change
25 (Behr et al. 2016). Increased damage is predicted to occur due to sea level rise (SLR) and greater
26 storm severity (IPCC 2012, 2018). Taken together, these environmental changes will interrupt
27 existing settlements and livelihoods, destroy infrastructure, and make previously-productive
28 agricultural areas untenable (IPCC 2015). Without aggressive adaption measures, these changes
29 are predicted to lead to the displacement of hundreds of millions of residents, worldwide (Wong
30 et al. 2014; Brown 2008).

31

32 Deteriorating environmental conditions drive the necessity of adaptation; however, little is
33 known about why individual households prioritize different strategies towards protective actions
34 (Hunter, Luna, and Norton 2015; Babicky and Seebauer 2018). A growing body of literature
35 (Bardsley and Hugo 2010; McLeman 2011; Piggott-McKellar et al. 2019) demonstrates that
36 residents face these growing environmental issues in a number of ways; such as by employing *in*
37 *situ* adaptive approaches to mitigate the threat, or participating in migration to leave the area
38 under threat. For the scope of this paper, we will refer to the latter phenomenon as ‘retreat,’ a
39 term defined here as permanently moving away from one’s home in hazardous areas due to
40 adverse conditions. We use the term retreat based on its association in coastal management
41 strategy implemented in many domestic rural and agricultural areas (Koslov 2016).

42

43 The broad goal of this paper is to understand how individuals perceive the relationship of *in situ*
44 protection and retreat as adaptation measures, and the factors driving them. Specifically, we pose
45 three questions: (1) What is the relationship between residents’ exposure to disasters and adverse

46 environmental conditions, perceptions of climate trends, and fears about the future? (2) How do
47 these factors influence openness to different adaption strategies? (3) Are these strategies
48 considered to be *progressive* – where protection is indexed to lower levels of threat and retreat
49 occurs when those measures fail – or are these dichotomous strategies? That is, do residents
50 consider incremental *in situ* adaption approaches to counter a rising threat, and retreat as a last
51 resort when those protections fail? Or, do residents prioritize either protection or retreat as
52 exclusive options? We hypothesize that, whether or not different adaptation strategies tend to
53 occur progressively *over the long term*, they are not *perceived* as progressive strategies in the
54 short term. Rather, residents will either have an interest in sinking costs into place to protect their
55 existing home, or they will want to migrate away before accruing significant expenditures or
56 losses.

57

58 In order to address these questions, we analyze responses ($n=147$) to a residential drop-off/pick-
59 up survey conducted across the Albemarle-Pamlico Peninsula in the State of North Carolina
60 (USA). This survey collected data about residents' properties, communities, and beliefs, as well
61 as their experiences with saltwater intrusion and flooding, their perceptions about storm events,
62 and their behaviors relevant to managing them. Select responses are analyzed using both risk
63 perception literature (Bubeck, Botzen, and Aerts 2012; Aerts et al. 2018) and environmental
64 adaptation and migration literature (Adger 2009; McLeman 2017) as theoretical frameworks.
65 Using a structural equation model (Hoyle 1995; Bollen and Long 1993; Kline 2005; Bowen and
66 Guo 2012), we examine the factors that drive residents' willingness to engage in *in situ*
67 adaptation to protect their property and homes, or to leave their property outright.

68

69 Our results show that residents who are concerned about future trends are more open to moving
70 away from their community. We find that an optimistic perception of flooding over the past two
71 decades (i.e. flooding has gotten better, storms have gotten milder, etc.) is associated with
72 reluctance to engage in protective measures generally. We also found that a resident's
73 pessimistic perception of past events, *absent of* concerns about the future, is correlated with a
74 greater openness for *in situ* adaptation measures. Our results have implications for efforts to
75 build local capacity for resilience by providing community leaders with insight into how
76 individuals frame decisions around climate and environmental adaptation strategies.

77

78 2. Background

79 2.1 *Adaptation to Sea Level Rise and Worsening Floods*

80 In the context of climate change, “mitigation” traditionally refers to actions taken to reduce (or,
81 ideally, reverse) the progression of climate change; whereas “adaption” refers to developing
82 strategies for preparing for imminent changes to reduce exposure and vulnerability. In the
83 hazards field, disaster and hazard adaptation is often further divided into “structural measures”
84 and “nonstructural measures”. Structural adaptation measures include engineered solutions, like
85 levees, sea walls, and canals (IPCC 1990). Nonstructural adaptation measures include land-use
86 regulations that prevent development in at-risk areas, insurance, communication plans for to
87 warn residents of local hazards, evacuation plans, etc. (Perry et al. 2007).

88

89 Historically, flood mitigation practices have focused heavily on structural solutions, but,
90 increasingly, they are trending towards a more integrated approach. This approach focuses on
91 both reducing the potential damage of floods (such as through levee protection or

92 accommodating floods via home elevation; Frankhauser 1995); and transferring the risk (such as
93 through the purchase of insurance; see, for example: Kunreuther 1996, 2015). Within this trend
94 and in the context of climate change, “retreat” has recently gained attention as a hazard
95 mitigation technique (Salvesen et al. 2018).

96

97 Engaging in any form of adaptation, however, requires an awareness of risk. While it is
98 commonly assumed that increased risk perception will invariably lead to an increase in adaptive
99 measures, this causal linkage is rarely direct, and is sometimes fully obscured. This has been
100 addressed by disaster scholars using the Protection Motivation Theory (PMT; see, for example:
101 Bubeck, Botzen, and Aerts 2012) and other related theoretical frames (see, for example the
102 related Protective Action Decision Model, PADM, theory: Lindell and Perry 2012).

103

104 *2.2 PMT in the context of Risk Perception and Flood Mitigation Behaviors*

105 The field of risk perception focuses on the distinction between the risk of a situation as measured
106 in a professional capacity, and the risk of a situation as understood by a layperson subjected to
107 that risk. This can be clarified as the distinction between the ‘real risk’, or the statistical chance
108 of harm from the hazard, as compared to a person or population’s *interpretation* of the hazard
109 and its risk (Sullivan-Wiley and Short Gianotti 2017), which is often colored by how dreaded the
110 potential outcome is (Slovic 1987). Risk perception literature has been applied to environmental
111 and hazard adaptation through the PMT (see, for example: Bubeck et al. 2018; Haer et al. 2017;
112 Grothmann and Patt 2005). PMT holds that protective and non-protective responses to threats
113 depends on both a “threat appraisal” and a “coping appraisal” (Rogers and Prentice-Dunn 1997;
114 Rogers 1975).

115

116 Threat appraisal accounts for how individuals perceive their vulnerability to (and the potential
117 severity of) a hazard. Once an individual acknowledges a risk, they must feel empowered to act
118 upon it in order to achieve a protective response (Lindell and Perry 2012). This coping appraisal
119 is composed of “response efficacy”, “self-efficacy” and “response costs”, which infers the ability
120 of protective measures to mitigate the risk, the perceived personal ability of the individual to
121 enact the protective measures successfully, and the costs that enacting the measures would entail.
122 That is to say, even if an individual recognizes a risk, if they perceive that available adaption
123 strategies are futile or beyond their means, they will fail to implement them.

124

125 Together, an individual’s threat appraisal and coping appraisal either results in protective
126 measures, or results in non-action (i.e., a non-protective response; Bubeck, Botzen, and Aerts
127 2012). In grouping the outcomes in this way, the literature views protective measures in a
128 generalized manner, with relatively few studies focusing on explicating the impetus for engaging
129 in differing strategies under this broad umbrella. One exception is an article by Bubeck et. al.
130 (2012), which looked at four different types of flood coping behavior and noted that openness to
131 them was predicated on different interpretations of risk and coping ability.

132

133 *2.3 Conceptual and Real Thresholds in Climate Change Adaptation*

134 While individuals and households have different responses and timelines to taking proactive
135 protective measures, there are points where residents no longer have the freedom on whether or
136 not to engage in adaptation. These points occur at threshold conditions where previous methods
137 for sustaining livelihood and living conditions are no longer feasible, and individuals and

138 households are ‘forced’ into taking adaptive measures. This is becoming increasingly pertinent
139 under existing and projected disaster conditions associated with climate change, where many
140 pre-existing settlements are facing more severe and more frequent hazard events. In this context,
141 Adger et. al. (2009, 6) notes that:

142

143 “There are many thresholds for adaptive action, and they generally fall into two
144 categories. First, there are the levels or points when responses come into effect and
145 reduce vulnerability to the negative effects of climate change. Second, there are
146 thresholds beyond which adaptive actions cease to be effective in reducing vulnerability.
147 These can, in effect, be considered limits to adaption, in that adaption no longer
148 represents a successful response to climate change.”

149

150 Expanding on this concept, McLeman (2017) hypothesizes a framework for explaining
151 individual adaptation strategies (Figure 1A). This framework explains two states of adaptation,
152 each with three different decision stages, which progress in relation to the increasing severity of
153 climate hazards. As threat increases over time, adaption goes from being unnecessary, to
154 necessary for accommodate existing livelihoods, to being unable to protect existing livelihoods.
155 This can necessitate a shift towards more robust livelihood choices. As threat increases further,
156 the degradation becomes such that the land is no longer suitable for uses that can sustain original
157 or alternative livelihood choices, even with intensive adaptation methods. At this point *in situ*
158 adaption has failed and residents reach the fourth threshold: migration replaces *in situ* adaptation
159 (McLeman 2017).

160

161

162 **[Insert Figure 1 about here]**

163

164 While this framework provides a compelling model for progressive human behavior in a
165 hypothesized system, it does not attempt to incorporate individual perspectives that may affect
166 the timeline of adaptation or the preferences for different adaptation strategies. Rather, these
167 steps are implicitly perceived as linear adaptive strategies, a framework which has seen
168 increasing utilization (see for example: Moser and Ekstrom 2010; Pelling 2012; Bardsley and
169 Hugo 2010). However, other literature considers protection and retreat as two dichotomous
170 outcomes. Black et. al. (Figure 1B; 2011) build an alternative framework on more traditional
171 theories of migration (Hunter, Luna, and Norton 2015; Castles 2003; Brettell and Hollifield
172 2015). To do this, Black et al. augment well-established interrelationships between
173 environmental, demographic, social, and economic migration drivers, adding the influence of
174 environmental change as processed through a lens of household and societal factors, to determine
175 a singular, dichotomous decision to either remain or to migrate (retreat).

176

177 In the context of these alternative theories of the adaptation decision processes, we examine how
178 individuals perceive adaption outcomes, and whether there is variation in how they process
179 previous experiences, perceived risks, and future concerns. This follows emerging research on
180 the importance of evaluating the interrelationships between vulnerability and risk assessment as
181 they relate to discrete outcomes (Babicky and Seebauer 2018; Bubeck, Botzen, and Aerts 2012).
182 This analysis supports a more nuanced understanding of how at-risk individuals weigh different
183 adaptation options and the factors that influence these perspectives.

184

185 3. Study area and data

186 *3.1 Study area*

187 Our study area covers the State of North Carolina's (USA) Albemarle-Pamlico Peninsula (APP;
188 Figure 2), a low relief, low-elevation peninsula. North Carolina's rural coastline offers a
189 dramatized case study of climate change vulnerability and is a potential harbinger of early
190 adaptation patterns (Bhattachan, Jurjonas, et al. 2018; Jurjonas and Seekamp 2018). This is due
191 to its natural vulnerabilities and early exposure to adverse impacts of climate change. North
192 Carolina is affected by more tropical cyclones and major hurricanes than almost any other state
193 in the nation (NOAA 2019; North Carolina Climate Office 2019). It is also experiencing
194 accelerated SLR and the negative impacts of saltwater intrusion (Kopp et al. 2015). Already,
195 residents are being faced with the decisions on how to adjust to worsening conditions.

196 **[Insert Figure 2 about here]**

197 Just under half of the APP region is less than 1 m above average sea level, creating chronic risk
198 of significant flooding and saltwater intrusion (Bhattachan, Emanuel, et al. 2018). Projections of
199 0.24 – 1.32 m of relative SLR along the North Carolina coast predict that large portions of the
200 area will be fully inundated within this century (Kopp et al. 2015).

201

202 *3.1 Survey data collection*

203 To select household survey participants, we used a random, address-based sample (based on the
204 US Postal Service's Computerized Delivery Sequence File; obtained from Survey Sampling, Inc.
205 [now Dynata, Inc.]), stratified by block-group to ensure complete spatial coverage of the APP.
206 This survey instrument contained 126 questions (~30 minute completion time, per pre-testing),

207 including questions about respondents' property, disaster and flooding exposure, community
208 relationships, climate-related concerns and fears, and their openness to different future plans.

209

210 We developed questions for this survey instrument in coordination with an advisory group
211 consisting of professionals from NGO's and scholars experienced with this specific region and
212 its population. This included: Christine Avenarius (Eastern Carolina University, ECU), Christine
213 Pickens (The Nature Conservancy, TNC), and Jess Whitehead (who was with the North Carolina
214 State University, NCSU, Extension program at the time of her involvement, and who is now
215 head of The North Carolina Office of Recovery and Resiliency, NCORR). Due to the size of the
216 population (with just a little over 42,300 households), and the time frame that was targeted for
217 deploying the survey, we felt that this was an appropriate strategy for identifying survey
218 questions.

219

220 After pre-testing the survey using cognitive interviewing with potential participants (January
221 2017; $n=22$ residents), we administered the survey to residents ($n=789$; 70 un-replaced refusals)
222 using a drop-off/pick-up protocol, in which potential respondent households were physically
223 visited up to three times (on different days/times of the week). During these visits, interviewers
224 endeavored to explain the intent and use of the survey, and distribute the survey instrument and a
225 \$5 gift card incentive (Church 1993; per the Tailored Design Method; Dillman, Smyth, and
226 Christian 2008). If efforts to meet respondents were unsuccessful, survey staff left the survey
227 materials at the residence along with a business reply envelope. Three attempts were also made
228 to pick up the surveys 1-2 weeks later, and reminder letters and return envelopes were left at

229 homes where in-person contact could not be made. Final reminders were also mailed to non-
230 respondents two months after survey distribution.

231

232 Of the 789 surveys given to residents, 227 were returned, yielding a final a response rate of 31.6
233 percent. However, not all surveys were completed in their entirety; for the questions that we
234 analyzed, there were n=147 complete responses that answered all questions (a *completion* rate of
235 64.8%). With this sample size and a reference population of just over 42,300 households (ACS
236 2016), the chance for an Alpha error is 6.77% with a 90% confidence interval, and 8.07% with a
237 95% confidence interval, based on Cochran's formula (Bartlett, Kotrlik, and Higgins 2001).

238 Based on this, it is possible that the results show an Alpha error that finds differences that do not
239 actually exist within a given population. However, we feel that we have taken reasonable
240 measures to produce a high response rate based on the detailed level of survey instrument
241 implement. While future studies will be needed to confirm our findings and increase validity in
242 general applicability beyond the APP (Bartlett, Kotrlik, and Higgins 2001), these are reasonable
243 response rates and error rates given the sensitive and detailed nature of our survey instrument.

244

245 4. Analysis Methods

246 Our analysis is designed to determine the relationship between residents' exposure, perceptions
247 of climate trends, and fears about the future, as well as whether these factors influence their
248 attitudes and openness to different adaption strategies. Moreover, we seek to determine if these
249 strategies are considered to be *progressive* (i.e., retreat being an option after protection has been
250 tried), or whether protection and retreat are effectively treated as discrete options chosen by
251 distinct groups of people.

252

253 *4.1 Structural equation modeling*

254 A wide variety of studies of individual climate adaptation measures have used regression models
255 to understand adaptation household behavior, including acceptance of floodplain buyouts
256 (Binder, Baker, and Barile 2015; de Vries and Fraser 2012; Kick et al. 2011), purchasing flood
257 insurance (Lo 2013; Botzen and van den Bergh 2012; Haer et al. 2017; Bubeck et al. 2012),
258 emergency preparedness (Onuma, Shin, and Managi 2017; Zaalberg et al. 2009), and flood
259 mitigation activities (Haer et al. 2017; Bubeck, Botzen, and Aerts 2012; Bubeck et al. 2013;
260 Poussin, Botzen, and Aerts 2014). However, regression analysis typically prioritizes the
261 exploration of a single dependent variable (i.e., behavioral outcome) at a time in a given analysis.
262 Regression analysis also only focuses on the relationship between *measured* independent
263 variables. In our case, we seek to compare multiple outcomes (i.e., retreat and protective
264 measures), and to understand relationships between “latent” variables, which are unmeasured (or
265 sometimes unmeasurable) facets for adaptation decision-making (Kline 2005; Bowen and Guo
266 2012).

267

268 To accomplish this, we use Structural Equation Modeling (SEM), a technique that facilitates
269 latent variable analysis (i.e., unmeasured, inferred variables), as well as the simultaneous
270 exploration of multiple dependent variables and their relationships to independent variables.
271 While several studies have employed SEM to climate adaptation topics (Lo 2013; Kaiser,
272 Wölfing, and Fuhrer 1999; Zaalberg et al. 2009; Watkins, Aitken, and Mather 2016; Kick et al.
273 2011; Babcicky and Seebauer 2018), very few have employed it to compare multiple adaptation
274 strategies.

275

276 In our SEM analysis, we report both standardized and unstandardized coefficients. Standardized
277 coefficients involve an analysis based on standardized effects of the data, which are then less
278 affected by differing units of measurements. This allows for a relatively easy comparison of the
279 importance of different variables *within* a given model. While standardized coefficients can also
280 be used for analysis *across* models, there is a greater benefit to using unstandardized results for
281 this aspect of the analysis. This is because they are not as reliant on equal variances across
282 different samples or populations (Kwan and Chan 2011; Grace and Bollen 2005).

283

284 In this study, we use SEM to develop the latent variables necessary to better understand the
285 complex relationships between resident exposure, perception of past trends, concerns about the
286 future, and the adaptive preferences of APP residents. Figure 3 shows these hypothesized
287 relationships between these variables, with three layers to our SEM analysis. First, we have a
288 series of measured variables that were selected to help define the latent variables. Second, we
289 have three latent variables, which we construct in order to better understand the features of
290 respondents' perspectives on risks and concerns associated with living in a vulnerable
291 community. Third, and finally, we have outcome variables that measure the respondent's
292 reported willingness or reticence to engage in adaptive strategies.

293

294 **[Insert Figure 3 about here]**

295 According to Kline (2005), our sample size ($n=147$) is considered to be a medium sized
296 population for SEM models (which includes a range of 100-200 observations). Considering our
297 sample size, we utilized a case-to-parameter ratio of 10:1, and included 14 explanatory variables

298 used to define the 3 latent variables. Because of this, we should note that socio-economic
299 variables (i.e., age, race, gender, and education) in this analysis were largely excluded due to 1)
300 sample size-related limitations on the number of independent variables that could be reasonably
301 included in the equation, and 2) the limited relationships between socio-economic variables and
302 outcomes, which are likely the result of low racial and age diversity in both the study area and
303 dataset. For example, 63.3% of respondents are over 60 and 83.5% are white.

304

305 Demonstrating the limited impact of socio-economic data in this analysis, the socio-economic
306 data that we collected are broken down in Supplemental Material Table 1 in a correlation matrix.
307 As is shown in this table, the only variable that has any consistency in its impact is age, which is
308 positively correlated with non-protective responses, negatively correlated with protection, and
309 insignificant when compared with retreat. However, because there are inconsistencies in the
310 literature on of the effect of age, we did not feel it had a strong added value compared to other
311 variables (e.g., in their review of risk perception and flood mitigation behavior, Bubeck et. al.
312 [2012] found seven studies that included age as a variable, of which most found no significant
313 relationships).

314

315 *4.2 Latent Variable Development*

316 Latent variables are measured through correlations or covariances between observed variables
317 with the intention of inferring a non-measured phenomenon (Bowen and Guo 2012; Kline 2005).
318 We used observed variables to help define latent variables (Table 1) describing 1) residents'
319 current hazard exposure levels ("Exposure"), as defined by self-reported experiences of past

320 events, 2) perceptions of past storms and flooding (“Past Perception”), and 3) concerns about
321 future property value and adverse community changes (“Future Concern”).

322 **[Insert Table 1 here]**

323 We constructed the “Exposure” latent variable by agglomerating variables indicating previous
324 experience of flood-related hazard and nuisance conditions, lending insights into the degree of
325 vulnerability that a resident may have been subjected to historically. We realize that there is not a
326 perfect relationship between exposure and vulnerability (as vulnerability may not be realized).

327 However, if we assert that participants have been subjected to similar, overall hazard conditions
328 across our relatively small geographic study area, creating this link offers insight into the
329 differences in effective vulnerability.

330

331 The “Past Perception” latent variable was constructed from survey questions asking residents to
332 report their understanding of how flood-related hazards have changed over the last 20 years, both
333 broadly and within their community. This latent variable was developed to gain insight into how
334 the residents perceive historic trends towards either worsening or improving conditions (higher
335 values indicate views that flooding and storms have become more severe in the last two decades;
336 refer to Table 1). The nuance between Past Perception and Exposure relates to the tensions
337 between risk perception and actual risk as noted in Section 2.2, with an emphasis on the
338 relationship between threat appraisal of risk as it relates to behavioral change.

339

340 Finally, the third latent variable, “Future Concern” was constructed to indicate participants’ fears
341 about how future storms and continued environmental degradation will negatively impact their
342 property or community. The explicit separation of this latent variable from the previous one was

343 designed to offer more nuanced analysis that distinguishes participants' emerging feelings of
344 vulnerability to better understand the features that help to drive, or discourage, protective
345 responses.

346

347 *4.3 Selection of Measured Outcome Variables*

348 Outcome variables (Table 2) were selected for their representation of resident's willingness to
349 engage in different protective responses, based on the resident's self-reported responses.

350 **[Insert Table 2 about here]**

351 Our survey recorded preferences for three different adaptive response outcome (dependent)
352 variables. The first response, "Retreat," relates to a respondent's willingness to migrate in
353 response to flooding. This binary response is derived from the survey question: *Could you*
354 *foresee that flooding would ever force you to move from your property?* The context of this
355 question implies a long-term or permanent migration, rather than a temporary displacement as
356 may occur in anticipation or in direct response to a hazard event. See details on survey
357 instrument questions in the supplemental material.

358

359 The second and third responses, "*In Situ* Protection (Buildings)" and "*In Situ* Protection
360 (Property)" refers to a respondent's willingness to install water control structures (WCS) to
361 protect the buildings on their property from flooding and their land from flooding, respectfully.
362 For the 'Buildings' variable, respondents were asked to, "*Imagine there is flooding on your*
363 *property and it is severe enough to damage building or structures.*" For the 'Property' variable,
364 respondents were asked to, "*Imagine there is flooding on your property and it is not severe*
365 *enough to damage building or structures.*" For both scenarios, they were asked to respond to the

366 question: *How frequent would this flooding need to be in order to prompt you to install or*
367 *upgrade water control structures?* Single selection responses ranged from *once every six months*
368 to *once every 10 or more years*, as well as *“I would never install water control structures.”*
369 Answers were recoded as binary, with those indicating they would never install WCS as zero,
370 and all others as one (refer to Table 2).

371

372 Hypothetical questions are not without their limitations, and have biases because they ask for
373 predication about an inherently uncertain future (Groves et al. 2009). This question choice
374 reflects to better understand reactions to climate change conditions that are anticipated, but are
375 not yet widely accepted (Weber 2006), with the intention of gauging openness to different
376 strategies, which can be instrumental for future action (Armitage and Conner 2001). We have
377 tried to account for weaknesses with pre-testing, described in the previous section, as well as
378 using situations that mirror real world experiences (McDonald 2020), with familiar conditions
379 (Iarossi 2006). While further research is required to understand how residents will respond to
380 deteriorating environmental conditions, we feel this question provides insight into the residents'
381 perceived willingness to engage in actions as captured at a point in time.

382

383 In our survey instrument, “water control structures” were defined as ‘structures on your property
384 that prevent or limit freshwater or saltwater flooding’ and includes examples such as levees,
385 canals, pump stations, culverts, tile drains, flashboard risers, elevating the home, and bulkheads
386 or retaining walls. The term ‘water control structures’ was selected because of its applicability to
387 the context of the area; these are the tools that both individuals and the community at large
388 commonly used for the protection of one’s property in this region according to previous studies

389 in this area (e.g. Bhattachan, Jurjonas, et al. 2018). Water control structures do not include non-
390 structural adaptation measures, such as having emergency kits or plans, but is defined to run the
391 gamut of potential structural responses.

392

393 Because these scenarios were similar (refer to Table 3, showing a high correlation between “*In*
394 *Situ Protection (Buildings)*” and “*In Situ Protection (Property)*” at $r=0.858$; $p<0.01$), it was not
395 possible or useful to include both in the same SEM model. Rather, two similar models, Model 1
396 and Model 2, were used to explore both variations of this *In Situ* Protection response as well as
397 to the Retreat outcome.

398

399 Retreat and *In Situ* Protection responses were not treated as mutually exclusive in the survey, and
400 some respondents indicating a willingness to engage in more than one adaptation activity.

401 However, respondents who indicated unwillingness to engage in either response, were
402 designated as taking a “Non-Protective Response” strategy. This includes individuals who would
403 never install water control structures, no matter how frequent destructive flooding might get; nor
404 could they see flooding forcing them to move regardless of increasing intensity or frequency.

405 The variables that led to this response was considered in Model 3, to better understand the
406 mindset that may make individuals unwilling to engage in adaptive strategies more generally.

407

408 Taken together, these response variables are reflective of some of the inflection points defined in
409 McLeman’s (2017) and Adger et. al.’s (2009) hypothesized framework for climate change
410 adaptation thresholds. In McLeman’s (2017) analysis, the major thresholds were established at
411 inflection points between states where adaptation is not necessary, 1) adaptation becomes

412 necessary to protect existing livelihoods, 2) adaptation is no longer effective at protecting
413 existing livelihoods, 3) the point where an alternative land use must be implemented, and,
414 finally, 4) *in situ* adaption fails and the residents must migrate (retreat) to other areas capable of
415 sustaining livelihoods. This lens implies that individuals and households will progress through
416 these thresholds in a linear fashion, successively attempting the least aggressive strategies that
417 are successful before finally abandoning their protective efforts altogether and retreating.

418

419 Our response variables reflect speculative (that is, anticipating future problems) responses to the
420 first threshold (where adaption becomes necessary; “*In Situ* Adaptation [Property]”), the third
421 threshold (where land use or livelihoods undergo fundamental change; “*In Situ* Adaptation
422 [Buildings]”), and the fourth threshold (where *in situ* adaptation is replaced by migration
423 responses; “Retreat”; McLeman 2017). However, our response set does not explicitly consider
424 the second threshold, where adaption ceases to be effective. It also does not consider what
425 McLeman (2017) has identified as a fifth and sixth threshold (‘migration becomes non-linear’,
426 and ‘non-linear migration ceases’, respectfully), which considers trends beyond the scope of this
427 study. Therefore, while this SEM does not cover the full scope of this theoretical framework, it is
428 sufficient for understanding whether or not these decisions are perceived as progressive or
429 dichotomous.

430

431 5. Results

432 5.1 Descriptive statistics

433 We begin by reviewing the relationships between the different adaptive responses (outcomes;
434 Table 3). We can first see in Table 3 that Retreat has a very limited relationship to both *In Situ*

435 Protection measures for buildings ($r= 0.087$; $p>0.1$, *non-significant*) and property ($r=-0.015$;
436 $p>0.1$, *non-significant*). We found strong correlations in participants' willingness to take *In Situ*
437 Protection measures for buildings and property ($r=0.858$; $p<0.01$); thereby leading us to
438 evaluate these outcomes through separate SEM models.

439 **[Insert Table 3 here]**

440

441 *5.2 Standardized SEM Results*

442 One of the clearest methods for interpreting SEM results is to analyze them in diagrammatic
443 form, which demonstrates the relationships between different variables (see Figure 4). The
444 coefficients reflect the effects of the independent variable on the dependent variable in
445 relationships throughout a given path, with the direction of effect represented by an arrow;
446 significance values are provided. Additionally, a detailed breakdown of the values is provided in
447 the supplemental materials tables S2-4, with both the estimated coefficients and their
448 significance levels.

449

450 Using standardized SEMs to understand within-model patterns (e.g., different relationships
451 within a model), we can see in Model 1 (Figure 4; Supplemental Table 2) that there is a linear
452 relationship between the Exposure and Past Perception latent variables ($b=0.43$ $p<0.01$),
453 indicating that increased exposure to past events is associated with perceptions that storm
454 severity and frequency has increased in the past. Similarly, the Past Perception variable has a
455 positive relationship on Future Concern ($b=0.52$; $p<0.01$). However, Exposure itself does not
456 have a direct, significant relationship with Future Concern. These relationships are mirrored in
457 Models 2 and 3, figure 4.

458

[Insert Figure 4 about here]

459 In Model 1 (Figure 4) we look at Retreat and the *In Situ* Protection (Property) strategy, which
460 involves the protection of the property (land) itself, rather than the buildings on the property.
461 Past Perception has a positive relationship with *In Situ* Adaption ($b = 0.76$; $p < 0.05$), while Future
462 Concern continues to be positively related to Retreat ($b = 0.28$; $p < 0.1$). Additionally, Future
463 Concern has a significant negative relationship with *In Situ* Adaptation to protect property ($b = -$
464 0.63 ; $p < 0.05$). The chi-square test of model fit indicates an improvement upon a baseline model.
465 The chi-square statistic decreases to 122.68 from the baseline model value of 1119.74;
466 additionally, our model has 94 degrees of freedom compared to 120 for the baseline model. This
467 indicates that our model is a better fit than the baseline model.

468

469 Model 2 (Figure 4; Supplemental Table 3) uses a similar SEM model with our alternative
470 measure of *In Situ* Adaptation (Building). In this model, Future Concern is significantly
471 associated ($b = 0.27$; $p < 0.1$) with increased willingness to Retreat, but does not have a significant
472 relationship with *In Situ* Protection. High values of Past Perception (i.e., greater belief that storm
473 severity and frequency has increased over the last 20 years) is associated with *In Situ* Adaptation
474 ($b = 0.55$; $p < 0.05$), but is not significantly associated with Retreat. The chi-square statistic
475 decreases to 124.98 from the baseline model value of 1119.23; additionally, our model has 94
476 degrees of freedom compared to 120 for the baseline model. This indicates that our model is a
477 better fit than the baseline model.

478

479 Finally, Model 3 (Figure 4; Supplemental Table 4) looks at an aversion in using any of the three
480 adaptive techniques, referred to as a non-protective response. We find a strong, negative

481 relationship ($r = -0.93$; $p < 0.01$), whereby low Past Perception of storm frequency and magnitude
482 are associated with higher likelihood of not taking a protective response. The chi-square statistic
483 decreases to 117.08 from the baseline model value of 1134.10; additionally, our model has 83
484 degrees of freedom compared to 105 for the baseline model. This indicates that our model is a
485 better fit than the baseline model

486

487 *5.3 Un-Standardized SEM Results*

488 Un-standardized models results are also reported (Figure 4), and are more useful for comparing
489 across models, allowing for direct comparisons between the relative influences of the paths in
490 Models 1-3. Models 1 and 2 are demonstrably similar, indicating that similar patterns are at play
491 for different types of *In Situ* adaptation strategies. The main difference between them is that
492 negative impact of future worry is significant in Model 1, but is not significant (though is still
493 negative) in Model 2. Comparing these paths to Model 3 shows an even more interesting change
494 in relationships. Here, perception of the past has a strong *negative* influence on the resident's
495 inclination to not engage in protective responses. This indicates that residents who think that
496 flooding and storm conditions have *improved* over the last twenty years will not be open to
497 considering either *in situ* or out-migration adaptive strategies. Our results are shown in Figure 4,
498 and in a detailed table in the Supplemental Materials (Tables S2-4).

499

500 **6. Discussion and Conclusions**

501 We use SEM to analyze data on resident perspectives to past experiences and trends and future
502 concerns regarding climate change conditions to better understand how different considerations
503 would impact their willingness to engage in different adaptive measures. We compare reported

504 openness to *In Situ* Adaption strategies, Retreat, and Non-Protective Responses. Our results
505 suggest that different perceptions of past conditions and trends and future risks lead to
506 dramatically different adaptive responses, as mediated by previous self-reported exposure. This
507 is further supported by the limited correlation between the willingness to protect property or
508 structures (*In Situ* Adaptation) and the willingness to migrate (Retreat), indicating that
509 individuals are generally open to engage in either *in situ* or retreat responses, but not both. Taken
510 together, the results indicate that there is a need for a more nuanced understanding of individual
511 perceptions in terms of the effect on protective or non-protective responses.

512

513 This finding is explicated in our series of SEM models (Figure 4), where we see dramatic
514 differences in the relationships between latent variables and adaptation responses. For example,
515 increased Future Concern is associated with a willingness to retreat (or an acceptance that this
516 may one day become inevitable), but it is negatively associated with *in situ* Adaptation measures.
517 Similarly, a Past Perception that flooding and storm conditions have been getting worse over the
518 last twenty years is associated with willingness to engage in *in situ* Adaptation measures, but
519 negatively associated with non-protective responses.

520

521 Our results suggest that respondents' openness to different adaptation options reflects that they
522 are reacting to dramatically different perspectives. However, future studies will need to confirm
523 the directionality of these findings; are residents set in their decisions about outcomes, and
524 therefore change their recollection and reporting of the experience, or are these outcome
525 decisions fluid as residents continue to experience disasters and hear about future risks to their
526 lives and homes? If we can presume, or confirm, that it is the latter, then local and state

527 governments will have a powerful tool at their disposal that should inform their development of
528 policies and risk communication strategies.

529

530 For example, a higher recollection and reporting of past exposure to flood risks and events is
531 associated with an increased likelihood of residents to implement protective strategies *in situ*. It
532 may be possible that the residents' recollection of past exposures can be enhanced by informing
533 them (through models of past events, local stories of flood experiences collected from the
534 community, or other means). If this is the case, then targeted education campaigns emphasizing
535 these past events could contribute to homeowners implementing protective strategies on their
536 property. This aligns with work by Slovic et. al. (2012) emphasizing the importance for
537 "experiential systems" of risk assessment; and Kunreuther et. al. (2001) which emphasizes that
538 rich contextual information helps laypeople understand risk for events with low probabilities.
539 However, further research is necessary to establish this concretely. Future education campaigns
540 should be bookended with residential surveys and interviews designed to understand shifting
541 residential perspectives from before and after the implementation of education strategies
542 centered on communicating the impact of past disaster events.

543

544 Comparatively, future concern is positively associated with retreat outcomes and negatively
545 associated with non-protective responses. If we better understand how this fear is formed through
546 future research, we can create strategies for informing residents about the real risks they face in a
547 future defined by climate change. If information campaigns are successful in conveying this risk,
548 it could lead to supported and well planned (rather than ad hoc) out-migration in particularly at
549 risk areas. Further, state and local governments could focus their efforts on homes that are too

550 vulnerable to protect using site-based mitigation strategies over the long term. Such outreach
551 could be activated in the aftermath of major storm events, when federal funding becomes
552 available for floodplain buyouts and other mitigation measures (Salvesen et al. 2018), where
553 information is already provided to increase participation in the buyout program. Again, such
554 campaigns would need to be paired with longitudinal research to better understand their impacts.

555

556 Returning to our hypothesis, we see support for the notion that protection and retreat strategies
557 are not *perceived* as progressive strategies; instead, these strategies appear to be perceived to be
558 dichotomous. This suggests that residents either want to sink expenses into place to protect their
559 existing home, or they will want to migrate before accruing significant costs or losses. This does
560 not seem to reflect the hypothetical model of progressive adaptation to evolving risk (McLeman
561 2017).

562

563 However, this study looks at resident perspectives on these options from a single point in time.
564 There is a difference between the long-term adaptation pathway that results from multiple,
565 independent decisions over time, relative to the perceived, *a priori* pathway that an individual
566 articulates in the face of their own exposures, past perceptions, and future concerns. Therefore,
567 we must note that our findings do not mean that residents will not *act* in accordance with a
568 progressive adaption strategy over the long term, especially when faced with the experience of
569 gradually increasing risks that trigger sequential thresholds. Nor do our findings suggest that
570 residents will succeed in enacting necessary protection structures, even when they appear to be
571 amiable to the idea. Rather, we anticipate that residents' openness to different adaptation
572 strategies will shift under increasingly severe risk and SLR conditions, which may drive a shift in

573 the relationship between adaptations strategies and perceptions of past events and future
574 concerns.

575
576 Therefore, while our results better reflect the model developed by Black et. al. (2011)
577 emphasizing a more bifurcated decision outcome from a single point in time, the forces of
578 environmental degradation may result in progressive decisions that may closer resemble
579 McLemen's (2017) model over a period of years (refer back to Figure 1A and 1B). We offer our
580 own conceptual diagram to account for this theory, shown in Figure 5. In our diagram, we
581 anticipate that households will face a series of events that can trigger the decision to protect
582 one's home, retreat, or to keep the status quo. While that decision is discrete at any point in time,
583 those who remain in place (in both protected and non-protected homes), may continue to make
584 subsequent decisions related to additional storm events or in the face of worsening climate
585 change. Through this, some households will stay until they can no longer and then retreat, while
586 others will initially protect in place and retreat later. Under this conceptualization, we assume
587 that the land in question will become unable to support housing based on current climate change
588 projection, and retreat will be inevitable at a distant point in time. Perspectives on what decisions
589 are made and when could still reflect changes to the relationship pathways between Exposure,
590 Past Perception, and Future Concern.

591
592 **[Insert Figure 5 about here]**
593
594 A major limitation with this type of research is that surveys inherently examine the experiences
595 of those who remain, critically omitting those who have already retreated due to past hazards.

596 Additional studies in this area are necessary 1) to establish how perspectives shift and influence
597 future actions over a longer period (and in the face of accruing storm and flooding experiences;
598 i.e., longitudinal studies); 2) to determine current and past drivers of retreat (ensuring that we
599 avoid the “survivor bias” of those residents who remain); and 3) to determine the relationship
600 between types and sizes of events and how they trigger shifts in perspective.

601

602 Still, our findings help inform our understanding of the factors that prompt resident willingness
603 (and similarly, unwillingness) to consider mitigation measures, generally. Understanding when
604 and why residents may be willing to retreat or protect themselves is critical to governments’
605 ability to mitigate long-term exposure and risk at the individual and community level. Moreover,
606 this information is critical to informing the strategies that local, state, and federal governments
607 use in approaching and encouraging individuals to take proactive measures to mitigate increasing
608 climate risk to their properties, livelihoods, and health. These findings, and results from future
609 studies, can be used to inform communication strategies that may prompt residents to take
610 precautionary measures to reduce their personal risk, as well as the risk of their communities and
611 the state at large.

612

613 **References**

614

615 Adger, W. Neil. 2009. "Social Capital, Collective Action, and Adaptation to Climate Change."
616 *Economic Geography* 79 (4): 387–404.

617 Adger, W Neil, Irene Lorenzoni, and Karen L. O'Brien. 2009. "Adaptation Now." In *Adapting to*
618 *Climate Change: Thresholds, Values, Governance*, edited by W. Neil Adger, Irene
619 Lorenzoni, and Karen L. O'Brien, 1–22. Cambridge University Press.

620 *Aerts, Jeroen C.J.H., Wouter Botzen, Kieth C. Clarke, Susan L. Cutter, Jim W. Hall, Bruno Merz,*
621 *Erwann Michel-Kerjan, Mysiaki Jaroslav, Swenja Surminski, and Howard Kunreuther.*
622 2018. "Integrating Human Behaviour Dynamics into Flood Disaster Risk Assessment."
623 *Nature Climate Change* 8 (3): 193–99.

624 Armitage, Christopher J, and Mark Conner. 2010. "Efficacy of the Theory of Planned
625 Behaviour : A Meta-Analytic Review E Y Cacy of the Theory of Planned Behaviour : A
626 Meta-Analytic Review," no. July 2017: 471–99. <https://doi.org/10.1348/014466601164939>.

627 Babcicky, Philipp, and Sebastian Seebauer. 2018. "Unpacking Protection Motivation Theory:
628 Evidence for a Separate Protective and Non-Protective Route in Private Flood Mitigation
629 Behavior." *Journal of Risk Research* 0 (0): 1–18.

630 Bardsley, Douglas K., and Graeme J. Hugo. 2010. "Migration and Climate Change: Examining
631 Thresholds of Change to Guide Effective Adaptation Decision-Making." *Population and*
632 *Environment* 32 (2): 238–62.

633 Bartlett, James E, Joe W Kotlik, and Chadwick C Higgins. 2001. "Organizational Research :
634 Determining Appropriate Sample Size in Survey Research" 19 (1): 43–50.

635 Bhattachan, Abinash, Ryan E. Emanuel, Marcelo Ardón, Emily S. Bernhardt, Steven M.

636 Anderson, Matthew G. Stillwagon, Emily A. Ury, Todd K. BenDor, and Justin P. Wright.

637 2018. "Evaluating the Effects of Land-Use Change and Future Climate Change on

638 Vulnerability of Coastal Landscapes to Saltwater Intrusion." *Elementa* 6.

639 Bhattachan, Abinash, M. D. Jurjonas, A. C. Moody, P. R. Morris, G. M. Sanchez, L. S. Smart, P.

640 J. Taillie, R. E. Emanuel, and E. L. Seekamp. 2018. "Sea Level Rise Impacts on Rural

641 Coastal Social-Ecological Systems and the Implications for Decision Making."

642 *Environmental Science and Policy* 90 (December 2017): 122–34.

643 Binder, Sherri Brokopp, Charlene K. Baker, and John P. Barile. 2015. "Rebuild or Relocate?

644 Resilience and Postdisaster Decision-Making After Hurricane Sandy." *American Journal of*

645 *Community Psychology* 56 (1–2): 180–96.

646 Black, Richard, W. Neil Adger, Nigel W. Arnell, Stefan Dercon, Andrew Geddes, and David

647 Thomas. 2011. "The Effect of Environmental Change on Human Migration." *Global*

648 *Environmental Change* 21 (SUPPL. 1): S3–11.

649 Black, Richard, Stephen R. G. Bennett, Sandy M. Thomas, and John R. Beddington. 2011.

650 "Climate Change: Migration as Adaptation." *Nature* 478 (7370): 447–49.

651 Bollen, Kenneth A., and J. Scott Long, eds. 1993. *Testing Structural Equation Models*. Sage

652 Publications.

653 Botzen, W. J.W., and J. C.J.M. van den Bergh. 2012. "Risk Attitudes to Low-Probability Climate

654 Change Risks: WTP for Flood Insurance." *Journal of Economic Behavior and Organization*

655 82 (1): 151–66.

656 Bowen, Natasha K., and Shenyang Guo. 2012. *Structural Equation Modeling*. Edited by Tony

657 Tripodi. Oxford University Press.

658 Brettell, Caroline B, and James Hollifield. 2015. *Migration Theory: Talking Across Disciplines*.

659 New York, NY: Routledge.

660 Brown, Oli. 2008. "Migration and Climate Change." *IOM Migration Research Series*.

661 Bubeck, Philip, W. J.W. Botzen, H. Kreibich, and J. C.J.H. Aerts. 2013. "Detailed Insights into

662 the Influence of Flood-Coping Appraisals on Mitigation Behaviour." *Global Environmental*

663 *Change* 23 (5): 1327–38.

664 Bubeck, Philip, W. J.W. Botzen, H. Kreibich, and J. C.J. H. Aerts. 2012. "Long-Term

665 Development and Effectiveness of Private Flood Mitigation Measures: An Analysis for the

666 German Part of the River Rhine." *Natural Hazards and Earth System Sciences* 12 (11):

667 3507–18.

668 Bubeck, Philip, Wouter Botzen, and J. C. J. H. Aerts. 2012. "A Review of Risk Perceptions and

669 Other Factors That Influence Flood Mitigation Behavior." *Risk Analysis* 32 (9): 1481–95.

670 Bubeck, Philip, W. J. Wouter Botzen, Jonas Laudan, J. C. J. H. Aerts, and Annegret H. Thielen.

671 2018. "Insights into Flood-Coping Appraisals of Protection Motivation Theory: Empirical

672 Evidence from Germany and France." *Risk Analysis* 38 (6): 1239–57.

673 Castles, Stephen. 2003. "Towards a Sociology of Forced Migration and Social Transformation

674 Abstract." *Sociology* 77 (1): 1–18.

675 Church, Allan H. 1993. "Estimating the Effect of Incentives on Mail Survey Response Rates: A

676 Meta-Analysis." *The Public Opinion Quarterly* 57 (1): 62–79.

677 Dillman, Don A., J.D. Smyth, and L.M. Christian. 2008. *Internet, Mail, and Mixed-Mode*

678 *Surveys: The Tailored Design Method*. 3rd Editio. Hoboken., NJ: Wiley.

679 Frankhauser, Susan. 1995. "Protection versus Retreat: The Economic Costs of Sea-Level Rise."

680 *Environment & Planning A* 27 (2): 299–319.

681 Grace, James B., and Kenneth A. Bollen. 2005. "Interpreting the Results from Multiple

682 Regression and Structural Equation Models.” *The Bulletin of the Ecological Society of*
683 *America* 86 (4): 283–25.

684 Grothmann, Torsten, and Anthony Patt. 2005. “Adaptive Capacity and Human Cognition: The
685 Process of Individual Adaptation to Climate Change.” *Global Environmental Change* 15
686 (3): 199–213.

687 Groves, Robert M., Floyd J. Fowler, Mick P. Couper, James M. Lepkowski, Eleanor Singer, and
688 Roger Tourangeau. 2009. *Survey Methodology: Wiley Series in Survey Methodology*.
689 Second Edi. Hoboken., NJ: John Wiley & Sons Ltd.

690 Haer, Toon, W. J. Wouter Botzen, Hans de Moel, and Jeroen C.J.H. Aerts. 2017. “Integrating
691 Household Risk Mitigation Behavior in Flood Risk Analysis: An Agent-Based Model
692 Approach.” *Risk Analysis* 37 (10): 1977–92.

693 Hoyle, Rick H., ed. 1995. *Structural Equation Modeling: Concepts, Issues, and Applications*.
694 Sage Publications.

695 Hunter, Lori M, Jessie K Luna, and Rachel M Norton. 2015. “Environmental Dimensions of
696 Migration.” *Annual Review of Sociology*, 377–97.

697 Iarossi, Giuseppe. 2006. *The Power of Survey Design: A User’s Guide for Managing Surveys*.
698 World Bank Publications.

699 IPCC. 1990. *Climate Change: The IPCC Scientific Assessment*. Edited by J. T. Houghton, G. J.
700 Jenkins, and J. J. Ephraums. Cambridge, UK: Cambridge University Press.

701 ———. 2012. “Managing the Risks of Extreme Events and Disasters to Advance Climate
702 Change Adaptation.”

703 ———. 2018. “Global Warming of 1.5 °C.” *Inergovernmental Panel on Climate Change*.
704 <http://www.ipcc.ch/report/sr15/>.

705 Jurjonas, Matthew, and Erin Seekamp. 2018. "Rural Coastal Community Resilience: Assessing a
706 Framework in Eastern North Carolina." *Ocean and Coastal Management* 162: 137–50.

707 Kaiser, Florian G., Sybille Wölfig, and Urs Fuhrer. 1999. "Environmental Attitude and
708 Ecological Behaviour." *Journal of Environmental Psychology* 19: 1–19.

709 Kick, Edward L., James C. Fraser, Gregory M. Fulkerson, Laura A. Mckinney, and Daniel H. De
710 Vries. 2011. "Repetitive Flood Victims and Acceptance of FEMA Mitigation Offers: An
711 Analysis with Community-System Policy Implications." *Disasters* 35 (3): 510–39.

712 Kline, Rex B. 2005. *Principles and Practice of Structural Equation Modeling*. Edited by David
713 A. Kenny. 2nd ed. The Guilford Press.

714 Kopp, Robert E., Benjamin P. Horton, Andrew C. Kemp, and Claudia Tebaldi. 2015. "Past and
715 Future Sea-Level Rise along the Coast of North Carolina, USA." *Climatic Change* 132 (4):
716 693–707.

717 Koslov, Liz. 2016. "The Case for Retreat." *Public Culture* 28 (2): 359–87.

718 Kunreuther, Howard. 1996. "Mitigating Disaster Losses through Insurance.Pdf" 187: 171–87.
719 ———. 2015. "The Role of Insurance in Reducing Losses from Extreme Events: The Need for
720 Public-Private Partnerships." *Geneva Papers on Risk and Insurance: Issues and Practice* 40
721 (4): 741–62.

722 Kunreuther, Howard, Nathan Novemsky, and Daniel Kahneman. 2001. "Making Low
723 Probabilities Useful." *Journal of Risk and Uncertainty* 23 (2): 103–20.

724 Kwan, Joyce L.Y., and Wai Chan. 2011. "Comparing Standardized Coefficients in Structural
725 Equation Modeling: A Model Reparameterization Approach." *Behavior Research Methods*
726 43 (3): 730–45.

727 Lindell, Michael K., and Ronald W. Perry. 2012. "The Protective Action Decision Model:

728 Theoretical Modifications and Additional Evidence.” *Risk Analysis* 32 (4): 616–32.

729 Lo, Alex Y. 2013. “The Role of Social Norms in Climate Adaptation: Mediating Risk Perception

730 and Flood Insurance Purchase.” *Global Environmental Change* 23 (5): 1249–57.

731 Loomis, John. 2011. “What’s to Know about Hypothetical Bias in Stated Preference Valuation

732 Studies?” *Journal of Economic Surveys* 25 (2): 363–70.

733 McDonald, Jared. 2020. “Avoiding the Hypothetical: Why ‘Mirror Experiments’ Are an

734 Essential Part of Survey Research.” *International Journal of Public Opinion Research* 32

735 (2): 266–83.

736 McLeman, Robert A. 2011. “Settlement Abandonment in the Context of Global Environmental

737 Change.” *Global Environmental Change* 21 (SUPPL. 1): S108–20.

738 ———. 2017. “Thresholds in Climate Migration.” *Population and Environment* 39 (4): 319–38.

739 Moser, Susanne C., and Julia A. Ekstrom. 2010. “A Framework to Diagnose Barriers to Climate

740 Change Adaptation.” *Proceedings of the National Academy of Sciences of the United States*

741 *of America* 107 (51): 22026–31.

742 NOAA. 2019. “U.S. Billion-Dollar Weather and Climate Disasters.” NOAA National Centers for

743 Environmental Information (NCEI). 2019.

744 North Carolina Climate Office. 2019. “Hurricanes: Statistics.” 2019.

745 Onuma, Hiroki, Kong Joo Shin, and Shunsuke Managi. 2017. “Household Preparedness for

746 Natural Disasters: Impact of Disaster Experience and Implications for Future Disaster Risks

747 in Japan.” *International Journal of Disaster Risk Reduction* 21 (July 2016): 148–58.

748 Pelling, Mark. 2012. “Resilience and Transformation.” In *Climate Change and the Crisis of*

749 *Capitalism*, edited by Mark Pelling, David Manuel-Navarrette, and Michael Redclift, 51–

750 65. New York, NY: Routledge.

751 Perry, Ronald W., E. L. Quarantelli, Arjen Boin, and et al. 2007. *Handbook of Disaster*
752 *Research*. Edited by Havidán Rodríguez, Enrico L. Quarantelli, and Russell R. Dynes.
753 Springer.

754 Piggott-McKellar, Annah E., Karen E. McNamara, Patrick D. Nunn, and Seci T. Sekinini. 2019.
755 “Moving People in a Changing Climate: Lessons from Two Case Studies in Fiji.” *Social*
756 *Sciences* 8 (5).

757 Poussin, Jennifer K., W. J. Wouter Botzen, and Jeroen C.J.H. Aerts. 2014. “Factors of Influence
758 on Flood Damage Mitigation Behaviour by Households.” *Environmental Science and*
759 *Policy* 40: 69–77.

760 Rogers, R. W. 1975. “A Protection Motivation Theory of Fear Appeals and Attitude Change.”
761 *The Journal of Psychology* 91 (1): 93–114.

762 Rogers, R. W., and Stevevn Prentice-Dunn. 1997. “Protection Motivation Theory.” In *Handbook*
763 *of Health Behvior Research. I: Personal and Social Determinants*, edited by D. S.
764 Gochman, 113–32. New York, NY: Plenum.

765 Salvesen, David, Todd K BenDor, Christian Kamrath, and Brooke Ganser. 2018. “Are
766 Floodplain Buyouts a Smart Investment for Local Governments?”

767 Slovic, Paul. 1987. “Perception of Risk.” *Advancement Of Science* 236 (4799): 280–85. Slovic,
768 Paul, Melissa Finucane, Ellen Peters, and Donald G. Macgregor. 2012. “Risk as Feeling:
769 Some Thoughts about Affect, Reason, Risk and Rationality.” *The Ethics of Technological*
770 *Risk* 24 (2): 163–81.

771 Sullivan-Wiley, Kira A., and Anne G. Short Gianotti. 2017. “Risk Perception in a Multi-Hazard
772 Environment.” *World Development* 97: 138–52.

773 Vries, Daniel H de, and James C Fraser. 2012. “Citizenship Rights and Voluntary Decision

774 Making in Post-Disaster U.S. Floodplain Buyout Mitigation Programs.” *International*
775 *Journal of Mass Emergencies and Disasters* 30 (1): 1–33.

776 Watkins, Leah, Robert Aitken, and Damien Mather. 2016. “Conscientious Consumers: A
777 Relationship between Moral Foundations, Political Orientation and Sustainable
778 Consumption.” *Journal of Cleaner Production* 134: 137–46.

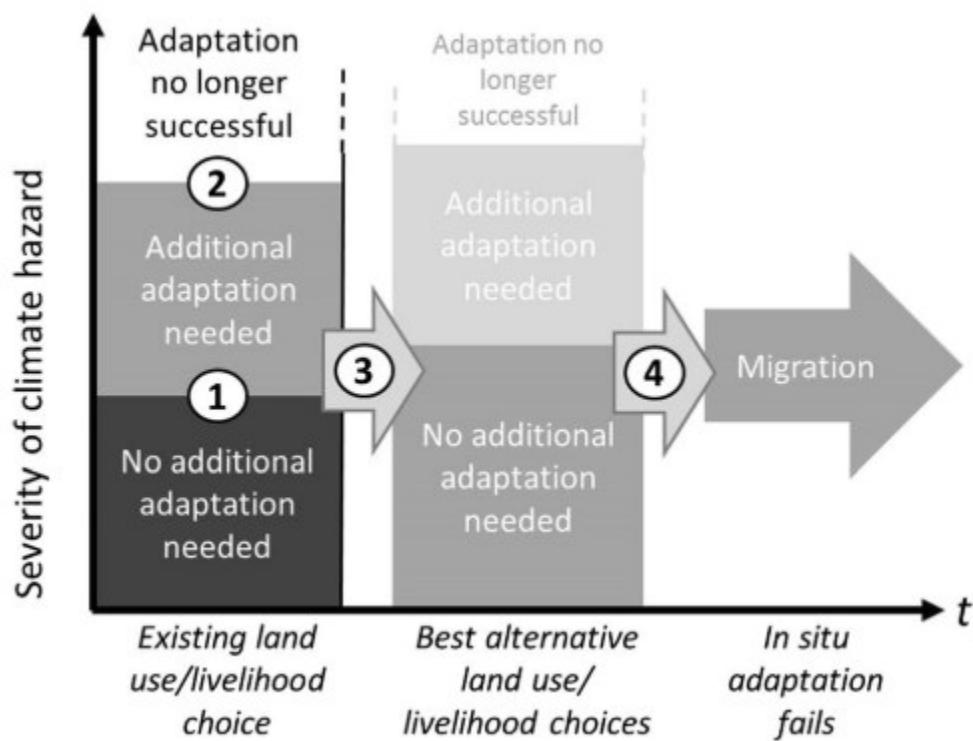
779 Weber, Elke U. 2006. “Experience-Based and Description-Based Perceptions of Long-Term
780 Risk: Why Global Warming Does Not Scare Us (Yet).” *Climatic Change* 77 (1–2): 103–20.

781 Wong, P.P., I.J. Losada, J-P. Gattuso, J. Hinkel, A. Khattabi, K.L. McInnes, Y. Saito, and A.
782 Sallenger. 2014. “Coastal Systems and Low-Lying Areas.” In *Climate Change 2014: Impacts, Adaptation, and Vulnerability*, 361–409.

783

784 Zaalberg, Ruud, Cees Midden, Anneloes Meijnders, and Teddy McCalley. 2009. “Prevention,
785 Adaptation, and Threat Denial: Flooding Experiences in the Netherlands.” *Risk Analysis* 29
786

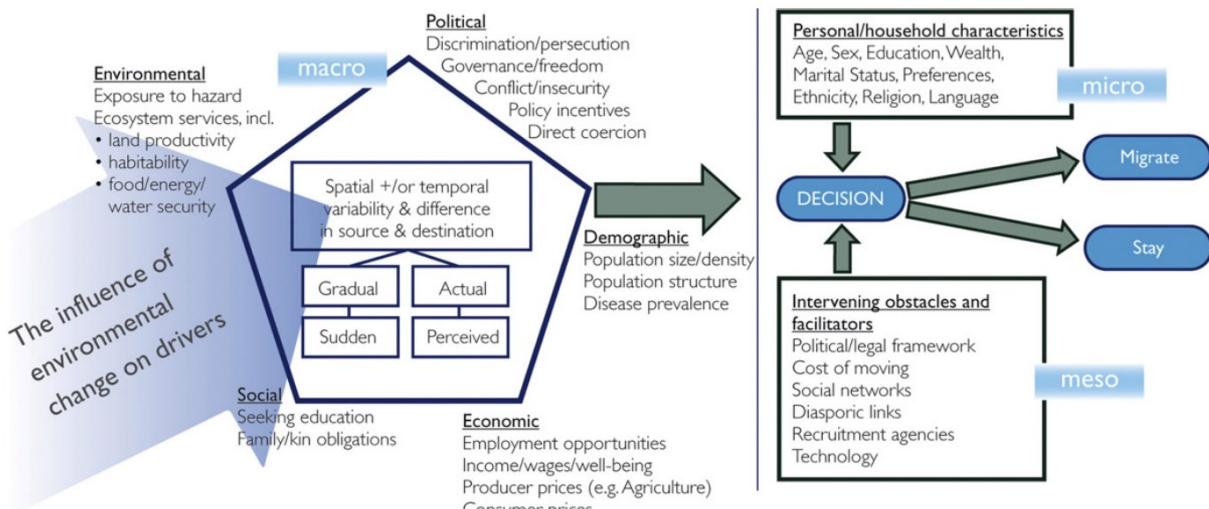
787


788 Figures

789

790 Figure 1: Alternative frameworks describing adaptation pathways. Panel A: McLeman (2017)
791 threshold-based adaptation pathways framework. Panel B: Black, Adger et. al.'s (2013)
792 migration theory-based framework adapted to emphasize climactic and environmental drivers.

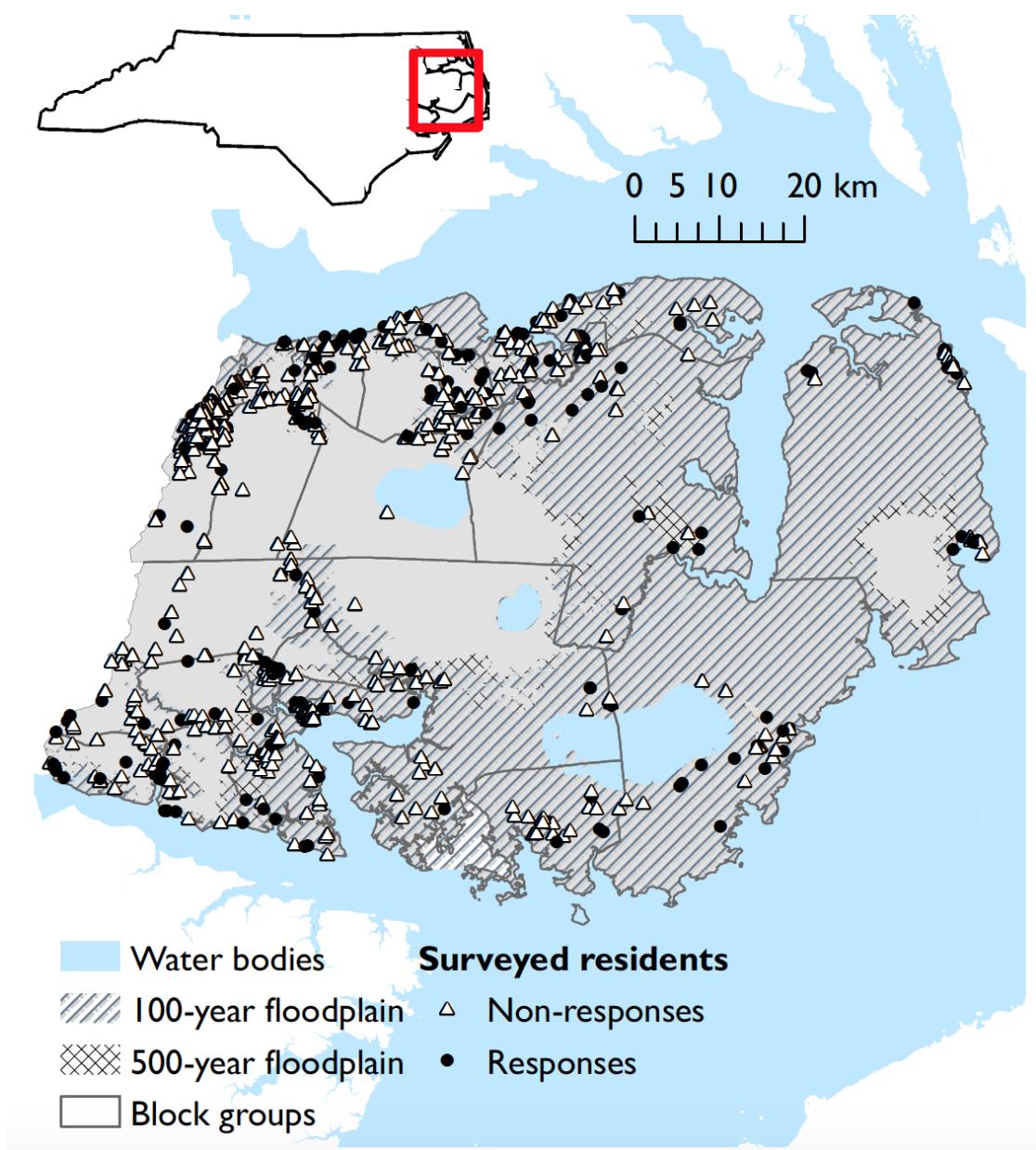
793


794 Panel A: Adaptation and thresholds in a hypothesized system. This system implies progressive
795 adaption strategies that accelerate in response to deteriorating environmental conditions.

796

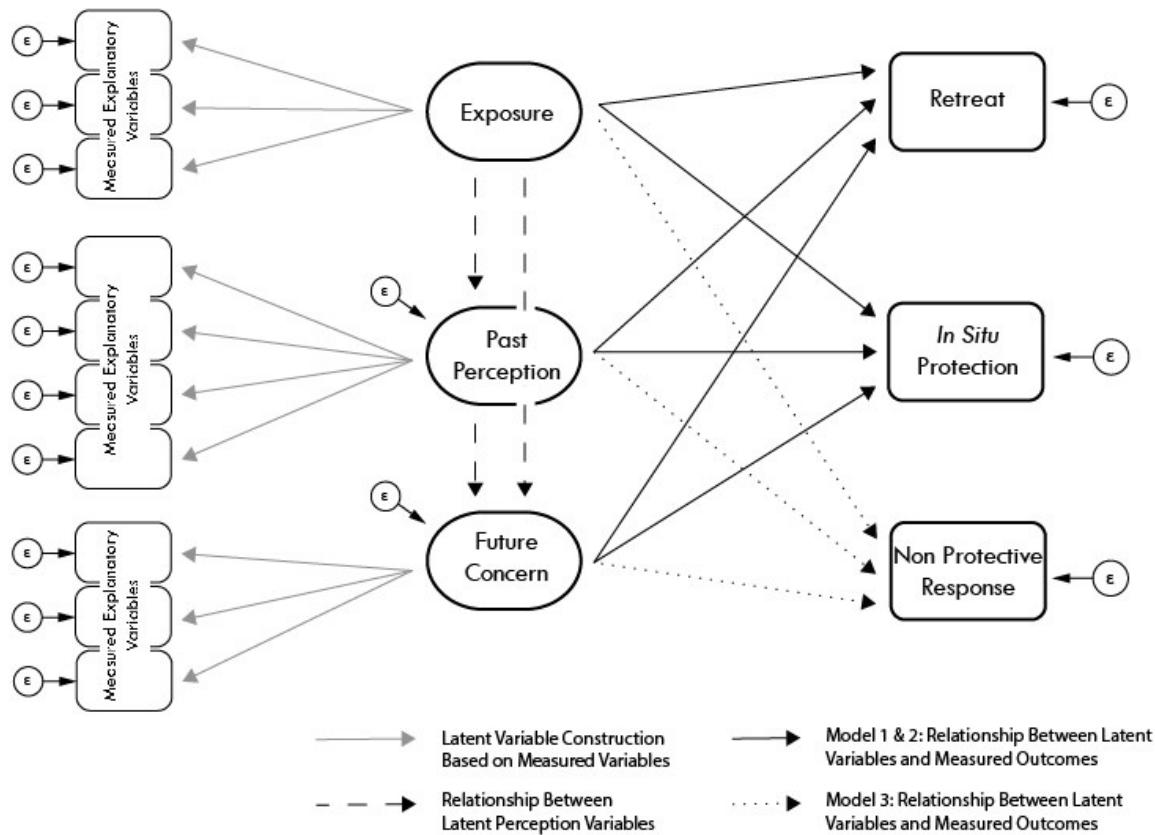
797

798 Panel B: A conceptual framework for the 'drivers of migration'. This builds off of traditional
799 migration theory adding in considerations for environmental change in the light of its heightened
800 importance in the era of climate change



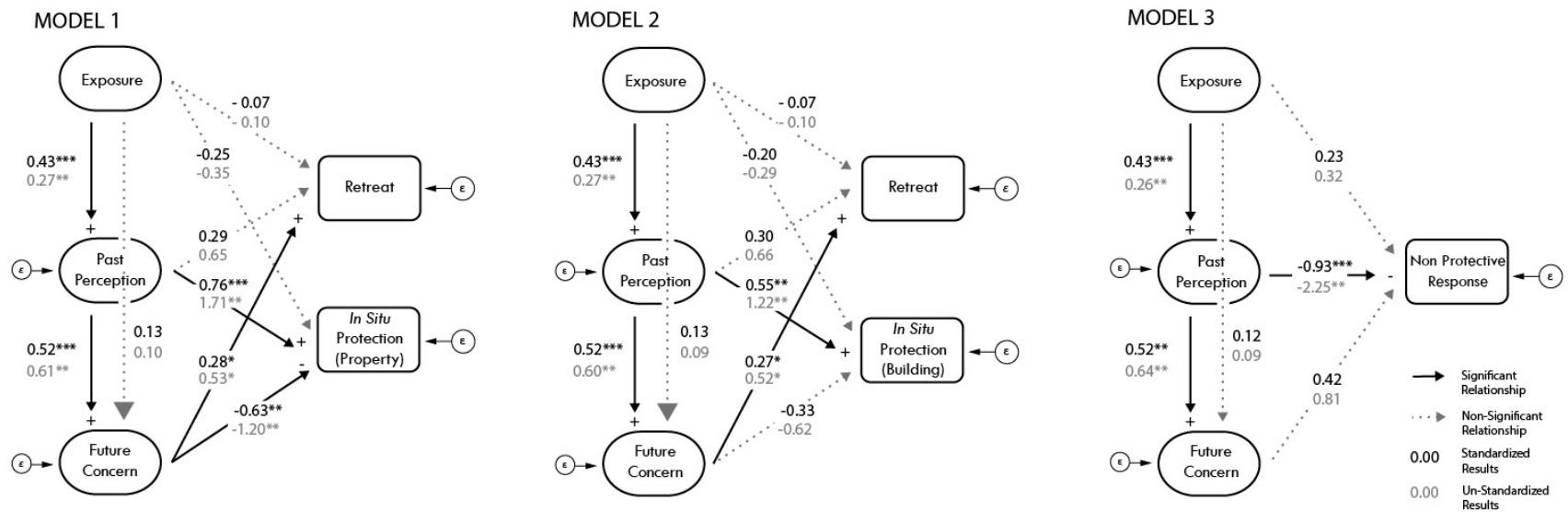
801

802


803 Figure 2. Map of surveyed residents and floodplains in North Carolina's Albemarle-Pamlico
804 Peninsula (APP).

805

806


807 Figure 3: SEM model conceptual design linking measured explanatory variables (refer to Table
 808 1), latent measures (Exposure, Past Perception, and Future Concern), and adaptive behaviors
 809 (Retreat, Protection, Non-Protective Response).

810

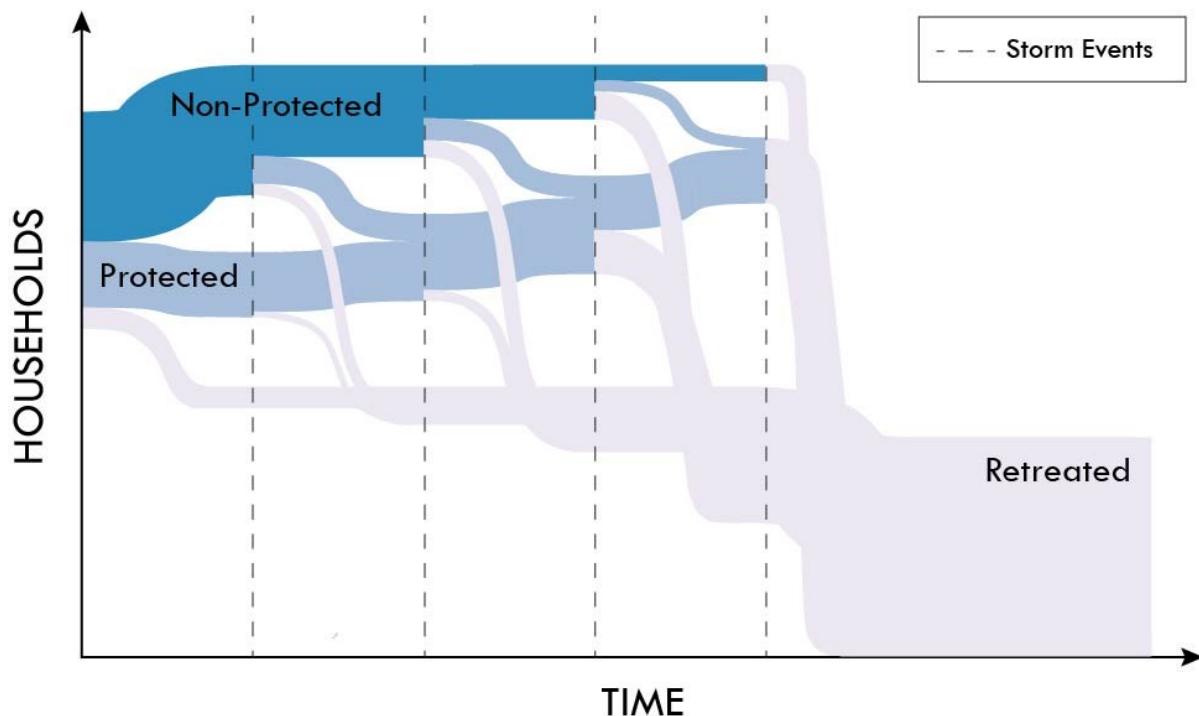

811

Figure 4: Standardized (black) and un-standardized SEM models (gray). Model 1) Outcome variables: Retreat and *In Situ* Adaptation (property). Model 2) Outcome variables: Retreat and *In Situ* Adaptation (building). Model 3) Outcome variable: Non-Protective Response. * $p<0.1$; ** $p<0.05$; *** $p<0.01$. $N = 147$. Refer to Supplemental Tables 2 – 4 for more detailed output.

1 Figure 5: Conceptualized framework regarding a series of discrete choices in the face of multiple
2 storm events, considering that choices may change as conditions deteriorate over time.

3

4

5

6 Tables

7
8 Table 1: Construction of latent variables based on measured explanatory variables. Survey
9 question linked to explanatory variables and coding scheme are shown. Superscript letters
10 indicate sets of variables with linked error terms

11

Latent Variable	Explanatory Variables	Description	Coding
Exposure	Structural Damage	Have you ever experienced structural damage to your home due to storm-related flooding?	(1) Yes (0) No
	FFE Damage	Have the contents of your home been damaged by storm related flooding?	(1) Yes (0) No
	Property Damage	Have other areas of your property ever been damaged or affected by storm-related flooding?	(1) Yes (0) No
	Standing Water	In the past 5 years, have you noticed any standing water on your property?	(1) Yes (0) No
	Hurricane Matthew	Was your property impacted by Hurricane Matthew (October 2016)?	(1) Yes (0) No
	Previous Storms	Have you been affected by a hurricane or another storm in the past?	(1) Yes (0) No
	Evacuation	Have you been evacuated due to a storm in your area?	(1) Yes (0) No
Past Perception	Strengthening Storms ^(a)	Over the past 20 years, what do you believe has happened to the strength of storms?	(1) Storms are getting a lot milder (2) Storms are getting milder (3) Strength has not changed (4) Storms are getting somewhat stronger (5) Storms are getting a lot stronger
	More Frequent Storms ^(a)	Over the past 20 years, what do you believe has happened to the frequency of storms?	(1) Storms are much less frequent (2) Storms are somewhat less frequent (3) Storm frequency has not changed (4) Storms are getting somewhat more frequent (5) Storms are getting much more frequent
	Property Flooding	What changes have you noticed in flooding on your property over the last 20 years	(1) Much less flooding (2) Somewhat less flooding (3) No changes in flooding (4) Somewhat more flooding (5) much more flooding
	Community Flooding	What changes have you noticed in flooding in your community over the last 20 years	(1) Much less flooding (2) Somewhat less flooding (3) No changes in flooding (4) Somewhat more flooding (5) much more flooding
Future Concern	Property Value	I am concerned with the value of my property in the future	(1) Strongly Disagree (2) Somewhat Disagree (3) Neither Agree nor Disagree (4) Somewhat Agree (5) Strongly Agree
	Environmental Property Changes ^(b)	I am concerned with how environmental changes may affect my property in the future	(1) Strongly Disagree (2) Somewhat Disagree (3) Neither Agree nor Disagree (4) Somewhat Agree (5) Strongly Agree
	Environmental Community Changes ^(b)	I am concerned with how environmental changes may affect my community in the future	(1) Strongly Disagree (2) Somewhat Disagree (3) Neither Agree nor Disagree (4) Somewhat Agree (5) Strongly Agree

12 Table 2: Adaptive response (outcome) variables, the survey question they were operationalized
13 from, their description, and coding.

14

Conceptual Representation	Explanatory Variables	Description	Coding
Retreat	Retreat	Could you foresee that flooding would ever force you to move from your property?	(1) Yes (0) No
<i>In Situ</i> Protection (buildings)	Building Protection WCS	Imagine there is flooding on your property and it is severe enough to damage buildings or structures: How frequent would this flooding need to be to prompt you to install / upgrade WCS	(1) There is a frequency that would lead to installation / upgrades (0) Would never install water control structures
<i>In Situ</i> Protection (property)	Land Protection WCS	Imagine there is flooding on your property and it is not severe enough to damage buildings or structures: How frequent would this flooding need to be to prompt you to install / upgrade WCS	(1) There is a frequency that would lead to installation / upgrades (0) Would never install water control structures
Non-Protective Response	No Adaption	A composite score reflecting an unwillingness to engage with any of the above adaptation techniques	(1) 0 to all of the above responses (0) 1 to any of the above responses

15

16

17 Table 3: Correlation matrix of outcome variables (n=147). *p<0.1; **p<0.05; ***p<0.01

18

	Retreat	<i>In Situ</i> Protection (Buildings)	<i>In Situ</i> Protection (Property)	Non-Protective Response
Retreat	1.000			
<i>In Situ</i> Protection (Buildings)	0.087 (0.294)	1.000		
<i>In Situ</i> Protection (Property)	-0.015 (0.855)	0.858*** (0.000)	1.000	
Non-Protective Response	-0.369*** (0.000)	-0.7303*** (0.000)	-0.679*** (0.000)	1.000

19

20