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Physics-guided multiple regression analysis for
calculating electrostatic free energies of proteins in
different reference states

TANIA HAZRA AND SHAN ZHAO*

An implicit solvent modeling problem is studied in this work, i.e.,
by calculating the electrostatic free energy between water and a
new reference state, how to recover the original solvation free en-
ergy between water and vacuum states. Such a recovery is con-
sidered for the super-Gaussian Poisson-Boltzmann (PB) model [T.
Hazra, S. Ahmed-Ullah, S. Wang, E. Alexov, and S. Zhao, Journal
of Mathematical Biology, (2019) 79:631-672], which is a heteroge-
neous dielectric model to mimic the conformational changes of a
macromolecule. Nevertheless, while the dielectric function should
physically decrease in the vacuum state as it leaves the macro-
molecular region, the super-Gaussian dielectric function has an in-
flation over the narrow band of the solute-solvent boundary. To
avoid such a non-monotonicity issue, a new reference state with
a large enough dielectric value is employed in the super-Gaussian
PB model. Based on the electrostatic free energy calculated using
this new reference state, a multiple regression model is developed
in this paper to estimate the original free energy. The proposed
regression model is built physically by accounting for the contri-
bution of each individual atom explicitly, which is modeled via the
analytical result of the Kirkwood sphere. Moreover, a regression
analysis is conducted for four simple physical descriptors that are
related to electrostatic interactions between solute and solvent, i.e.,
the total number of atoms, the total charge, and the area and vol-
ume of the solvent excluded surface (SES). By using a data set of
74 proteins, the dependence of these four descriptors is analyzed.
Numerical results indicate that the multiple regression model per-
forms well in estimating the electrostatic free energies.
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1. Introduction

The electrostatic analysis is indispensable for studying various important
biological processes at the atomistic level, which involve charged objects
such as proteins, DNAs and RNAs, immersed in an aquatic environment with
mobile ions. As an implicit solvent model, the Poisson Boltzmann Equation
(PBE) [15, 2, 3] has been widely used to simulate electrostatic interactions
between the solute macromolecular and the surrounding solvent molecules.
One common application of the PBE is to calculate the electrostatic free
energy or polar solvation energy, which is defined as the polar energy released
when a solute is dissolved in a solvent. Traditionally, the polar solvation
energy is calculated as the difference in the electrostatic energy between two
reference states, i.e., the water state and vacuum state.

This paper is concerned with an interesting modeling problem, i.e., simu-
lating the electrostatic free energy by choosing the base reference state to be
different from the vacuum. Such a problem has been mentioned in a review
article [3]. The only known study in the literature is presented in Ref. [24], in
which the dependence of polar solvation energy on dielectric constants of two
reference states is represented via an empirical formula. Motivated by [24],
a multiple regression will be conducted in this paper when the underlying
PBE model becomes more complicated than that in [24].

In the classical Poisson-Boltzmann (PB) model [15, 2, 3|, the PBE as-
sumes a two-dielectric setting, i.e., a lower dielectric constant e, is assigned
to the molecular region, and a higher dielectric constant € is used for the wa-
ter subdomain. The solute-solvent boundary, in this case, is a sharp interface
with a dielectric jump, and its shape is commonly modeled as a molecular
surface of the macromolecule. The fitting formula proposed in [24] is for the
two-dielectric PBE, and is able to approximate the electrostatic free energy
for different combinations of (€, €s) from the PBE calculation on a single
set of (e, €s) values.

Many improved PB models have been developed in the literature, includ-
ing diffuse interface PB models [1, 4, 5, 8, 30, 9, 28] and the heterogeneous
dielectric PB models [16, 17, 6, 13, 19]. These models all feature a smooth
solute-solvent boundary, i.e., the dielectric function changes smoothly from
the protein to the water region over a narrow transition band. See Fig. 1 (a)
for an illustration. The modeling consideration here takes into account the
physical definition of dielectric coefficient and the atomistic nature of the
solute-solvent system. Physically, the dielectric coefficient of water molecules
or dipoles is determined by the polarizability of the dipole in responding to
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Figure 1: (a) A transition layer is assumed to define a smooth solute-solvent
boundary. (b) Gaussian dielectric distributions in water and vacuum states.
(c) Super-Gaussian dielectric distributions in water and vacuum states.

the electrostatic field. Such a polarizability will increases from the macro-
molecule interior to the water region, but should not undergo a sharp jump
[7]. This is the main reason for adopting a smooth solute-solvent boundary
in diffuse interface PB models [1, 4, 5, 8, 30, 9, 28], in which the water and
protein regions are still treated as homogeneous dielectric media.

Besides the diffuse interface PB models, heterogeneous dielectric mod-
els, such as Gaussian PB model [16, 17] and super-Gaussian PB model [13],
have been developed to construct inhomogeneous dielectric distributions to
mimic the effect of the conformational changes of the macromolecule on the
solvation free energy. These improved PB models perform better than the
traditional two dielectric PB model in solvation free energy calculation for
small molecules [16, 17]. Moreover, the Gaussian dielectric PB model pro-
vides a better prediction of the pKa’s of ionizable groups against thousand
experimentally measured pKa’s in various proteins [26, 27]. An attractive
feature of Gaussian and super-Gaussian PB models is that ensemble aver-
age electrostatic free energy could be captured by using a single structure
[6, 19]. This is much more efficient than the usual ensemble calculation that
involves thousands of steps of PBE computation, together with molecular
dynamics or Monte Carlo simulations.

The Gaussian PB model [16, 17] and super-Gaussian PB model [13] share
some similarity, but define the smooth solute-solvent boundary in different
styles. In particular, when considering a protein immersed in the water or
the so-called water state, the same type of density function g(7) is defined
in both models to describe an atom-specific heterogeneity throughout the
domain. The Gaussian dielectric function eg(7) [16, 17] is simply defined as
a linear combination of ¢(7) and 1— g(7), with combination coefficients being
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€m and €. In the super-Gaussian model [13], a level set or surface function
S(7) is introduced to represent three regions: molecular subdomain, solute-
solvent boundary, and water subdomain, see Fig. 1 (a). The super-Gaussian
dielectric function €z (7) is constructed through two linear combinations
and its maximal value inside the protein is an adjustable parameter €,,4;.
Ilustrations of the dielectric functions of two models are shown in Fig. 1. It
is seen that they are close to each other in the water state.

For the vacuum state, the dielectric functions of Gaussian PB model
[16, 17] and super-Gaussian PB model [13] are significantly different, see
Fig. 1. In the Gaussian PB model [16, 17|, the dielectric function in the
vacuum state is generated by truncating that function in the water state.
To this end, a surface cut boundary is first identified, say at ¢ = 20. In
the first version [16, 17], eq(7) is kept to be the same inside the surface
cut boundary, while for outside eg(7) = €; = 1. Consequently, eg(7) is
discontinuous at the surface cut boundary. An improved version has been
developed in [6], in which an exponentially decaying function is adopted
outside the surface cut boundary, so that eg(7) is C” continuous, but not
C' continuous, see Fig. 1 (b). From mathematical point of view, the low
regularity of e () will introduce additional difficulties in numerical solution
and analysis of the partial differential equation (PDE). On the contrary, the
dielectric function of the super-Gaussian model is at least C? continuous in
both water and vacuum states [13]. This is achieved by defining both states
via one dielectric model and the switching of two states is realized through
one parameter.

We will focus only on the super-Gaussian PB model in this work. For
the vacuum state, it can be seen from Fig. 1 (c) that e4;(7) has an inflation
or a concavity change across the solute-solvent boundary. The height of this
inflation is controlled by the value assigned to €4, [13]. In some sense, such
an inflation contradicts our physical intuition, i.e., the dielectric function in
the vacuum state should decay monotonically outside the protein. We will
not attempt to modify the super-Gaussian PB model in this study. Instead,
we will consider a different modeling problem: compute the electrostatic free
energy by choosing the base reference state to be different from the vacuum
state. In particular, we can carefully choose the dielectric constant of the
new reference state so that e,(7) is monotonic outside the protein.

For the super-Gaussian PB model, the planned study allows us to bypass
the non-monotonicity issue. We note that our modeling problem has a more
general physical meaning: by solving solvation free energy between water
state and a new reference state, how to recover the energy between water
and vacuum states. To support this physical perspective, some reference
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media which have low dielectric constants such as benzene, cyclohexane,
trichloroethylene, etc. can be considered. In this paper, we propose a multiple
regression model to retrieve the solvation free energy which was lost due to
the dielectric inflation across the solute-solvent boundary and validate it for
the super-Gaussian model. We note that the proposed multiple regression
model can be applied to two-dielectric and Gaussian PB models to study
the same type of problems.

The rest of the paper is structured with the following sections. Section 2
revisits the super-Gaussian model and the solvation free energy calculation.
The time and space discretization techniques are included in that section.
A physics-guided regression analysis will be conducted in Section 3 for re-
trieving the original solvation free energy, based on the energy calculations
with different reference states. The proposed multiple regression model will
be validated in Section 4 and Section 5. Finally, the paper is ended with a
brief discussion. Two appendices will be presented. In the first one, a rigor-
ous derivation of the electrostatic free energy formula for a Kirkwood sphere
with a two-dielectric setting is offered. This study involves many different
notations for dielectric functions and constants. A nomenclature of them is
provided in Appendix B.

2. Implicit solvent model and energy calculation

In this section, we first briefly review the super-Gaussian Poisson Boltzmann
(PB) model [13]. We then present how the polar solvation free energy is
calculated.

2.1. Super-Gaussian Poisson-Boltzmann model

Consider a solute macromolecule such as a protein immersed in an aque-
ous solvent. Define a cubic domain Q C R?, comparatively larger than the
macromolecule itself. In the super-Gaussian PB model [13], the domain (2
consists of three regions [Fig. 2(a)]: an interior domain €2; for solute, an ex-
terior domain €2, for solvent, and a transition layer €2; in between §2; and 2,
as a smooth solute-solvent boundary. Denote the boundary of €2 as 9€2. The
interface between 2; and €; as I'; and the other interface I'y lies between
Q; and .. The subdivisions of ) can be characterized by a surface function
S(7) for 7 € Q which equals to one and zero, respectively, in €; and .. As
7 travels from interior to exterior zone, S(7) decreases monotonically from
one to zero [Fig. 2(b)], so that S(7) is at least a C? continuous function over
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Figure 2: (a) The subdomain setting used in the super-Gaussian PB model.
(b) The subdomains are characterized by a surface function S, which is
plotted along a straight line.

the entire domain §2. Following the original work [13], the surface function
S(7) is generated by the minimal molecular surface (MMS) model [4, 5, 23].

The electrostatic interaction of this solute-solvent system is governed by
the nonlinear Poisson Boltzmann (PB) equation [15, 2, 3]

(1) =V (ec®Vu() + (1 = S(7)x?sinh(u(7) = S(7)pm(F),

where u(7) is the electrostatic potential and e;q(7) is the super-Gaussian
dielectric distribution. The singular source term for N, atoms is

2 N

2) pm(7) = dmy S D g0(7 ~ 7).

J=1

On the outer boundary 912, a modified Debye-Hiickel boundary condition
can be assumed

2 Nm i\ X ’j—j(a-—r')
3) u() = szTZ(:T) pE\( \/?_Zaj ’ ]

j=1
Here g; is the partial charge, a; is the radius and 7 is the center of the gt
atom. Also, r; is defined as |—77|. The other specifications of the parameters
can be found in the appendix A. The singular source term is only defined
within €; with S(7) = 1 there. Thus, we have S(7)pm, (7) = pm(7) in Eq. (1).
Regarding the dielectric models, Gaussian dielectric distribution [16, 17]
is one of the smooth dielectric models which are designed to overcome the
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discontinuity of classical two-dielectric PB model. The super-Gaussian di-
electric model [13] is further introduced to address the low regularity issue
of the Gaussian PB model in the vacuum state. The super-Gaussian density
of the j* atom is given as:

(1) g3(7) = exp [(@)m] |

2p2
JR]-

If m = 1, then the equation (4) presents the Gaussian density function.
On the other hand, if m tends to infinity, a “hard sphere” density can be
obtained, i.e., g; = 1 inside the Van der Waals (VDW) ball and g; = 0
otherwise. The steepness-quality of the higher order Gaussian function is
controlled by two parameters, namely m: power (> 1) and o: relative vari-
ance of the super-Gaussian function (4). In actual numerical experiments,
m = 2 or 3 is commonly used.
To describe the entire protein, the total density function is given by:

NTVL

() g™ =1-T] — g3 (M-

=1

Note that the total density function gj can describe the density for over-
lapped region covered by multiple atoms. For instance, the product g;g;
accounts for the density of the overlap region due to the i** and j** atoms.
As the dielectric treatment considered the macromolecular region as a het-
erogeneous medium, another parameter €44, was introduced. Physically, a
preassigned constant €4q, represents the maximum dielectric value of the
cavity fluid inside a protein [18]. An appropriate value of €4, depends on
the real protein system and it belongs to (€, €5]. Now considering the pres-
ence of cavities inside the proteins, dielectric distribution within a protein
region is calculated as

N’VYI,

(6) €in(7) = meS(F) + 6gap[l - 98(7#)] =€m + (ﬁgap - em) H[l - g;(f)]
=1

The super-Gaussian dielectric distribution involved S with ¢;, and 1 — S
with €y

(7) esc () = S(Mein(7) + [1 — S(7)]€out,

where €,,; can be water-phase, vacuum phase or any other solvent phase.
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That means €4c can be seen as:

€Ein, e Qi
(8) esq(T) = €, e and € € [em,out]
Eouts e Qe-

Here ¢ is controlled by the super-Gaussian density function (4), €44 and the
surface function S. Since S(7) changes from one to zero across 2; smoothly,
€sc(7) changes from e, to €, Therefore, e, (7) is at least C? continuous
on the entire domain (2.

2.2. Numerical discretization of the Poisson-Boltzmann equation

Following [13], a pseudo-time approach is employed to solve the nonlinear
PB equation (1). To this end, Eq. (1) is converted to a time dependent
partial differential equation (PDE) by adding a pseudo-time derivative

(9) % =V - (esgVu) — (1 — S)R2 sinh(u) + pp,, in £,

with the same boundary condition (3). By using a trivial initial value u = 0,
one numerically integrates (9) for a sufficiently long time period to steady
state. The solution to the original nonlinear PB equation (1) is essentially
recovered by the steady state solution of the pseudo-time dependent process
(9).

One advantage of the pseudo-time approach [29, 10] is the analytical
treatment of the PB nonlinear term sinh(u). In particular, one can split the
time stepping of (9) into two subsystems in each time step. Then, the nonlin-
ear subsystem can be analytically integrated so that the nonlinear instability
is bypassed. For the linear subsystem, one actually solves a three-dimensional
(3D) heat equation. A finite different spatial discretization together the al-
ternating direction implicit (ADI) time stepping is employed for solving the
3D heat equation efficiently. In particular, by using the Douglas-Rachford
type ADI scheme, one reduces the 3D linear system into independent one-
dimensional (1D) systems in z, y, and z directions. The Thomas algorithm
is employed to solve such 1D systems with tridiagonal structures. We refer
to the original work [13] for more details.

2.3. Polar solvation free energy

The energy released when a solute macromolecule is dissolved in a solvent
is known as the free energy of solvation. The polar component of solvation
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free energy can be calculated in the PB model by computing the difference
between electrostatic energy of the macromolecule in the water and vacuum
states. In particular, for super-Gaussian PB model, the polar solvation free
energy can be calculated as

(10)

AG:%kBT/ZqJ 7—775) (u(r) —uo (7)) d :_kBTZQJ )—uo(75)),

where u(7) is the solution of the PB equation (1) and wug(7) can be solved
from the Poisson equation (11):

(11) — V- (esc(MVuo(r)) = pm(7),
where e, (7) is obtained by taking €,,; = 1. The boundary condition be-
comes

2 Nm

(12 () = pom > (),

€outT’j

which is obtained by setting & = 0 in the modified Debye-Hiickel boundary
condition (3).

2.4. Estimating polar solvation free energy

As mentioned earlier, the dielectric function esq(7) of the super-Gaussian
model is at least C? continuous in both water and vacuum states. How-
ever, €5;(7) is not monotonic across the solute-solvent transition layer in
the vacuum state. See for example Fig. 1(c). Physically, the dielectric func-
tion should decrease monotonically in the vacuum state whenever it leaves
the molecular region, just like the Gaussian dielectric model eg [Fig. 1(b)].
To avoid such a non-monotonicity issue, we propose to calculate the electro-
static free energy by choosing the base reference state to be different from the
vacuum. Note that the height of the inflation of €5 (7) in the solute-solvent
boundary depends on the parameters €4qp and €,,¢. For each €44y, it is always
possible to choose €,yr = €4qp such that e,(7) does not experience concavity
change outside the protein. The super-Gaussian PB model becomes “physi-
cal” in this new reference state, and the corresponding solvation free energy
can be calculated by using the above mentioned formulas. With this calcu-
lated electrostatic free energy using a new reference state, this study aims to
estimate the original solvation free energy. We note that a similar study has
been carried out in [24]. Nevertheless, the empirical formula developed in [24]
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may not be applicable to the present problem, because the super-Gaussian
PB model is more complicated than the two-dielectric PB model used in [24].

3. Multiple regression model

In this section, we will develop a multiple regression model for calculat-
ing electrostatic free energy (EFE) for the super-Gaussian PB model. That
means we will solve a physical problem: with EFE between water and refer-
ence states, how to recover the original energy between water and vacuum
states. In other words, if we denote AG1o as the EFE of the water-vacuum
case and AG13 as the EFE of the water-reference case, what is the best way
to retrieve the original EFE.

3.1. Energy estimation for a Kirkwood sphere

In order to develop a physically meaningful estimation, we first investigate
a simplified problem by considering a Kirkwood sphere. The electrostatic
interactions are assumed to be governed by the linearized PB equation with
a two-dielectric setting. In this case, one can analytically solve the solvation
free energies with different states. Then, our energy estimation problem can
be solved exactly.

Consider a Kirkwood sphere with radius being a and a point charge ¢
at its center. Denote r as the distance from the center of the atom. We first
introduce three different dielectric constant settings:

Setting 1: Molecule — Water

_Jem=1 r<a,
(13) 61_{ ew = 80 r > a.

Setting 2: Molecule — Vacuum

_Jem=1 r < a,
(14) 62_{61/:1 r> a.

Setting 3: Molecule — Reference Medium 1 (RM1)

_Jem=1 r < a,
(15) 63{ €ErRM1 =8 r>a.

In the reference medium, we choose egy1 = 8, because €4y is often taken
to be 8 in the Super-Gaussian simulations [13].



Regression analysis for electrostatic free energies of proteins 197

We aim to estimate AG1o based on AG13, where AG12 denotes the EFE
calculated based on the water (setting 1) and vacuum (setting 2) states, and
AGi3 is defined as the EFE calculated based on the water state (setting
1) and a reference state (setting 3). To this end, we will derive a generic
formula for calculating the polar solvation free energy for the Kirkwood
sphere. Similar studies have been carried out before, see for example [14, 11].
A self-contained description on the derivation of the generic energy formula
(48) is presented in the Appendix A.

For one atom model, by the definition Eq. (10), the water-vacuum state
EFE can be calculated as

AGys = %KBT / G8(7) (urw (F) — uy (7)) dF

1,1 1 1
(16) = ~¢%e2-

2" “a|( [& Cer
( Ewa—|—1>€w

It is noteworthy that the EFE AGis does not depend on the molecular
region’s dielectric constant €,,. In the water state, we follow the setting 1 or
Eq. (13), while in vacuum state, the dielectric distribution follows the setting
2 or Eq. (14). If we consider the solvation free energy for transforming the
macromolecule from a low dielectric reference medium to the water, we have

AGys = %KBT / 407 (uw (7) — g (7)) dF

1 1 1 1
(17) = ~q’el- — -
a (U?—WCL-l-l)eW €RM1

2
As before, for the water and reference media, we use the setting 1 and 3
respectively.
By comparing Eqgs. (16) and (17), we propose to estimate AG12 based
on AGi3 by using the formula

2.2 1 1
(18) AGry = AGys + LEe ( - —) ,
2a \€rmM1 €v

for the Kirkwood sphere model. We note that the estimation formula (18)
is exact for the one atom model with a two-dielectric setting. Moreover, all
parameters involved in (18) are known.
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Figure 3: (a) Super-Gaussian dielectric in water (blue) and vacuum (red)
state. (b) Super-Gaussian dielectric in water (blue) and reference medium
(bright pink) state.

3.2. Energy estimation for the super-Gaussian PB model

We next consider the estimation of EFE for proteins in the framework of the
super-Gaussian PB model. Similarly, we define AG15 as the EFE between
the water and vacuum states, while AG13 is between the water state and a
reference state. In particular, the dielectric functions of the water, vacuum,
and reference states are all calculated by Eq. (7) with €5, = 80, 1, and €gqp,
respectively. We note that with €,u: = €4ap, €5 increases monotonically in
the solute-solvent boundary (see Fig. 3), so that the super-Gaussian PB
model becomes “physical” in this new reference state. Thus, when we apply
the super-Gaussian PB model to analyze electrostatics of real proteins, it is
preferred that with the calculated AG13 value, one can directly estimate the
original EFE AG1s. A regression formula will be developed for this purpose.
Moreover, the accuracy of this formula will be assessed by calculated AG19
values via the super-Gaussian PB model.

Consider a macromolecule consisting of N, atoms, having centers at
7j, radii a; and charges g;. The regression formula to be developed is built
based on the physical law for Kirkwood sphere. From the modeling point
of view, there are several differences between the present system and the
Kirkwood sphere, such as a heterogeneous dielectric profile Vs. a piecewise
dielectric constant, and a nonlinear PB equation Vs. a linearized PB equa-
tion. Moreover, with multiple atoms or charges, the electrostatic interaction
among atoms is unavoidable now. Nevertheless, our hypothesis is that the
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physical law underlying the Kirkwood sphere could provide at least a low
order approximation to the desired EFE. In particular, we assume the EFE
between water and vacuum states can be expressed as

N’ n

1 1 1 1
(19) AG1s = §q2e§ 2;
]:

a; <,/$aj—|—1>ew v

which is obviously generalized from Eq. (16). The polar solvation free en-
ergy of a single atom with other atoms being neglected represents one term
in the summation of Eq. (19). Thus, the superposition of such terms is the
collective energy of all atoms. The energy due to the electrostatic interac-
tions between the atoms is expressed as a correction term, say A, which
is unknown. Likewise, for the water and reference state, the EFE can be
calculated using the formula:

+ A,

PR 1 1
(200 AGu =3¢y

1
= </%aj+1>6w €RM1

where B is an unknown correction term too.

Motivated by the Kirkwood result, we assume that AG1s can be esti-
mated by AG13 in an additive manner. For this reason, we examine the
difference between two energies,

+ B,

N,
1 <1 1 1
AGlg — AG13 = 5(]262 — — e + A
7j=1 J <1/ :7@]‘ + 1>6W v
N,
1 <1 1 1
R pr s
j=1 CL] ( :—Waj + 1>€W €RM1
Ny 2.2
1 1 i€
(21) ()Y i a-B
€ERM1 €y / 4 ZCLJ' ~——
Jj=1 Unknown

Np 2.2
c

. . q;e

So, the equation (21) has two components: the first part with C' = E 2]
a
j=1 7

is known for a given protein but the second part A — B, the combined
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correction term, is unknown. A regression analysis will be conducted in the
next two sections to estimate A — B.

4. Regression model — a test case

Our final goal is to recover the electrostatic free energy (EFE) AG1, via the
EFE AG;3 based on the reference medium 1. To test the proposed regression
model, we will consider a similar problem in this section, i.e., using AG13
to retrieve the EFE AG14 considering macromolecules in water and another
solvent, say reference medium 2. We call that dielectric set-up as setting 4.
For instance, for the Kirkwood sphere, the setting 4 can be defined as the
follows.
Setting 4: Molecule — Reference Medium 2 (RM2)

] em=1 r < a,
(22) €= { erm2 = 12 r > a.

A multiple regression model will be developed and validated for energy esti-
mation. The benchmark is conducted via the super-Gaussian PB numerical
solutions for real proteins. Here we will follow a similar multi-atom structure
solvation free energy calculation as described in (21):

Nn 22

1 1 qg;e
(23) AG14—AG13=( — ) J 4+ A-B
€RM1  €rRM2/ “ 2a; ~——~
Jj=1 Unknown

4.1. Date set and numerical setup

To create an appropriate regression model, first we considered a data set of
74 proteins studied in [6], which gives a representative sample of proteins
in the protein databank. The EFE values for both AG14 and AGi3 were
calculated numerically using the super-Gaussian PB Solver [13]. For the
super-Gaussian density function, we considered m = 3 and ¢ = 1.3 in (4).
For both AG14 and AGq3, the water state follows the setting 1 Eq. (13). Now
EFE AG14 is calculated considering the macromolecule being immersed first
into water Eq. (13), and then in the second reference medium Eq. (22). On
the other hand, AGi3 is immersed into the first reference medium, setting
3 Eq. (15). The following discretization parameters are chosen in the super-
Gaussian PB model [13]: spacing Az = Ay = Az = 0.5A, pseudo-time
increment At = 0.01 for solving the NPB equation and At = 0.1 for the
solvent case, the stopping time T, = 10* x At with the tolerance level 1073,
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Figure 4: (a) Super-Gaussian dielectric in water (blue) and reference medium
1 (bright pink) state. (b) Super-Gaussian dielectric in water (blue) and ref-
erence medium 2 (green) state.

4.2. A multiple regression model

In this paper, we assume that the unknown part of Eq. (23), i.e., A — B,
can be predicted by a function of several protein specific variables such as
(atomic) partial charges ¢;, number of atoms Ny, of a protein, SES (solvent
excluded surface) volume and SES area. That means the equation (23) can
be written as:

1 1
AGiy = AGis = C(—— — ——)
€RM1  €RM2
(24) + f(Charge, Number of atoms, SES Volume, SES Area).
. . . > 1 1
For simplicity, we will denote Y = AG14 — AG13—C ( - ) So,
€RM1  €RM2

Eq. (24) can be rewritten as
(25) Y = f(Charge, Number of atoms, SES Volume, SES Area).

For the four features considered in (24), the charges are obviously related to
electrostatic interactions. The number of atoms determines the size of the
protein, and thus affects the solvation free energy. Moreover, the electrostatic
interactions between solute and solvent will also be influenced by the volume
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Figure 5: The line graphs of polar solvation free energies AG14 (water-RM2
states) and AG13 (water-RM1 states).

and area of SES [25]. Thus, the selection of four features in (24) is driven
by physical considerations.

Using the calculated EFE values of AGy14 and AGi3 for 74 proteins,
we next investigate the dependence of the function f on four features in
Eq. (24). We first plot AG14 and AG13 against the total number of atoms
N, in Fig. 5. Since the reference media have comparatively close dielectric
constants (egp1 = 8 and egpo = 12), there is a consistent pattern in AG13
and AG1y4, while several outliers are pretty obvious. To see the correlation

~ 1
in more details, we calculate Y = AG14 — AG13 — C’( — ) for 74
€ERM1  €RM?2

proteins, and plot Y against the total number of atoms N,, in Fig. 6 (b). A
linear trend is clearly seen. As the number of atom increases, the quantity Y
becomes smaller. Thus, in our regression model, we will assume Y depends

on N,, in a linear manner.

We next consider the SES volume and area. We note that as a surface-
free model, the super-Gaussian PB model [13] does not explicitly define
a molecular surface separating the solute and solvent. Instead, the MSMS
software developed in [22] is employed in this work to calculate the SES
volume and area for 74 proteins. The MSMS package provides an efficient
generation of the SES based on a reduced surface, and has been adopted in
many PB models, as well as in visualization softwares, for molecular model-
ing. Through a similar analysis, we have concluded that Y also depends on
the SES volume and area in a linear manner. In particular, the correlation
coefficient of Y with N,,, SES area and SES volume are found to be —0.94,
—0.87 and —0.67, respectively.
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(a) the total partial charge @ and (b) total number of atoms in a protein.

) with respect to

The partial charges carried by a protein can be regarded as a four-
dimensional data, i.e., for each charge, we know its location in terms of =,
y, and z coordinates, and charge values (negative or positive). Neglecting

all geometrical information, we consider only one feature for the charges
N,

in this paper, i.e., the total charge Q) = qu. The plot of Y against Q is
j=1

shown in Fig. 6 (a), which obviously does not display any pattern. This basi-
cally means that the feature @) is too abstract, and cannot capture the actual
charge profile of each protein. Nevertheless, a more advanced charge descrip-
tor will inevitably becomes much more complicated in regression analysis.
Thus, for simplicity, we will consider the dependence of Y on the total charge
Q. We note that in a similar study [24], the electrostatic free energy of the
two-dielectric PB model is assumed to be dependent on |Q|%%°. There was
no physical justification why the power 0.65 is chosen. For the present data
set with 74 proteins, we have plotted Y with respect to |Q| or |Q|%%°, and
the resulting graphs are similar to Fig. 6 (a). Since all such figures do not
manifest a clear pattern, we will simply use @, instead of |Q| or |Q[%5?, for
our regression analysis.

In the plot of Y against Q in Fig. 6 (a), a moving average trend is gen-
erated. It can be seen that the trend is roughly anti-symmetric with respect
to @ = 0, and is experienced at least three concavity changes. Obviously, it
is impossible to capture this trend with a linear function. A more realistic
model is to assume Y as a polynomial function of Q. Moreover, instead of
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fixing the degree of such a polynomial, we will explore the best of fit by
considering the degree up to four. With the trend shown in Fig. 6 (a), it
seems unnecessary to employ an even higher degree.

In summary, we propose a multiple regression model P, for approximat-
ing Y:
(26)

Pz’ = B() + Ble + Z Bk+1Qk + I;Z+2(SESV) + Bi+3(SESA), 1=1,2,3,4.
k=1

Here the polynomial degree for the total charge @) is denoted as i, which
could be 1, 2, 3, and 4. Based on the calculated Y values for 74 proteins
[6], the least square fitting is conducted to determine the coefficients bi. The
results are presented in Table 1 for four regression models, i.e., Py, Py, Ps,
and Py.

Table 1: ~Recovelry of AG14: Least-square fitted coefficients for four regression
models P;s

P; | Intercept | N, Q Q? Q? Q* SES Vol | SES Area
P -67.58 -0.51 | -2.35 - - - - 0.003 0.044

P, -77.79 -0.51 | -0.92 | 0.33 - - -0.003 0.044
Ps -74.75 -0.51 | 1.71 | - 0.055 | -0.035 -0.002 0.046

Py -77.84 -0.51 | 4.39 0.47 | -0.081 | -0.004 | -0.003 0.046

Observing the coefficients, we can say that Q° and IV,,, have more impact
on the regression model than the SES generated components. The weight of
the total charge is changed from model to model but N, has a consistent
contribution to P;. Moreover, the present data analysis shows that SESA
influences the prediction model more than SESV. From physical point of
view, the total partial charge and the volume of a protein remain to be
constants as the protein is immersed into a solvent. During the solvation
process, the conformation of the protein may change, which affects the SES
area. Moreover, the EFE could be determined by the induced surface charges
[20, 21], which are defined on the molecular surface. Due to these factors, the
SES area is more important than the SES volume in an energy prediction
model.

4.3. Validation of the multiple regression model

We next validate the regression model P; defined by Eq. (26), with the
fitting coefficients given in Table 1. To assess the estimation accuracy, we
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Figure 7: Recovery of AG14: Plots of the relative error (P, —Y)/Y against
(a) the total charge @ and (b) total number of atoms N,,.

could compare estimate P; value against the actual Y value for each protein.
Alternatively, we could also compute the recovered EFE

1
€RM1  €RM2

(27) AGﬁ:AGlszrC( ) + B,

where the superscript denotes the recovered value. Then we can benchmark
AGﬁ with respect to the actual AG14.

Table 2: Model P;’s validation result

P; | Multiple R-Squared for P; | Correlation Coeff between AGﬁ and AG14
P 0.8942 0.803
Py 0.8967 0.803
P 0.8982 0.806
P, 0.8994 0.808

To quantify the energy estimation, the R-squared statistic is calculated
in Table 2, which provides a measure of how well the model is fitting the
actual data. Among the multiple regression models, the model Py is the
best fitting model for Y. In particular, Py accounts for roughly 89.94% of
the variance found in the response variable (V') that can be explained by the
predictor variables (Q°, Ny,,, SESV and SESA). Correspondingly, the best
Pearson correlation coefficient between AGﬁ and AG1y is achieved by the
model Py. We also note that all Pearson correlation coefficients are pretty
high for the present fitting test.

We will next focus on the assessment of the P, model. To this end,
the relative error (Py — f/) /17 is computed for each protein, and such an



206 Tania Hazra and Shan Zhao

error is plotted against the total charge ) and total number of atoms N,,
in Fig. 7. Two box-plots are drawn in Fig. 7 against different scatter plots
as a measure of relative standing. In particular, the upper (third quartile)
and lower (first quartile) edges are generated by enclosing 50% of relative
errors between them, while one quarter of errors is above the upper edge
and another quarter is below the lower edge of the boxes. It can be seen that
half of the relative errors is within the inter-quartile range [-0.0285,0.0595].
Moreover, the median value of all relative errors is 0.005, which means that
the relative errors stay mostly around zero.

For each box shown in Fig. 7, two horizontal bars are plotted at locations
automatically determined by the upper and lower edges of the box. Data
points beyond such two bars can be regarded as outliers statistically. It is
seen that there are six outliers in the relative error boxplot: two of them
(PDB id: 3ZR8 and 1VBO0) are below the bottom bar and four of them
(PDB id: 4HGU, 408H, 4GA2, and 5IG6) are above the top bar. Here the
bottom bar is Q1 — 1.5 x IQR and the top bar is Q3 + 1.5 x IQ R where Q1
and @3 are the first and third quartiles, respectively. Also, IQR stands for
inter-quartile range. In all cases in Fig. 7, [Q1 — 1.5 X IQR, Q3+ 1.5 x IQR] =
[—0.14,0.17]. The existence of outliers depends on the choice of the protein-
set and accordingly, it affects the regression model. Now, the outliers are not
size(N,,)-dependent but there might be some relation with the total charge.
There are two turns around @Q = —6 and () = 4 in Fig. 6 and the outliers
exist around those critical charges.

This test case of energy estimation (recovering AG14) establishes that
the regression model (26) is a reasonable construction with the global vari-
ables including total charge, number of atoms, solvent excluded area and
volume corresponding to a particular protein. In the next section, we will
construct a similar model to recover AGs.

5. A regression model for energy estimation

To create a regression model similar to equation (26), we will maintain the
same numerical structure except the EFE pairs. Now we will try to recover
the EFE AG12 by using AGi3. A replica of the model (23) can be formed
as:

AGry — AGys = c(eRlMl _ é)

(28) + f(Charge, Number of atoms, SES Volume, SES Area).
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the total partial charge @ and (b) total number of atoms in a protein.

Therefore, the regression model can be written as:

(29) Y = f(Charge, Number of atoms, SES Volume, SES Area).

1 1
where Y = AG12 — AG13 — C( — —)
€ERM1 €V
Calculating the EFE values of AGi2 andAGp3 by using the super-

Gaussian model, we first plot AGyo and AG13 in Fig. 8. The correlation
between AG12 and AG13 can be seen, but the difference between them is
much higher than that in the previous test case.
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1
Next, we will calculate Y = AG19 — AGig — C( — —) for the same
€ERM1 €V

set, of 74 proteins. The behavior of Y against the total charge and the num-
ber of atoms presents an opposite trend. As the Fig. 8 shows AG12 < AG13,
the trend lines in Fig. 9 are flipped in comparison to those in Fig. 6. The
number of atoms V,,, shows a linear relation with Y whereas the total charge
() shows some nonlinear relation with Y. The correlation between Y and N,
is 0.99. In the prediction model, SES area and volume predictors are also
employed. The Pearson correlation coefficient of Y with SES area and SES
volume are found to be 0.92, and 0.70, respectively.

Regarding the total partial charge @), we will follow the same choice
with the degree of the Q-polynomial. Therefore, the regression models P;
following the same equation (26), consider N,,, an i degree polynomial in
Q, SES area and volume. Here are the coefficients of four regression models:

Table 3: Recovery of AG13: Least-square fitted coefficients for four regression
models P;s

P; | Intercept | N, Q Q? Q? Q* SES Vol | SES Area
P 70.09 11.52 | 57.59 - - - 0.024 -0.29

P 251.86 11.48 | 32.06 | -5.94 - - 0.024 -0.29
Ps 204.91 11.55 | -8.45 | -1.64 | 0.54 - 0.020 -0.31
Py 264.69 11.55 | -60.35 | -9.71 | 1.43 | 0.079 0.025 -0.32

Observing the coefficients, the intercepts have much higher value in
comparison to Table 1, especially for P», P3 and P4. This happens because
|AG12 — AG13| > |AG14 — AGi3|. The predictors Q° and N,, have more
impact on the regression model than the SES generated components. More-
over, the present data analysis shows that SESA influences the prediction
model more than SESV.

5.1. Validation of the multiple regression model

We next validate the regression models P; defined by Eq. (26), with the

fitting coefficients given in Table 3. To assess the estimation accuracy, we

could compare estimate P; value against the actual Y value for each protein.

Here Y = AG1o — AG13 — C’( — —) Since our final goal is to retrieve
€ERM1 €V

the EFE AG12, we can compute the recovered EFE using the formula:

1 1
- —) +P, i=1,234
€ERM1 v

(30) AGE = AGs + c(
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Table 4: Model P;’s validation result

P; | Multiple R-Squared for P; | Correlation Coeff between AG{?‘Q and AG1o
Py 0.9829 0.371
P, 0.9842 0.509
P 0.9848 0.515
P, 0.9855 0.522
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Figure 10: Recovery of AGia: Plots of the relative error (Py—Y)/Y against
(a) the total charge @ and (b) total number of atoms N,,.

where the superscript denotes the recovered value. Then we can compare
AG{%2 with respect to the actual AG1s.

Just like the test case in section 4, the R-squared statistic is calculated
in Table 4. Among the multiple regression models, the model P is the best
fitting model for Y again. In particular, Py accounts for roughly 98.55%
of the variance found in the response variable (Y) that can be explained
by the predictor variables (Q°, N,,, SESV and SESA) whereas correlation
coeflicient between AG{B and AGig is 0.522.

If we compare Table 2 and Table 4, we see that the multiple R-squared is
improved for AG{%2 model but Pearson’s correlation coefficient is impaired.
We believe this is due to the underlying super-Gaussian PB model. In par-
ticular, the super-Gaussian model produces reasonable energy values for
RM1 and RM2, but in the vacuum state, the dielectric setting of the super-
Gaussian model becomes unphysical. This affects the accuracy of AGys cal-
culated based on the vacuum state. Here, our assumption is that if the EFE
AG12 is accurate enough, the Pearson correlation in Table 4 should be as
good as that in between AGﬁ and AG14, because the same regression model
is employed.
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We will continue the discussion on the model P;. So far, the relative
error (Py —Y)/Y is computed for each protein, and such an error is plotted
against the total charge () and total number of atoms N, in Fig. 10. In
every case, the relative error of the prediction model P, with respect to Y
stays within [—0.13,0.13]. Moreover, the first, second (or median) and third
quartiles are —0.13,0.003 and 0.13 respectively. It is noteworthy that half
of relative errors stay within [—0.0275,0.0359]. In fact, 74% of the proteins
displays at most 5% absolute relative error. We present the EFEs AG15 and
AGT, in Table 5 corresponding to the relative errors in between the first
and third quartiles portrayed in Fig. 10.

From the boxplots Fig. 10, it is seen that there is one outlier below
the bottom horizontal bar, for which the present regression model fails,
i.e., protein 3ZZP. With a total charge number —2 and number of atoms
1211, the protein 3ZZP has a relative error —0.133, which is the smallest
among all 74 errors. This outlier has been detected by the system, and is
automatically plotted again along the center line, giving a red dot and blue
dot, respectively, for chart (a) and chart (b) in Fig. 10. On the other hand,
there is a data point located on the top horizontal bar. This protein, i.e.,
2IDQ, has a total charge number —3 and number of atoms 1596, whose
relative error 0.131 is larger than all other errors. Even though 2IDQ is not
counted as an outlier by the system, this protein is the only one out of 74
proteins that produces a positive recovered EFE AGE,, no matter which
regression models P;, for ¢ = 1,2, 3,4, is used. This is more worrisome than
3ZZP for the present energy estimation. Thus, 2ID(Q shall be regarded as an
outlier too in the present study. The exact reason for the failure of 2IDQ is
unknown. But it can be observed in Fig. 10 that all other relative errors are
below 0.08, showing a big gap below 2IDQ. Thus, it is believed that 2IDQ
has some certain features that are different from other proteins, but cannot
be captured in the present regression. A better model will be explored in
the future to avoid such an “unphysical” failure.

6. Conclusion

Motivated by a particular modeling issue of the super-Gaussian Poisson-
Boltzmann (PB) model [13], this work concerns with a general modeling
problem, i.e., estimating the electrostatic free energy by choosing the base
state to be different from the vacuum state. In particular, by taking the
dielectric constant of the new reference state to be €44y, one can avoid the
non-monotonicity issue of the super-Gaussian PB model, so that the compu-
tation of the electrostatic free energy between the water state and reference



Regression analysis for electrostatic free energies of proteins

Table 5: Comparison of AG12 and AG{%Q

PDBID | N, | Q AG1s AGE,
3WDN | 1914 | -12 | -3042.075061 | -3253.348719
1TGO | 1029 | -12 | -2611.139519 | -2561.957145
406U | 2552 | -11 | -2686.262865 | -2852.487496
3WCQ | 1448 | -8 | -1914.252593 | -1938.214199
2FDN | 731 | -8 | -1355.185727 | -1315.194623
1ITQG | 1660 | -7 | -1640.593004 | -1298.653407
OFWH | 1830 | -6 | -1623.541645 | -1518.306645
3GOE | 1336 | -6 | -2153.565618 | -2040.527032
10K0 | 1076 | -5 | -1070.743789 | -1351.878017
3IPO | 2535 | -5 | -1790.548429 | -1715.909294
IWON | 1756 | -5 | -1592.398371 | -973.8559237
3X32 | 1385 | -4 | -1617.450867 | -1586.969658
3X2L | 2421 | -4 | -1472.218888 | -1322.514651
9XOD | 1864 | -4 | -1850.607524 | -1711.895275
3LL2 | 1746 | -3 | -1287.760105 | -1804.126202
2XOM | 2295 | -3 | -2043.628016 | -1972.403819
1ZUU | 868 | -3 | -1110.367707 | -1039.296041
AEIC | 1296 | -2 | -909.4579074 | -1169.233369
3FSA | 1829 | -2 | -1376.802973 | -982.8432334
1TUA | 1207 | -1 | -849.3899532 | -905.7186321
1X8Q | 2815 | -1 | -2067.754522 | -1970.935339
SWGE | 1765 | -1 | -1685.750322 | -1316.353232
3E4G | 2877 | -1 | -2026.282006 | -1378.979307
ATKB | 2110 | -1 | -1522.031326 | -909.1233775
2095 | 1083 | 0 | -928.2530694 | -1269.314727
1X6X | 1732 | 0 | -1372.905593 | -1345.964193
1CBN | 639 | 0 |-303.1376225 | -158.96884
4AQO | 1274 | 1 | -1376.773593 | -1455.430707
177K | 1252 | 1 | -1188.738167 | -1206.167244
4A02 | 2554 | 2 | -1401.469698 | -1693.076462
ONLS | 524 | 2 | -561.5991996 | -494.5326891
AGA2 | 2367 | 3 | -2789.299641 | -2940.374902
37SJ | 2230 | 4 | -1441.937554 | -1805.619445
AXDX | 1171 | 4 | -1524.64128 | -1358.106643
IVBW | 1056 | 8 | -1540.070188 | -1641.030134
1LOL | 1226 | 11 | -2670.237417 | -2412.235291
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state becomes truly physical. Based on energies calculated using the refer-
ence state, a multiple regression model is proposed to recover the original
energies. Based on the analytical results for the Kirkwood sphere, the energy
recovery is conducted in an additive manner, and the contribution of each
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individual atom is accounted for explicitly. To estimate the difference be-
tween two energies, four simple physical descriptors are adopted, including
the total number of atoms, the total charge, and the volume and area of the
solvent excluded surface (SES). Detailed analysis is conducted to establish
the function form of these four dependent variables. The resulted multiple
regression model provides a satisfactory recovery for calculating electrostatic
free energies of a set of 74 proteins.

Two tests are conducted to verify the proposed multiple regression model.
In the first test, the energy estimation is considered by using reference
medium 1 (RM1) to predict reference medium 2 (RM2), where both RM1
and RM2 are physical reference states. The Pearson correlation between ac-
tual and recovered electrostatic free energy (EFE) is about 0.8. In the second
test, the EFE prediction based on RM1 is considered for the vacuum state.
Nevertheless, because the dielectric setting in the vacuum state becomes un-
physical, the actual energy calculated by the super-Gaussian model is quite
inaccurate. Consequently, the Pearson correlation between actual and re-
covered EFE can only reach 0.52. Thus, such a low correlation coefficient
does not mean that the regression model is ineffective. On the contrary, this
indicates that the proposed model can detect inaccurate EFE calculations
due to unphysical settings.

It is noted that four physical descriptors used in the present model are
global features that are readily available or can be easily generated for pro-
teins. It is expected that if local features involving structural details of
proteins, such as distribution of charges, geometrical and topological in-
formation of molecular surfaces, are taken into the consideration, the pre-
diction accuracy could be significantly improved. However, this is beyond
the scope of this work. We also note that the simplicity of the present model
allows it to be applied to other PB models for energy recovery. For exam-
ple, in the the Gaussian dielectric PB model [6], the dielectric function is
dumped to 1 by an exponential function for the vacuum state. Instead of
doing that, one could set ¢ = 20 outside the protein region or surface cut
zone. Then, the present regression model can be applied to recover the elec-
trostatic free energy by calculating the energy for the new reference state
with € = 20.

The outliers of the present regression analysis have been carefully ex-
amined. In particular, there exists a protein that produces a positive or
unphysical energy estimation. The exact cause of this failure will be inves-
tigated in the future to improve the regression model.
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Appendix A. A Kirkwood sphere

The derivation of the electrostatic free energy formula for a Kirkwood sphere
with a two-dielectric setting is provided in this appendix. To be self-contained,
we first present the linearized Poisson-Boltzmann (PB) model for a general
solute-solvent system. In the classical two-dielectric setting, the domain €2
is divided by a molecule surface I' into two regions, namely the inner solute
domain €, and the outer solvent domain {25 such that Q = Q,, U Q4 and
0, N Qs = I'. Denote the boundary of Q as 9. For 7 € R3, the linearized
PB equation in dimensionless form is given as [14]

(31) =V (e(P) V(7)) + & () = pm (),

where u is the electrostatic potential, and the singular source term is also
given by Eq. (2), in which N, is the number of atoms, 7" is the temperature,
kp is the Boltzmann constant, e, is the fundamental charge. Here g; is the
partial charge on the j** atom of the macromolecule, located at its center
7j, and a; is the radius of this atom.

In the two-dielectric PB model, the dielectric function €(7) is assumed
to be a piecewise constant

(32) a={ o LEg

The modified Debye-Hiickel parameter « is a piecewise constant. It vanishes
in Q,,, i.e., kK = 0, while in Q,, x = & where &2 = 8.486902807A 2], and
I is the ionic strength of the solvent. Over the dielectric interface I', the
potential u satisfies two interface jump conditions [12]

(33) (] =0, and [e%] o,

n

where the notation [f] = f™ — f~ represents the difference of the functional
value across the interface I', and the directional derivative g—g is along the
outer normal direction of the interface I'. On the boundary 92, a numerical
boundary condition (3) is usually assumed.

We next consider a one-atom system with €, being a Kirkwood sphere
with radius a. A partial charge ¢ is assumed at the atom center, which is
also the origin of the coordinate system. See Fig. 11. The interface I' is

simply a sphere. In order to derive an analytical solution, the entire space
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Figure 11: An illustration of the Kirkwood sphere with radius a and a charge
q at the atom center (0,0,0).

is considered with Q = R3, and Q, = R3\(,,. The linearized PB model for
the Kirkwood sphere is given as

(34) —V - (e(AVu(F)) + £2u(F)) = 4n Agd (7 — 0),
(35) |jlim u(r) =0,

2

e

where A = ﬁ Denote the solution u inside and outside sphere as 4~ and
B

u™, respectively. Across the interface I', the potential u satisfies the jump

conditions (33). The boundary condition (35) is prescribed at the infinity.

A regularization formulation [12] will be adopted, which allows for an
easier derivation of the analytical solution u. In particular, the potential u
will be decomposed into two components, i.e., Coulomb component uc and
reaction-field component urp. The Coulomb component will capture the
singularity of the system by satisfying a Poisson’s equation

(36) — emAuc(7) = 4rAgd (7 — 0),

and the same boundary condition (35) at the infinity. In fact, uc can be
solved analytically, and is expressed in terms of a Green’s function

Ag _ Ag

em|T]  emr’

(37) uc(F) = G(F) ==

where r = |7].
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The reaction-field component upr will satisfy a source-free linearized PB
equation [12]. In particular, one can recast such an equation into the spher-
ical coordinate (7,0, ¢). Due to the rotational symmetry of the Kirkwood
sphere model, all involved functions do not change in 6 and ¢ directions.
Thus, the PB equation can be reduced to an ordinary differential equation
(ODE) in the radical direction r. Consequently, urp satisfies an ODE in the
O,

1 d / ydugp
(38) *Qnﬁg(r O ) =0, r<a,
where we have added a superscript to ugr to denote that this solution is
within the sphere €,,. The general solution to this ODE is

Upp =C1 + —.
RE ! EmT
Since uc captures the singularity, ugp should be bounded everywhere [12].
This rules out the second term, i.e., we have to take Cy = 0, so that
upr = C1. By combining both Coulomb and reaction-field components,
the electrostatic potential inside the sphere takes the form
A
(39) u*:Cl+—q, r < a,
EmT
where the constant Cy is to be determined.
In €, the linearized PB equation (34) reduces to

(40) 1d<2d

— €57 —u+)+R2u+: , T>a.
rédr

dr
The general solution of this ODE is

_ B2 52,
e €s ev cs
U+ = Cg + 04
2, /8

As r goes to infinity, the boundary condition (35) requires that u™ = u
approaches to zero. Thus, we have to take Cy = 0. Consequently, the elec-
trostatic potential outside the sphere takes the form

_JZ,
(41) ut = Cge —, r>a,
r
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where the constant C3 is to be determined.

To determine the unknown constants C7; and C3, one can substitute
solutions (39) and (41) into the jump conditions (33) over the interface
r=a

(42) { u (a) = u+(§a),

em%u_ (a) = esWqu(a),

where the normal direction is the radical direction. The continuity of poten-
tial gives rise to

(43) Cl + = 03
Ema a

w Agq dut e_\/gr(\/'j—?“—i- 1)
Since = — and = —Cs , the continuity of

dr emr? dr r2
flux yields

Aq 67@(1 <\/i—72a + 1)
(44) —em—sy = —€sC3 R .
Ema a

By solving equations (43) and (44) algebraically, we obtain

A A A \/Ea
T U . N e R U\
a<,/’§—ja+1)es a€m es<\/’:—ja+1>

Therefore, the potential inside the Kirkwood sphere is

Aq Aq Aq n Aq

EmT a( /rg_2a n 1>€S A€  EmT
while for the outside, it takes the form

(46)

r es<1/§—ja+1) r 65<\/’§—ja+1>r

The electrostatic free energy of the Kirkwood sphere can be analytically

45) w =0+

r<a,

ut = Csy

r>a.
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computed based on the potential values

—, —,

(417) AG = JhpT / @30 (™ () —uc(P)d7 = SrnTa(u™ (0) ~uc(D))
R3

where v~ is given by Eq. (45) and u¢ is given by (37). Therefore,

1
(48) AG = —qA _1 — L kpr
2 a< ’:—2a+ 1)63 a€m
1 1 1 1
= §q2 ?5 - )
( “a+ 1)65 €m

where AG is in the unit kcal/mol.

Appendix B. Nomenclature

€n: Dielectric constant in the
molecular part

€s: Dielectric constant in the
solvent part

e : Dielectric constant in wa-
ter state

ey: Dielectric constant in the
vacuum state

ermi: Dielectric constant in
the reference medium 1

ermo: Dielectric constant in
the reference medium 2

€sq: Super-Gaussian dielectric
model.

€n: Dielectric constant in-
side a macromolecule (includ-

ing atomic part and cavities)
€out: Dielectric constant out-
side the molecular region (€;,)
which can be any of these
{EWa €5, €V, ERM1, 6RM2}

€gap: Dielectric constant of the
cavity region in a protein
€maz: Maximum dielectric con-
stant of the cavity region in a
protein

€1: Two dielectric model
(molecule-water)

€o: Two dielectric model
(molecule-vacuum)

€3: Two dielectric model
(molecule-reference)
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