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Gaussian and super-Gaussian electrostatic analysis, the singular sources in terms of Dirac
delta functions are approximated by trilinear interpolation, which introduces a large error
in potential solutions, and has to rely on an error cancellation for delivering acceptable
estimates of the electrostatic free energy. To overcome this difficulty, a dual decomposition

g?{::gﬁ;oltzmann equation of potential and dielectric function is carried out in the proposed regularization, so
Gaussian dielectric model that the charge singularities can be analytically captured by the Coulomb potential,
Singular charge source while the reaction field potential satisfies a regularized PB equation with a new source
Regularization term. A rigorous analysis has been conducted to show that a super-Gaussian density,
Finite-difference method instead of a Gaussian one, is required to guarantee a small neighborhood around each

Electrostatic free energy atom center with a nearly homogeneous dielectric medium, so that the source term

can be well defined in the sense of distribution. Moreover, the well-posedness of the
regularized formulation has been proved, and the regularity of the weak solution has
been clarified. In the numerical implementation, special considerations are given in
calculating the source term, by using analytical differentiations, instead of numerical
approximations, whenever possible. The accuracy, convergence, efficiency, and robustness
of the proposed regularization are numerically verified via benchmark studies. It is found
that the regularization is more accurate than the trilinear method, as well as produces a
faster convergence in energy estimation. Moreover, the grid artifact or artificial grid energy
is completely eliminated in the present finite difference PB model.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In physiological studies, most biomolecular processes occur in water, which takes more than half of the cell mass. When
these biological processes being analyzed, an unavoidable prerequisite for quantitative analysis is understanding the solva-
tion between the macromolecule and its surrounding aqueous environment. Among all forces and energies involved in the
solvation analysis, the electrostatic force is a long-range force dominating all other forces at long distances. Thus, the elec-
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trostatic analysis is indispensable for solvated biological processes, by studying interactions between charged solutes such
as proteins, DNAs and RNAs, and mobile ions contained in the solvent.

As an implicit solvent approach, the Poisson-Boltzmann (PB) model [5,25,38] treats the solute and solvent as dielectric
continuum, and assumes that the mobile ions follow the Boltzmann distribution in water. Such a mean field approach
leads to a nonlinear elliptic partial differential equation (PDE), whose source term involves partial charges carried by the
macromolecule located at atom centers. As a standard method for electrostatic analysis, the PB model has been widely used
for studying energies and dynamics of various biomolecular processes [5]. Recently, the PB model has been applied to study
the conformational changes of the SARS-CoV-2 spike protein in [28].

In the classical PB model [5,25,38], a sharp interface is assumed at the solute-solvent boundary, which splits the domain
into two subdomains, i.e., the solute region with a low dielectric constant and the water region with a high dielectric con-
stant. Across the dielectric interface which is usually modeled by a molecular surface, the electrostatic potential and its flux
are continuous, while the normal derivative of the potential is discontinuous. To handle the dielectric jump, advance nu-
merical algorithms have to be designed for solving sharp interface PB equation [3,11,15,19,20,32]. Moreover, the commonly
used molecular surface models are known to admit geometric singularities, such as cusps and self-intersecting surfaces [6].

There exist many improved PB models in the literature [1,6,7,10,13,16,22,30,31,36,37,44,48], that feature a smooth solute-
solvent boundary, i.e., the dielectric function varies smoothly from the macromolecule to the solvent over a narrow band.
From modeling point of view, a smooth solute-solvent boundary is more physical than a sharp interface by taking into
account the definition of dielectric coefficient and the atomistic nature of the biomolecular system [22]. Basically, the di-
electric coefficient of water molecules or dipoles in the solute-solvent boundary is determined by the polarizability of the
dipole in responding to the electrostatic field. Due to local interactions with the macromolecule, such as Van der Waals
forces, water molecules close to the macromolecule tend to have a lower polarizability. Moreover, such a polarizability will
increase gradually, when one moves away from the macromolecule, instead of undergoing a sharp jump. This is the main
justification for developing the so-called diffuse interface PB models [1,6,7,13,16,37,44,48], in which the solute and solvent
are still assumed to be two homogeneous dielectric media, away from the smooth solute-solvent boundary.

Besides the diffuse interface models, various heterogeneous dielectric PB models [10,22,26,30,31,35,36,39,41] have been
developed to represent the dielectric distribution of the solute as a space dependent function. This paper will pay particular
attention to Gaussian [30,31] and super-Gaussian dielectric distributions [22], which were introduced to mimic the effect
of random conformational changes of the macromolecule on the solvation free energy. This is realized by defining Gaussian
or super-Gaussian density functions to describe atom specific heterogeneity. Compared with the classical PB model, the
Gaussian PB model produces more accurate solvation free energies for small molecules [30,31], and better pKa predictions
for proteins, RNAs and DNAs [42,43]. Moreover, an ensemble averaged electrostatic free energy could be captured by using
a single protein structure in Gaussian and super-Gaussian models [10,36], which is much more efficient than the usual
ensemble calculation involving thousands of steps of PB computations, together with molecular dynamics or Monte Carlo
simulations.

Sharing some similarities with the Gaussian PB model [30,31], the super-Gaussian PB model [22] defines a diffuse in-
terface function to explicitly characterize the molecular subdomain, solute-solvent boundary, and water subdomain. While
the dielectric function of the Gaussian model is C® but not C' continuous in the vacuum state, it is at least C? continuous
for both water and vacuum states in the super-Gaussian model. Moreover, by treating the maximum dielectric value of
the macromolecule as an adjustable parameter, the super-Gaussian formulation is able to model the dielectric property of
interior cavities and ion-channels [22]. As to be shown in this work, in order to generalize the regularization formulation to
heterogeneous dielectric PB models, a super-Gaussian density, instead of Gaussian one, is required.

The main focus of this study is on treating point charges carried by the macromolecule in the super-Gaussian PB model.
As in the other PB models, these partial charges are expressed as Dirac delta distributions, and their summation forms
a singular source term for the PB equation [5,25,38]. In traditional numerical studies, the singular charges are directly
discretized in grid based computations. For example, a trilinear method is commonly used in finite difference discretization,
in which the singular charges are distributed to the neighboring grid nodes with finite values [33]. In fact, all existing
simulations of Gaussian and super-Gaussian PB models [22,30,31] are realized via the trilinear method. In a finite element
variational form, a point charge can be evaluated through the trial function, by means of the definition of the delta function
[17]. Nevertheless, when singular charges are directly discretized, one actually attempts to approximate an unbounded
potential solution by finite numerical values, which is doomed to be inaccurate. Therefore, the singular charge source is
known to be a significant challenge for both mathematical analysis and numerical computation of the PB equation [12,24,
46].

For sharp interface PB model, various regularization methods [8,9,12,14,19,20,23,27,46,49] have been developed, which
provide a perfect treatment to the singular charge source of the PB equation. In these regularization methods, the potential
is split into two or three components. The key of the perfect treatment is to analytically capture the singularities of the
potential by using one component, which satisfies a Poisson’s equation with the same singular source. Mathematically, this
singular component or Coulomb potential can be expressed in terms of Green’s functions, which blow up at atom centers,
but can be analytically computed at other locations. After removing the singular component, other potential components
become bounded so that their numerical discretization and mathematical analysis become manageable. Nevertheless, an
accuracy reduction issue has been noticed in Ref. [23], i.e.,, while these regularization formulations are consistent with the
same PB equation, some methods could be significantly less accurate than the others. To understand this discrepancy, four



S. Wang, Y. Shao, E. Alexov et al. Journal of Computational Physics 464 (2022) 111340

popular regularizations were compared by using the same discretization in [29]. Through tracking the source of error and
conducting numerical analysis correspondingly, an accuracy recovery technique has been introduced in [29] so that all four
methods yield the same high precision.

However, the feasibility for generalizing the regularization method to diffuse interface PB models [1,6,7,13,16,48] is
unclear until our recent works [44,45]. This is due to the fact that the fundamental solution to a Poisson’s equation with the
PB singular source, but involving a space dependent dielectric function, is not analytically attainable. To alleviate this issue, a
semi-analytical approach has been introduced in Ref. [47] to approximate the fundamental solution, which unfortunately is
applicable only to simple geometric shapes. Recently, the first regularization formulation for the diffuse interface PB model
was reported in [44,45], in which the breakthrough is realized via a dual decomposition for both potential and dielectric
functions, i.e., besides the usual decomposition of the potential into Coulomb and reaction-field components, the dielectric
function is also split into a constant base and a space varying part. By requiring the Coulomb component satisfying a
Poisson’s equation with the constant dielectric base, the above mentioned difficulty is simply bypassed and the singularities
can be captured again by the usual Green’s functions. By combining other components into one equation, the reaction-field
potential satisfies a PB equation with a new smooth source. This new regularization for the diffuse interface PB model has
been benchmarked by comparing with the trilinear method [33] and semi-analytical method [47], and further validated by
calculating energies for real proteins [44,45]. More recently, a rigorous analysis has been conducted in [37] to show that the
regularization formulation developed in [44,45] is well-posed. Moreover, when the underlying diffuse interface approaches
to the sharp interface, the regularization of the diffuse interface PB model converges to that of the sharp interface PB model,
in terms of both the reaction-field potential and electrostatic free energy.

For the first time in the literature, the regularization formulation will be introduced in the super-Gaussian PB model to
treat singular charges in this work. The dual decomposition strategy introduced in the diffuse interface PB model [44,45]
will again play a central role for the new development. However, there are two major difficulties that need to be addressed
in the present study, due to a heterogeneous dielectric function inside the protein region. First, in the diffuse interface PB
model, the shifted dielectric function is identically zero around atom centers so that the source term can be well defined
in a regular sense [44,45]. However, in the super-Gaussian PB model, the shifted dielectric function is just nearly vanishing,
not identically equals to zero, in a small neighborhood around each atom center. Thus, a rigorous analysis has to be carried
out to examine the regularities of the source term and reaction-field potential at charge centers. Moreover, the requirement
on the dielectric density function will be investigated so that the source term can be defined in the distributional sense. The
well-posedness of the proposed regularization will also be proved. Second, the numerical computation of the new source
term deserves further attention, because it involves a space dependent dielectric function. Analytical differentiations, instead
of numerical approximations, will be adopted whenever possible, so that the proposed regularization could be accurately
implemented.

In the present implementation of the super-Gaussian PB model [22], we will replace the minimal molecular surface
(MMS) [6,7] by the Gaussian convolution surface (GCS) introduced in [44] to define a surface function for characterizing the
smooth solute-solvent boundary. Both MMS and GCS produce smooth diffuse interfaces, and can robustly handle various
protein geometries. Nevertheless, based on the fast Fourier transform (FFT) algorithm, the GCS is much more efficient than
the MMS in surface generation. Moreover, the control of the smoothing solute-solvent boundary, including its width and
decay rate of surface function, becomes easier in case of the GCS.

The rest of the paper is structured with the following sections. Section 2 first revisits the super-Gaussian PB model. Then,
a new regularization approach is proposed, along with a detailed analysis of the new source term. The well-posedness of
the regularized PB equation for the reaction-field potential is analyzed, and numerical implementation details are offered.
In Section 3, the proposed regularization method is first validated by being compared with the trilinear method for solving
a manufactured example with the analytical potential solution. Biological application to real molecules and proteins will be
considered. In Section 4, a brief discussion is offered. Finally, in Appendix B, the construction of the analytical solution for
the manufactured example is presented.

2. Theory and algorithm
2.1. Super-Gaussian Poisson-Boltzmann model

In this subsection, the super-Gaussian Poisson-Boltzmann (PB) model proposed in [22] will be introduced. Moreover, a
different surface function will be employed to characterize the subdomains.

Consider a macromolecule, for example, a protein being immersed into an aqueous solvent. Define a large enough cubic
domain € in R3 for this three dimensional (3D) solute-solvent system. In the super-Gaussian PB model, the domain
consists of three regions: an interior domain €2; for the solute, an exterior domain €2, for the solvent, and a transition layer
Q; in between 2; and 2, as a smooth solute-solvent boundary. Define the interface between 2; and ; as I';, while that
between ; and €2, as I'.. An illustration of subdomains is shown in Fig. 1 (a). The subdomains can be characterized by
a diffuse interface or smooth surface function S(r) for r € 2, which equals to one and zero, respectively, in €; and Q.. In
Q, as r travels from the interior protein to the exterior solvent, S(r) decays from one to zero, so that S(r) is at least a C?
continuous function over the entire domain 2. See Fig. 1 (b).
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Fig. 1. (a) The subdomain setting used in the super-Gaussian PB model. (b) The subdomains are characterized by a diffuse interface function S, which is
plotted along a straight line.

The minimal molecular surface (MMS) [6,7] is employed in the original super-Gaussian PB model [22] for calculating
S(r). In the present study, the Gaussian convolution surface (GCS) introduced in [44] will be employed instead. Both MMS
and GCS produce smooth diffuse interfaces. Nevertheless, based on the fast Fourier transform (FFT) algorithm, the GCS is
much more efficient than the MMS in surface generation. The details about the definition and generation of the MMS and
GCS are offered in Appendix A.

The electrostatic interaction of this solute-solvent system is governed by the nonlinear Poisson-Boltzmann (PB) equation
in the dimensionless form [22]

—V - (e(®Vu(r)) + (1 — S« sinh(u(r)) = p(r), in€, (1)

where u(r) is the electrostatic potential and e(r) is the dielectric function. Assume the protein contains N, atoms, with
partial charges q; in terms of the fundamental charge e located at the atom centers r;j for j=1,2,..., Np. The singular
source of Eq. (1), due to these partial charges, is given as

2 Nm
e .
p(r):47r—k;T§ qjd(r—rj), inQ, 2)
j=1

where kg is the Boltzmann constant and T is the temperature. In the super-Gaussian PB model, we require that r; € @; for
all j. Consequently, p(r) is only defined within €2; and S(r) has actually been dropped in the source term, i.e., S(r)p(r) =
o(r) in Eq. (1). With S(r), the coefficient of the PB nonlinear term (1 — S)«2 is at least C2 continuous, where the modified

2 o
Debye-Hiickel parameter « takes a constant value k2 = (f&gﬂzfr) I = 8.486902807 A—2]. Here N, is the Avogadro’s Number

and [ is the molar ionic strength. Assume the domain € is large enough, so that the dielectric function is constant €,,; on
the outer boundary 9. Then, a Dirichlet boundary condition can be assumed

2 Nm 2
ec dj =Ir=rjl\/ e
ur)=up(r):i=— ) ————e out - on dQ. (3)
kgT ; €out [T — 1j]

In the super-Gaussian PB model [22], the dielectric function €(r) is defined as a heterogeneous function. In particular,
each atom of the protein is regarded as a “soft sphere” with a density function. For the j atom, the density at the position
r is given as [22]

g0 =exp| - (F510)"), @)

2p2
aRj

where r; is the center of the jth atom, R; is the Van der Waals (VDW) radius of the jt" atom and o is the relative variance.
The integer order m is typically required to be m > 2 in the super-Gaussian model. When the order m = 1, Eq. (4) is
actually the density function used in the Gaussian PB model [30,31]. When the order m goes to the infinity, one attains a
“hard sphere” density, i.e., gj =1 inside the VDW ball and g; =0 otherwise.

With the density for each atom being calculated, a total density function for all atoms is defined as

N

g =1-[]01-giml (5)

j=1
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Note that Eq. (5) can describe the density for overlapped region covered by multiple atoms. For instance, a cross term g;g;
accounts for the density of the overlap region due to the i" and j™ atoms. Moreover, in order to explicitly model the
dielectric properties of protein cavities, the maximal dielectric value of the macromolecule is controlled by a parameter €gqp
in the super-Gaussian model [22], and the dielectric distribution within the protein region is defined as

€in(r) = €mg(r) + €gap[1 — g()], (6)

where the constants €, and €gqp are the dielectric values at the atom centers and in a gap region, respectively. By combining
(5) with (6), we arrive at a concise form

Nm

€in(r) = €m + (€gqp — €m) [ [[1 — &;(®)1. (7)
j=1

Since €gqp > €, and gj(r) has a range of [0, 1], this means that €, and €gq are, respectively, the minimal and maximal
dielectric values of the protein.

Making use of the surface function S(r) to characterize the subdomains, the dielectric function in the entire domain
is defined as [22]

€(r) = Smejp () + [1 = S)]€ou:- (8)

Inside the protein region ;, we have S(r) =1 so that the inhomogeneity of the super Gaussian dielectric distribution is
retained. In the exterior region ., we have S(r) = 0. Then €(r) becomes a constant €,,, which will be taken as 1 and 80,
respectively, for the vacuum state and water state. As S(r) decays smoothly from one to zero over €2, €(r) will change from
€in(r) t0 €4y¢. Over the entire domain €, €(r) is at least C2 continuous.

2.2. A novel regularization for the super Gaussian PB model

A new regularization method is proposed in this work to analytically handle the singular source of the super-Gaussian PB
model. For this purpose, a dual decomposition in potential and dielectric functions will be conducted as in the regularization
formulation for the diffuse interface PB equation [44,45]

u(r) =uc(r) + ugr(r), forreq,
€(r) =en +€(r), forre Q.

(9)

In Eq. (9), the potential u is split into a Coulomb component u¢ and a reaction field component ugp, while the dielectric
function is decomposed to be a constant base value plus space variant part € (r). Consider the outside medium being water
with €,y = 80. Then €(r) takes minimal values €(r) = €, only at atom centers, so that €(r) > 0 for r € Q. Assume that
m > 2 and an appropriate o value such as o =1 is chosen in the super Gaussian density. This essentially guarantees that
in a small neighborhood surrounding each atom center rj, €(r) is almost € and € is nearly vanishing, which is a crucial
property for the proposed regularization. In the exterior region 2, € = €yt — €m.

To capture the singularity in the potential function, the Coulomb potential uc is assumed to satisfy a homogeneous
Poisson’s equation with the singular source p given by (2) [44,45]

—€emAlc(r) = p(r) inR3,
mAuUc(r) = p(r) (10)
uc(m =0 as |r| — oo.
It is obvious that the singular component u¢ is actually the Green’s function G(r)
o2 Nm qi
uc) =G(r) = = — 11
c(®) =G(r) kBT;€m|r_rj| (11)
After removing the singular component, the reaction field potential ugp(r) becomes bounded everywhere.
The PB equation (1) can be expanded according to the dual decomposition
—V - (éVuc) — V- (€EVURF) — €mAuc — €mAUgr + (1 — S)/c2 sinh(uc + ugr) =p, inQ. (12)
By using (10) and (12), the singular source term p can be canceled
—V - (éVuc) — V- (Vugr) — €émAugr + (1 — S)x? sinh(uc + ugp) =0, in K. (13)

By re-arranging the terms, we arrive at a regularized PB equation for the reaction field component

5
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—V - (€Vugr) + (1 — S)k?sinh(ugr +G) =V - (€VG), ing, (14)

where we have replaced uc(r) by the known function G(r), and combined two terms for ugp(r) into one on the left-hand
side. The new source on the right-hand side involves the dielectric function € and the gradient of Green’s function, which
is known analytically

2 Nm

e qj(r—rj)
VG(r) = ——= e 15
® kBT;emh'—rjP (15)

In order to analyze the new source term of Eq. (14), we first discuss the regularity of € VG. Throughout the domain €2, €
is a €2 continuous function, while VG is smooth everywhere except at all atom centers, where it is singular. Since all atom
centers are located inside 2;, we will examine the regularity of éVG for ; only. Within ;, with S =1, we have

Nm
é(r) = (€gap — €m) [ [ — g0, in Q. (16)
j=1
We note that € is nearly vanishing in a small neighborhood around each atom center, which is different from the case in the

diffuse interface PB model [44,45], in which € identically equals to zero. Thus, a rigorous mathematical analysis becomes
indispensable for examining the regularity.

Proposition 2.1. When the order m = 1 in the super Gaussian model, as r approaches to the it atom center r;, the limit of €V G does
not exist.

Proof. At the i" atom center r;, we have é(r;) =0, while VG(r) goes to infinity as r approaches to r;. In particular, out
of N, terms in the summation of VG(r), only the it" term is singular at r;, while all other terms are bounded at r;. Thus,
the products of € with the other Ny, — 1 terms are all vanishing at r;. The singularity could only occur for the it" term of
VG(r), which is denoted as

e2 qir—r) r—r;

VGi(r) = ——% =G , 17
O = T et =i lr—niP (17)

where C; is a constant. Similarly, we will single the contribution of i" term out in é(r) by defining &(r) = (€gap —
em) [T} jil1 = g5(0), so that

szRizm

. . . Ir — ;2" 4
EM=&M1-gm)=&m(1-exp(-——-)], inQ.

Note that €;(r;) is nonzero but finite. For the ease of our analysis, a coordinate translation is assumed to be conducted so
that r; becomes the origin of the new coordinate system, i.e., r; = 0. Denote r = (x, y,z)T. For m = 1, the x component of
the interested limit is given as

(18)

20020 2
lin(l)Cié,-(r) (1—exp(—x Ty +z )) X
r—

o2R? 2+ y2+22)3/2"
Consider a limiting path with y =nx and z = kx for some constants n and k with x — 0. The above limit becomes
x2(1+n%+k?)
X |:1 —exp(— TR?)
X3(1 + n2 + k2)3/2
2 2
[1 —exp (1 )}

x2(1+n2+k2)3/2

—exp(—xZ%)(—Zx%)

2x(1 +n? 4+ k2)3/2
(R
=Ci;(0) ll_r)lg) SR+ + k12)1/2
_ Ci€i(0)
02R?(1 +n2 + k)12’

C;i€i(0) lim
x—0

=C;€;(0) lim
x—0

=C;€;(0) lim
x—0
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where the L'Hopital’s Rule has been applied. Since the final results are path dependent, the limit considered in Eq. (18) does
not exist. Thus, for m = 1, as r approaches to the i atom center r;, the limit of €VG does not exist. O

We next investigate the regularity of éVG and Ve - VG. Throughout the domain €, € and Ve are smooth functions,
while VG is smooth everywhere except at all atom centers, where it is singular. Thus, we can conclude that éVG and
Ve - VG are smooth everywhere except at atom centers. We will focus on the atom centers in the following Theorem.

Theorem 2.2. When the order m > 2 in the super Gaussian model, as r approaches to the it atom center r;, we have

lim éVG=0 and lim Ve-VG=0. (19)
r—T;

r—T;

Moreover, Ve - VG € C1=(Q), i.e., Ve - VG is Lipschitz continuous on 2 up to the boundary.

Proof. We first prove the second part of (19). Consider r € ; with S(r) =1, we have

Nm
Ve(r) = (én — €gap) Y VEi(D) H [1—g®], inQ. (20)
i=1 k=1,k#i

Using Eq. (17), we have VG = 2721 VG ;. The inner product can be written down explicitly

Nm Nm
Ve VG =(em—€gap) Yy |] [1—gk]Z[Vgl VGjl
i=1 k=1,k#i j=1
Nm  Nm
=(en—€gp) Y [] 1—&l{ Ve VGi+ Z [Vei-VGjlt. (1)
i=1 k=1,k#i Jj=1,j#i

The gradient of the it" super Gaussian density function g;(r) can be expressed as

2m Ir — ;2" \m-1
Vgi(r)=—W €xp T gamg2m (|1'—l'i| ) (r—rp). (22)
1 1
Obviously, we have Vg;(r;) = 0. Thus, the last summation in (21) is vanishing at r =r;
Nm
> V&) - VGi)]=0
J=1,j#i

because VGj is finite at r; for j #i. For calculating the desired limit, we just need to consider

Vgi(r) - VGi(r)

2m Ir — ;2™ <| 2" gy, T
=—————exp|————— | (Ir—r ) r—r ,7
g 2mR2m o 2mR2m Ir—r|?

2mG; — ;"
___2mG eXp(_l:; rj| )|r r[2m3. (23)

o2m Rizm 2m Ri2m
For m > 2, we have
lim Vgi(r) - VGi(r) =
r—T;

Thus, the second part of the limiting equation (19) holds.
In a sufficiently small neighborhood, B(r;, R), of r;, by the mean value theorem and (22)

11— gi(m)| =1gi(r;) — gi(r)| = /(l‘—l‘i)-Vgi(t(l’—l'i)-i—l'i)dt

1
t(r —r;) + ;2™
2™ exp _ =) + 67 Ir —r;|*™dt| < Cg|r — r;|*™.
O-ZmRZm GZmRiZm

0
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Then inside B(r;, R), it holds that

|é() - VGi(r)| < (€gap — €m) CRCilr — 1 "2

This proves the first part of (19).
To prove the additional regularity Ve - VG € C'~(Q), it suffices to check the regularity of Ve - VG in a neighborhood of

r; fori=1,.--, Np. For each i, there exists some R; > 0 such that
N
Vi VGi+ Y [Vg-VGjleC'" (B, R))
j=1,j#i

in view of (17), (22) and (23). Combining with the expression (21), this shows that Ve - VG egl‘(B(r,-, R;y)) for all i =
1,---, Np. Because Ve - VG € C*°(Q2\ {r1, - ,In,}), we immediately deduce that Ve - VG € cl-(@. o

We will restrict ourselves to the case m =2 from now on. Since, at all atom centers, éVG is vanishing, we infer that
€VG € C(R) and its gradient is defined in the distributional sense. Further,

V.(€VG)=VEé-VG+EAG, inQ\{r, - ry,}.

Note that €, AG = —p is a distribution in Q. Given any f € C2°(Q),

e
kB Tém

2 Nm
C

> qjépfx) =0,
j=1

/é(r)AG(r)f(r) dr = —4m

Q

because € vanishes at charge centers, which implies € AG = 0 in the sense of distribution. Thus, this term can be dropped
from the new source

V.(€VG)=Vé-VG=Ve-VG, inQ, (24)

where we have applied Ve = V¢, because € and € differ by a constant €.
Based on the above analysis, we propose to solve the reaction field potential by the following regularized PB equation

(25)

—V - (€Vugr) + (1 — S)k? sinh(ugr + G) =Ve - VG in Q,
urr =up — G on 0L2.

Since (1 — S) = 0 inside £2;, the nonlinear term in (25) is also vanishing in €;. This guarantees that the reaction field
potential ugr will be bounded and smooth in 2. Once ugr is computed from (25), the potential solution of the PB equation
(1) is simply given by u = ugr + G. It is noted that in the regularized PB equation (25), one does not need to know €. In
other words, the dielectric function decomposition € = €, + € is used only in the derivation, and all computations can be
carried out based on €(r) only. The details on the numerical implementation of the smooth source Ve - VG will be offered
in a later subsection.

2.3. Well-posedness of the super-Gaussian Poisson-Boltzmann model

Theorem 2.3. The regularized PB equation (25) has a unique weak solution ugr € HY(Q). Moreover, the solution ugr € C2()) N
c(Q).

Proof. (i) We first establish the existence and uniqueness part. To this end, a further two-component decomposition ugr =
u; + u, will be introduced in such a way that

—€mAu;=Ve-VG in
(26)
Uy=up—uc on 9%
and
—V - (eVup) + (1 — S)k?sinh(up +u+G)=V - (éVuy) in  Q, o7
u, =0 on 0.

One can extend (up — uc)|sq to be a function h € C*°(Q) by possibly multiplying u, — uc by a smooth cut-off function to
remove the singularities. Then U := u; — h solves
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(28)

—€mAlU;=Ve - VG —enAh in Q,
=0 on 0.

We can infer from [18, Corollary 1] that (28) has a unique solution %; € H2(2) N Hg)(SZ) and in turn u; € H%($2). We thus
have V - (€Vu)) € Ly ().
To study (27), we define the energy functional

€ N
I[vl= / [§|Vv|2 + (1 - S)/c2 cosh(v+u+G)—vV- (eVul)] dr, ve Hg)(SZ).
Q
By the Holder, Poincaré and Young's inequalities,

[ 19 @vw] dr < LIV - @u iR, 0 +19VIE o
Q

for any § > 0 and a continuous and decreasing function L : R, — R_. Choosing § > 0 sufficiently small, we can immediately
verify that

I[vl1=>C1|[VVv|3 - Ca,

for some constants C; > 0 and C,. This implies that I[-] is coercive. It is a simple task to check the strict convexity of the
functional. Hence the direct method of Calculus of Variation yields the existence and uniqueness of a global minimizer of
I[-]. Here v solves (27) iff it is a critical point of I[-]. The uniqueness of a critical point of I[-] is an immediate consequence
of the strict convexity of I[-]. We thus infer that u, is the uniqueness weak solution to (27), and thus ugr := u;+u, uniquely
and weakly solves (25) in H' ().

(ii) Next, we will show ugr is essentially bounded. From the Sobolev embedding H2(§2) < C1/2(Q), cf. [2, Theorem 4.12],
we conclude that ||u]lec < C3 for some constant C3. To show the essential boundedness of u,, we further decompose it into

Up =Un,1 + Up,2 in such a way that

—V - (eVup1)=V-(€Vy) in £,
(29)
u, =0 on 0
and
—V - (€Vup2) 4+ (1 = S)k2sinh(ups +Up1 +u+G) =0 in €, 30)
u, =0 on 0%.

Since éVu; € HI(Q) < Lg(R), it follows from [21, Theorem 8.16] that [lun 1]lec < C4 for some constant C4 > 0. We already
know that

G| =Cs5, TeR\Q;

for some C5 > 0. Define

W={reQ: uyy<C3+Cq4+Cs}.
Multiplying both sides of (30) by (un 2 — C3 — C4 — Cs5)+ and integrating over 2 yield

/ (€192 + (1 = $)i sinbun > + i1 41+ G)(un 2 — Cs — Cs — Cs),. | dr =0.
w

Because both terms in the integrand are non-negative, this implies that

Up2 <C3+C4+Cs ae.inQ)\Q;.

Similarly, we can show that

Upp>—C3—C4—Cs ae.inQ\Q;.

Applying [21, Theorem 8.16] once more to (30) yields that || 2]lcc < Ce for some Ce.

(iii) From Steps (i) and (i), one can readily infer that (1 — S)sinh(ugr + G) € H'(Q). In view of the C?-continuity
of €, applying [21, Theorem 8.10] to (25), we conclude that ugr € H>(§’) for any subdomain €’ such that Q' c Q. The
Sobolev embedding theorem, cf. [2, Theorem 4.12], implies that ugr € C1(S2). Since both (1 — S) sinh(ugr + G) and Ve - VG
are Lipschitz, we infer from [21, Theorem 6.13] that ugr € C2(Q2)) N C(). Note that a cube satisfies an exterior sphere
condition. O
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2.4. Electrostatic free energy

In biomolecular simulations, one common usage of the PB model is to compute the electrostatic free energy, which
measures the difference in the polar solvation energy of the macromolecule between the water phase and vacuum phase
[25,33]. This amounts to solving the PB equation for water state and a Poisson equation for vacuum state, subject to the
same singular charge sources.

We first review how the electrostatic free energy is calculated in the original super-Gaussian PB model. For simplicity,
consider a linearized PB (LPB) model, which is commonly used when the electrostatic potential is weak. In this case, sinh(u)
can be approximated by u, so that the electrostatic interactions can be modeled by a LPB equation

—V - (e(r)Vu(r)) + (1 — S(r)ku(r) = p(), ing, (31)

subject to the same source term (2) and boundary condition (3). Here €(r) is produced by the super-Gaussian dielectric
model with m > 2 and €,,; = 80. By solving (31) numerically, one attains u(r) for the water state. For the vacuum state,
one solves a Poisson equation [22]

=V (eymVv(r) =p(r), ing, (32)

which is derived by taking x = 0 in the LPB equation (31) since no ions are presented in the vacuum. On 9<2, we have
a boundary condition v(r) = vp(r), where v (r) is obtained by setting x = 0 in (3). The dielectric function €,(r) in (32)
is defined by Eq. (8) with €y, = 1. By solving (32) numerically, one attains v(r) for the vacuum state. With the potential
solutions of two states, the electrostatic free energy is then calculated as

N, N,

-l m -l m
E=_ksT / ]Z]qﬁ(r— 1)) — v(r)dr = —ksT ]Z]qj(u(rj) —v(rj). (33)

2 = -

We next discuss how to compute electrostatic free energy in the proposed regularization method. In the water state, the
potential decomposition is conducted for the solution of the LPB equation (31): u = ugf + tuc = ugr + G. Then the reaction
field potential ugr satisfies a regularized LPB equation

[—V (€(@Vugp() + (1 — S®)k2ugp(r) =Ve(r) - VG(r) — (1 — S(r)k2G(r), inQ, (34)

ugr(r) =up(r) — G(r) on 0L2.

In the solute domain €2;, (1—S)x%G = 0, while in other subdomains, G is well-defined. Thus, the second source term of (34),
i.e., (1 — S)k2G, is smooth over the entire domain 2. By solving (34) numerically, one attains ugr(r) for the water state. A
similar potential decomposition is carried out in the vacuum state for the Poisson equation (32): v = Vgr + vc = Vgr + G.
Here the singular component v is essentially uc and is also analytically represented by the Green'’s function G. The reaction
field potential satisfies a regularized Poisson equation

{—V (ey(MVVRp(r) =Vey(r) - VG(r), ing,
(35)

VRE () =vp(r) — G(r) on df2.
The source Ve, - VG is Lipschitz. In particular, we have Ve, - VG =Ve - VG in ©; and Ve, - VG =0 in Q. In &, Ve, - VG
shall be computed independently. By solving (35) numerically, one attains vgp(r) for the vacuum state. The electrostatic

free energy is still defined by (33). However, since v¢ = uc, the singular components are simply canceled. Thus, the free
energy can be computed by using reaction field components only

N N
1 i 1 o

E= EkBT / JZ;CIj(S(l'— ) (uRp(r) — VRr(r))dr = ikBT ]Z;CIJ'(URF(I‘j) — VRr(r))). (36)
S = :

In the present study, the electrostatic free energy will be reported in the unit of kcal/mol. Since the numerically calculated
potentials are available only on grid nodes, a linear interpolation has to be conducted to evaluate these potentials at charge
centers r;j in (33) and (36).

2.5. Numerical discretization and implementation

In this subsection, we offer details on the numerical discretization of the regularized LPB equation (34) and numerical
implementation of source terms. For a given protein structure, we first select a large enough computational domain 2
and construct a uniform mesh partition with Ny, Ny, N, being the number of the grid points in x, y, and z directions,
respectively. Without the loss of generality, we assume the grid spacing h in all x, y, and z directions to be the same, i.e.,
h = Ax= Ay = Az, with the unit A. For a function f defined at a node (x;, Vi, zk), we denote f; j = f(Xi, yj. zk).

10
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The central finite difference method is employed to directly discretize the divergence form of the regularized LPB equa-
tion (34). For example, at the node (x;, y;, z¢), the x derivative is approximated as

0 1
[—( ””)]. €y (@RPi1 = (ure)) = €y (urp)i = (urp)i1) | + O (7). (37)

where we have dropped indexes for y; and z for simplicity.

In the present study, the diffuse interface function S(r) in (34) is generated by the Gaussian convolution surface (GCS)
[44], which is accelerated by the fast Fourier transform (FFT) algorithm. The dielectric function € (r) is constructed according
to (8), which depends on S(r) as well as several super Gaussian parameters. Similar to [44], the band-width of Q; will be
taken as 3 A in the GCS, which allows a smooth variation of €(r) in ;. Since the GCS surface function Si jk is generated
numerically, €; j , is only known at nodes (x;, ¥, z¢). Thus, the half-grid values needed in central difference approximation,
such as in (37), are obtained via an average

€l k= w +0h?). (38)
The finite difference discretization of the left-hand side of Eq. (34) gives rise to a sparse linear system with dimension
N3-by-N3, where N3 = Ny x N, x N,. A biconjugate gradient iterative solver is employed to solve this linear system for
urr(Xi, ¥j, zx). The order of accuracy of the entire central difference discretization is two.

The implementation of the source terms of Eq. (34) requires further attention. Since G; j r and VG; j  are known analyt-
ically, the second source term (1 — S)k%G can be calculated directly at (x;, Yj, Zx). The first source term Ve - VG depends on
several parts. Whenever possible, analytical differentiation instead of finite difference approximation is used for calculating

Ve. Using Eq. (8), one has

Ve(r) = Sr)Veip(r) + VS(X) (€ (r) — €our),  in Q. (39)

For (x;, yj,zk) € Q¢, we have S =0 and VS =0, so that Ve =0 in the solvent subdomain . In the solute subdomain £;
with S=1 and VS =0, Ve = Ve¢j, can be computed analytically. Using the definition of €;,, one attains

Nm Nm
Vein(r) = (€m — €gap) D Van(®) [ 11— &i®]=(em - egap)Z( gg(())>Vgn<r>.
n=1 I=1,l#n

For m > 2, we have the analytical form

1- m—1
Véin(r) = (€gap — €m) Z 2mR2m (1 - ;((rr))) gn(r) (Ir - rn|2> (r—r), (40)

for r € @, except at all atom centers rp, n=1,2,..., Nm. When (x;, yj, z) € Qi, Vé€; j, can be calculated analytically using
Eq. (40). We note that if the grid node (x;, y;, zx) happens to be the nth atom center, i.e., (x;, Yj, zx) =1y, the denominator
1 — gn(rp) =0 in (40). Nevertheless, this is not an issue in our computation. According to Theorem 2.2, the first source
term is vanishing at all atom centers. Thus, in this case, one should not apply (40), but just simply takes Ve - VG = 0. When
(Xi, ¥, Zk) € Q, €in and Ve, are still calculated analytically. By approximating the gradient of S using the central difference,

e.g.,

S| _ Sitjk = Si-1jk o),
Ve; ik can be computed according to Eq. (39). The smooth source term Ve, - VG for the regularized Poisson equation (35)
in vacuum state can be calculated similarly.

For a comparison, the traditional trilinear method [33] will also be employed to treat singular charges contained in
p of the un-regularized LPB equation (31) and Poisson equation (32). For each partial charge g, located at r,, one will
find a cubic cell containing this charge. One will then distribute the charge g, into eight corner nodes of the cell, which
gives rise to eight numerical source values Q; j, for each partial charge. The Laplacian term of LPB equation (31) and
Poisson equation (32) will be discretized by the same second order central differences (37). Denote the resulting potential
solutions as u(x;, ¥j, z) and v(x;, yj, zx), respectively, for water and vacuum states. Because the Dirac delta functions are
approximated by finite quantities, the trilinear method produces a significant error at charge centers. However, in calculating
the electrostatic free energy by using Eq. (33), only the difference between u(x;, yj, z¢) and v(x;, yj, z) is needed. By using
the same trilinear interpolation in computing both u(x;, y;, z¢) and v(x;, y;, z), this difference will significantly cancel the
error associated with the delta function approximation. We will illustrate this point in the next section.

11
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3. Numerical experiments

In this section, we will examine the proposed regularization method by providing simulation results, and compare it
with the trilinear method. A manufactured example with analytical potential solutions will be studied first. Then, we report
results of electrostatic free energy calculation for one atom system and small molecules. After a convergence analysis by
using one protein, a set of real proteins will finally be employed to further compare the regularization and trilinear methods.
In the super-Gaussian PB model, the following parameter values are chosen: m=2, o0 =1, ¢; =1, and I =0.15 m. For the
water state and vacuum state, €, is chosen as 80 and 1, respectively. In all computations, the length is reported with an
unit A, and the electrostatic free energy has the unit of kcal/mol. In all figures and tables, the regularization and trilinear
methods will be denoted as REG and TRI, respectively.

3.1. A manufactured example with analytical solution

For the sharp interface PB model, a new numerical algorithm is usually benchmarked by considering a Kirkwood sphere
with analytical potential or energy values [4,19,20]. However, no analytical example is known for the Gaussian dielectric PB
models [22,30,31], due to a complicated dielectric profile. In order to validate the proposed regularization method, we will
consider a one-atom system and construct an analytical potential.

Consider a one atom system with a unit charge qo =1 located at ro = (0, 0, 0). The interfaces I'; and I, are spheres
with radii being r; =2 and r, =5, respectively. A tanh-like surface function is defined, which smoothly varies in the radial
direction

S(r) = % — %tanh(k( =i %))7 (1)

Te — T
where a large enough k = 14 is employed so that S~ 1 in ©; and S ~ 0 in .. In particular, at the charge center rp, we

have that S(rp) numerically equals to 1, i.e., |S(rg) — 1| = 6.44e — 15. With m =2 and o =1, the super-Gaussian density
function is g(r) = exp(—|r|*/r}). Then, €;, can be calculated as

Ir|*
€in(r) = €m + (€gap — €m) (1 — exp <_1’_4 s (42)
i
and the super-Gaussian dielectric function is given as
€(r) = S(0)€in(r) + (1 — S(r)€out, (43)

where €, =1, €yt =80 and €gqp = 8.
To construct an analytical potential for this one-atom system, we consider a Poisson’s equation with x =0

2
e
—V - (eVu) =41 ——qod(r — 1) + f(r), (44)
kBT
where f(r) is an additional source. As in the usual PB models, the potential u can be decomposed into reaction-field and

e% qo
kpT €mlr —1o|
€(rg) # €m. Nevertheless, the difference between €(rp) and €5, is around 1.0e — 14. For simplicity, we assume them to be
the same numerically, and still use €, in the Green’s function G. In this study, we assume that ugr takes the form

coulomb components u = ugr + G, where G =

It is noted that, since S(rp) is slightly different from 1,

e Ir|?
URp(r) = — ; exp(——- ). (45)

By substituting the analytical expressions for ugr and G into the Poisson equation (44), one can derive the expression for
the additional source f(r). See Appendix B for more details.

Assume a computational domain € = [—10,10]3, which is partitioned by a uniform mesh with the spacing h =
20/(N — 1) in all directions. Here N will be chosen as an even integer so that the singular charge point is not located
on the grid nodes. We will solve this one-atom system by the trilinear method, as well as two regularization implementa-
tions. In all cases, the Dirichlet boundary condition is obtained by the exact solution.

For the trilinear method, one directly discretizes the original Poisson equation (44) for a numerical solution u(x;, y;, z).
For the regularization approach, we will solve the regularized Poisson equation for the reaction field component

—V - (eVugp) =Ve -VG+ f. (46)

In the regularization or REG scheme, Ve is implemented as discussed above. In particularly, Ve;j, is calculated analyti-
cally by (40), while VS is approximated by the central difference. For the present example, we have implemented another
regularization scheme, i.e., REG-2, in which Ve is simply approximated by the central difference, e.g.,

12
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Table 1
Numerical convergence of the trilinear and two regularization methods for the manufactured example.
Norm N TRI REG REG-2
Error Order Error Order Error Order
Ly 50 7.25e-1 3.86e-1 8.14e-1
100 3.07e-1 123 1.12e-1 177 2.08e-1 1.94
200 1.86e-1 0.72 3.03e-2 1.87 5.31e-2 1.96
400 1.28e-1 0.53 7.76e-3 196 1.34e-2 199
Lo 50 6.26e+1 7.01e-0 5.61e+1
100 7.43e+1 -0.24 1.47e-0 2.22 1.74e+1 1.66
200 1.33e+2 -0.83 3.90e-1 1.90 4.77e-0 1.86
400 2.63e+2 -0.98 9.88e-2 197 1.24e-0 193
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Fig. 2. Plots of numerical errors along a x line with y =h/2 and z=h/2 for the manufactured example. (a) N =50; (b) N =100; (c) N =200; (d) N =400.
Large enough windows are used in first two subplots, while a small window is used in last two subplots so that errors of two regularization schemes could
be visualized.
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By taking N =50, 100, 200, and 400, the L, and Ly, errors of three numerical schemes are reported in Table 1. It can be
seen that both regularization methods achieve a second order convergence in Ly and L., norms, while the REG scheme is
more accurate than the REG-2. For the TRI scheme, the L, error converges, but the L., error becomes larger and larger as N
increases. In Fig. 2, errors of three numerical schemes are depicted along a x grid line with y =z =h/2. It can be seen that
the largest trilinear error is always located at the charge center, while outside €2;, the trilinear error is quite similar to those
of two regularization schemes. This suggests that the failure of the trilinear approximation is solely caused by the singular
charge. Due to the use of finite difference to approximate the source term Ve, the REG-2 scheme initially produces a large
error at the charge center, which is just slightly smaller than that of TRI for N = 50. Nevertheless, as N becomes larger, the
REG-2 error at the charge point decays rapidly toward zero.

By using an analytical source implementation, the REG error is always negligible at the charge center. It can be observed
in Fig. 2 that the maximum error of the REG scheme is located around x = £3.5, where the surface function S has the
largest gradient value. This means the numerical error of the REG scheme is solely due to finite difference approximations,
because the charge singularity is well taken care of in the proposed regularization and implementation. The present study
also demonstrates the advantage of analytical source implementation over finite different approximation. For this reason,
we will focus only on the REG scheme in the rest of studies.

13
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Fig. 3. Electrostatic free energies of one atom system calculated by the regularization method and trilinear method. The left subfigure is based on the
tanh-like surface and the right one is by using the Gaussian convolution surface (GCS).
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Fig. 4. Line plots of potentials along a x line with y =h/2 and z=h/2 for the one-atom system with the tanh-like surface. (a) PB potential u, vacuum
potential v, and their difference u — v, calculated by the trilinear method; (b) PB potential ugr, vacuum potential vgr, and their difference ugr — vgr,
calculated by the regularization method; (c) Comparison of trilinear and regularization potential differences.

3.2. Electrostatic free energy of one atom

We next calculate the electrostatic free energy of the one atom system studied above. The model parameters are still
go=1,19=(0,0,0), r; =2, and r. = 5. Two diffuse interface settings will be examined. First, the same tanh-like surface will
be used, with S calculated by Eq. (41). Second, the Gaussian convolution surface (GCS) developed in [44] will be employed
to compute another S function. Based on the S function, one can then define €(r) and €, (r), respectively, for water and
vacuum states. In this example and the following simulations, we will take €gqp = 4.

Using the procedures described in Section 2, we will calculate the electrostatic free energy by regularization and trilinear
methods. In particular, one solves the LPB equation (31) and Poisson equation (32) by the trilinear method, respectively, for
potentials u and v. Then Eq. (33) is adopted to compute the electrostatic free energy E, which essentially depends on the
difference of u and v. For the regularization method, one solves the regularized LPB equation (34) and regularized Poisson
equation (35), respectively, for ugr and vgr. The difference between them is used in Eq. (36) for calculating E. We note
that no exact energy value is known for the present super-Gaussian PB model of the one atom system.

By testing a set of even integers for N, the energies calculated by both methods are shown in the left chart of Fig. 3 for
the tanh-like surface. It can be seen that the energies of trilinear and regularization methods converge to the same limit.
For the regularization method, the energy curve becomes almost flat after N > 50, and the energy at N =300 is —45.0792,
which will be treated as the reference energy. The trilinear energy also converges toward the reference energy, but at a
slower rate. In particular, the trilinear energy at N =300 is —45.0660, whose error in comparing with the reference energy
is about 0.0132. For a comparison, the energy error of the regularization method at N =100 is already as small as 0.0020.
The means that the regularization is much more accurate than the trilinear method in calculating electrostatic free energy.

It is noted that even though the trilinear method involves a large and divergent approximation error at charge center,
it may produce convergent energy. To see this point, we plot the potentials of both methods along a x grid line with
y =z=nh/2, where N = 200. It is observed in Fig. 4 that for both PB potential u and vacuum potential v of the trilinear
method, a huge error happens again at the charge center, due to the poor approximation of the singular charge. Since these
two charge errors are almost the same for u and v, they are simply canceled in u — v for calculating the electrostatic
free energy. In other words, the artificial grid energy of the trilinear method could be suppressed by an error cancellation.
Thus, it can be seen from Fig. 4 (a) that u — v becomes pretty flat at the charge center, and the huge error at the atom
center disappears. For the regularization method, both ugr and vgr are free of charge errors at the atom center, and
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Fig. 5. Heat-map plots of the dielectric functions cross a plane with z = const for the GLY. (a) €(r) for the water state; (b) €,(r) for the vacuum state.
For illustration purpose, €gqp is taken as 20 in the plots. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this
article.)

their difference ugr — vgr is also quite flat at the atom center. In Fig. 4 (c), the potential differences of the trilinear and
regularization methods are plotted together. It can be seen that they agree with each other very well. The minor difference
between them cannot be visualized in this figure.

The tanh-like surface is defined only for the one atom system. To efficiently generate diffuse interfaces for general protein
systems, a GCS has been introduced in [44]. To test the GCS in the super-Gaussian PB model, we first apply it to the one
atom system. The estimated energies of regularization and trilinear methods are depicted in the right chart of Fig. 3. Now,
with S(r) being constructed numerically, the regularization method will be implemented as mentioned in Section 2. Since
the GCS is computed discretely, itself has a convergence issue. Moreover, it has been shown in [44] that the GCS convergence
is oscillatory, not monotonically. This affects the energy convergence. It can be seen from Fig. 3 Right that the calculated
energies of regularization and trilinear methods are all fluctuated, and the regularization energy is larger than the trilinear
one. It also can be observed that the oscillation amplitude of the regularization is less than that of the trilinear method,
indicating that the regularization could be more robust in energy computation.

3.3. Impact of rotation and shifting

We then investigate the sensitivity of grid rotation and shifting. Physically, when the concerned biomolecule is shifted or
rotated to a new position, the electrostatic free energy will not be altered. However, because the finite difference method is
a grid-based numerical algorithm for solving the PB equation, the numerical energy is grid dependent. Therefore, for a new
finite difference PB model, it is important to test the grid sensitivity with respect to rotation and shifting [31], in which a
so-called artificial grid energy is usually considered to measure the numerical artifact.

In the present study, we consider a small compound, i.e., glycerol triacetate or GLY. The charges, atomic coordinates, and
radii are defined based on a parameterization presented in [34]. By taking h = 0.1, an initial domain [—7, 14] x [—10, 8] x
[—7,12] is chosen, and is partitioned into a uniform mesh. The dielectric functions €(r) and €, (r) of the GLY in the water
and vacuum states are displayed, respectively, in Fig. 5 (a) and (b). It can be seen that inside the Van der Waals region,
two dielectric functions are the same. Outside the smooth solute-solvent boundary, the dielectric function goes to 80 and 1,
respectively, for the water and vacuum states. Moreover, no geometrical symmetry can be observed in Fig. 5. Hence, this is
a good example to test the sensitivity of grid rotation and shifting.

In the shifting test, we will shift the GLY in z direction with an increment 0.01. In other words, for all atomic coordinates,
we will keep x and y values unchanged and add z values by 0.01. For each shifted structure, the computational domain will
be automatically generated. After shifting ten steps, the relative position of the shifted structure with respect to the uniform
mesh is essentially the same as the initial one, because h = 0.1. Then, the numerical energy should become the same as the
original one. In the rotation test, we will fix z coordinate values, and rotate (x, y) values within the xy-plane with respect
to (x, y) = (0, 0). By using an angular increment of 30°, the (x, y) coordinates will be rotated back to the original ones after
12 steps. For each rotated structure, a new computational domain will be automatically generated for calculating the energy.

We first consider a synchronized coordinate change that will be applied to both PB potential and vacuum potential. For
the trilinear method, this means that the biomolecular structure will be changed simultaneously in calculating potential u
for the LPB equation (31) and v for the Poisson equation (32). Similarly, for the regularization method, the biomolecular
structure will be changed at the same time for both ugr and vgr. The sensitivity results of the trilinear and regularization
methods are depicted in Fig. 6 (a) and (c), respectively, for rotation and shifting. It can be seen that the regularization
energy is barely affected by the rotation or shifting - only a very minor fluctuation is displayed. For the trilinear method,
we can see that initial energy value is slightly different from that of the regularization. The fluctuation is more severe than
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Fig. 6. Grid sensitivity tests of rotation and shifting for the GLY. (a) Synchronized rotation; (b) Unsynchronized rotation; (c) Synchronized shifting;
(d) Unsynchronized shifting.

the regularization, but it is still acceptable. Due to the synchronized coordinate change, the structure and the corresponding
numerical grid are the same in calculating u and v, so that the error cancellation can still be taken advantage of for the
trilinear method. This is why the trilinear method is still acceptable.

We next consider an unsynchronized coordinate change. For the trilinear method, instead of Eq. (33), the electrostatic
free energy will be calculated as

1
F =

N, N,
m , l m
_EkBTquu(rj)— ~ksT > ajv), (47)

j=1 j=1

where the atomic coordinates rj will be fixed in calculating the potential v in the vacuum, while r’] will be rotated or
shifted in calculating the potential u in the solvent. Similarly, in the regularization method, the electrostatic free energy will
be computed as

N, N
1 s 1 T
E:EICBT;(]]‘URF(I‘;-)—EkBTjZ]quRF(l‘j). (48)

The numerical results of unsynchronized rotation and shifting are illustrated, respectively, in Fig. 6 (b) and (d). Significant
errors can be seen now for the trilinear method. For the shifting, the largest deviation happens at 0.06 with the energy
being around —1100. For the rotation, the energy oscillates dramatically with maximal deviations around —800. At rotation
angles of degree 90, 180, 270, the energy is close to that of degree 0. It is impressive to see that the regularization energy is
barely affected by such unsynchronized rotation or shifting. The energy curves look like straight lines in Fig. 6 (b) and (d). To
see these curves more clearly, they are also plotted in Fig. 6 (a) and (c). Comparing with the previous synchronized results,
one cannot tell much difference for the unsynchronized results. This indicates that the proposed regularization method is
very robust with respect to grid rotation and shifting. In other words, the grid artifact or artificial grid energy is completely
eliminated in the present finite difference PB model.
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Table 2
Electrostatic free energy (kcal/mol) of the protein 1XMK and the corresponding CPU time in seconds for different mesh sizes. The CPU time of the regular-
ization and trilinear methods differs in three major parts: surface generation, source generation, and algebraic solution of the linearized PB equation.

CPU time (s)

Energy Surface generation Source generation Solving PB Eq.
h REG TRI REG TRI REG TRI REG TRI
1.0 -360.9206 -315.4097 9.68E—2 4.74E-2 5.50E+1 5.36E4+-0 1.06E+1 5.73E4+0
0.5 -343.8260 -357.6610 7.78E—1 3.71E-1 3.92E+2 215E+1 1.15E+-2 5.91E+1
0.25 -338.8072 -345.4913 7.06E+0 3.15E+0 2.97E+3 8.79E+1 1.67E+3 8.04E+2
0.125 -337.5360 -342.2154 6.96E+1 2.73E+1 2.33E+4 3.94E+2 2.62E+4 115E+4
-310 i i 2
100°  —————————
= TR J: - TRI, r=1.03
-320 (|- REG e -2-REG, r=1.06
< 10
- 10
-330 |
> S/
[ b e
= r =~ O~ s ] )
8'340::..\ RRETUN T 100t
L - Sl S ’ (@]
-350 ‘\.\ ',." S~a L
. V4 S~ A
! S~o 10
-360 S g
-370 ‘ : 1072
0.125 0.25 0.5 1 N
h 3
(a) (b)
10° 10°
-G TRI, r=0.69 -6 TRI, r=1.23
4 -2-REG, r=0.98 4 -&-REG, r=1.27
107 ¢ 107 ¢ 3
3L 31 ]
S 10 S 10
S 5
10%¢ 10%F i
10" 10" 3
10° N 10° N
3 3
() (d)

Fig. 7. Convergence and efficiency tests for the protein 1XMK, where h is spacing and N3 is the total degree of freedom. (a) Convergence of the electrostatic
free energy with respect to h; (b) CPU time against N3 for surface generation; (c) CPU time against N3 for source generation; (d) CPU time against N3
for solving the PB equation. In all CPU plots, the solid lines represent the least-squares fitted linear trends. The corresponding complexity ratio r is also
reported.

3.4. Convergence and efficiency

We next study the convergence and efficiency by considering a protein with protein databank (PDB) ID: 1XMK. By using
a fixed domain Q = [6,56] x [3,56] x [9, 54], different mesh sizes are examined with h =1, 0.5, 0.25, and 0.125. The
calculated electrostatic free energy and corresponding CPU time are reported in Table 2.

We first examine the energy convergence. It can be seen in Fig. 7 (a) that the regularization method converges mono-
tonically to certain limit, while the energy curve of the trilinear method is not monotonic. As h becomes smaller, the gap
between energies predicted by the two methods is shrinking. It looks like that both methods will eventually converge to
the same limit, as h — 0. Moreover, the convergence speed of each method could be assessed by considering the energy
difference after a mesh refinement. For instance, it can be seen from Table 2 that the energy difference between h = 0.125
and h =0.25 is about 1.33 and 3.28, respectively, for the regularization and trilinear method. In fact, the energy difference
of the regularization is always less than that of the trilinear method. This suggests that the regularization method converges
faster than the trilinear method.
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We next investigate the CPU time. Based on the same super-Gaussian PB model, the regularization and trilinear methods
share a lot of common components in implementation. Thus, in biomolecular simulations, the execution time of two meth-
ods are different mainly in three parts, i.e., surface generation, source generation, and algebraic solution of the PB equation.
We will examine these three parts one by one.

First, in the surface generation, the CPU time for setting up the GCS function S is measured in the trilinear method. For
the regularization, extra time is needed for calculating the gradient of S. Thus, it is seen in Table 2 that the CPU time of the
trilinear method is less than half of that of the regularization for this part. In Fig. 7 (b), the CPU time in surface generation
is plotted against the total degree of freedom N3 = Ny x Ny x N,. Moreover, a least square linear fitting is conducted in
log-log scale to determine the order of complexity, i.e., CPU=0(N%). With r =1.03 and r = 1.06, respectively, for trilinear
and regularization methods, one can conclude that the CPU time in surface generation scales linearly with respect to Nj.
This is consistent with the finding in Ref. [44].

Second, the regularization is much more expensive than the trilinear method in source generation. For the trilinear
method, the main execution time is spent on searching for the grid cubes that contain partial charges. The cost of trilinear
interpolation depends on the total number of charges, which does not change when one refines the mesh. Thus, the source
generation for the trilinear method is cheap and does not grow too much with respect to N3. This can be observed in
Fig. 7 (c) that the trilinear CPU scales as O(Ng'ﬁg) for source generation. For the regularization method, the computation of
two source terms in Eq. (34) involves a lot of finite difference approximations and analytical differentiations, and has to be
carried on all nodes throughout the domain. Thus, such computations are expensive. Fortunately, as can be seen in Fig. 7
(c) that the complexity of this part scales linearly with respect to N3. Consequently, for the finest mesh with h = 0.125, the
source generation is not the most time consuming part of the regularization method.

Third, the same matrix and iterative algebraic solver (biconjugate gradient algorithm) are used in the regularization and
trilinear methods. Since the source term of the regularization becomes more complicated, the algebraic solution demands
more CPU time than that of the trilinear method. It can be observed in Fig. 7 (d) that the complexity order of this part
is the largest, about O(N%'ZS). Thus, iterative solution of the PB equation shall be the most expensive part for large sys-
tems.

Combining three CPU parts, one can conclude that the regularization is more expensive than the trilinear method. In
particular, the CPU time of the regularization is about 4 to 6 times larger than that of the trilinear method for a fixed h.
However, it can be observed from Table 2 that the regularization provides a more accurate energy prediction. In fact, by
using h = 0.5, the energy calculated by the regularization is more accurate than that of the trilinear method with h = 0.25,
while the total CPU of the regularization at h = 0.5 is smaller than that of the trilinear method at h = 0.25. Therefore, by
allowing to use a coarse mesh, the regularization is actually more cost-efficient than the trilinear method.

3.5. Electrostatic free energies of proteins

We finally consider the electrostatic free energy of 25 proteins, which are randomly chosen from a protein data set
studied in Ref. [10]. The energies calculated by using trilinear and regularization methods based on three mesh sizes are
reported in Table 3. For both methods, when h varies from 1, 0.5, to 0.25, the energies converge to the finest mesh h = 0.25.
Also, a general agreement between the regularization and trilinear results at h = 0.25 can be seen.

To better illustrate the accuracies of two methods, we plot the relative energy differences in Fig. 8. First, for one method
and a protein, the self-convergence is tested by taking the energy predicted by h = 0.25 as the reference value E,.s. Then

the errors for h =1 and 0.5 are assessed by the relative energy difference E;ﬂ Such differences are plotted in Fig. 8 (a)

and (b), respectively, for regularization and trilinear methods. While both methods are self-convergent, it is observed that
the errors of the regularization are much smaller than those of the trilinear method. Moreover, the convergence pattern of

the trilinear method is always oscillatory, i.e., Egi;ef is positive for h =1 and negative for h = 0.5. For the regularization,
the convergence could be either oscillatory or monotonic. In Fig. 8 (c), we take the regularization energy at h = 0.25 as
the reference Ef to examine the accuracy of the trilinear method. It can be seen that the error of the trilinear method
decreases as h is reduced from 1 to 0.25. This suggests that the trilinear energy converges to the regularization energy.
Therefore, in all cases, the regularization method is more accurate than the trilinear method in calculating electrostatic free
energies of proteins.

A comparison between the present super-Gaussian PB model and the sharp interface PB model [5,25,38] is also consid-
ered. For this purpose, the MIBPB web server (https://weilab.math.msu.edu/MIBPB/) is employed. The MIBPB method is a
second order convergent PB solver that rigorously treats charge singularities, as well as geometrical singularities involved
in the molecular surface [11,19]. Because the MIBPB energy converges very fast with respect to h, we calculate the MIBPB
energies by just using h = 0.5 A. Except for one protein (PDB ID: 1CBN) that the MIBPB web server reports an error, elec-
trostatic free energies of other 24 proteins are obtained. A comparison between the MIBPB energy and those calculated by
the trilinear and regularization methods at h = 0.25 A is shown in Fig. 9. It can be seen that the super Gaussian PB energy
is usually weaker than the MIBPB energy, i.e., the former has a smaller magnitude. By taking the MIBPB energy as the inde-
pendent variable x, a least-squares linear fitting is conducted for the regularization energy y, which gives a linear function
y = 0.4960x + 253.7996. The energy difference here is mainly due to the underlying PB models. In the super Gaussian PB
model, the ionic strength is scaled by (1 — S). Thus, the ionic strength is increasing in €2; and is in full strength only for
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Table 3

Electrostatic free energy (kcal/mol) of 25 proteins calculated by the trilinear and regularization methods. For each case, three mesh sizes are tested.
PDB Atom Electrostatic free energy
-ID number Trilinear Regularization

h=1 h=0.5 h=0.25 h=1 h=0.5 h=0.25

1AHO 962 -211.2636 -248.1750 -238.2240 -228.5431 -237.2506 -233.1279
1C75 985 -651.9008 -690.7268 -680.2420 -675.1506 -675.4569 -673.4696
1jop 1597 -940.1217 -1014.6565 -993.8498 -979.8352 -989.0494 -981.9095
1TGO 1029 -1793.6217 -1835.2729 -1824.0573 -1830.3678 -1811.3032 -1814.1010
1X8Q 2815 -542.4612 -630.3998 -606.4268 -583.1636 -602.5760 -593.1467
1CBN 639 -73.3233 -89.5271 -84.2385 -86.0809 -84.8137 -82.0041
1G6X 888 -609.7857 -645.4802 -635.0196 -605.9305 -629.6001 -628.4701
1IUA 1207 -210.3572 -248.1770 -237.2259 -238.8805 -236.8073 -231.6764
1L9L 1226 -1674.2821 -1723.6808 -1709.9624 -1700.3133 -1695.7472 -1699.1604
1M1Q 1265 -821.4304 -877.8622 -863.3227 -840.7822 -857.3641 -853.9345
1INWZ 1912 -725.5706 -791.8178 -774.0107 -793.2792 -769.0200 -763.5936
10K0 1076 -470.4574 -506.2608 -496.1842 -490.7971 -493.6079 -490.7643
1TQG 1660 -779.2361 -823.3382 -809.0508 -826.5917 -805.5121 -800.8380
1VBO 913 -251.5802 -286.9582 -275.2815 -282.2747 -275.0322 -269.7315
1VBW 1056 -828.6500 -865.4070 -854.4223 -832.8698 -848.7617 -847.4552
TWON 1756 -574.7337 -634.0710 -619.6113 -593.3313 -615.8816 -611.0642
1X6X 1732 -397.5570 -457.1552 -439.1164 -440.1687 -438.2086 -430.1511
1XMK 1268 -315.4097 -357.6610 -345.4913 -360.9206 -343.8260 -338.8072
1ZuUu 868 -478.8526 -515.3313 -505.1730 -498.0964 -501.0076 -498.9569
1ZZK 1252 -415.9231 -462.4152 -449.9412 -434.1725 -445.3290 -442.6274
2FDN 731 -846.6849 -871.4588 -864.1814 -856.0617 -859.8413 -858.8722
2FMA 924 -333.8799 -371.9273 -362.3285 -361.9970 -360.0563 -356.6664
2FWH 1830 -661.0665 -714.0925 -698.4507 -678.1039 -695.4554 -689.5961
2H5C 2755 -714.1789 -776.7490 -757.7038 -739.3847 -755.2416 -747.9770
2IDQ 1596 -505.4323 -554.5314 -541.3744 -545.1966 -537.5704 -533.4612

outside €; or 3 A away from the protein. For the sharp interface PB model, the full ionic strength is applied immediately
outside the protein, so that the solute-solvent electrostatic interactions are stronger. This is why the MIBPB energy becomes
stronger. Nevertheless, certain correlations can still be seen in Fig. 9. In fact, the Pearson correlation coefficient between the
MIBPB and regularization energies is as high as 0.791.

4. Conclusion

In this paper, a regularization method is introduced for the first time in the literature for treating charge singularities
in the heterogeneous dielectric Poisson-Boltzmann (PB) model. The heterogeneous dielectric PB models, including Gaussian
PB model [10,30,31] and super-Gaussian PB model [22,36], have achieved a great success in various biological applications
involving the electrostatic analysis. However, the singular charges are simply handled by the trilinear method in the existing
studies, which essentially approximate the delta function by a finite quantity. This results in a large grid artifact and a slow
convergence in energy calculations. In the proposed regularization, the singularities are analytically captured by Green’s
functions so that the grid artifact is completely eliminated and a fast energy convergence is observed.

The proposed regularization for the super-Gaussian PB model is generalized from that for the diffuse interface PB model
[37,44,45]. The key in the regularization formulation is the dual decomposition first presented in [45], i.e., besides the de-
composition of the potential into Coulomb and reaction-field components, the dielectric function is also split into a constant
based and a space varying part. Nevertheless, in order to develop a valid regularization formulation for the heterogeneous
dielectric PB models, an extensive study has been carried out in this paper to deal with theoretical and numerical difficulties.
Mathematically, a rigorous analysis has to be conducted to examine the new source term of the regularized PB equation,
because the arguments for the diffuse interface PB model [37,44,45] cannot be directly extended to the present study. In par-
ticular, the shifted dielectric function is almost vanishing in a small neighborhood around each center, while it is identically
zero in the diffuse interface case [37,44,45]. Consequently, it is shown that a super-Gaussian density, instead of a Gaussian
one, is required for the validity of the regularization formulation. Moreover, the proposed regularization is proved to be
well-posed and its solution is C2 continuous throughout the domain. Numerically, the standard finite difference algorithm
is simply employed to solve the regularized PB equation. In order to secure a more accurate implementation, analytical
differentiations, instead of numerical approximations, are adopted whenever possible in calculating the new source term
involving a space dependent dielectric function.

In numerical experiments, various examples are considered to validate the proposed regularization and to compare with
the trilinear method. The trilinear method heavily relies on an error cancellation to produce acceptable results in energy
calculations, i.e., the huge errors due to approximating singular charges by finite quantities are the same in both solvent
and vacuum states, so that the electrostatic free energy calculated as the difference of two states can be free of such
errors. It is shown in the present study that when error cancellation is unavailable, such as in case of an unsynchronized
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Fig. 8. (a) Self-convergence of the regularization energy. Here Eef is the regularization energy at h =0.25, and E is the regularization energy at h=1 or
0.5; (b) Self-convergence of the trilinear energy. Here Ey.y is the trilinear energy at h =0.25, and E is the trilinear energy at h =1 or 0.5; (c) Convergence
of the trilinear energy toward the regularization energy. Here Ees is the regularization energy at h =0.25, and E is the trilinear energy at h =1, 0.5, or
0.25.

rotation of shifting, an incredibly large error will be produced, which completely ruins the biomolecular simulation. On the
contrary, the unsynchronized rotation or shifting does not affect the regularization at all, and the grid artifact or artificial
grid energy is completely eliminated in the present finite difference PB model. When the error cancellation is allowed
in the trilinear method, the regularization is still more accurate by producing a fast energy convergence. Nevertheless,
the regularization is about 4 - 6 times more expensive than the trilinear method, based on the same degree of freedom.
Fortunately, the regularization method could yield a better energy prediction by using a courser mesh. From cost-efficiency
point of view, the regularization could still be faster than the trilinear method, in order to achieve a certain precision in
energy calculation.

In our future studies, the development of more accurate and efficient numerical algorithms for solving the regularized
PB equation of the super-Gaussian model will be investigated. This regularization will also be implemented in the super-
Gaussian module of the DelPhi package [36], and its application to biological problems will be explored.
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Fig. 9. Comparison of the electrostatic free energies of 24 proteins obtained from the present super-Gaussian PB model and the MIBPB sharp-interface PB
model. For the present model, both trilinear and regularization energies are shown.
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Appendix A. Smooth solute-solvent boundary

Consider a protein with a total Ny, atoms, with the center and radius of each atom being r, and ry, respectively. By
treating each atom as a hard sphere, the Van der Waals (VdW) surface is defined as the smallest envelope enclosing
the union of all spheres. By augmenting each atomic radius by 3 A, another VAW surface can be defined, which will be
referred as to an extended solute-accessible surface (ESAS). The diffuse interface function S(r) should satisfy a subdomain
requirement that S(r) =1 inside the VdW surface and S(r) = 0 outside the ESAS surface. In the original super-Gaussian PB
model [22], S(r) is generated by the minimal molecular surface (MMS) [6,7], while in the present study, a more efficient
Gaussian convolution surface (GCS) [44] is used to calculate S(r).

Physically, the MMS is defined as the unique surface that is of the smallest surface area, while encloses all VAW spheres.
Mathematically, the MMS can be derived from the Euler-Lagrange variation of the surface free energy, which leads to a
mean curvature flow equation subject to the subdomain requirement [6,7]

VS(r,t)
VS, Ol
where V (r) represents the total external potential, and the diffuse interface function S(r) is obtained as the steady state
solution of Eq. (A.1). An unconditionally stable alternating direction implicit (ADI) algorithm has been developed in [40] for
Eq. (A.1), whose computational complexity in each time step scales as O(N3) for N3 being the spatial degree of freedoms.
A sharp MMS can be obtained as an iso-surface of S(r) [6,7].

In the GCS model [44], a standard solute-accessible surface (SAS) is first considered, which is a VAW surface after
augmenting each atomic radius by 1.5 A. A Heaviside function is defined with H(r) = 1 inside the SAS and H(r) = 0 outside
the SAS. One then convolutes H(r) with a Gaussian kernel function

K(x)—;ex <—i) (A.2)
_am p 252 ) .

In real computations, the Heaviside function and Gaussian kernel are defined discretely on a uniform mesh. The discrete
convolution in three-dimensions is realized through a fast Fourier transform (FFT) algorithm with the total complexity being
O (N3). After convolution, the subdomain requirement is enforced in the post-processing, and the resulted diffuse interface
function is S(r) [44].

Z—f(r,t):V-( )+ V@), (A1)
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Appendix B. The manufactured example

In the section 3, a manufactured example is considered for a one-atom system. The derivation details of this example
are offered here. Following the proposed regularization, after the dual decomposition, the reaction-field potential satisfies a
regularized Poisson equation

—V - (eVugp) =Ve - VG + f, (B.1)
where the Green’s function G is known and the reaction-field potential ugr is assumed to be given
7 r|? qdo
ugrr(r) = —Cexp , Gor)=C—0o, (B.2)
r¢ €mlr|’

with the constant C = kZ—?T The unknown extra source term f can be determined by plugging (B.2) into (B.1).

The present problem can be recasted into a spherical coordinate (r, 8, ). Due to the rotational symmetry of the domain,
all involved functions do not change in 6 and ¢ directions, so that they can be regarded as functions in the radical direction
r = |r| only. Consequently, the regularized Poisson equation (B.1) can be reduced to an ordinary differential equation (ODE)
with respect to r. For instance, the left-hand side can be expanded as
d (2 duRp> 2 duRF de dURF dzuRp

e =——€ - — € .

1
—V'(E(T)VURF(T))=—r—25 dr

roodr dr dr dr?
Then f(r) can be expressed by

2 duRp de duRF dzuRF de dG

- — - - == B.3
fn= dr dr dr € dr? dr dr (B.3)

Based on Eq. (B.2), the derivatives of G and ugp can be given as

dugr _2Cr -5 dPugr _2C -5 4CP -5 dG_ Cqo

= , ="e " — e e, =
dr r2 dr? r2 re dr €m
The derivative of € is calculated as

de d de,-n(r) . ds

dar — S dr ot gr

where €, (r) is given by Eq. (42) with r = |r|. Its derivative can be calculated as

S
€in(r) + (B.4)
dr

4
déin ( )41’3 *:7
—— = (€gqp — €Em)——€ i

gap m) 7
dr r;
The derivative of S is

ds k
—=———  sech?
dr 2(re —19)

With these derivatives, one can compute + by Eq. (B.4). Finally, the source f(r) can be calculated by Eq. (B.3) at every grid
node in €.
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