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A regularization method is introduced for the first time in the literature for treating charge 
singularities in the heterogeneous dielectric Poisson-Boltzmann (PB) model. In the existing 
Gaussian and super-Gaussian electrostatic analysis, the singular sources in terms of Dirac 
delta functions are approximated by trilinear interpolation, which introduces a large error 
in potential solutions, and has to rely on an error cancellation for delivering acceptable 
estimates of the electrostatic free energy. To overcome this difficulty, a dual decomposition 
of potential and dielectric function is carried out in the proposed regularization, so 
that the charge singularities can be analytically captured by the Coulomb potential, 
while the reaction field potential satisfies a regularized PB equation with a new source 
term. A rigorous analysis has been conducted to show that a super-Gaussian density, 
instead of a Gaussian one, is required to guarantee a small neighborhood around each 
atom center with a nearly homogeneous dielectric medium, so that the source term 
can be well defined in the sense of distribution. Moreover, the well-posedness of the 
regularized formulation has been proved, and the regularity of the weak solution has 
been clarified. In the numerical implementation, special considerations are given in 
calculating the source term, by using analytical differentiations, instead of numerical 
approximations, whenever possible. The accuracy, convergence, efficiency, and robustness 
of the proposed regularization are numerically verified via benchmark studies. It is found 
that the regularization is more accurate than the trilinear method, as well as produces a 
faster convergence in energy estimation. Moreover, the grid artifact or artificial grid energy 
is completely eliminated in the present finite difference PB model.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In physiological studies, most biomolecular processes occur in water, which takes more than half of the cell mass. When 
these biological processes being analyzed, an unavoidable prerequisite for quantitative analysis is understanding the solva-
tion between the macromolecule and its surrounding aqueous environment. Among all forces and energies involved in the 
solvation analysis, the electrostatic force is a long-range force dominating all other forces at long distances. Thus, the elec-

* Corresponding author.
E-mail address: szhao@ua.edu (S. Zhao).
https://doi.org/10.1016/j.jcp.2022.111340
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111340
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111340&domain=pdf
mailto:szhao@ua.edu
https://doi.org/10.1016/j.jcp.2022.111340


S. Wang, Y. Shao, E. Alexov et al. Journal of Computational Physics 464 (2022) 111340
trostatic analysis is indispensable for solvated biological processes, by studying interactions between charged solutes such 
as proteins, DNAs and RNAs, and mobile ions contained in the solvent.

As an implicit solvent approach, the Poisson-Boltzmann (PB) model [5,25,38] treats the solute and solvent as dielectric 
continuum, and assumes that the mobile ions follow the Boltzmann distribution in water. Such a mean field approach 
leads to a nonlinear elliptic partial differential equation (PDE), whose source term involves partial charges carried by the 
macromolecule located at atom centers. As a standard method for electrostatic analysis, the PB model has been widely used 
for studying energies and dynamics of various biomolecular processes [5]. Recently, the PB model has been applied to study 
the conformational changes of the SARS-CoV-2 spike protein in [28].

In the classical PB model [5,25,38], a sharp interface is assumed at the solute-solvent boundary, which splits the domain 
into two subdomains, i.e., the solute region with a low dielectric constant and the water region with a high dielectric con-
stant. Across the dielectric interface which is usually modeled by a molecular surface, the electrostatic potential and its flux 
are continuous, while the normal derivative of the potential is discontinuous. To handle the dielectric jump, advance nu-
merical algorithms have to be designed for solving sharp interface PB equation [3,11,15,19,20,32]. Moreover, the commonly 
used molecular surface models are known to admit geometric singularities, such as cusps and self-intersecting surfaces [6].

There exist many improved PB models in the literature [1,6,7,10,13,16,22,30,31,36,37,44,48], that feature a smooth solute-
solvent boundary, i.e., the dielectric function varies smoothly from the macromolecule to the solvent over a narrow band. 
From modeling point of view, a smooth solute-solvent boundary is more physical than a sharp interface by taking into 
account the definition of dielectric coefficient and the atomistic nature of the biomolecular system [22]. Basically, the di-
electric coefficient of water molecules or dipoles in the solute-solvent boundary is determined by the polarizability of the 
dipole in responding to the electrostatic field. Due to local interactions with the macromolecule, such as Van der Waals 
forces, water molecules close to the macromolecule tend to have a lower polarizability. Moreover, such a polarizability will 
increase gradually, when one moves away from the macromolecule, instead of undergoing a sharp jump. This is the main 
justification for developing the so-called diffuse interface PB models [1,6,7,13,16,37,44,48], in which the solute and solvent 
are still assumed to be two homogeneous dielectric media, away from the smooth solute-solvent boundary.

Besides the diffuse interface models, various heterogeneous dielectric PB models [10,22,26,30,31,35,36,39,41] have been 
developed to represent the dielectric distribution of the solute as a space dependent function. This paper will pay particular 
attention to Gaussian [30,31] and super-Gaussian dielectric distributions [22], which were introduced to mimic the effect 
of random conformational changes of the macromolecule on the solvation free energy. This is realized by defining Gaussian 
or super-Gaussian density functions to describe atom specific heterogeneity. Compared with the classical PB model, the 
Gaussian PB model produces more accurate solvation free energies for small molecules [30,31], and better pKa predictions 
for proteins, RNAs and DNAs [42,43]. Moreover, an ensemble averaged electrostatic free energy could be captured by using 
a single protein structure in Gaussian and super-Gaussian models [10,36], which is much more efficient than the usual 
ensemble calculation involving thousands of steps of PB computations, together with molecular dynamics or Monte Carlo 
simulations.

Sharing some similarities with the Gaussian PB model [30,31], the super-Gaussian PB model [22] defines a diffuse in-
terface function to explicitly characterize the molecular subdomain, solute-solvent boundary, and water subdomain. While 
the dielectric function of the Gaussian model is C0 but not C1 continuous in the vacuum state, it is at least C2 continuous 
for both water and vacuum states in the super-Gaussian model. Moreover, by treating the maximum dielectric value of 
the macromolecule as an adjustable parameter, the super-Gaussian formulation is able to model the dielectric property of 
interior cavities and ion-channels [22]. As to be shown in this work, in order to generalize the regularization formulation to 
heterogeneous dielectric PB models, a super-Gaussian density, instead of Gaussian one, is required.

The main focus of this study is on treating point charges carried by the macromolecule in the super-Gaussian PB model. 
As in the other PB models, these partial charges are expressed as Dirac delta distributions, and their summation forms 
a singular source term for the PB equation [5,25,38]. In traditional numerical studies, the singular charges are directly 
discretized in grid based computations. For example, a trilinear method is commonly used in finite difference discretization, 
in which the singular charges are distributed to the neighboring grid nodes with finite values [33]. In fact, all existing 
simulations of Gaussian and super-Gaussian PB models [22,30,31] are realized via the trilinear method. In a finite element 
variational form, a point charge can be evaluated through the trial function, by means of the definition of the delta function 
[17]. Nevertheless, when singular charges are directly discretized, one actually attempts to approximate an unbounded 
potential solution by finite numerical values, which is doomed to be inaccurate. Therefore, the singular charge source is 
known to be a significant challenge for both mathematical analysis and numerical computation of the PB equation [12,24,
46].

For sharp interface PB model, various regularization methods [8,9,12,14,19,20,23,27,46,49] have been developed, which 
provide a perfect treatment to the singular charge source of the PB equation. In these regularization methods, the potential 
is split into two or three components. The key of the perfect treatment is to analytically capture the singularities of the 
potential by using one component, which satisfies a Poisson’s equation with the same singular source. Mathematically, this 
singular component or Coulomb potential can be expressed in terms of Green’s functions, which blow up at atom centers, 
but can be analytically computed at other locations. After removing the singular component, other potential components 
become bounded so that their numerical discretization and mathematical analysis become manageable. Nevertheless, an 
accuracy reduction issue has been noticed in Ref. [23], i.e., while these regularization formulations are consistent with the 
same PB equation, some methods could be significantly less accurate than the others. To understand this discrepancy, four 
2



S. Wang, Y. Shao, E. Alexov et al. Journal of Computational Physics 464 (2022) 111340
popular regularizations were compared by using the same discretization in [29]. Through tracking the source of error and 
conducting numerical analysis correspondingly, an accuracy recovery technique has been introduced in [29] so that all four 
methods yield the same high precision.

However, the feasibility for generalizing the regularization method to diffuse interface PB models [1,6,7,13,16,48] is 
unclear until our recent works [44,45]. This is due to the fact that the fundamental solution to a Poisson’s equation with the 
PB singular source, but involving a space dependent dielectric function, is not analytically attainable. To alleviate this issue, a 
semi-analytical approach has been introduced in Ref. [47] to approximate the fundamental solution, which unfortunately is 
applicable only to simple geometric shapes. Recently, the first regularization formulation for the diffuse interface PB model 
was reported in [44,45], in which the breakthrough is realized via a dual decomposition for both potential and dielectric 
functions, i.e., besides the usual decomposition of the potential into Coulomb and reaction-field components, the dielectric 
function is also split into a constant base and a space varying part. By requiring the Coulomb component satisfying a 
Poisson’s equation with the constant dielectric base, the above mentioned difficulty is simply bypassed and the singularities 
can be captured again by the usual Green’s functions. By combining other components into one equation, the reaction-field 
potential satisfies a PB equation with a new smooth source. This new regularization for the diffuse interface PB model has 
been benchmarked by comparing with the trilinear method [33] and semi-analytical method [47], and further validated by 
calculating energies for real proteins [44,45]. More recently, a rigorous analysis has been conducted in [37] to show that the 
regularization formulation developed in [44,45] is well-posed. Moreover, when the underlying diffuse interface approaches 
to the sharp interface, the regularization of the diffuse interface PB model converges to that of the sharp interface PB model, 
in terms of both the reaction-field potential and electrostatic free energy.

For the first time in the literature, the regularization formulation will be introduced in the super-Gaussian PB model to 
treat singular charges in this work. The dual decomposition strategy introduced in the diffuse interface PB model [44,45]
will again play a central role for the new development. However, there are two major difficulties that need to be addressed 
in the present study, due to a heterogeneous dielectric function inside the protein region. First, in the diffuse interface PB 
model, the shifted dielectric function is identically zero around atom centers so that the source term can be well defined 
in a regular sense [44,45]. However, in the super-Gaussian PB model, the shifted dielectric function is just nearly vanishing, 
not identically equals to zero, in a small neighborhood around each atom center. Thus, a rigorous analysis has to be carried 
out to examine the regularities of the source term and reaction-field potential at charge centers. Moreover, the requirement 
on the dielectric density function will be investigated so that the source term can be defined in the distributional sense. The 
well-posedness of the proposed regularization will also be proved. Second, the numerical computation of the new source 
term deserves further attention, because it involves a space dependent dielectric function. Analytical differentiations, instead 
of numerical approximations, will be adopted whenever possible, so that the proposed regularization could be accurately 
implemented.

In the present implementation of the super-Gaussian PB model [22], we will replace the minimal molecular surface 
(MMS) [6,7] by the Gaussian convolution surface (GCS) introduced in [44] to define a surface function for characterizing the 
smooth solute-solvent boundary. Both MMS and GCS produce smooth diffuse interfaces, and can robustly handle various 
protein geometries. Nevertheless, based on the fast Fourier transform (FFT) algorithm, the GCS is much more efficient than 
the MMS in surface generation. Moreover, the control of the smoothing solute-solvent boundary, including its width and 
decay rate of surface function, becomes easier in case of the GCS.

The rest of the paper is structured with the following sections. Section 2 first revisits the super-Gaussian PB model. Then, 
a new regularization approach is proposed, along with a detailed analysis of the new source term. The well-posedness of 
the regularized PB equation for the reaction-field potential is analyzed, and numerical implementation details are offered. 
In Section 3, the proposed regularization method is first validated by being compared with the trilinear method for solving 
a manufactured example with the analytical potential solution. Biological application to real molecules and proteins will be 
considered. In Section 4, a brief discussion is offered. Finally, in Appendix B, the construction of the analytical solution for 
the manufactured example is presented.

2. Theory and algorithm

2.1. Super-Gaussian Poisson-Boltzmann model

In this subsection, the super-Gaussian Poisson-Boltzmann (PB) model proposed in [22] will be introduced. Moreover, a 
different surface function will be employed to characterize the subdomains.

Consider a macromolecule, for example, a protein being immersed into an aqueous solvent. Define a large enough cubic 
domain � in R3 for this three dimensional (3D) solute-solvent system. In the super-Gaussian PB model, the domain �
consists of three regions: an interior domain �i for the solute, an exterior domain �e for the solvent, and a transition layer 
�t in between �i and �e as a smooth solute-solvent boundary. Define the interface between �i and �t as �i , while that 
between �t and �e as �e . An illustration of subdomains is shown in Fig. 1 (a). The subdomains can be characterized by 
a diffuse interface or smooth surface function S(r) for r ∈ �, which equals to one and zero, respectively, in �i and �e . In 
�t , as r travels from the interior protein to the exterior solvent, S(r) decays from one to zero, so that S(r) is at least a C2

continuous function over the entire domain �. See Fig. 1 (b).
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Fig. 1. (a) The subdomain setting used in the super-Gaussian PB model. (b) The subdomains are characterized by a diffuse interface function S , which is 
plotted along a straight line.

The minimal molecular surface (MMS) [6,7] is employed in the original super-Gaussian PB model [22] for calculating 
S(r). In the present study, the Gaussian convolution surface (GCS) introduced in [44] will be employed instead. Both MMS 
and GCS produce smooth diffuse interfaces. Nevertheless, based on the fast Fourier transform (FFT) algorithm, the GCS is 
much more efficient than the MMS in surface generation. The details about the definition and generation of the MMS and 
GCS are offered in Appendix A.

The electrostatic interaction of this solute-solvent system is governed by the nonlinear Poisson-Boltzmann (PB) equation 
in the dimensionless form [22]

−∇ · (ε(r)∇u(r)) + (1 − S(r))κ2 sinh(u(r)) = ρ(r), in �, (1)

where u(r) is the electrostatic potential and ε(r) is the dielectric function. Assume the protein contains Nm atoms, with 
partial charges q j in terms of the fundamental charge ec located at the atom centers r j for j = 1, 2, . . . , Nm . The singular 
source of Eq. (1), due to these partial charges, is given as

ρ(r) = 4π
ec2

kB T

Nm∑
j=1

q jδ(r− r j), in �, (2)

where kB is the Boltzmann constant and T is the temperature. In the super-Gaussian PB model, we require that r j ∈ �i for 
all j. Consequently, ρ(r) is only defined within �i and S(r) has actually been dropped in the source term, i.e., S(r)ρ(r) =
ρ(r) in Eq. (1). With S(r), the coefficient of the PB nonlinear term (1 − S)κ2 is at least C2 continuous, where the modified 
Debye-Hückel parameter κ takes a constant value κ2 =

(
2NAe2c
100kB T

)
I = 8.486902807 Å−2 I . Here NA is the Avogadro’s Number 

and I is the molar ionic strength. Assume the domain � is large enough, so that the dielectric function is constant εout on 
the outer boundary ∂�. Then, a Dirichlet boundary condition can be assumed

u(r) = ub(r) := ec2

kB T

Nm∑
j=1

q j

εout |r− r j|e
−|r−r j |

√
κ2

εout , on ∂�. (3)

In the super-Gaussian PB model [22], the dielectric function ε(r) is defined as a heterogeneous function. In particular, 
each atom of the protein is regarded as a “soft sphere” with a density function. For the jth atom, the density at the position 
r is given as [22]

g j(r) = exp
[
−

( |r− r j|2
σ 2R2

j

)m]
, (4)

where r j is the center of the jth atom, R j is the Van der Waals (VDW) radius of the jth atom and σ is the relative variance. 
The integer order m is typically required to be m ≥ 2 in the super-Gaussian model. When the order m = 1, Eq. (4) is 
actually the density function used in the Gaussian PB model [30,31]. When the order m goes to the infinity, one attains a 
“hard sphere” density, i.e., g j = 1 inside the VDW ball and g j = 0 otherwise.

With the density for each atom being calculated, a total density function for all atoms is defined as

g(r) = 1−
Nm∏

[1 − g j(r)]. (5)

j=1

4
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Note that Eq. (5) can describe the density for overlapped region covered by multiple atoms. For instance, a cross term gi g j

accounts for the density of the overlap region due to the ith and jth atoms. Moreover, in order to explicitly model the 
dielectric properties of protein cavities, the maximal dielectric value of the macromolecule is controlled by a parameter εgap

in the super-Gaussian model [22], and the dielectric distribution within the protein region is defined as

εin(r) = εmg(r) + εgap[1 − g(r)], (6)

where the constants εm and εgap are the dielectric values at the atom centers and in a gap region, respectively. By combining 
(5) with (6), we arrive at a concise form

εin(r) = εm + (εgap − εm)

Nm∏
j=1

[1− g j(r)]. (7)

Since εgap > εm and g j(r) has a range of [0, 1], this means that εm and εgap are, respectively, the minimal and maximal 
dielectric values of the protein.

Making use of the surface function S(r) to characterize the subdomains, the dielectric function in the entire domain �
is defined as [22]

ε(r) = S(r)εin(r) + [1− S(r)]εout . (8)

Inside the protein region �i , we have S(r) = 1 so that the inhomogeneity of the super Gaussian dielectric distribution is 
retained. In the exterior region �e , we have S(r) = 0. Then ε(r) becomes a constant εout , which will be taken as 1 and 80, 
respectively, for the vacuum state and water state. As S(r) decays smoothly from one to zero over �t , ε(r) will change from 
εin(r) to εout . Over the entire domain �, ε(r) is at least C2 continuous.

2.2. A novel regularization for the super Gaussian PB model

A new regularization method is proposed in this work to analytically handle the singular source of the super-Gaussian PB 
model. For this purpose, a dual decomposition in potential and dielectric functions will be conducted as in the regularization 
formulation for the diffuse interface PB equation [44,45]{

u(r) = uC (r) + uRF (r), for r ∈ �,

ε(r) = εm + ε̂(r), for r ∈ �.
(9)

In Eq. (9), the potential u is split into a Coulomb component uC and a reaction field component uRF , while the dielectric 
function is decomposed to be a constant base value plus space variant part ε̂(r). Consider the outside medium being water 
with εout = 80. Then ε(r) takes minimal values ε(r) = εm only at atom centers, so that ε̂(r) ≥ 0 for r ∈ �. Assume that 
m ≥ 2 and an appropriate σ value such as σ = 1 is chosen in the super Gaussian density. This essentially guarantees that 
in a small neighborhood surrounding each atom center r j , ε(r) is almost εm and ε̂ is nearly vanishing, which is a crucial 
property for the proposed regularization. In the exterior region �e , ε̂ = εout − εm .

To capture the singularity in the potential function, the Coulomb potential uC is assumed to satisfy a homogeneous 
Poisson’s equation with the singular source ρ given by (2) [44,45]{

−εm�uC (r) = ρ(r) in R3,

uC (r) = 0 as |r| → ∞.
(10)

It is obvious that the singular component uC is actually the Green’s function G(r)

uC (r) = G(r) := e2c
kB T

Nm∑
j=1

q j

εm|r− r j| . (11)

After removing the singular component, the reaction field potential uRF (r) becomes bounded everywhere.
The PB equation (1) can be expanded according to the dual decomposition

−∇ · (ε̂∇uC ) − ∇ · (ε̂∇uRF ) − εm�uC − εm�uRF + (1− S)κ2 sinh(uC + uRF ) = ρ, in �. (12)

By using (10) and (12), the singular source term ρ can be canceled

−∇ · (ε̂∇uC ) − ∇ · (ε̂∇uRF ) − εm�uRF + (1 − S)κ2 sinh(uC + uRF ) = 0, in �. (13)

By re-arranging the terms, we arrive at a regularized PB equation for the reaction field component
5
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−∇ · (ε∇uRF ) + (1− S)κ2 sinh(uRF + G) = ∇ · (ε̂∇G), in �, (14)

where we have replaced uC (r) by the known function G(r), and combined two terms for uRF (r) into one on the left-hand 
side. The new source on the right-hand side involves the dielectric function ε̂ and the gradient of Green’s function, which 
is known analytically

∇G(r) = − e2c
kB T

Nm∑
j=1

q j(r− r j)

εm|r− r j|3 . (15)

In order to analyze the new source term of Eq. (14), we first discuss the regularity of ε̂∇G . Throughout the domain �, ε̂
is a C2 continuous function, while ∇G is smooth everywhere except at all atom centers, where it is singular. Since all atom 
centers are located inside �i , we will examine the regularity of ε̂∇G for �i only. Within �i , with S = 1, we have

ε̂(r) = (εgap − εm)

Nm∏
j=1

[1− g j(r)], in �i . (16)

We note that ε̂ is nearly vanishing in a small neighborhood around each atom center, which is different from the case in the 
diffuse interface PB model [44,45], in which ε̂ identically equals to zero. Thus, a rigorous mathematical analysis becomes 
indispensable for examining the regularity.

Proposition 2.1. When the order m = 1 in the super Gaussian model, as r approaches to the ith atom center ri , the limit of ε̂∇G does 
not exist.

Proof. At the ith atom center ri , we have ε̂(ri) = 0, while ∇G(r) goes to infinity as r approaches to ri . In particular, out 
of Nm terms in the summation of ∇G(r), only the ith term is singular at ri , while all other terms are bounded at ri . Thus, 
the products of ε̂ with the other Nm − 1 terms are all vanishing at ri . The singularity could only occur for the ith term of 
∇G(r), which is denoted as

∇Gi(r) = − e2c
kB T

qi(r− ri)

εm|r− ri|3 := Ci
r− ri

|r− ri |3 , (17)

where Ci is a constant. Similarly, we will single the contribution of ith term out in ε̂(r) by defining ε̂i(r) = (εgap −
εm) 

∏Nm
j=1, j �=i[1 − g j(r)], so that

ε̂(r) = ε̂i(r)(1 − gi(r)) = ε̂i(r)

(
1− exp

( − |r− ri |2m
σ 2mR2m

i

))
, in �i .

Note that ε̂i(ri) is nonzero but finite. For the ease of our analysis, a coordinate translation is assumed to be conducted so 
that ri becomes the origin of the new coordinate system, i.e., ri = 0. Denote r = (x, y, z)T . For m = 1, the x component of 
the interested limit is given as

lim
r→0

Ci ε̂i(r)

(
1− exp

( − x2 + y2 + z2

σ 2R2
i

)) x

(x2 + y2 + z2)3/2
. (18)

Consider a limiting path with y = nx and z = kx for some constants n and k with x → 0. The above limit becomes

Ci ε̂i(0) lim
x→0

x

[
1− exp

( − x2(1+n2+k2)
σ 2R2

i

)]
x3(1 + n2 + k2)3/2

=Ci ε̂i(0) lim
x→0

[
1− exp

( − x2 1+n2+k2

σ 2R2
i

)]
x2(1+ n2 + k2)3/2

=Ci ε̂i(0) lim
x→0

−exp
( − x2 1+n2+k2

σ 2R2
i

)( − 2x 1+n2+k2

σ 2R2
i

)
2x(1 + n2 + k2)3/2

=Ci ε̂i(0) lim
x→0

exp
( − x2 1+n2+k2

σ 2R2
i

)
σ 2R2

i (1+ n2 + k2)1/2

= Ci ε̂i(0)

σ 2R2
i (1+ n2 + k2)1/2

,

6
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where the L’Hopital’s Rule has been applied. Since the final results are path dependent, the limit considered in Eq. (18) does 
not exist. Thus, for m = 1, as r approaches to the ith atom center ri , the limit of ε̂∇G does not exist. �

We next investigate the regularity of ε̂∇G and ∇ε · ∇G . Throughout the domain �, ε̂ and ∇ε are smooth functions, 
while ∇G is smooth everywhere except at all atom centers, where it is singular. Thus, we can conclude that ε̂∇G and 
∇ε · ∇G are smooth everywhere except at atom centers. We will focus on the atom centers in the following Theorem.

Theorem 2.2. When the order m ≥ 2 in the super Gaussian model, as r approaches to the ith atom center ri , we have

lim
r→ri

ε̂∇G = 0 and lim
r→ri

∇ε · ∇G = 0. (19)

Moreover, ∇ε · ∇G ∈ C1−(�), i.e., ∇ε · ∇G is Lipschitz continuous on � up to the boundary.

Proof. We first prove the second part of (19). Consider r ∈ �i with S(r) = 1, we have

∇ε(r) = (εm − εgap)

Nm∑
i=1

∇gi(r)
Nm∏

k=1,k �=i

[1 − gk(r)], in �i . (20)

Using Eq. (17), we have ∇G = ∑Nm
j=1 ∇G j . The inner product can be written down explicitly

∇ε · ∇G = (εm − εgap)

Nm∑
i=1

Nm∏
k=1,k �=i

[1− gk]
Nm∑
j=1

[∇gi · ∇G j]

= (εm − εgap)

Nm∑
i=1

Nm∏
k=1,k �=i

[1− gk]
⎧⎨⎩∇gi · ∇Gi +

Nm∑
j=1, j �=i

[∇gi · ∇G j]
⎫⎬⎭ . (21)

The gradient of the ith super Gaussian density function gi(r) can be expressed as

∇gi(r) = − 2m

σ 2mR2m
i

exp

(
−|r− ri |2m

σ 2mR2m
i

)(
|r− ri |2

)m−1
(r− ri). (22)

Obviously, we have ∇gi(ri) = 0. Thus, the last summation in (21) is vanishing at r = ri

Nm∑
j=1, j �=i

[∇gi(ri) · ∇G j(ri)] = 0,

because ∇G j is finite at ri for j �= i. For calculating the desired limit, we just need to consider

∇gi(r) · ∇Gi(r)

= − 2m

σ 2mR2m
i

exp

(
−|r− ri|2m

σ 2mR2m
i

)(
|r− ri |2

)m−1
(r− ri) · Ci

r− ri
|r− ri |3

= − 2mCi

σ 2mR2m
i

exp

(
−|r− ri|2m

σ 2mR2m
i

)
|r− ri|2m−3. (23)

For m ≥ 2, we have

lim
r→ri

∇gi(r) · ∇Gi(r) = 0.

Thus, the second part of the limiting equation (19) holds.
In a sufficiently small neighborhood, B(ri, R), of ri , by the mean value theorem and (22)

|1− gi(r)| = |gi(ri) − gi(r)| =
∣∣∣∣∣∣

1∫
0

(r− ri) · ∇gi(t(r− ri) + ri)dt

∣∣∣∣∣∣
= 2m

σ 2mR2m
i

∣∣∣∣∣∣
1∫

0

t2m−1 exp

(
−|t(r− ri) + ri|2m

σ 2mR2m
i

)
|r− ri|2m dt

∣∣∣∣∣∣ ≤ CR |r− ri|2m.
7
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Then inside B(ri, R), it holds that∣∣ε̂(r) · ∇Gi(r)
∣∣ ≤ (

εgap − εm
)
CRCi|r− ri |2m−2.

This proves the first part of (19).
To prove the additional regularity ∇ε · ∇G ∈ C1−(�), it suffices to check the regularity of ∇ε · ∇G in a neighborhood of 

ri for i = 1, · · · , Nm . For each i, there exists some Ri > 0 such that

∇gi · ∇Gi +
Nm∑

j=1, j �=i

[∇gi · ∇G j] ∈ C1−(B(ri, Ri))

in view of (17), (22) and (23). Combining with the expression (21), this shows that ∇ε · ∇G ∈ C1−(B(ri, Ri)) for all i =
1, · · · , Nm . Because ∇ε · ∇G ∈ C∞(� \ {r1, · · · , rNm }), we immediately deduce that ∇ε · ∇G ∈ C1−(�). �

We will restrict ourselves to the case m = 2 from now on. Since, at all atom centers, ε̂∇G is vanishing, we infer that 
ε̂∇G ∈ C(�) and its gradient is defined in the distributional sense. Further,

∇ · (ε̂∇G) = ∇ε̂ · ∇G + ε̂�G, in � \ {r1, · · · , rNm }.
Note that εm�G = −ρ is a distribution in �. Given any f ∈ C∞

c (�),∫
�

ε̂(r)�G(r) f (r)dr = −4π
e2c

kB T εm

Nm∑
j=1

q j ε̂(r j) f (r j) = 0,

because ε̂ vanishes at charge centers, which implies ε̂�G = 0 in the sense of distribution. Thus, this term can be dropped 
from the new source

∇ · (ε̂∇G) = ∇ε̂ · ∇G = ∇ε · ∇G, in �, (24)

where we have applied ∇ε = ∇ε̂ , because ε and ε̂ differ by a constant εm .
Based on the above analysis, we propose to solve the reaction field potential by the following regularized PB equation{−∇ · (ε∇uRF ) + (1− S)κ2 sinh(uRF + G) =∇ε · ∇G in �,

uRF =ub − G on ∂�.
(25)

Since (1 − S) = 0 inside �i , the nonlinear term in (25) is also vanishing in �i . This guarantees that the reaction field 
potential uRF will be bounded and smooth in �. Once uRF is computed from (25), the potential solution of the PB equation 
(1) is simply given by u = uRF + G . It is noted that in the regularized PB equation (25), one does not need to know ε̂ . In 
other words, the dielectric function decomposition ε = εm + ε̂ is used only in the derivation, and all computations can be 
carried out based on ε(r) only. The details on the numerical implementation of the smooth source ∇ε · ∇G will be offered 
in a later subsection.

2.3. Well-posedness of the super-Gaussian Poisson-Boltzmann model

Theorem 2.3. The regularized PB equation (25) has a unique weak solution uRF ∈ H1(�). Moreover, the solution uRF ∈ C2(�)) ∩
C(�).

Proof. (i) We first establish the existence and uniqueness part. To this end, a further two-component decomposition uRF =
ul + un will be introduced in such a way that{−εm�ul = ∇ε · ∇G in �,

ul = ub − uC on ∂�
(26)

and {−∇ · (ε∇un) + (1− S)κ2 sinh(un + ul + G) = ∇ · (ε̂∇ul) in �,

un = 0 on ∂�.
(27)

One can extend (ub − uC )|∂� to be a function h ∈ C∞(�) by possibly multiplying ub − uC by a smooth cut-off function to 
remove the singularities. Then ̃ul := ul − h solves
8
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{−εm�ũl = ∇ε · ∇G − εm�h in �,

ũl = 0 on ∂�.
(28)

We can infer from [18, Corollary 1] that (28) has a unique solution ũl ∈ H2(�) ∩ H1
0(�) and in turn ul ∈ H2(�). We thus 

have ∇ · (ε̂∇ul) ∈ L2(�).
To study (27), we define the energy functional

I[v] =
∫
�

[ε

2
|∇v|2 + (1− S)κ2 cosh(v + ul + G) − v∇ · (ε̂∇ul)

]
dr, v ∈ H1

0(�).

By the Hölder, Poincaré and Young’s inequalities,∫
�

[
v∇ · (ε̂∇ul)

]
dr ≤ L(δ)‖∇ · (ε̂∇ul)‖2L2(�) + δ‖∇v‖2L2(�),

for any δ > 0 and a continuous and decreasing function L : R+ → R+ . Choosing δ > 0 sufficiently small, we can immediately 
verify that

I[v] ≥ C1‖∇v‖22 − C2,

for some constants C1 > 0 and C2. This implies that I[·] is coercive. It is a simple task to check the strict convexity of the 
functional. Hence the direct method of Calculus of Variation yields the existence and uniqueness of a global minimizer of 
I[·]. Here v solves (27) iff it is a critical point of I[·]. The uniqueness of a critical point of I[·] is an immediate consequence 
of the strict convexity of I[·]. We thus infer that un is the uniqueness weak solution to (27), and thus uRF := ul +un uniquely 
and weakly solves (25) in H1(�).

(ii) Next, we will show uRF is essentially bounded. From the Sobolev embedding H2(�) ↪→ C1/2(�), cf. [2, Theorem 4.12], 
we conclude that ‖ul‖∞ ≤ C3 for some constant C3. To show the essential boundedness of un , we further decompose it into 
un = un,1 + un,2 in such a way that{−∇ · (ε∇un,1) = ∇ · (ε̂∇ul) in �,

un = 0 on ∂�
(29)

and {−∇ · (ε∇un,2) + (1− S)κ2 sinh(un,2 + un,1 + ul + G) = 0 in �,

un = 0 on ∂�.
(30)

Since ε̂∇ul ∈ H1(�) ↪→ L6(�), it follows from [21, Theorem 8.16] that ‖un,1‖∞ ≤ C4 for some constant C4 > 0. We already 
know that

|G(r)| ≤ C5, r ∈ � \ �i

for some C5 > 0. Define

W = {r ∈ � : un,2 ≤ C3 + C4 + C5}.
Multiplying both sides of (30) by (un,2 − C3 − C4 − C5)+ and integrating over � yield∫

W

[
ε|∇un,2|2 + (1 − S)κ2 sinh(un,2 + un,1 + ul + G)(un,2 − C3 − C4 − C5)+

]
dr = 0.

Because both terms in the integrand are non-negative, this implies that

un,2 ≤ C3 + C4 + C5 a.e. in � \ �i .

Similarly, we can show that

un,2 ≥ −C3 − C4 − C5 a.e. in � \ �i .

Applying [21, Theorem 8.16] once more to (30) yields that ‖un,2‖∞ ≤ C6 for some C6.
(iii) From Steps (i) and (ii), one can readily infer that (1 − S) sinh(uRF + G) ∈ H1(�). In view of the C2-continuity 

of ε , applying [21, Theorem 8.10] to (25), we conclude that uRF ∈ H3(�′) for any subdomain �′ such that �′ ⊂ �. The 
Sobolev embedding theorem, cf. [2, Theorem 4.12], implies that uRF ∈ C1(�). Since both (1 − S) sinh(uRF + G) and ∇ε · ∇G
are Lipschitz, we infer from [21, Theorem 6.13] that uRF ∈ C2(�)) ∩ C(�). Note that a cube satisfies an exterior sphere 
condition. �
9
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2.4. Electrostatic free energy

In biomolecular simulations, one common usage of the PB model is to compute the electrostatic free energy, which 
measures the difference in the polar solvation energy of the macromolecule between the water phase and vacuum phase 
[25,33]. This amounts to solving the PB equation for water state and a Poisson equation for vacuum state, subject to the 
same singular charge sources.

We first review how the electrostatic free energy is calculated in the original super-Gaussian PB model. For simplicity, 
consider a linearized PB (LPB) model, which is commonly used when the electrostatic potential is weak. In this case, sinh(u)

can be approximated by u, so that the electrostatic interactions can be modeled by a LPB equation

−∇ · (ε(r)∇u(r)) + (1 − S(r))κ2u(r) = ρ(r), in �, (31)

subject to the same source term (2) and boundary condition (3). Here ε(r) is produced by the super-Gaussian dielectric 
model with m ≥ 2 and εout = 80. By solving (31) numerically, one attains u(r) for the water state. For the vacuum state, 
one solves a Poisson equation [22]

−∇ · (εv(r)∇v(r)) = ρ(r), in �, (32)

which is derived by taking κ = 0 in the LPB equation (31) since no ions are presented in the vacuum. On ∂�, we have 
a boundary condition v(r) = vb(r), where vb(r) is obtained by setting κ = 0 in (3). The dielectric function εv (r) in (32)
is defined by Eq. (8) with εout = 1. By solving (32) numerically, one attains v(r) for the vacuum state. With the potential 
solutions of two states, the electrostatic free energy is then calculated as

E = 1

2
kB T

∫
�

Nm∑
j=1

q jδ(r− r j)(u(r) − v(r))dr = 1

2
kB T

Nm∑
j=1

q j(u(r j) − v(r j)). (33)

We next discuss how to compute electrostatic free energy in the proposed regularization method. In the water state, the 
potential decomposition is conducted for the solution of the LPB equation (31): u = uRF + uC = uRF + G . Then the reaction 
field potential uRF satisfies a regularized LPB equation{−∇ · (ε(r)∇uRF (r)) + (1− S(r))κ2uRF (r) =∇ε(r) · ∇G(r) − (1 − S(r))κ2G(r), in �,

uRF (r) =ub(r) − G(r) on ∂�.
(34)

In the solute domain �i , (1 − S)κ2G = 0, while in other subdomains, G is well-defined. Thus, the second source term of (34), 
i.e., (1 − S)κ2G , is smooth over the entire domain �. By solving (34) numerically, one attains uRF (r) for the water state. A 
similar potential decomposition is carried out in the vacuum state for the Poisson equation (32): v = vRF + vC = vRF + G . 
Here the singular component vC is essentially uC and is also analytically represented by the Green’s function G . The reaction 
field potential satisfies a regularized Poisson equation{−∇ · (εv(r)∇vRF (r)) =∇εv(r) · ∇G(r), in �,

vRF (r) =vb(r) − G(r) on ∂�.
(35)

The source ∇εv · ∇G is Lipschitz. In particular, we have ∇εv · ∇G = ∇ε · ∇G in �i and ∇εv · ∇G = 0 in �e . In �t , ∇εv · ∇G
shall be computed independently. By solving (35) numerically, one attains vRF (r) for the vacuum state. The electrostatic 
free energy is still defined by (33). However, since vC = uC , the singular components are simply canceled. Thus, the free 
energy can be computed by using reaction field components only

E = 1

2
kB T

∫
�

Nm∑
j=1

q jδ(r− r j)(uRF (r) − vRF (r))dr = 1

2
kB T

Nm∑
j=1

q j(uRF (r j) − vRF (r j)). (36)

In the present study, the electrostatic free energy will be reported in the unit of kcal/mol. Since the numerically calculated 
potentials are available only on grid nodes, a linear interpolation has to be conducted to evaluate these potentials at charge 
centers r j in (33) and (36).

2.5. Numerical discretization and implementation

In this subsection, we offer details on the numerical discretization of the regularized LPB equation (34) and numerical 
implementation of source terms. For a given protein structure, we first select a large enough computational domain �
and construct a uniform mesh partition with Nx , Ny , Nz being the number of the grid points in x, y, and z directions, 
respectively. Without the loss of generality, we assume the grid spacing h in all x, y, and z directions to be the same, i.e., 
h = �x = �y = �z, with the unit Å. For a function f defined at a node (xi, y j, zk), we denote f i, j,k = f (xi, y j, zk).
10
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The central finite difference method is employed to directly discretize the divergence form of the regularized LPB equa-
tion (34). For example, at the node (xi, y j, zk), the x derivative is approximated as[

∂

∂x
(ε

∂uRF

∂x
)

]
i
= 1

h2

[
εi+ 1

2

(
(uRF )i+1 − (uRF )i

) − εi− 1
2

(
(uRF )i − (uRF )i−1

)] + O (h2), (37)

where we have dropped indexes for y j and zk for simplicity.
In the present study, the diffuse interface function S(r) in (34) is generated by the Gaussian convolution surface (GCS) 

[44], which is accelerated by the fast Fourier transform (FFT) algorithm. The dielectric function ε(r) is constructed according 
to (8), which depends on S(r) as well as several super Gaussian parameters. Similar to [44], the band-width of �t will be 
taken as 3 Å in the GCS, which allows a smooth variation of ε(r) in �t . Since the GCS surface function Si, j,k is generated 
numerically, εi, j,k is only known at nodes (xi, y j, zk). Thus, the half-grid values needed in central difference approximation, 
such as in (37), are obtained via an average

εi+ 1
2 , j,k = εi, j,k + εi+1, j,k

2
+ O (h2). (38)

The finite difference discretization of the left-hand side of Eq. (34) gives rise to a sparse linear system with dimension 
N3-by-N3, where N3 = Nx × Ny × Nz . A biconjugate gradient iterative solver is employed to solve this linear system for 
uRF (xi, y j, zk). The order of accuracy of the entire central difference discretization is two.

The implementation of the source terms of Eq. (34) requires further attention. Since Gi, j,k and ∇Gi, j,k are known analyt-
ically, the second source term (1 − S)κ2G can be calculated directly at (xi, y j, zk). The first source term ∇ε · ∇G depends on 
several parts. Whenever possible, analytical differentiation instead of finite difference approximation is used for calculating 
∇ε . Using Eq. (8), one has

∇ε(r) = S(r)∇εin(r) + ∇ S(r)(εin(r) − εout), in �. (39)

For (xi, y j, zk) ∈ �e , we have S = 0 and ∇ S = 0, so that ∇ε = 0 in the solvent subdomain �e . In the solute subdomain �i

with S = 1 and ∇ S = 0, ∇ε = ∇εin can be computed analytically. Using the definition of εin , one attains

∇εin(r) = (εm − εgap)

Nm∑
n=1

∇gn(r)
Nm∏

l=1,l �=n

[1− gl(r)] = (εm − εgap)

Nm∑
n=1

(
1− g(r)

1− gn(r)

)
∇gn(r).

For m ≥ 2, we have the analytical form

∇εin(r) = (εgap − εm)

Nm∑
n=1

2m

σ 2mR2m
n

(
1− g(r)

1− gn(r)

)
gn(r)

(
|r− rn|2

)m−1
(r− rn), (40)

for r ∈ �, except at all atom centers rn , n = 1, 2, . . . , Nm . When (xi, y j, zk) ∈ �i , ∇εi, j,k can be calculated analytically using 
Eq. (40). We note that if the grid node (xi, y j, zk) happens to be the nth atom center, i.e., (xi, y j, zk) = rn , the denominator 
1 − gn(rn) = 0 in (40). Nevertheless, this is not an issue in our computation. According to Theorem 2.2, the first source 
term is vanishing at all atom centers. Thus, in this case, one should not apply (40), but just simply takes ∇ε · ∇G = 0. When 
(xi, y j, zk) ∈ �t , εin and ∇εin are still calculated analytically. By approximating the gradient of S using the central difference, 
e.g.,

∂ S

∂x

∣∣∣∣
i, j,k

= Si+1, j,k − Si−1, j,k

2h
+ O (h2),

∇εi, j,k can be computed according to Eq. (39). The smooth source term ∇εv · ∇G for the regularized Poisson equation (35)
in vacuum state can be calculated similarly.

For a comparison, the traditional trilinear method [33] will also be employed to treat singular charges contained in 
ρ of the un-regularized LPB equation (31) and Poisson equation (32). For each partial charge qn located at rn , one will 
find a cubic cell containing this charge. One will then distribute the charge qn into eight corner nodes of the cell, which 
gives rise to eight numerical source values Q i, j,k for each partial charge. The Laplacian term of LPB equation (31) and 
Poisson equation (32) will be discretized by the same second order central differences (37). Denote the resulting potential 
solutions as u(xi, y j, zk) and v(xi, y j, zk), respectively, for water and vacuum states. Because the Dirac delta functions are 
approximated by finite quantities, the trilinear method produces a significant error at charge centers. However, in calculating 
the electrostatic free energy by using Eq. (33), only the difference between u(xi, y j, zk) and v(xi, y j, zk) is needed. By using 
the same trilinear interpolation in computing both u(xi , y j, zk) and v(xi, y j, zk), this difference will significantly cancel the 
error associated with the delta function approximation. We will illustrate this point in the next section.
11
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3. Numerical experiments

In this section, we will examine the proposed regularization method by providing simulation results, and compare it 
with the trilinear method. A manufactured example with analytical potential solutions will be studied first. Then, we report 
results of electrostatic free energy calculation for one atom system and small molecules. After a convergence analysis by 
using one protein, a set of real proteins will finally be employed to further compare the regularization and trilinear methods. 
In the super-Gaussian PB model, the following parameter values are chosen: m = 2, σ = 1, εm = 1, and I = 0.15 m. For the 
water state and vacuum state, εout is chosen as 80 and 1, respectively. In all computations, the length is reported with an 
unit Å, and the electrostatic free energy has the unit of kcal/mol. In all figures and tables, the regularization and trilinear 
methods will be denoted as REG and TRI, respectively.

3.1. A manufactured example with analytical solution

For the sharp interface PB model, a new numerical algorithm is usually benchmarked by considering a Kirkwood sphere 
with analytical potential or energy values [4,19,20]. However, no analytical example is known for the Gaussian dielectric PB 
models [22,30,31], due to a complicated dielectric profile. In order to validate the proposed regularization method, we will 
consider a one-atom system and construct an analytical potential.

Consider a one atom system with a unit charge q0 = 1 located at r0 = (0, 0, 0). The interfaces �i and �e are spheres 
with radii being ri = 2 and re = 5, respectively. A tanh-like surface function is defined, which smoothly varies in the radial 
direction

S(r) = 1

2
− 1

2
tanh(k(

|r| − ri
re − ri

− 1

2
)), (41)

where a large enough k = 14 is employed so that S ≈ 1 in �i and S ≈ 0 in �e . In particular, at the charge center r0, we 
have that S(r0) numerically equals to 1, i.e., |S(r0) − 1| = 6.44e − 15. With m = 2 and σ = 1, the super-Gaussian density 
function is g(r) = exp(−|r|4/r4i ). Then, εin can be calculated as

εin(r) = εm + (εgap − εm)

(
1− exp

(
−|r|4

r4i

))
, (42)

and the super-Gaussian dielectric function is given as

ε(r) = S(r)εin(r) + (1− S(r))εout , (43)

where εm = 1, εout = 80 and εgap = 8.
To construct an analytical potential for this one-atom system, we consider a Poisson’s equation with κ = 0

−∇ · (ε∇u) = 4π
e2c
kB T

q0δ(r− r0) + f (r), (44)

where f (r) is an additional source. As in the usual PB models, the potential u can be decomposed into reaction-field and 

coulomb components u = uRF + G , where G = e2c
kB T

q0
εm|r− r0| . It is noted that, since S(r0) is slightly different from 1, 

ε(r0) �= εm . Nevertheless, the difference between ε(r0) and εm is around 1.0e − 14. For simplicity, we assume them to be 
the same numerically, and still use εm in the Green’s function G . In this study, we assume that uRF takes the form

uRF (r) = − e2c
kB T

exp

(
−|r|2

r2e

)
. (45)

By substituting the analytical expressions for uRF and G into the Poisson equation (44), one can derive the expression for 
the additional source f (r). See Appendix B for more details.

Assume a computational domain � = [−10, 10]3, which is partitioned by a uniform mesh with the spacing h =
20/(N − 1) in all directions. Here N will be chosen as an even integer so that the singular charge point is not located 
on the grid nodes. We will solve this one-atom system by the trilinear method, as well as two regularization implementa-
tions. In all cases, the Dirichlet boundary condition is obtained by the exact solution.

For the trilinear method, one directly discretizes the original Poisson equation (44) for a numerical solution u(xi, y j, zk). 
For the regularization approach, we will solve the regularized Poisson equation for the reaction field component

−∇ · (ε∇uRF ) = ∇ε · ∇G + f . (46)

In the regularization or REG scheme, ∇ε is implemented as discussed above. In particularly, ∇εin is calculated analyti-
cally by (40), while ∇ S is approximated by the central difference. For the present example, we have implemented another 
regularization scheme, i.e., REG-2, in which ∇ε is simply approximated by the central difference, e.g.,
12
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Table 1
Numerical convergence of the trilinear and two regularization methods for the manufactured example.

Norm N TRI REG REG-2

Error Order Error Order Error Order

L2 50 7.25e-1 3.86e-1 8.14e-1
100 3.07e-1 1.23 1.12e-1 1.77 2.08e-1 1.94
200 1.86e-1 0.72 3.03e-2 1.87 5.31e-2 1.96
400 1.28e-1 0.53 7.76e-3 1.96 1.34e-2 1.99

L∞ 50 6.26e+1 7.01e-0 5.61e+1
100 7.43e+1 -0.24 1.47e-0 2.22 1.74e+1 1.66
200 1.33e+2 -0.83 3.90e-1 1.90 4.77e-0 1.86
400 2.63e+2 -0.98 9.88e-2 1.97 1.24e-0 1.93

Fig. 2. Plots of numerical errors along a x line with y = h/2 and z = h/2 for the manufactured example. (a) N = 50; (b) N = 100; (c) N = 200; (d) N = 400. 
Large enough windows are used in first two subplots, while a small window is used in last two subplots so that errors of two regularization schemes could 
be visualized.

∂ε

∂x

∣∣∣∣
i, j,k

=
εi+ 1

2 , j,k − εi− 1
2 , j,k

h
+ O (h2).

By taking N = 50, 100, 200, and 400, the L2 and L∞ errors of three numerical schemes are reported in Table 1. It can be 
seen that both regularization methods achieve a second order convergence in L2 and L∞ norms, while the REG scheme is 
more accurate than the REG-2. For the TRI scheme, the L2 error converges, but the L∞ error becomes larger and larger as N
increases. In Fig. 2, errors of three numerical schemes are depicted along a x grid line with y = z = h/2. It can be seen that 
the largest trilinear error is always located at the charge center, while outside �i , the trilinear error is quite similar to those 
of two regularization schemes. This suggests that the failure of the trilinear approximation is solely caused by the singular 
charge. Due to the use of finite difference to approximate the source term ∇ε , the REG-2 scheme initially produces a large 
error at the charge center, which is just slightly smaller than that of TRI for N = 50. Nevertheless, as N becomes larger, the 
REG-2 error at the charge point decays rapidly toward zero.

By using an analytical source implementation, the REG error is always negligible at the charge center. It can be observed 
in Fig. 2 that the maximum error of the REG scheme is located around x = ±3.5, where the surface function S has the 
largest gradient value. This means the numerical error of the REG scheme is solely due to finite difference approximations, 
because the charge singularity is well taken care of in the proposed regularization and implementation. The present study 
also demonstrates the advantage of analytical source implementation over finite different approximation. For this reason, 
we will focus only on the REG scheme in the rest of studies.
13
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Fig. 3. Electrostatic free energies of one atom system calculated by the regularization method and trilinear method. The left subfigure is based on the 
tanh-like surface and the right one is by using the Gaussian convolution surface (GCS).

Fig. 4. Line plots of potentials along a x line with y = h/2 and z = h/2 for the one-atom system with the tanh-like surface. (a) PB potential u, vacuum 
potential v , and their difference u − v , calculated by the trilinear method; (b) PB potential uRF , vacuum potential vRF , and their difference uRF − vRF , 
calculated by the regularization method; (c) Comparison of trilinear and regularization potential differences.

3.2. Electrostatic free energy of one atom

We next calculate the electrostatic free energy of the one atom system studied above. The model parameters are still 
q0 = 1, r0 = (0, 0, 0), ri = 2, and re = 5. Two diffuse interface settings will be examined. First, the same tanh-like surface will 
be used, with S calculated by Eq. (41). Second, the Gaussian convolution surface (GCS) developed in [44] will be employed 
to compute another S function. Based on the S function, one can then define ε(r) and εv (r), respectively, for water and 
vacuum states. In this example and the following simulations, we will take εgap = 4.

Using the procedures described in Section 2, we will calculate the electrostatic free energy by regularization and trilinear 
methods. In particular, one solves the LPB equation (31) and Poisson equation (32) by the trilinear method, respectively, for 
potentials u and v . Then Eq. (33) is adopted to compute the electrostatic free energy E , which essentially depends on the 
difference of u and v . For the regularization method, one solves the regularized LPB equation (34) and regularized Poisson 
equation (35), respectively, for uRF and vRF . The difference between them is used in Eq. (36) for calculating E . We note 
that no exact energy value is known for the present super-Gaussian PB model of the one atom system.

By testing a set of even integers for N , the energies calculated by both methods are shown in the left chart of Fig. 3 for 
the tanh-like surface. It can be seen that the energies of trilinear and regularization methods converge to the same limit. 
For the regularization method, the energy curve becomes almost flat after N > 50, and the energy at N = 300 is −45.0792, 
which will be treated as the reference energy. The trilinear energy also converges toward the reference energy, but at a 
slower rate. In particular, the trilinear energy at N = 300 is −45.0660, whose error in comparing with the reference energy 
is about 0.0132. For a comparison, the energy error of the regularization method at N = 100 is already as small as 0.0020. 
The means that the regularization is much more accurate than the trilinear method in calculating electrostatic free energy.

It is noted that even though the trilinear method involves a large and divergent approximation error at charge center, 
it may produce convergent energy. To see this point, we plot the potentials of both methods along a x grid line with 
y = z = h/2, where N = 200. It is observed in Fig. 4 that for both PB potential u and vacuum potential v of the trilinear 
method, a huge error happens again at the charge center, due to the poor approximation of the singular charge. Since these 
two charge errors are almost the same for u and v , they are simply canceled in u − v for calculating the electrostatic 
free energy. In other words, the artificial grid energy of the trilinear method could be suppressed by an error cancellation. 
Thus, it can be seen from Fig. 4 (a) that u − v becomes pretty flat at the charge center, and the huge error at the atom 
center disappears. For the regularization method, both uRF and vRF are free of charge errors at the atom center, and 
14
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Fig. 5. Heat-map plots of the dielectric functions cross a plane with z = const for the GLY. (a) ε(r) for the water state; (b) εv (r) for the vacuum state. 
For illustration purpose, εgap is taken as 20 in the plots. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

their difference uRF − vRF is also quite flat at the atom center. In Fig. 4 (c), the potential differences of the trilinear and 
regularization methods are plotted together. It can be seen that they agree with each other very well. The minor difference 
between them cannot be visualized in this figure.

The tanh-like surface is defined only for the one atom system. To efficiently generate diffuse interfaces for general protein 
systems, a GCS has been introduced in [44]. To test the GCS in the super-Gaussian PB model, we first apply it to the one 
atom system. The estimated energies of regularization and trilinear methods are depicted in the right chart of Fig. 3. Now, 
with S(r) being constructed numerically, the regularization method will be implemented as mentioned in Section 2. Since 
the GCS is computed discretely, itself has a convergence issue. Moreover, it has been shown in [44] that the GCS convergence 
is oscillatory, not monotonically. This affects the energy convergence. It can be seen from Fig. 3 Right that the calculated 
energies of regularization and trilinear methods are all fluctuated, and the regularization energy is larger than the trilinear 
one. It also can be observed that the oscillation amplitude of the regularization is less than that of the trilinear method, 
indicating that the regularization could be more robust in energy computation.

3.3. Impact of rotation and shifting

We then investigate the sensitivity of grid rotation and shifting. Physically, when the concerned biomolecule is shifted or 
rotated to a new position, the electrostatic free energy will not be altered. However, because the finite difference method is 
a grid-based numerical algorithm for solving the PB equation, the numerical energy is grid dependent. Therefore, for a new 
finite difference PB model, it is important to test the grid sensitivity with respect to rotation and shifting [31], in which a 
so-called artificial grid energy is usually considered to measure the numerical artifact.

In the present study, we consider a small compound, i.e., glycerol triacetate or GLY. The charges, atomic coordinates, and 
radii are defined based on a parameterization presented in [34]. By taking h = 0.1, an initial domain [−7, 14] × [−10, 8] ×
[−7, 12] is chosen, and is partitioned into a uniform mesh. The dielectric functions ε(r) and εv (r) of the GLY in the water 
and vacuum states are displayed, respectively, in Fig. 5 (a) and (b). It can be seen that inside the Van der Waals region, 
two dielectric functions are the same. Outside the smooth solute-solvent boundary, the dielectric function goes to 80 and 1, 
respectively, for the water and vacuum states. Moreover, no geometrical symmetry can be observed in Fig. 5. Hence, this is 
a good example to test the sensitivity of grid rotation and shifting.

In the shifting test, we will shift the GLY in z direction with an increment 0.01. In other words, for all atomic coordinates, 
we will keep x and y values unchanged and add z values by 0.01. For each shifted structure, the computational domain will 
be automatically generated. After shifting ten steps, the relative position of the shifted structure with respect to the uniform 
mesh is essentially the same as the initial one, because h = 0.1. Then, the numerical energy should become the same as the 
original one. In the rotation test, we will fix z coordinate values, and rotate (x, y) values within the xy-plane with respect 
to (x, y) = (0, 0). By using an angular increment of 30◦ , the (x, y) coordinates will be rotated back to the original ones after 
12 steps. For each rotated structure, a new computational domain will be automatically generated for calculating the energy.

We first consider a synchronized coordinate change that will be applied to both PB potential and vacuum potential. For 
the trilinear method, this means that the biomolecular structure will be changed simultaneously in calculating potential u
for the LPB equation (31) and v for the Poisson equation (32). Similarly, for the regularization method, the biomolecular 
structure will be changed at the same time for both uRF and vRF . The sensitivity results of the trilinear and regularization 
methods are depicted in Fig. 6 (a) and (c), respectively, for rotation and shifting. It can be seen that the regularization 
energy is barely affected by the rotation or shifting – only a very minor fluctuation is displayed. For the trilinear method, 
we can see that initial energy value is slightly different from that of the regularization. The fluctuation is more severe than 
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Fig. 6. Grid sensitivity tests of rotation and shifting for the GLY. (a) Synchronized rotation; (b) Unsynchronized rotation; (c) Synchronized shifting; 
(d) Unsynchronized shifting.

the regularization, but it is still acceptable. Due to the synchronized coordinate change, the structure and the corresponding 
numerical grid are the same in calculating u and v , so that the error cancellation can still be taken advantage of for the 
trilinear method. This is why the trilinear method is still acceptable.

We next consider an unsynchronized coordinate change. For the trilinear method, instead of Eq. (33), the electrostatic 
free energy will be calculated as

E = 1

2
kB T

Nm∑
j=1

q ju(r′j) − 1

2
kB T

Nm∑
j=1

q j v(r j), (47)

where the atomic coordinates r j will be fixed in calculating the potential v in the vacuum, while r′j will be rotated or 
shifted in calculating the potential u in the solvent. Similarly, in the regularization method, the electrostatic free energy will 
be computed as

E = 1

2
kB T

Nm∑
j=1

q juRF (r
′
j) − 1

2
kB T

Nm∑
j=1

q j vRF (r j). (48)

The numerical results of unsynchronized rotation and shifting are illustrated, respectively, in Fig. 6 (b) and (d). Significant 
errors can be seen now for the trilinear method. For the shifting, the largest deviation happens at 0.06 with the energy 
being around −1100. For the rotation, the energy oscillates dramatically with maximal deviations around −800. At rotation 
angles of degree 90, 180, 270, the energy is close to that of degree 0. It is impressive to see that the regularization energy is 
barely affected by such unsynchronized rotation or shifting. The energy curves look like straight lines in Fig. 6 (b) and (d). To 
see these curves more clearly, they are also plotted in Fig. 6 (a) and (c). Comparing with the previous synchronized results, 
one cannot tell much difference for the unsynchronized results. This indicates that the proposed regularization method is 
very robust with respect to grid rotation and shifting. In other words, the grid artifact or artificial grid energy is completely 
eliminated in the present finite difference PB model.
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Table 2
Electrostatic free energy (kcal/mol) of the protein 1XMK and the corresponding CPU time in seconds for different mesh sizes. The CPU time of the regular-
ization and trilinear methods differs in three major parts: surface generation, source generation, and algebraic solution of the linearized PB equation.

CPU time (s)

Energy Surface generation Source generation Solving PB Eq.

h REG TRI REG TRI REG TRI REG TRI

1.0 -360.9206 -315.4097 9.68E−2 4.74E−2 5.50E+1 5.36E+0 1.06E+1 5.73E+0
0.5 -343.8260 -357.6610 7.78E−1 3.71E−1 3.92E+2 2.15E+1 1.15E+2 5.91E+1
0.25 -338.8072 -345.4913 7.06E+0 3.15E+0 2.97E+3 8.79E+1 1.67E+3 8.04E+2
0.125 -337.5360 -342.2154 6.96E+1 2.73E+1 2.33E+4 3.94E+2 2.62E+4 1.15E+4

Fig. 7. Convergence and efficiency tests for the protein 1XMK, where h is spacing and N3 is the total degree of freedom. (a) Convergence of the electrostatic 
free energy with respect to h; (b) CPU time against N3 for surface generation; (c) CPU time against N3 for source generation; (d) CPU time against N3

for solving the PB equation. In all CPU plots, the solid lines represent the least-squares fitted linear trends. The corresponding complexity ratio r is also 
reported.

3.4. Convergence and efficiency

We next study the convergence and efficiency by considering a protein with protein databank (PDB) ID: 1XMK. By using 
a fixed domain � = [6, 56] × [3, 56] × [9, 54], different mesh sizes are examined with h = 1, 0.5, 0.25, and 0.125. The 
calculated electrostatic free energy and corresponding CPU time are reported in Table 2.

We first examine the energy convergence. It can be seen in Fig. 7 (a) that the regularization method converges mono-
tonically to certain limit, while the energy curve of the trilinear method is not monotonic. As h becomes smaller, the gap 
between energies predicted by the two methods is shrinking. It looks like that both methods will eventually converge to 
the same limit, as h → 0. Moreover, the convergence speed of each method could be assessed by considering the energy 
difference after a mesh refinement. For instance, it can be seen from Table 2 that the energy difference between h = 0.125
and h = 0.25 is about 1.33 and 3.28, respectively, for the regularization and trilinear method. In fact, the energy difference 
of the regularization is always less than that of the trilinear method. This suggests that the regularization method converges 
faster than the trilinear method.
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We next investigate the CPU time. Based on the same super-Gaussian PB model, the regularization and trilinear methods 
share a lot of common components in implementation. Thus, in biomolecular simulations, the execution time of two meth-
ods are different mainly in three parts, i.e., surface generation, source generation, and algebraic solution of the PB equation. 
We will examine these three parts one by one.

First, in the surface generation, the CPU time for setting up the GCS function S is measured in the trilinear method. For 
the regularization, extra time is needed for calculating the gradient of S . Thus, it is seen in Table 2 that the CPU time of the 
trilinear method is less than half of that of the regularization for this part. In Fig. 7 (b), the CPU time in surface generation 
is plotted against the total degree of freedom N3 = Nx × Ny × Nz . Moreover, a least square linear fitting is conducted in 
log-log scale to determine the order of complexity, i.e., CPU=O (Nr

3). With r = 1.03 and r = 1.06, respectively, for trilinear 
and regularization methods, one can conclude that the CPU time in surface generation scales linearly with respect to N3. 
This is consistent with the finding in Ref. [44].

Second, the regularization is much more expensive than the trilinear method in source generation. For the trilinear 
method, the main execution time is spent on searching for the grid cubes that contain partial charges. The cost of trilinear 
interpolation depends on the total number of charges, which does not change when one refines the mesh. Thus, the source 
generation for the trilinear method is cheap and does not grow too much with respect to N3. This can be observed in 
Fig. 7 (c) that the trilinear CPU scales as O (N0.69

3 ) for source generation. For the regularization method, the computation of 
two source terms in Eq. (34) involves a lot of finite difference approximations and analytical differentiations, and has to be 
carried on all nodes throughout the domain. Thus, such computations are expensive. Fortunately, as can be seen in Fig. 7
(c) that the complexity of this part scales linearly with respect to N3. Consequently, for the finest mesh with h = 0.125, the 
source generation is not the most time consuming part of the regularization method.

Third, the same matrix and iterative algebraic solver (biconjugate gradient algorithm) are used in the regularization and 
trilinear methods. Since the source term of the regularization becomes more complicated, the algebraic solution demands 
more CPU time than that of the trilinear method. It can be observed in Fig. 7 (d) that the complexity order of this part 
is the largest, about O (N1.25

3 ). Thus, iterative solution of the PB equation shall be the most expensive part for large sys-
tems.

Combining three CPU parts, one can conclude that the regularization is more expensive than the trilinear method. In 
particular, the CPU time of the regularization is about 4 to 6 times larger than that of the trilinear method for a fixed h. 
However, it can be observed from Table 2 that the regularization provides a more accurate energy prediction. In fact, by 
using h = 0.5, the energy calculated by the regularization is more accurate than that of the trilinear method with h = 0.25, 
while the total CPU of the regularization at h = 0.5 is smaller than that of the trilinear method at h = 0.25. Therefore, by 
allowing to use a coarse mesh, the regularization is actually more cost-efficient than the trilinear method.

3.5. Electrostatic free energies of proteins

We finally consider the electrostatic free energy of 25 proteins, which are randomly chosen from a protein data set 
studied in Ref. [10]. The energies calculated by using trilinear and regularization methods based on three mesh sizes are 
reported in Table 3. For both methods, when h varies from 1, 0.5, to 0.25, the energies converge to the finest mesh h = 0.25. 
Also, a general agreement between the regularization and trilinear results at h = 0.25 can be seen.

To better illustrate the accuracies of two methods, we plot the relative energy differences in Fig. 8. First, for one method 
and a protein, the self-convergence is tested by taking the energy predicted by h = 0.25 as the reference value Eref . Then 
the errors for h = 1 and 0.5 are assessed by the relative energy difference E−Eref

Eref
. Such differences are plotted in Fig. 8 (a) 

and (b), respectively, for regularization and trilinear methods. While both methods are self-convergent, it is observed that 
the errors of the regularization are much smaller than those of the trilinear method. Moreover, the convergence pattern of 
the trilinear method is always oscillatory, i.e., E−Eref

Eref
is positive for h = 1 and negative for h = 0.5. For the regularization, 

the convergence could be either oscillatory or monotonic. In Fig. 8 (c), we take the regularization energy at h = 0.25 as 
the reference Eref to examine the accuracy of the trilinear method. It can be seen that the error of the trilinear method 
decreases as h is reduced from 1 to 0.25. This suggests that the trilinear energy converges to the regularization energy. 
Therefore, in all cases, the regularization method is more accurate than the trilinear method in calculating electrostatic free 
energies of proteins.

A comparison between the present super-Gaussian PB model and the sharp interface PB model [5,25,38] is also consid-
ered. For this purpose, the MIBPB web server (https://weilab .math .msu .edu /MIBPB/) is employed. The MIBPB method is a 
second order convergent PB solver that rigorously treats charge singularities, as well as geometrical singularities involved 
in the molecular surface [11,19]. Because the MIBPB energy converges very fast with respect to h, we calculate the MIBPB 
energies by just using h = 0.5 Å. Except for one protein (PDB ID: 1CBN) that the MIBPB web server reports an error, elec-
trostatic free energies of other 24 proteins are obtained. A comparison between the MIBPB energy and those calculated by 
the trilinear and regularization methods at h = 0.25 Å is shown in Fig. 9. It can be seen that the super Gaussian PB energy 
is usually weaker than the MIBPB energy, i.e., the former has a smaller magnitude. By taking the MIBPB energy as the inde-
pendent variable x, a least-squares linear fitting is conducted for the regularization energy y, which gives a linear function 
y = 0.4960x + 253.7996. The energy difference here is mainly due to the underlying PB models. In the super Gaussian PB 
model, the ionic strength is scaled by (1 − S). Thus, the ionic strength is increasing in �t and is in full strength only for 
18
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Table 3
Electrostatic free energy (kcal/mol) of 25 proteins calculated by the trilinear and regularization methods. For each case, three mesh sizes are tested.
PDB 
-ID

Atom 
number

Electrostatic free energy

Trilinear Regularization

h=1 h=0.5 h=0.25 h=1 h=0.5 h=0.25

1AHO 962 -211.2636 -248.1750 -238.2240 -228.5431 -237.2506 -233.1279
1C75 985 -651.9008 -690.7268 -680.2420 -675.1506 -675.4569 -673.4696
1J0P 1597 -940.1217 -1014.6565 -993.8498 -979.8352 -989.0494 -981.9095
1TG0 1029 -1793.6217 -1835.2729 -1824.0573 -1830.3678 -1811.3032 -1814.1010
1X8Q 2815 -542.4612 -630.3998 -606.4268 -583.1636 -602.5760 -593.1467
1CBN 639 -73.3233 -89.5271 -84.2385 -86.0809 -84.8137 -82.0041
1G6X 888 -609.7857 -645.4802 -635.0196 -605.9305 -629.6001 -628.4701
1IUA 1207 -210.3572 -248.1770 -237.2259 -238.8805 -236.8073 -231.6764
1L9L 1226 -1674.2821 -1723.6808 -1709.9624 -1700.3133 -1695.7472 -1699.1604
1M1Q 1265 -821.4304 -877.8622 -863.3227 -840.7822 -857.3641 -853.9345
1NWZ 1912 -725.5706 -791.8178 -774.0107 -793.2792 -769.0200 -763.5936
1OK0 1076 -470.4574 -506.2608 -496.1842 -490.7971 -493.6079 -490.7643
1TQG 1660 -779.2361 -823.3382 -809.0508 -826.5917 -805.5121 -800.8380
1VB0 913 -251.5802 -286.9582 -275.2815 -282.2747 -275.0322 -269.7315
1VBW 1056 -828.6500 -865.4070 -854.4223 -832.8698 -848.7617 -847.4552
1W0N 1756 -574.7337 -634.0710 -619.6113 -593.3313 -615.8816 -611.0642
1X6X 1732 -397.5570 -457.1552 -439.1164 -440.1687 -438.2086 -430.1511
1XMK 1268 -315.4097 -357.6610 -345.4913 -360.9206 -343.8260 -338.8072
1ZUU 868 -478.8526 -515.3313 -505.1730 -498.0964 -501.0076 -498.9569
1ZZK 1252 -415.9231 -462.4152 -449.9412 -434.1725 -445.3290 -442.6274
2FDN 731 -846.6849 -871.4588 -864.1814 -856.0617 -859.8413 -858.8722
2FMA 924 -333.8799 -371.9273 -362.3285 -361.9970 -360.0563 -356.6664
2FWH 1830 -661.0665 -714.0925 -698.4507 -678.1039 -695.4554 -689.5961
2H5C 2755 -714.1789 -776.7490 -757.7038 -739.3847 -755.2416 -747.9770
2IDQ 1596 -505.4323 -554.5314 -541.3744 -545.1966 -537.5704 -533.4612

outside �t or 3 Å away from the protein. For the sharp interface PB model, the full ionic strength is applied immediately 
outside the protein, so that the solute-solvent electrostatic interactions are stronger. This is why the MIBPB energy becomes 
stronger. Nevertheless, certain correlations can still be seen in Fig. 9. In fact, the Pearson correlation coefficient between the 
MIBPB and regularization energies is as high as 0.791.

4. Conclusion

In this paper, a regularization method is introduced for the first time in the literature for treating charge singularities 
in the heterogeneous dielectric Poisson-Boltzmann (PB) model. The heterogeneous dielectric PB models, including Gaussian 
PB model [10,30,31] and super-Gaussian PB model [22,36], have achieved a great success in various biological applications 
involving the electrostatic analysis. However, the singular charges are simply handled by the trilinear method in the existing 
studies, which essentially approximate the delta function by a finite quantity. This results in a large grid artifact and a slow 
convergence in energy calculations. In the proposed regularization, the singularities are analytically captured by Green’s 
functions so that the grid artifact is completely eliminated and a fast energy convergence is observed.

The proposed regularization for the super-Gaussian PB model is generalized from that for the diffuse interface PB model 
[37,44,45]. The key in the regularization formulation is the dual decomposition first presented in [45], i.e., besides the de-
composition of the potential into Coulomb and reaction-field components, the dielectric function is also split into a constant 
based and a space varying part. Nevertheless, in order to develop a valid regularization formulation for the heterogeneous 
dielectric PB models, an extensive study has been carried out in this paper to deal with theoretical and numerical difficulties. 
Mathematically, a rigorous analysis has to be conducted to examine the new source term of the regularized PB equation, 
because the arguments for the diffuse interface PB model [37,44,45] cannot be directly extended to the present study. In par-
ticular, the shifted dielectric function is almost vanishing in a small neighborhood around each center, while it is identically 
zero in the diffuse interface case [37,44,45]. Consequently, it is shown that a super-Gaussian density, instead of a Gaussian 
one, is required for the validity of the regularization formulation. Moreover, the proposed regularization is proved to be 
well-posed and its solution is C2 continuous throughout the domain. Numerically, the standard finite difference algorithm 
is simply employed to solve the regularized PB equation. In order to secure a more accurate implementation, analytical 
differentiations, instead of numerical approximations, are adopted whenever possible in calculating the new source term 
involving a space dependent dielectric function.

In numerical experiments, various examples are considered to validate the proposed regularization and to compare with 
the trilinear method. The trilinear method heavily relies on an error cancellation to produce acceptable results in energy 
calculations, i.e., the huge errors due to approximating singular charges by finite quantities are the same in both solvent 
and vacuum states, so that the electrostatic free energy calculated as the difference of two states can be free of such 
errors. It is shown in the present study that when error cancellation is unavailable, such as in case of an unsynchronized 
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Fig. 8. (a) Self-convergence of the regularization energy. Here Eref is the regularization energy at h = 0.25, and E is the regularization energy at h = 1 or 
0.5; (b) Self-convergence of the trilinear energy. Here Eref is the trilinear energy at h = 0.25, and E is the trilinear energy at h = 1 or 0.5; (c) Convergence 
of the trilinear energy toward the regularization energy. Here Eref is the regularization energy at h = 0.25, and E is the trilinear energy at h = 1, 0.5, or 
0.25.

rotation of shifting, an incredibly large error will be produced, which completely ruins the biomolecular simulation. On the 
contrary, the unsynchronized rotation or shifting does not affect the regularization at all, and the grid artifact or artificial 
grid energy is completely eliminated in the present finite difference PB model. When the error cancellation is allowed 
in the trilinear method, the regularization is still more accurate by producing a fast energy convergence. Nevertheless, 
the regularization is about 4 - 6 times more expensive than the trilinear method, based on the same degree of freedom. 
Fortunately, the regularization method could yield a better energy prediction by using a courser mesh. From cost-efficiency 
point of view, the regularization could still be faster than the trilinear method, in order to achieve a certain precision in 
energy calculation.

In our future studies, the development of more accurate and efficient numerical algorithms for solving the regularized 
PB equation of the super-Gaussian model will be investigated. This regularization will also be implemented in the super-
Gaussian module of the DelPhi package [36], and its application to biological problems will be explored.
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Fig. 9. Comparison of the electrostatic free energies of 24 proteins obtained from the present super-Gaussian PB model and the MIBPB sharp-interface PB 
model. For the present model, both trilinear and regularization energies are shown.
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Appendix A. Smooth solute-solvent boundary

Consider a protein with a total Nm atoms, with the center and radius of each atom being rn and rn , respectively. By 
treating each atom as a hard sphere, the Van der Waals (VdW) surface is defined as the smallest envelope enclosing 
the union of all spheres. By augmenting each atomic radius by 3 Å, another VdW surface can be defined, which will be 
referred as to an extended solute-accessible surface (ESAS). The diffuse interface function S(r) should satisfy a subdomain 
requirement that S(r) = 1 inside the VdW surface and S(r) = 0 outside the ESAS surface. In the original super-Gaussian PB 
model [22], S(r) is generated by the minimal molecular surface (MMS) [6,7], while in the present study, a more efficient 
Gaussian convolution surface (GCS) [44] is used to calculate S(r).

Physically, the MMS is defined as the unique surface that is of the smallest surface area, while encloses all VdW spheres. 
Mathematically, the MMS can be derived from the Euler-Lagrange variation of the surface free energy, which leads to a 
mean curvature flow equation subject to the subdomain requirement [6,7]

∂ S

∂t
(r, t) = ∇ · ( ∇ S(r, t)

‖∇ S(r, t)‖
) + V (r), (A.1)

where V (r) represents the total external potential, and the diffuse interface function S(r) is obtained as the steady state 
solution of Eq. (A.1). An unconditionally stable alternating direction implicit (ADI) algorithm has been developed in [40] for 
Eq. (A.1), whose computational complexity in each time step scales as O (N3) for N3 being the spatial degree of freedoms. 
A sharp MMS can be obtained as an iso-surface of S(r) [6,7].

In the GCS model [44], a standard solute-accessible surface (SAS) is first considered, which is a VdW surface after 
augmenting each atomic radius by 1.5 Å. A Heaviside function is defined with H(r) = 1 inside the SAS and H(r) = 0 outside 
the SAS. One then convolutes H(r) with a Gaussian kernel function

K (x) = 1

σ
√
2π

exp

(
− x2

2σ 2

)
. (A.2)

In real computations, the Heaviside function and Gaussian kernel are defined discretely on a uniform mesh. The discrete 
convolution in three-dimensions is realized through a fast Fourier transform (FFT) algorithm with the total complexity being 
O (N3). After convolution, the subdomain requirement is enforced in the post-processing, and the resulted diffuse interface 
function is S(r) [44].
21
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Appendix B. The manufactured example

In the section 3, a manufactured example is considered for a one-atom system. The derivation details of this example 
are offered here. Following the proposed regularization, after the dual decomposition, the reaction-field potential satisfies a 
regularized Poisson equation

−∇ · (ε∇uRF ) = ∇ε · ∇G + f , (B.1)

where the Green’s function G is known and the reaction-field potential uRF is assumed to be given

uRF (r) = −C exp

(
−|r|2

r2e

)
, G(r) = C

q0
εm|r| , (B.2)

with the constant C = e2c
kB T

. The unknown extra source term f can be determined by plugging (B.2) into (B.1).
The present problem can be recasted into a spherical coordinate (r, θ, ϕ). Due to the rotational symmetry of the domain, 

all involved functions do not change in θ and ϕ directions, so that they can be regarded as functions in the radical direction 
r = |r| only. Consequently, the regularized Poisson equation (B.1) can be reduced to an ordinary differential equation (ODE) 
with respect to r. For instance, the left-hand side can be expanded as

−∇ · (ε(r)∇uRF (r)) = − 1

r2
d

dr

(
r2ε

duRF

dr

)
= −2

r
ε
duRF

dr
− dε

dr

duRF

dr
− ε

d2uRF

dr2
.

Then f (r) can be expressed by

f (r) = −2

r
ε
duRF

dr
− dε

dr

duRF

dr
− ε

d2uRF

dr2
− dε

dr

dG

dr
. (B.3)

Based on Eq. (B.2), the derivatives of G and uRF can be given as

duRF

dr
= 2Cr

r2e
e
− r2

r2e ,
d2uRF

dr2
= 2C

r2e
e
− r2

r2e − 4Cr2

r4e
e
− r2

r2e ,
dG

dr
= −Cq0

εm
r−2.

The derivative of ε is calculated as
dε

dr
= dS

dr
εin(r) + S

dεin(r)

dr
− εout

dS

dr
(B.4)

where εin(r) is given by Eq. (42) with r = |r|. Its derivative can be calculated as

dεin
dr

= (εgap − εm)
4r3

r4i
e
− r4

r4i .

The derivative of S is

dS

dr
= − k

2(re − ri)
sech2(k(

r − ri
re − ri

− 1

2
)).

With these derivatives, one can compute dεdr by Eq. (B.4). Finally, the source f (r) can be calculated by Eq. (B.3) at every grid 
node in �.
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