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Abstract. A rigorous derivation of the incompressible Euler equations with the no-penetration
boundary condition from the Boltzmann equation with the diffuse reflection boundary condition has
been a challenging open problem. We settle this open question in the affirmative when the initial
data of fluid are well-prepared in a real analytic space, in 3D half space. As a key of this advance, we
capture the Navier-Stokes equations of

viscosity ∼ Knudsen number

Mach number
satisfying the no-slip boundary condition, as an intermediary approximation of the Euler equations
through a new Hilbert-type expansion of the Boltzmann equation with the diffuse reflection boundary
condition. Aiming to justify the approximation we establish a novel quantitative Lp-L∞ estimate of
the Boltzmann perturbation around a local Maxwellian of such viscous approximation, along with the
commutator estimates and the integrability gain of the hydrodynamic part in various spaces; we also
establish direct estimates of the Navier-Stokes equations in higher regularity with the aid of the initial-
boundary and boundary layer weights using a recent Green’s function approach. The incompressible
Euler limit follows as a byproduct of our framework.
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1. Introduction

An important and active research direction in mathematical physics/PDE is on the so-called
Hilbert’s sixth problem [29] seeking a unified theory of the gas dynamics including different levels of
descriptions from a mathematical standpoint by connecting the behavior of solutions to equations
from kinetic theory to solutions of other systems that arise in formal limits, such as the N-body prob-
lem, the Euler equations, the Navier-Stokes equations, etc. In particular, the hydrodynamic limit of
the Boltzmann equation has received a great deal of attention and enthusiasm in the mathematics
and physics communities since the pioneering work [30] by Hilbert, which was the first example of
his sixth problem. Remarkably, all the basic fluid equations of compressible, incompressible, invis-
cid, or viscous fluid dynamics can be derived from the Boltzmann equation of rarefied gas dynamics
upon the choice of appropriate scalings in a small mean free path limit. Though formal derivations
are rather well-understood, as far as mathematical justifications go, despite great progress over the
decades (for example see [1, 2, 3, 13, 19, 23, 50] and the references therein), full understanding of
the hydrodynamic limit incorporating important physical applications such as boundary effects or
physical phenomena is still far from being complete. The goal of this paper is to make a rigorous
connection between the Boltzmann equation and the incompressible Euler equations in the presence
of the boundary by bypassing the inviscid limit of the incompressible Navier-Stokes equations.

The dimensionless Boltzmann equation with the Strouhal number St and the Knudsen number Kn
takes the form of

St∂tF + v · ∇xF =
1

Kn
Q(F, F ). (1.1)

Here the distribution function of the gas is denoted by F (t, x, v) ≥ 0 with the time variable t ∈ R+ :=
{t ≥ 0}, the space variable x = (x1, x2, x3) ∈ Ω ⊂ R3, and the velocity variable v = (v1, v2, v3) ∈ R3.
The Boltzmann collision operator Q(·, ·) of the hard sphere takes the form of

Q(F,G) =
1

2

ˆ
R3

ˆ
S2

|(v − v∗) · u|{F (v′)G(v′∗) +G(v′)F (v′∗)

− F (v)G(v∗)−G(v)F (v∗)}dudv∗,

(1.2)

where v′ := v − ((v − v∗) · u)u and v′∗ := v∗ + ((v − v∗) · u)u. This operator satisfies the so-called
collision invariance property: for any F (v) and G(v) decaying sufficiently fast as |v| → 0,ˆ

R3

Q(F,G)(v)
(

1, v,
|v|2 − 3√

6

)
dv = (0, 0, 0), (1.3)

which represents the local conservation laws of mass, momentum and energy. The celebrated Boltz-
mann’s H-theorem reveals the entropy dissipation:ˆ

R3

Q(F, F )(v) lnF (v)dv ≤ 0, (1.4)

for any F (v) > 0 decaying sufficiently fast as |v| → 0. An intrinsic equilibrium, satisfying Q(·, ·) = 0,
is given by a local Maxwellian associated with the density R > 0, the macroscopic velocity U ∈ R3

and the temperature T > 0

MR,U,T (v) :=
R

(2πT )
3
2

exp

{
−|v − U |

2

2T

}
, (1.5)

which is known as the only configuration attaining the equality in (1.4).
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In addition to the Strouhal number and Knudsen number we introduce the Mach number Ma.
By passing St ,Kn , and Ma to zero, one can formally derive PDEs of hydrodynamic variables for the
fluctuations around the reference state (1, 0, 1), which are determined as(

ρ(t, x), u(t, x), θ(t, x)
)

= lim
Ma↓0

1

Ma

ˆ
R3

{F (t, x, v)−M1,0,1(v)}
(

1, v,
|v|2 − 3√

6

)
dv. (1.6)

The famous Reynolds number appears as a ratio between the Knudsen number and Mach number
through the von Karman relation:

1

Re
=

Kn
Ma

. (1.7)

For instance, the incompressible Navier-Stokes equations with Re = 1, namely the viscosity of order
one, can be derived by setting St = Ma = Kn = ε as ε ↓ 0. In this paper we are particularly interested
in a scale of large Reynolds number as follows:

St = ε = Ma and Kn = κε with κ = κ(ε) ↓ 0 as ε ↓ 0, (1.8)

through which we will derive the incompressible Euler equations with the no-penetration boundary
condition in the limit

∂tuE + uE · ∇xuE +∇xpE = 0, ∇x · uE = 0 in Ω, (1.9)

uE · n = 0 on ∂Ω, (1.10)

with ∂tθ+ uE · ∇xθ = 0 and ∇xθ(t, x) +∇xρ(t, x) = 0. Here n = n(x) denotes an outward normal at
x on the boundary ∂Ω. For the sake of simplicity we set an initial datum θ0(x) = 0 = ρ0(x) so that

θ(t, x) = 0 = ρ(t, x) for all t ≥ 0. (1.11)

In many important physical applications such as a turbulence theory, it would be relevant to
take into account the physical boundary in the hydrodynamic limit. A boundary condition of the
Boltzmann equation is determined by the interaction law of the gas with the boundary surface. One of
the physical conditions is the so-called diffuse reflection boundary condition, which takes into account
an instantaneous thermal equilibration of reflecting gas particle (see [9, 12]): for (x, v) ∈ {∂Ω× R3 :
n(x) · v < 0},

F (t, x, v) = cµM1,0,1(v)

ˆ
n(x)·v>0

F (t, x, v)(n(x) · v)dv, (1.12)

where we have taken an isothermal boundary with a rescaled temperature 1 for the sake of simplicity.
Here, the normalization constant cµ := 1/

( ´
n(x)·v>0M1,0,1(v)(n(x) ·v)dv

)
leads to the null flux condi-

tion
´
R3 F (t, x, v)(n(x) ·v)dv = 0 on x ∈ ∂Ω. In particular, it is well-known that the diffuse boundary

condition (1.12) is a kinetic boundary condition featuring a mismatch with the no-penetration bound-
ary condition (1.10) of the the Euler flow under (1.8), without any small parameter with respect to
1/Re or Ma. One can readily see this by expanding F around a local Maxwellian M1,εuE ,1(v) as-
sociated with a flow of the no-penetration boundary condition (1.10) directly. Unfortunately, this
local Maxwellian does not honor the diffuse reflection boundary condition when a flow satisfies the
no-penetration boundary condition (1.10). In fact a size of the boundary mismatch could be an order
of the tangential component of the Euler flow uE at the boundary. Therefore a uniform bound to
verify the limit (1.6) in a scale of large Reynolds number (1.8) is not expected even at the formal level.
This poses a major obstacle in the Euler limit from the Boltzmann equation with the diffuse reflection
boundary. It is worth noting that such a mismatch does not appear at least at the formal level when
the specular reflection boundary condition is imposed: F (t, x, v) = F (t, x,Rxv) on x ∈ ∂Ω where
Rxv = v − 2n(x)(n(x) · v); while the mismatch can possess a small factor for the so-called Maxwell
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boundary condition, a convex combination of the specular reflection and the diffuse reflection bound-
ary conditions, by choosing the coefficient for diffuse reflection known as the accommodation constant
to vanish as Re →∞.

Remarkably, an analogous, better-known boundary mismatch phenomenon exists in the realm of
mathematical fluid dynamics, specifically in the inviscid limit problem of the Navier-Stokes equations
that addresses the validity of the Euler solutions as the leading order approximation of the Navier-
Stokes solutions in the vanishing viscosity limit. The inviscid limit for the no-slip boundary condition
features a boundary mismatch between two different boundary conditions for the Navier-Stokes and
Euler flows. In fact, whether the solution to the Navier-Stokes equations with a κη0-viscosity (a
physical constant η0 can be computed explicitly from the Boltzmann theory as in (1.37)) satisfying
the no-slip boundary condition

∂tu+ u · ∇xu− κη0∆u+∇xp = 0 in Ω, (1.13)

∇x · u = 0 in Ω, (1.14)

u = 0 on ∂Ω, (1.15)

converges to the solution of the Euler equations satisfying the no-penetration boundary condition
(1.9)-(1.10) in κ = 1/Re ↓ 0 is an outstanding problem, which is arguably the most relevant and
challenging because of the mismatch of two boundary conditions between (1.15) and (1.10) resulting
in the formation of boundary layers such as Prandtl layer and unbounded vorticity near the boundary.
While the verification of the inviscid limit is still largely open, it holds under certain symmetry as-
sumption on the domain and data or under the flat boundary and strong regularity such as analyticity
at least near the boundary [45]. A classical way to tackle the inviscid limit problem is to study the
Prandtl expansion [48, 49, 44]: u(t, x1, x2, x3) = uE(t, x1, x2, x3)+uP (t, x1, x2,

x3√
κ

)+O(
√
κ). Recently,

different frameworks that avoid the boundary layer expansion have become available [47, 38, 54].
The incompressible Euler limit from the Boltzmann equation turns out to be intimately tied to

the inviscid limit of the incompressible Navier-Stokes equations, which accounts for the similarity
of two boundary mismatches. A beautiful connection stems from the Navier-Stokes solutions of
(1.13)-(1.15) in large Reynolds numbers: at least formally, not only they are approximated by the
Euler equations (1.9)-(1.10) but also they approximate the Boltzmann equation (1.1) under (1.8)
with (1.12), in fact better than the Euler equations (1.9)-(1.10) at each Mach number ε > 0, because
the Navier-Stokes equations contain a high order correction term κη0∆u that captures the dissipative
nature of the Boltzmann collision operator (as we will see in Section 1.1). And importantly, a local
Maxwellian M1,εu,1(v) associated with u satisfying the no-slip boundary condition (1.15), satisfies the
diffuse reflection boundary condition (1.12) without singular terms. In other words, the Navier-Stokes
solutions are compatible with the diffuse reflection boundary condition. Therefore, under the scale
(1.8) the Navier-Stokes solution of (1.13)-(1.15) stands in between the Boltzmann solution of (1.1),
(1.12) and the Euler solution (1.9)-(1.10).

In this paper, inspired by these observations, we propose to study the Euler limit from the Boltz-
mann equation through the Navier-Stokes solutions that hold both features of the Euler and the
Boltzmann under (1.8) at each Mach number ε > 0. To this end, we expand the Boltzmann solution
F around a local Maxwellian associated with a Navier-Stokes flow u to (1.13)-(1.15):

µ(v) := M1,εu,1(v), (1.16)

as

F = µ+ ε2f2
√
µ+ ε3/2fR

√
µ, (1.17)

and analyze (1.17) via a new Hilbert expansion presented in Section 1.1. Although the notations
F ε and f ε may be more precise for the equation depending on ε, we will abuse the notations by
dropping the superscript ε for the sake of simplicity. The next order correction f2 can be entirely
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determined by the Navier-Stokes flow and it turns out that its contribution is always smaller than
fR’s one in our choice of ε and κ. A choice of the range of the Mach number with respect to the
Reynolds number: ε � κ = 1/Re in ε ↓ 0 plays an important role in our analysis and the formal
expansion. We will discuss the relation and its role in Section 1.2. With such a choice of the scale,
uniform-in-ε estimates of the Boltzmann remainder fR are achieved by a novel quantitative Lp-L∞

estimate in a setting of the local Maxwellian of the Navier-Stokes approximation (1.16), along with
the commutator estimates and the integrability gain of the hydrodynamic part in various spaces.

In order to establish the Euler limit by using the Navier-Stokes solutions of (1.13)-(1.15) as a
reference state as ε ↓ 0 in a scale of large Reynolds number (1.8), it is imperative to show the
uniform-in-κ convergence of the Navier-Stokes solutions to the Euler solutions of (1.9)-(1.10), where
the inviscid limit comes into play. In this paper, we take the spatial domain to be the upper-half space
with periodic boundary conditions in the horizontal components and analytic data for the Navier-
Stokes solutions of (1.13)-(1.15) and obtain uniform-in-κ estimates built upon a recent development
on the inviscid limit problem in the half-space based on the Green’s function approach using the
boundary vorticity formulation [44, 47, 38, 54].

Our main result concerns a rigorous justification of the passage from the solutions to the dimen-
sionless Boltzmann equation (1.1) of the scale (1.8) with the diffuse reflection boundary condition
(1.12) to the solution of the incompressible Euler equation (1.9) with the no-penetration boundary
condition (1.10), without introducing any boundary expansion of the Boltzmann equation:

Theorem 1 (Informal statement). We consider a half space in 3D

Ω := T2 × R+ 3 (x1, x2, x3), where T is a periodic interval of (−π, π). (1.18)

For some choice of ε and κ(ε), there exists a large set of initial data uin, f2,in and fR,in such that a
unique solution F (t, x, v) of the form (1.17) to (1.1) and (1.12) with (1.8) exists on [0, T ] for some
T > 0 and satisfies

sup
0≤t≤T

∥∥∥∥∥F (t, x, v)−M1,εu,1

ε
√
M1,εu,1

∥∥∥∥∥
L2(Ω×R3)

−→ 0 as ε ↓ 0,

and

sup
0≤t≤T

∥∥∥∥∥F (t, x, v)−M1,εuE ,1

ε(1 + |v|)2
√
M1,0,1

∥∥∥∥∥
L2(Ω×R3)

−→ 0 as ε ↓ 0,

while u and uE denote solutions of the Navier-Stokes (1.13)-(1.15) and Euler equations (1.9)-(1.10),
respectively.

The precise statement of Theorem 1 is given in Theorem 4 and Corollary 5 in Section 2.3.

Remark 1. To the best of our knowledge our result of this paper appears to be the first rigorous in-
compressible Euler limit result from the Boltzmann solutions with the sole diffuse reflection (therefore
the accommodation constant ∼1) in the boundary condition! Moreover, our framework captures the
inviscid limit of mathematical fluid dynamics from the Boltzmann theory.

Remark 2. Another natural choice of the scale in the study of the Euler limit might be εq = κ with
an integer q ≥ 1. Then the second correction 1

κLf2 is shifted to the next hierarchy (see (1.27)) and as
a consequence the Euler equations become the leading approximation with loss of κη0∆u. Without the
boundary, a higher order expansion F = µE+[εf1+ε2f2+ε3f3+· · ·+εrfR]

√
µE for µE = M1,εuE ,1 has

been established in [10, 56]. In the presence of the boundary, on the other hand, such an expansion
features a boundary mismatch. The usual approach is then drawn on a boundary layer expansion,
correcting an interior Hilbert-like expansion at the boundary to satisfy the boundary conditions (for
example, see [27, 55]). Our approach is based on an interior expansion up to the second correction f2

that avoids the boundary layer expansion under our choice of scale ε� κ (see (2.11)).
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Before discussing the essence of the methodology and novelty of our result, we shall briefly overview
some relevant literatures on the hydrodynamic limit of the Boltzmann equation. One of the first
mathematical studies of the limits at the formal level may go back to a work [30] of Hilbert, in which
he introduced so-called the Hilbert expansion. Based on the truncated Hilbert expansion rigorous
justifications of fluid limits have been shown as long as the solutions of corresponding fluids are
bounded in some suitable spaces, for example, in the compressible fluid limits in [7, 53], incompressible
fluid limits in [10, 23, 5], diffusive limits from the Vlasov-Maxwell-Boltzmann system in [32], and
relativistic fluid limits in [52]. All the derivations mentioned above did not take into account the
boundary, while one of the main obstacles to study the Boltzmann solutions with the boundary
is its boundary singularity (see [35, 20, 21]). In [22], an Lp-L∞ framework has been developed to
construct a unique global solution of the Boltzmann equation with physical boundary conditions.
Such a framework has been developed successfully in various problems of the Boltzmann theory (for
example [24, 25, 26, 14, 8, 27, 36, 37, 55]). In particular, in [12, 13], the authors have constructed a
solution of the Boltzmann equation satisfying the diffuse reflection boundary condition and proved
the validity of the hydrodynamic limit toward the incompressible Navier-Stokes-Fourier system in
both steady and unsteady settings, based on a novel L6-bound of the hydrodynamic part.

Rigorous passage from the renormalized solutions of [11] ([46] with the physical boundary) of the
Boltzmann equation toward (weak) solutions of fluid equations has been also extensively explored
(see [17, 50, 33] for the references in this direction). In particular, the program of the incompressible
Navier-Stokes limit to the Leray-Hopf weak solutions has been developed successfully in [2, 3, 40, 41,
19] without the physical boundary and with the boundary in [42, 33]. As for the incompressible Euler
limit in terms of the entropy production, based on the relative entropy method, a dissipative solution
of the incompressible Euler equations in [39] has been studied in [40, 41, 51] without the boundary.
Notably the results have been extended to the domain with the boundary for the specular reflection
boundary condition in [50], and for the Maxwell boundary condition in [4], assuming to set that the
accommodation constant (a factor of diffuse reflection) vanishes as ε ↓ 0.

For the rest of this section, we present the strategy and key ideas developed in the proof of our result
starting with a new (formal) Hilbert expansion followed by the control of the Boltzmann remainder
fR and higher regularity of Navier-Stokes flows, for the rigorous justification of the formal expansion.

1.1. Hilbert expansion in a scale of large Reynolds number. Through a new formal Hilbert-
type expansion of Boltzmann equation with the diffuse reflection boundary condition we aim to
capture the Navier-Stokes equations of vanishing viscosity proportional to Kn/Ma and satisfying the
no-slip boundary condition.

It is worth pointing out that although more convenient choice of an expansion of F is seemingly
the one around the global Maxwellian µ0 := M1,0,1 such as F = µ0 + ε(u ·v)µ0 + ε2f̃2

√
µ0 + εδf̃R

√
µ0,

unfortunately this choice will produce, in the Hilbert expansion (1.26)-(1.30), an unbounded term
2
κε

1√
µ0
Q(u · vµ0, fR

√
µ0) even compared to the strongest control in hand, namely a dissipation term

(see (1.31))! To achieve a sharper estimate, which provides weaker restriction on κ and ε, and hence
weaker restriction on the initial data, we work on an expansion around the local Maxwellian µ.

It is conceptually convenient in our analysis to introduce an auxiliary parameter δ = δ(ε) ↓ 0 as
ε ↓ 0, which indicates a size of the fluctuation (F − µ)/ε:

F = µ+ ε2f2
√
µ+ εδfR

√
µ. (1.19)

In (1.17) we have chosen δ =
√
ε and in Section 2.3 we will have the same choice such as (2.11),

however in Section 2.1, Section 3 and Section 4, δ will be regarded as a free parameter and will be
chosen at the last step of closing our argument (as (2.11)!).
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Interior Expansion. We investigate an expansion (1.19) of the Boltzmann equation (1.1) at the
local Maxwellian µ in (1.16). Let

Lf =
−2
√
µ
Q(µ,

√
µf), Γ(f, g) =

1
√
µ
Q(
√
µf,
√
µg). (1.20)

The operators L and Γ can be read as

Lf(v) = νf(v)−Kf(v) = ν(v)f(v)−
ˆ
R3

k(v, v∗)f(v∗)dv∗, (1.21)

Γ(f, g)(t, v) = Γ+(f, g)(t, v)− Γ−(f, g)(t, v)

=

¨
R3×S2

|(v − v∗) · u|
√
µ(v∗)

(
f(t, v′)g(t, v′∗) + g(t, v′)f(t, v′∗)

)
dudv∗ (1.22)

−
¨

R3×S2

|(v − v∗) · u|
√
µ(v∗)

(
f(t, v)g(t, v∗) + g(t, v)f(t, v∗)

)
dudv∗,

where the precise form of k is delayed to be presented in (3.19). We will demonstrate basic properties
of operators L and Γ in Section 3.1. From (1.3) the null space of L, denoted by N , is a subspace of
L2(R3) spanned by orthonormal bases {ϕi

√
µ}4i=0 with

ϕ0 := 1, ϕi := vi − εui for i = 1, 2, 3, ϕ4 := (|v − εu|2 − 3)/
√

6. (1.23)

We define a hydrodynamic projection P as an L2
v-projection on N such as

Pg :=
∑

(Pjg)ϕj
√
µ, Pjg := 〈g, ϕj

√
µ〉, and Pg := (P0g, P1g, P2g, P3g, P4g), (1.24)

where 〈·, ·〉 stands for an L2
v-inner product. It is well-known that the operators enjoy PL = LP =

PΓ = 0. Importantly the linear operator L enjoys a coercivity away from the kernel N : for ν(v) ≥ 0
defined in (1.21)

〈Lf, f〉 ≥ σ0‖
√
ν(I−P)f‖2L2(R3) for some σ0 > 0. (1.25)

Now we plug the expansion (1.19) into the rescaled equation (1.1) with the scale (1.8). It turns
out that by relating f2 with the flow and locating it carefully in the hierarchy we can exhibit the
dissipative nature of the Boltzmann collision operator at the leading order of the fluid approximation.
In particular we locate (v− εu) · ∇x(I−P)f2 in 1

δ -order hierarchy to capture κ-order viscosity in the
fluid equation (1.13):

∂tfR +
1

ε
v · ∇xfR +

1

ε2κ
LfR +

(∂t + ε−1v · ∇x)
√
µ

√
µ

fR (1.26)

= − 1

εδ

{ε−1(v − εu) · ∇xµ√
µ

+
1

κ
Lf2

}
(1.27)

− 1

δ

{ε−1∂tµ√
µ

+
ε−1u · ∇xµ√

µ
+ (v − εu) · ∇xf2

}
(1.28)

− ε

δ

{
∂tf2 + u · ∇xf2 +

(∂t + ε−1v · ∇x)
√
µ

√
µ

f2

}
(1.29)

+
2

κ
Γ(f2, fR) +

ε

δκ
Γ(f2, f2) +

δ

εκ
Γ(fR, fR). (1.30)

We can readily see an L2-energy structure of fR with a strong dissipation¨
Ω×R3

1

ε2κ
LfRfRdvdx & ‖ε−1κ−1/2√ν(I−P)fR‖2L2(Ω×R3), (1.31)

which inherits its lower bound from the coercivity (1.25).
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Let us first consider an 1
εδ -hierarchy (1.27). For any non-vanishing term of (1.27) would cause

unpleasant unboundedness, we make the term vanish entirely by solving an equation (1.27) = 0. By
the Fredholm alternative, an inverse map

L−1 : N⊥ → N⊥, where N⊥ stands an L2
v-orthogonal complement of N , (1.32)

is well-defined and hence the solvability condition is given by

ε−1(v − εu) · ∇xµ√
µ

=
3∑

`,m=1

∂`umϕ`ϕm
√
µ ∈ N⊥. (1.33)

This condition indeed implies the incompressible condition (1.14).

Once (1.14) holds, we have
∑3

`,m=1 ∂`umϕ`ϕm
√
µ =

∑3
`,m=1 ∂`um(ϕ`ϕm− |v−εu|

2

3 δ`m)
√
µ. Now we

solve (1.27) = 0 by setting

(I−P)f2 = −κ
3∑

`,m=1

A`m∂`um with A`m := L−1
(
ϕ`ϕm

√
µ− |v − εu|

2

3
δ`m
√
µ
)
. (1.34)

Then we move to an 1
δ -hierarchy (1.28). The hydrodynamic part of (1.28), unless it vanishes, would

induce an unbounded term again. We expand δ × (1.28), using (1.16) and (1.34), as

−(v − εu) · (∂tu+ u · ∇xu)
√
µ+ (v − εu) · ∇xPf2

+κ(v − εu) · ∇x
( 3∑
`,m=1

A`m∂`um

)
.

(1.35)

The leading order term of the last term in (1.35) contributes the following to the hydrodynamic part
of (1.35) as

κ

3∑
`,m,k=1

〈
ϕiϕk

√
µ,A`m

〉
∂k∂`um = κ

3∑
`,m,k=1

〈(
ϕiϕk −

|v − εu|2

3
δik
)√
µ,A`m

〉
∂k∂`um

= κ
3∑

`,m,k=1

〈LAik, A`m〉 ∂k∂`um,

(1.36)

where we have used the fact A`m ∈ N⊥ and |v−εu|
2

3

√
µ ∈ N at the first step and the definition of Aik

at the last step. It is well-known (e.g. Lemma 4.4 in [3]) that for some constant η0 > 0

〈LAik, A`m〉 = η0(δ`kδmi + δ`iδmk)−
2

3
η0δ`mδik. (1.37)

Therefore we deduce that (1.36) vanishes for i = 0, 4, and the κη0-viscosity term in (1.13) can be
captured:

(1.36) = κη0

∑
`,m,k

{(δ`kδmi + δ`iδmk)−
2

3
δ`mδik}∂k∂`um

= κη0{∆ui − ∂i∇ · u−
2

3
∂i∇ · u} = κη0∆ui for i = 1, 2, 3.

(1.38)

Here we have used the incompressible condition (1.14) at the last step. On the other hand, a leading
order term of the hydrodynamic part of (v − εu) · ∇xPf2 contributes to the pressure term of (1.13)
by choosing a special form of Pf2 as in (3.1). Therefore the whole leading order terms of the
hydrodynamic part in (1.28) do vanish by solving the Navier-Stokes equations (1.13) and (1.14)! For
the sake of brevity we refer to Section 3 for the full expansion of (1.26)-(1.30).
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Boundary Conditions. Now we consider a boundary condition of fR. Noticeably the local
Maxwellian µ becomes M1,0,1 on the boundary from the no-slip boundary condition (1.15), and hence
µ satisfies the diffuse reflection boundary condition (1.12). For the detailed study of the boundary
condition of fR we introduce the incoming and outgoing boundaries

γ± := {(x, v) ∈ ∂Ω× R3 : n(x) · v ≷ 0}.
Since µ satisfies the diffuse reflection boundary condition (1.12) with a constant wall temperature
= 1, by plugging (1.19) into the boundary condition, we arrive at

(ε2f2 + δεfR)|γ− = cµ
√
µ(v)

ˆ
n(x)·v>0

(ε2f2 + δεfR)
√
µ(v)(n(x) · v)dv.

Letting Pγ+ be an L2({v : n(x) · v > 0})-projection of
√
cµµ, we derive that

fR(t, x, v)|γ− = Pγ+fR(t, x, v)− ε

δ
(1− Pγ+)f2(t, x, v)

:=
√
cµµ(v)

ˆ
n(x)·v>0

fR(t, x, v)
√
cµµ(v)(n(x) · v)dv− ε

δ
(1− Pγ+)f2(t, x, v).

(1.39)

Note that
´
n(x)·v>0 cµµ(v)(n(x) · v)dv = 1.

On the other hand, we emphasize that, with the no-penetrate boundary condition of (1.10), the
associated local Maxwellian M1,εuE ,1 does not satisfy the diffuse reflection boundary condition in
general. Therefore the Boltzmann remainder fR would have a singularity of an order of 1/

√
ε in

(1.17).

1.2. Uniform controls of the Boltzmann remainder fR. For a rigorous justification of the
Hilbert expansion (1.19), the major task is to establish uniform-in-ε estimates of the Boltzmann
remainder fR in L2. The equation of the Boltzmann remainder fR in (1.26)-(1.30) with the boundary
condition (1.39) features a discrepancy between the behavior of the hydrodynamic part PfR and pure
kinetic part (I−P)fR: schematically an L2-energy estimate reads

d

dt
‖fR(t)‖2L2 + ‖ε−1κ−1/2(I−P)fR‖2L2 ∼ ‖∇xu‖L∞‖PfR‖2L2 +

¨
Ω×R3

δ

εκ
Γ(PfR,PfR)(I−P)fR.

A key difficulty arises from a growth of the hydrodynamic part at least as e‖∇xu‖L∞ which might
behave as an exponential of the reciprocal of some power of the viscosity κ due to the unbounded
vorticity formed near the boundary, while such strong singularity of the hydrodynamic part enters the
nonlinear estimate in turn. In fact such trilinear estimate can be effectively handled only by a point-
wise bound of the solutions. Unfortunately as the physical boundary conditions create singularities
in general ([35]), the high Sobolev estimates would not be possible. In this paper we develop a
quantitative Lp-L∞ estimate solely in the setting of the local Maxwellian associated with the Navier-
Stokes flow, in the presence of the diffuse reflection boundary.

Thanks to a strong control of the dissipation from the spectral gap of (1.25), the nonlinear term
can be bounded as

δκ−
1
2 ‖PfR‖L∞t L6

x
‖PfR‖L2

tL
3
x
‖ε−1κ−

1
2
√
ν(I−P)fR‖L2

t,x,v
. (1.40)

Notably an integrability gain of the hydrodynamic part PfR should play a role; however a classical

velocity average lemma PfR ∈ H1/2
x ⊂ L3

x fails to fulfill the need in 3D. We achieve such a higher
integrability by developing a recent L6-bound of hydrodynamic part of [13] in the setting of the local
Maxwellian on the scale of large Reynolds number. We utilize the micro-macro decomposition and
the equation to control κ1/2v · ∇xPfR mainly by 1

εκ1/2L(I − P)fR and εκ1/2∂tfR. We invert the

operator v · ∇xP, employing a recent test function method of [12] in the local Maxwellian setting, to
9



establish a crucial L6-bound of the hydrodynamic part, which is controlled by the dissipation plus
the a priori L2-bound of ∂tfR:

‖κ1/2PfR(t)‖L6
x
. ‖ε−1κ−1/2(I−P)fR(t)‖L2

x,v
+ εκ1/2‖∂tfR(t)‖L2

x,v
+ l.o.t. (1.41)

In other words we can achieve the L6-estimate of (1.41) as “one spatial derivative gain” through the
dissipation provided a temporal derivative being controlled, while the temporal derivative preserves
the boundary conditions. It is a critical point in which a temporal derivative gets involved in our
analysis of Boltzmann and fluids as well!

New difficulties arise as commutator estimates of 1
ε2κ
{∂tLfR −L∂tfR} induce singularities even at

the linear level, as well as ∂t(∂t + ε−1v · ∇x)
√
µfR/

√
µ and the source terms in the equation of ∂tfR

possess higher temporal derivatives of the fluid with an initial layer. In fact after a careful analysis
we realize such singular terms amount to

1

κP

ˆ t

0
‖PfR(s)‖2L2

x
ds,

while P depends on the singularity of derivatives of the Navier-Stokes flow in large Reynolds numbers.
We establish a unified L∞-estimate in the local Maxwellian setting, devising a special weight

function w%,ß(x, v) in order to control an extra growth in |v| from (∂t + ε−1v · ∇x)
√
µfR/

√
µ and

its temporal derivative. We control fR in L∞t L
∞
x by the hydrodynamic part PfR in L6 and the

dissipation, studying the particle-trajectory bouncing against the diffuse reflection boundary and
geometric change of variables related to the bouncing trajectories. The temporal derivative ∂tfR
needs some special attention since the source term of the equation of ∂tfR possesses ∇x∂2

t u, which
turns out to have an initial-boundary layer. For that we measure ∂tfR using a different time-space
norm, namely a weighted L2

tL
∞
x , and control it by the hydrodynamic part of ∂tfR in L2

tL
3
x (with more

singular factor-in-ε than the counterpart for fR) and the dissipation. Although our estimate of ∂tfR
is singular than fR due to our choice of different spaces, we are able to balance such extra singularity
by the strong dissipation and careful trilinear estimates.

We establish L2
tL

3
x−controls for PfR and P∂tfR via the trajectory rather than the classical average

lemma. In fact a direct application of such average lemma has some subtle issue since the source terms
of fR and ∂tfR equations are known to be bounded within a finite time interval only, while the L2

tL
3
x-

control enters the nonlinear estimates. In fact it is not clear whether our iteration of estimates would
guarantee a nonempty finite time interval of validity. Instead we utilize the Duhamel formula along
the trajectories and an extension of solutions in specially designed domains, and employ the TT ∗-
method developed in [31, 28, 14]. As a result we achieve L2

tL
P
x estimates for fR and ∂tfR uniformly

for all p < 3, which gives us a sufficient bound in L2
tL

3
x by interpolating with our L∞-estimates.

Finally upon combining all the estimates above together we are able to bound an energy by the

Gronwall’s inequality. The resulting bound is not uniform but growing exponentially as e1/κP , in
which the power depends on the higher regularity of the fluid. Luckily we are able to find a range of
ε with respect to κ in a scale of large Reynolds number to absorb the Gronwall growth, and achieve
a uniform bound of the Boltzmann remainder, which ensures the rigorous justification of the Hilbert
expansion in Section 1.1. The main theorem of the uniform controls of the Boltzmann remainder fR
is given in Theorem 2.

1.3. Higher Regularity of Navier-Stokes equations in the Inviscid Limit. The inviscid limit
of the Navier-Stokes equations (1.13)-(1.15) is at the heart of our approach. Furthermore, in order to
control fR, as explained in the above, we need to derive quantitative higher regularity estimates of
the Navier-Stokes solutions which are not directly available in the usual inviscid limit results. Before
discussing new features of our analysis, we briefly discuss some prior works on the inviscid limit most
relevant to our result. Due to the formation of boundary layers in the limit caused by the mismatch

10



of boundary conditions (1.15) and (1.10), a classical way to tackle the inviscid limit problem is via the
Prandtl expansion, of which rigorous justification was shown in [48, 49] for well-prepared data with
analytic regularity and in [44] for the initial datum with Sobolev regularity when the initial vorticity is
bounded away from the boundary. In particular, the author of [44] introduced the boundary vorticity
formulation of (1.13)-(1.15) (see (2.16)-(2.18)) which prompted subsequent interesting works in the
field. Among others, in a recent work [47], the authors proved the inviscid limit in 2D based on
the Green’s function approach based on Maekawa’s vorticity formulation without having to construct
Prandtl boundary layer corrections but by utilizing the boundary layer weights in the norm. In
[38, 54], the inviscid limit was shown for initial data that is analytic only near the boundary and has
finite Sobolev regularity in the complement in 2D and 3D respectively.

Our analysis of the Navier-Stokes solutions in the limit is based on the Green’s function approach
for the Stokes problem using the vorticity formulation (2.16)-(2.18) in the same spirit of [47]. However,
the existing methods [47, 38, 54] do not immediately fulfill the goal of our hydrodynamic limit because
the analysis of our remainder fR requires higher regularity of Navier-Stokes solutions, more specifically
L2 and L∞ bounds for higher order derivatives up to two temporal derivatives of ∇xu and p and
two spatial derivatives of ∂tu, while the existing methods do not decipher any bounds for temporal
derivatives and the boundedness of the conormal derivatives in their analytic norms does not rule out
1
x3

singularity of the normal derivative of the vorticity in the boundary layer, which may cause the

loss of L2 integrability. To get around these issues, we pursue new estimates of temporal derivatives of
the vorticity ω by demanding the compatibility conditions for the initial data. With such conditions,
the initial layer is absent for ω and ∂tω; we can derive an analogous integral representation formula
for ∂tω so that we may run the same fixed point argument for ∂tω as in [47] without the initial layer.
For the second temporal derivative, we handle the initial-boundary layer for the horizontal part with
the initial-boundary weight function. These new features allow us to attain the derivative estimates
of the vorticity in the normal direction without 1

x3
singularity near the boundary at the expense of

losing a power of
√
κ, which is crucial for the control of fR. The velocity and pressure estimates are

then recovered by utilizing elliptic regularity results and the Biot-Savart law in the analytic setting.
The main results of Navier-Stokes solutions to (1.13)-(1.15) are given in Theorem 3.

2. Main Results

For the sake of the readers we present the precise statement of main theorems and their notations
in this section. We first present the uniform controls of the Boltzmann remainder fR of Theorem
2, and the higher regularity of the Navier-Stokes equations in the inviscid limit of Theorem 3. As
a consequence of those two theorems we will show a rigorous justification of kinetic approximation
of Navier-Stokes in high Reynolds numbers of Theorem 4. Then using the vorticity estimates in
Theorem 3 and the famous Kato’s condition in the inviscid limit, we prove a hydrodynamic limit
toward the incompressible Euler equations in Corollary 5.

2.1. Uniform controls of the Boltzmann remainder fR (Theorem 2). We recall the expansion
of Boltzmann solution F = µ + ε2f2

√
µ + δεfR

√
µ in (1.19) around the local Maxwellian µ(v) :=

M1,εu,1(v) for any given flow (u, p) solving the incompressible Navier-Stokes equation with the no-slip
boundary condition (1.13)-(1.15).

11



Inspired by the energy structure of the PDE and the coercivity of the linear operator L in (1.25),
we define an energy and a dissipation as

E(t) := ‖fR(t)‖2L2(Ω×R3) + ‖∂tfR(t)‖2L2(Ω×R3),

D(t) :=

ˆ t

0
‖κ−

1
2 ε−1√ν(I−P)fR(s)‖2L2(Ω×R3)ds

+

ˆ t

0
‖κ−

1
2 ε−1√ν(I−P)∂tfR(s)‖2L2(Ω×R3)ds

+

ˆ t

0

(
|ε−

1
2 fR(s)|2L2

γ
+ |ε−

1
2∂tfR(s)|2L2

γ

)
ds.

(2.1)

As explained in Section 1.2, the temporal derivative gets involved mainly in order to access the L6-
bound of the hydrodynamic part PfR, while we will control the following auxiliary norm to be used
in order to handle the nonlinearity: for p < 3 and t > 0

Fp(t) := sup
0≤s≤t

{
‖κ1/2PfR(s)‖2L6(Ω) + ‖κ1/2PfR‖2L2((0,s);Lp(Ω))

+ ‖κP+1/2P∂tfR‖2L2((0,s);Lp(Ω)) + ‖ε1/2κw%,ßfR(s)‖2L∞(Ω×R3)

+ ‖(εκ)3/pκ
1
2

+Pw%′,ßfR(s)‖2L2((0,s);L∞(Ω×R3))

}
.

(2.2)

Here we have introduced weight functions, in order to control an extra quadratic growth in |v| from
(∂t + ε−1v · ∇x)

√
µfR/

√
µ

w%,ß(x, v) = w := exp{%|v|2 − zß(x3)(x · v)} for 0 < ß� %

2π
and 0 < % <

1

4
, (2.3)

where zß : R+ → R+ is defined as, for ß > 0

zß(x3) = ß for x3 ∈
[
0,

1

ß
− 1
]
, and zß(x3) =

1

1 + x3
for x3 ∈

[1
ß
− 1,∞

)
. (2.4)

We have denoted w%′,ß(x, v) = w′ for %′ < %. Also we have denoted the boundary norms and integral
as

|g|Lpγ :=

(ˆ
γ+

|g|p +

ˆ
γ−

|g|p
)1/p

, |g|Lpγ± :=

(ˆ
γ±

|g|p
)1/p

,

ˆ
γ±

f :=

ˆ
∂Ω

ˆ
n(x)·v≷0

f(x, v)|n(x) · v|dvdSx.

(2.5)

Next we discuss the initial data of the Boltzmann equation. We note that an initial datum of f2

is already determined by given flow (u, p). For given initial data fR,0 := fR,in, inspired by the PDE,
we define

∂tfR,0 :=− 1

ε
v · ∇xfR,in −

1

ε2κ
LinfR,in +

2

κ
Γin(f2, fR,in) +

√
ε

εκ
Γin(fR,in, fR,in)

−
(∂t + ε−1v · ∇x)

√
µin√

µin
fR,in + (I−P)R1(u, p)|t=0 + R2(u, p)|t=0,

(2.6)

where (I−P)R1 and R2 are defined in (3.2) with δ =
√
ε and µin, Lin, Γin are induced by the initial

Naiver-Stokes velocity uin. For the remainder fR in (1.17), we will use the norms of the initial data:

E(0) := E(fR,0) := ‖fR,0‖2L2(Ω×R3) + ‖∂tfR,0‖2L2(Ω×R3), (2.7)
12



Fp(0) :=
{
κ

1
2 |fR,0|L2

γ
+ κP+ 1

2 |∂tfR,0|L2
γ

+ ε
1
2κ‖wfR,0‖L∞(Ω̄×R3) + (εκ)

1+ 3
pκP‖w′∂tfR,0‖L∞(Ω̄×R3)

}2
.

(2.8)

Theorem 2 (Uniform controls of the Boltzmann remainder fR). Suppose for T > 0 and P ≥ 1/2∑
`=0,1

‖∇x∂`tu‖L∞([0,T ]×Ω̄) +
1

κ1/2

∑
`=0,1,2

‖∂`tu‖L∞([0,T ]×Ω̄) +
1

κ1/2
‖p‖L∞([0,T ]×Ω̄) .

1

κP
. (2.9)

We further assume that, for 0 ≤ P′ < P,∑
`=1,2

‖∂`tu‖L∞([0,T ];L∞(Ω̄)∩L2(Ω)) +
∑

0≤`≤1
1≤|β|≤2

‖∇βx∂`tu‖L∞([0,T ];L∞(Ω̄)∩L2(Ω))

+
∑
|β|=1

‖∇βx∂2
t u‖L2([0,T ];L∞(Ω̄)∩L2(Ω))

+ ‖∂2
t p‖L2([0,T ];L∞(Ω̄)∩L2(Ω)) +

∑
|β|=0,1

‖∇βx∂tp‖L∞([0,T ];L∞(Ω̄)∩L2(Ω)) . exp
( 1

κP′

)
.

(2.10)

For given such T > 0, let us choose ε, δ and κ as, for some C� 1,

δ =
√
ε and δ = exp

(−CT
κP

)
. (2.11)

Assume that an initial datum for the remainder fR,in satisfies, for some p < 3 and |p− 3| � 1,√
E(0) +

√
Fp(0) . 1. (2.12)

Then we construct a unique solution fR(t, x, v) of the form of

F = M1,εu,1 + ε2f2

√
M1,εu,1 + δεfR

√
M1,εu,1 in [0, T ]× Ω× R3,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.12) with
the scale of (1.8) and (2.11), and satisfies the initial condition F |t=0 = M1,εuin,1 +ε2f2

√
M1,εu,1|t=0 +

δεfR,in
√
M1,εu,1|t=0, in a time interval t ∈ [0, T ]. Moreover, we have

δ
1
2
− 3
p

(1− p
3

)
sup

0≤t≤T

{√
E(t) +

√
D(t) +

√
Fp(t)

}
. 1. (2.13)

Remark 3. The condition (2.11) in the theorem is indeed the largest
√
ε can be allowed. Any smaller

√
ε than exp

(
−CT
κ1/2

)
(which means

√
ε decaying faster than exp

(
−CT
κ1/2

)
as κ ↓ 0) will produce the same

result. In terms of (1.8) the relation (2.11) implies that the Knudsen number Kn has to vanish only
slightly faster than the Mach number Ma:

St = ε = Ma and

√
T

ln ε−1
.

Kn
Ma
↓ 0 as ε ↓ 0. (2.14)

The proof of Theorem 2 will be given in Section 4.

2.2. Higher regularity of Navier-Stokes equations in the inviscid limit (Theorem 3). For
the Navier-Stokes solutions to (1.13)-(1.15), we introduce real analytic norms and function spaces,
adopted from [47] and [54] for the 3D counter part with slight modifications.

In this subsection and Section 5, we will use the following notations: x = (xh, x3) = (x1, x2, x3) ∈
T2×R+ = Ω, ∇x = ∇ = (∇h, ∂3) = (∂x1 , ∂x2 , ∂x3); for a vector valued function g ∈ R3, g = (gh, g3) =
(g1, g2, g3).
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We denote the vorticity by

ω = ∇× u, u = ∇× (−∆)−1ω, (2.15)

while the second identity is the famous Biot-Savart law. Here (−∆)−1 denotes the inverse of −∆
with the zero Dirichlet boundary condition on ∂Ω.

Our analysis of the Navier-Stokes solutions is based on the vorticity formulation in 3D ([43, 44]):

∂tω − κη0∆ω = −u · ∇ω + ω · ∇u in Ω, (2.16)

ω |t=0 = ωin in Ω, (2.17)

κη0(∂x3 +
√
−∆h)ωh = [∂x3(−∆)−1(−u · ∇ωh + ω · ∇uh)] , ω3 = 0 on ∂Ω, (2.18)

where
√
−∆h = |∇h| is defined as√

−∆hg(xh, x3) =
∑
ξ∈Z2

|ξ|gξ(x3)eixh·ξ. (2.19)

Here, gξ(x3) = 1
(2π)2

˜
T2 e
−ixh·ξg(xh, x3)dxh ∈ C with ξ = (ξ1, ξ2) ∈ Z2 denotes the Fourier transform

in the horizontal variables, which satisfies g(x1, x2, x3) =
∑

ξ∈Z2 gξ(x3)eixh·ξ. The Fourier transform

can be regarded as a function gξ(z) where z is sitting in a pencil-like complex domain: for any λ > 0,

Hλ :=
{
z ∈ C : Re z ≥ 0, |Im z| < λmin{Re z, 1}

}
. (2.20)

We define analytic function spaces without the boundary layer, Lp,λ, for holomorphic functions
with a finite norm, for p ≥ 1,

‖g‖p,λ :=
∑
ξ∈Z2

eλ|ξ|‖gξ‖Lpλ where ‖gξ‖Lpλ := sup
0≤σ≤λ

(ˆ
∂Hσ
|gξ(z)|p|dz|

)1/p

. (2.21)

Next we introduce an L∞-based analytic boundary layer function space, for λ > 0 and κ ≥ 0, that
consists of holomorphic functions in Hλ with a finite norm

‖g‖∞,λ,κ =
∑
ξ∈Z2

eλ|ξ|‖gξ‖L∞λ,κ , (2.22)

where ‖gξ‖L∞λ,0 := ‖eᾱRe zgξ(z)‖L∞λ := supz∈Hλ e
ᾱRe zgξ(z) and

‖gξ‖L∞λ,κ :=

∥∥∥∥ eᾱRe z

1 + φκ(z)
gξ(z)

∥∥∥∥
L∞λ

:= sup
z∈Hλ

eᾱRe z

1 + φκ(z)
|gξ(z)|.

Here, a boundary layer weight function is defined as

φκ(z) :=
1√
κ
φ(

z√
κ

) with φ(z) =
1

1 + |Re z|r
for some r > 1. (2.23)

We define Bλ,κ for holomorphic functions g = (g1, g2, g3) with a finite norm

[[g]]∞,λ,κ =
∑
i=1,2

‖gi‖∞,λ,κ + ‖g3‖∞,λ,0. (2.24)

We note that Bλ,κ ⊂ L1,λ, but Bλ,0 $ L∞,λ if ᾱ > 0.

Due to its singular nature of the Navier-Stokes flow in the inviscid limit, we introduce the conormal
derivatives

D = (Dh, D3) = (∇h, ζ(x3)∂3) where ζ(z) =
z

1 + z
. (2.25)

With the multi-indices β = (βh, β3) := (β1, β2, β3) ∈ N3
0, the higher derivatives are denoted by

Dβ = ∂β1
1 ∂β2

2 Dβ3
3 and Dβ

ξ = (iξ1)β1(iξ2)β2Dβ3
3 .
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Now we define, for λ0 > 0, γ0 > 0, α > 0, κ ≥ 0, and t ∈ (0, λ0
2γ0

)

|||g|||∞,κ = sup
λ<λ0−γ0t

{ ∑
0≤|β|≤1

[[Dβg]]∞,λ,κ +
∑
|β|=2

(λ0 − λ− γ0t)
α[[Dβg]]∞,λ,κ

}
, (2.26)

|||g|||1 = sup
λ<λ0−γ0t

{ ∑
0≤|β|≤1

‖Dβ(1 + |∇h|)g‖1,λ

+ (λ0 − λ− γ0t)
α
∑
|β|=2

‖Dβ(1 + |∇h|)g‖1,λ
}
.

(2.27)

With an initial-boundary layer weight function as in [47]

φκt(z) =
1√
κt
φ(

z√
κt

), (2.28)

we define an initial-boundary layer function space Bλ,κt for holomorphic functions g = (g1, g2, g3)
with a finite norm

[[g]]∞,λ,κt =
∑
i=1,2

‖gi‖∞,λ,κt + ‖g3‖∞,λ,0, (2.29)

where an L∞-based analytic norm with the initial-boundary layer is defined as

‖g‖∞,λ,κt =
∑
ξ∈Z2

eλ|ξ|‖gξ‖L∞λ,κt , ‖gξ‖L∞λ,κt =

∥∥∥∥ eᾱRe z

1 + φκ(z) + φκt(z)
gξ(z)

∥∥∥∥
L∞λ

. (2.30)

We finally define, for t ∈ (0, λ0
2γ0

),

|||g|||∞,κt = sup
λ<λ0−γ0t

{ ∑
0≤|β|≤1

[[Dβg]]∞,λ,κt +
∑
|β|=2

(λ0 − λ− γ0t)
α[[Dβg]]∞,λ,κt

}
. (2.31)

In this subsection and Section 5, α, ᾱ are given positive small constants, λ0 is a given positive
constant, and γ0 is a sufficiently large constant to be determined in Theorem 3.

Next we discuss the initial data of the velocity uin and the corresponding vorticity ωin = ∇x×uin.
Inspired by the PDEs, let

ω0 := ωin, ∂tω0 := κη0∆ω0 − u0 · ∇ω0 + ω0 · ∇u0,

u0 := ∇× (−∆)−1ω0, ∂tu0 := ∇× (−∆)−1∂tω0,

∂2
t ω0 := κη0∆∂tω0 − u0 · ∇∂tω0 − ∂tu0 · ∇ω0 + ω0 · ∇∂tu0 + ∂tω0 · ∇u0.

(2.32)

Theorem 3. Let λ0 > 0 and ωin ∈ Bλ0,κ with (2.32) satisfy∑
0≤|β|≤2

‖Dβ∂`tω0‖1,λ0 +
∑

0≤|β|≤2

‖Dβ∂`tω0‖∞,λ0,κ <∞ for ` = 0, 1, 2. (2.33)

Further assume that ωin = ω0 and (2.32) satisfies the compatibility conditions on ∂Ω

κη0(∂x3 +
√
−∆h)ω0,h = [∂x3(−∆)−1(−u0 · ∇ω0,h + ω0 · ∇u0,h)],

ω0,3 = 0, ∂tω0,3 = 0.
(2.34)

Then there exists a constant γ0 > 0 and a time T > 0 depending only on λ0 and the size of the
initial data such that the solution ω(t) to the vorticity formulation of the Navier-Stokes equations
(2.16)-(2.18) exists in C1([0, T ];Bλ,κ) with ∂2

t ω in C(0, T ;Bλ,κt) for 0 < λ < λ0 satisfying

sup
t∈[0,T ]

[
2∑
`=0

∣∣∣∣∣∣∣∣∣∂`tω(t)
∣∣∣∣∣∣∣∣∣

1
+

1∑
`=0

∣∣∣∣∣∣∣∣∣∂`tω(t)
∣∣∣∣∣∣∣∣∣
∞,κ

+
∣∣∣∣∣∣∂2

t ω(t)
∣∣∣∣∣∣
∞,κt

]
<∞. (2.35)
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Furthermore, for each (t, x) ∈ [0, T ]× Ω,

(1) (Bounds on the vorticity and its derivatives) ω(t, x) enjoys the following bounds:

|∇ih∂`tωh(t, x)| . e−ᾱx3 (1 + φκ(x3)) , |∇ih∂`tω3(t, x)| . e−ᾱx3 for i, ` = 0, 1, (2.36)

|∂2
t ωh(t, x)| . e−ᾱx3 (1 + φκ(x3) + φκt(x3)) , |∂2

t ω3(t, x)| . e−ᾱx3 , (2.37)

|∂x3∂
`
tωh(t, x)| . κ−1e−ᾱx3 , |∂x3∂

`
tω3(t, x)| . e−ᾱx3 (1 + φκ(x3)) for ` = 0, 1. (2.38)

(2) (Bounds on the velocity and its derivatives) The corresponding velocity field u(t, x) satisfies
the following:

|∂`tu(t, x)| . 1 for ` = 0, 1, 2, (2.39)∑
1≤|β|≤2

|∇β∂`tu(t, x)| .
(
1 + φκ(x3) + (|β| − 1)κ−1

)
e−min(1, ᾱ

2
)x3 for ` = 0, 1, (2.40)

∑
|β|=1

|∇β∂2
t u(t, x)| .

(
1 + φκ(x3) + φκt(x3)

)
e−min(1, ᾱ

2
)x3 . (2.41)

Moreover, we have the decay estimate for ∂`tu:

|∂`tu| . κ−
1
2 e−min(1, ᾱ

2
)x3 for ` = 1, 2. (2.42)

(3) (Bounds on the pressure and its derivatives) The pressure defined in (5.73) satisfies the fol-
lowing:

|∂`tp(t, x)| . 1 for ` = 0, 1, 2, (2.43)∑
0≤|β|≤1

|∇β∂`tp(t, x)| . κ−
1
2 e−min(1, ᾱ

2
)x3 for ` = 0, 1, (2.44)

|∂2
t p| . (κ−

1
2 + φκt(x3))e−min(1, ᾱ

2
)x3 . (2.45)

Remark 4. For simplicity of the presentation, we have taken the analytic data with the same ana-
lyticity radius in x1, x2 and x3 with the exponential decay for large x3. As shown in [38, 54], more
general initial data requiring the analyticity only near the boundary can be taken.

Remark 5. The horizontal vorticity ωh and the vertical vorticity ω3 obey different boundary condi-
tions (2.18) which enforce different behaviors near the boundary. This is well-reflected in our L∞

based norms in (2.24) and (2.29). As noted in [54], such incompatible behaviors of ωh and ω3 in 3D
are dealt with the L1 based norm (2.27) which contains one more tangential derivative (1 + |∇h|),
which is different from 2D analysis [47, 38].

Remark 6. We demand the compatibility conditions in (2.34) in order to avoid singular initial-
boundary layers for the temporal derivatives of the vorticity. If the first two conditions in (2.34) were
not satisfied, the initial-boundary layers would occur for the first temporal derivative of the vorticity.
For the second temporal derivative, we handle the initial-boundary layer for the horizontal part with
the initial-boundary layer weight, while for the vertical part we further demand ∂tω0,3|x3=0 = 0 in
order to rule out a singular initial-boundary layer caused by the Dirichlet boundary condition. This
amounts to requiring the second order vanishing condition at the boundary for ω0,3, which is satisfied
by a large class of ω0. We remark that the first condition of (2.34) is also satisfied by a large class
of ω0. In fact, if not, by the result of [47], we can obtain a short time solution ω̃(t) to (2.16)-(2.18)
and may reset the initial data by ω0 = ω̃(t = t0) for sufficiently small t0 > 0.

The proof of Theorem 3 will be given in Section 5.
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2.3. Main Theorem. Now we present the full statement of the main theorems of this paper:

Theorem 4 (Kinetic approximation of Navier-Stokes in large Reynolds numbers). We
consider a half space Ω in 3D as in (1.18). Suppose an initial datum of the Navier-Stokes flow uin
is divergence-free ∇x · uin = 0 in Ω and the corresponding initial vorticity ωin = ∇x × uin belongs to
the real analytic space Bλ0,κ of (2.24) for some λ0 > 0 such that (2.33) holds. Further we assume
that ωin satisfies the compatibility conditions (2.34) on ∂Ω. Then there exists a unique real analytic
solution (u(t, x),∇xp(t, x)) to (1.13)-(1.15) in [0, T ]×Ω, while T > 0 only depends on λ0 and the size
of the initial data as in (2.33).

Choosing a pressure p(t, x) such that p(t, x) → 0 as x3 ↑ ∞, we set the local Maxwellian and the
second order correction f2 as

µ := M1,εu,1 =
1

(2π)
3
2

exp

{
−|v − εu|

2

2

}
, f2 := Pf2 + (I−P)f2 = pϕ0

√
µ+ (1.34).

For given such T > 0, let us choose ε and κ in the relation of (2.11).
Assume that an initial datum for the remainder fR,in satisfies (2.12) for some p < 3 and |p−3| � 1.

Then we construct a unique solution fR(t, x, v) of the form of

F = M1,εu,1 + ε2f2

√
M1,εu,1 + ε3/2fR

√
M1,εu,1 in [0, T ]× Ω× R3,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.12) with
the scale of (1.8) and (2.11), and satisfies the initial condition F |t=0 = M1,εuin,1 +ε2f2

√
M1,εu,1|t=0 +

ε3/2fR,in
√
M1,εu,1|t=0.

Moreover we derive that, for each ε and κ of (2.11),

sup
0≤t≤T

∥∥∥∥∥∥F (t, x, v)−M1,εu(t,x),1(v)

ε
√
M1,εu(t,x),1(v)

∥∥∥∥∥∥
L2(Ω×R3)

. exp
(−CT

2κ1/2

)
for κ� 1. (2.46)

Proof. The existence of the Navier-Stokes solutions follows from Theorem 3. For the remaining
assertions, we note that all the estimates (2.39)-(2.42) of Theorem 3 ensure the conditions of Theorem
2 with P = 1

2 . Therefore the conclusion follows directly as a consequence of Theorem 2 and Theorem
3. �

The incompressible Euler limit follows as a byproduct of the main theorem:

Corollary 5 (Hydrodynamic limit toward the incompressible Euler equation). Let uE(t, x)
be a (unique) solution of the incompressible Euler equations (1.9)-(1.10) with the initial condition
uE |t=0 = uin in Ω. Then

sup
0≤t≤T

∥∥∥∥∥F (t, x, v)−M1,εuE(t,x),1(v)

ε(1 + |v|)2
√
M1,0,1(v)

∥∥∥∥∥
L2(Ω×R3)

−→ 0 as ε ↓ 0.

Proof. Note that

F (t, x, v)−M1,εuE(t,x),1(v) =
[
F (t, x, v)−M1,εu(t,x),1(v)

]
+
[
M1,εu(t,x),1(v)−M1,εuE(t,x),1(v)

]
.

The first term can be bounded as in (2.46). We bound the second term by an expansion:

|u(t, x)− uE(t, x)|
ˆ ε

0
|(v − εuE) + a(uE − u)|e−

|(v−εuE)+a(uE−u)|2
2 da.

Note that ‖εu‖L∞ � 1 and ‖εuE‖L∞ � 1 from Theorem 3. Then we conclude that the second term
converges to 0 as κ ↓ 0 from Theorem 3 and the famous Kato’s condition for vanishing viscosity limit
in [34]. �
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3. Hilbert expansion around a local Maxwellian and Source terms

In this section we complete the Hilbert expansion along with the outline of the introduction. As a
result we prove

Proposition 6. Suppose that F of (1.19), with a free parameter δ, solve (1.1) and (1.12) with (1.8)
and that (u, p) solves (1.13)-(1.15). We choose a hydrodynamic part f2 as

Pf2 = pϕ0
√
µ, (3.1)

with the pressure p of the Navier-Stokes flow in (1.13), and (I−P)f2 has been given in (1.34). Then
fR in (1.19) satisfies that[
∂t+

1

ε
v ·∇x+

1

ε2κ
L
]
fR =

2

κ
Γ(f2, fR)+

δ

εκ
Γ(fR, fR)−

(∂t + ε−1v · ∇x)
√
µ

√
µ

fR+(I−P)R1 +R2, (3.2)

[
∂t +

1

ε
v · ∇x +

1

ε2κ
L
]
∂tfR

=− 1

ε2κ
Lt(I−P)fR +

1

ε2κ
L(PtfR) +

2δ

εκ
Γ(fR, ∂tfR) +

2

κ
Γ(f2, ∂tfR) +

2

κ
Γ(∂tf2, fR)

+
2

κ
Γt(f2, fR) +

δ

εκ
Γt(fR, fR)

−
(∂t + ε−1v · ∇x)

√
µ

√
µ

∂tfR − ∂t
((∂t + ε−1v · ∇x)

√
µ

√
µ

)
fR

+ (I−P)R3 + R4,

(3.3)

where the commutators Lt, Pt and Γt are given in (3.34), while

e%|v−εu|
2 |(I−P)R1(t, x, v)| . 1

δ
κ|∇2

xu|, (3.4)

e%|v−εu|
2 |R2(t, x, v)| . ε

δ
(|p|+ κ|∇xu|)|∇xu|+

ε

δ
(|∂tp|+ κ|∇xu|)

+
εκ

δ
(|∇x∂tu|+ |u||∇2

xu|) (3.5)

+
ε2

δ
(|p|+ κ|∇xu|)(|∂tu|+ |u||∇xu|),

e%|v−εu|
2 |(I−P)R3(t, x, v)| . κ

δ
|∇2

x∂tu|, (3.6)

e%|v−εu|
2 |R4(t, x, v)|

.
ε

δ
|∂2
t p|+

εκ

δ
|∇x∂2

t u|+
ε

δ
|∇x∂tp||u|+

εκ

δ
|u||∇2

x∂tu|+
εκ

δ
(1 + εκ|u|)|∂tu||∇2

xu|

+
ε

δ
{(1 + |u|)(|p|+ κ|∇xu|) + κε|∂tu|}|∇x∂tu|+

ε2

δ
{|p|+ κ|∇xu|}|∂2

t u|

+
ε

δ
{(|u|+ ε|p|+ ε2|p||u|)|∂tu|+ (1 + ε|u|)|∂tp|}|∇xu|+

ε2κ

δ
(1 + ε|u|)|∂tu||∇xu|2

+
ε

δ
{|∂tu|+ |∇xp|+ ε|∂tp|+

ε

κ
(|p|2 + κ|u||∇xp|+ εκ|∂tu||p|)}|∂tu|.

(3.7)

At the boundary fR and ∂tfR satisfy

fR(t, x, v)|γ− = Pγ+fR(t, x, v)− ε

δ
(1− Pγ+)(I−P)f2(t, x, v), (3.8)
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∂tfR|γ− = Pγ+∂tfR −
ε

δ
(1− Pγ+)∂t(I−P)f2 + rγ+(fR)− ε

δ
rγ+((I−P)f2),

rγ+(g) := ∂t

√
cµµ(v)

ˆ
n(x)·v>0

g
√
cµµ(v)n(x) · vdv

+
√
cµµ(v)

ˆ
n(x)·v>0

g∂t

√
cµµ(v)n(x) · vdv.

(3.9)

In addition,

e%|v−εu|
2 |f2(t, x, v)| . |p(t, x)|+ κ|∇xu(t, x)|, (3.10)

e%|v−εu|
2 |∂tf2(t, x, v)| . |∂tp|+ κ(|∇x∂tu|+ ε|∂tu||∇xu|) + ε|∂tu||p|, (3.11)

〈v − εu〉−2
∣∣∣(∂t + ε−1v · ∇x)

√
µ

√
µ

∣∣∣ . |∇xu|+ ε|∂tu|+ ε|u||∇xu|︸ ︷︷ ︸
(3.12)∗

, (3.12)

〈v − εu〉−2
∣∣∣∂t((∂t + ε−1v · ∇x)

√
µ

√
µ

) ∣∣∣
. |∇x∂tu|+ ε{|∂2

t u|+ |u||∇x∂tu|+ |∂tu||∇xu|}+ ε2|∂tu|(|∂tu|+ |u||∇xu|)︸ ︷︷ ︸
(3.13)∗

.
(3.13)

Remark 7. We note that due to the choice of (3.1) we remove a contribution of p2 in ε
δκΓ(f2, f2).And

also we remark that R4 is quasi-linear for ∂2
t p and ∇x∂2

t u.

3.1. Derivatives of Aij and Commutators in the local Maxwellian setting. First we check
properties of L and Γ defined in (1.20). Recall the notation of the global Maxwellian µ0 := M1,0,1. It
is convenient to define

L0f(v) :=
−2
√
µ0
Q(µ0,

√
µ0f)(v), Γ0(f, g)(v) :=

1
√
µ0
Q(
√
µ0f,

√
µ0g)(v). (3.14)

For a given εu, we define f̃(·) := f(·+ εu). Then we have

Lf(v + εu) = L0f̃(v), Γ(f, g)(v + εu) = Γ0(f̃ , g̃)(v). (3.15)

As in (1.23) a null space of L0, denoted by N0, is a subspace of L2(R3) spanned by orthonormal bases
{ϕ̃i
√
µ0}4i=0 with

ϕ̃0 := 1, ϕ̃i := vi for i = 1, 2, 3, ϕ̃4 := (|v|2 − 3)/
√

6. (3.16)

We denote a projection P̃ on N0 as in (1.24). From standard properties of L0 and (3.15), we can
easily deduce the corresponding properties of L, namely the null space in (1.23), the spectral gap
estimate in (1.25), and the existence of a unique inverse L−1 : N⊥ → N⊥ in (3.17) which is defined
via L−1

0 : N⊥0 → N⊥0 with the identity

(L−1f)(v) = (L−1
0 f̃)(v − εu). (3.17)

The inverse enjoys the following bound which turns out useful to prove Lemma 3.

Lemma 1. For 0 < % < 1
4 and g ∈ N⊥0

‖ν0(v)e%|v|
2
L−1

0 g(v)‖L∞v . ‖e
%|v|2g(v)‖L∞v + ‖ν0(v)−1e%|v|

2
g(v)‖L2

v
. (3.18)
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The proof is based on the well-known decomposition of L0 = ν0 −K0 and the compactness of K0:
We first recall a standard decomposition

L0g(v) = ν0(v)g(v)−K0g(v)

:=

¨
R3×S2

|(v − v∗) · u|µ0(v∗)dudv∗g(v)

− 1√
µ0(v)

¨
R3×S2

|(v − v∗) · u|
{
µ0(v)

√
µ0(v∗)g(v∗)

− µ0(v′)
√
µ0(v′∗)g(v′∗)− µ0(v′∗)

√
µ0(v′)g(v′)

}
dv∗,

(3.19)

where 〈v〉 . ν0(v) . 〈v〉. For (1.21) we have ν(v) = ν0(v − εu) and k(v, v∗) = k0(v − εu, v∗ − εu). It
is well-known (see (3.50) and (3.52) in [16]) that one can write K0g(v) =

´
R3 k0(v, v∗)g(v∗)dv∗ such

that for some constants C1, C2 > 0

k0(v, v∗) = C1|v − v∗|e−
|v|2+|v∗|2

4 − C2

|v − v∗|
e
− |v−v∗|

2

8
− 1

8
(|v|2−|v∗|2)2

|v−v∗|2 . (3.20)

It is convenient to introduce a new notation, for ϑ > 0,

kϑ(v, v∗) :=
1

|v − v∗|
e
−ϑ|v−v∗|2−ϑ (|v|2−|v∗|2)2

|v−v∗|2 . (3.21)

Clearly |k0(v, v∗)| . kϑ(v, v∗) for 0 < ϑ ≤ 1/8.
Standard compactness estimates read as follows:

Lemma 2. For 0 < % < 2ϑ and C ∈ R3, there exists C%,ϑ > 0 such that

∣∣∣kϑ(v, v∗)
e%|v|

2+C·v

e%|v∗|2+C·v∗

∣∣∣ . 1

|v − v∗|
e−C%

|v−v∗|2
2 for 0 < % < 2ϑ. (3.22)

Moreover

ˆ
R3

(1 + |v − v∗|)kϑ(v, v∗)
e%|v|

2+C·v

e%|v∗|2+C·v∗
dv∗ .ϑ,%

1

1 + |v|
,

ˆ
R3

1

|v − v∗|
kϑ(v, v∗)

e%|v|
2+C·v

e%|v∗|2+C·v∗
dv∗ .ϑ,% 1,

(3.23)

while the same bounds replacing |v| with |v∗| hold for integrations over v.

The proof of (3.22) relies on a fact that the exponent has a majorant −ϑ|v − v∗|2− ϑ (|v|2−|v∗|2)2

|v−v∗|2 ≤

−2ϑ(|v| + |v∗|)||v| − |v∗|| which is a negative definite. Note that an exponent of e%|v|
2

e%|v∗|2
equals

%(|v|+ |v∗|)||v| − |v∗|| which can be absorbed as long as 0 < % < 2ϑ. This yields (3.22). We re-
fer to a proof of Lemma 5 in [20] for details to show (3.23).

Proof of Lemma 1. We consider an operator g(v) 7→ ν−1
0 L0g(v) := 1

ν0(v)L0g(v) on a restricted space

of {g ∈ L2(R3) : e%|v|
2
g(v) ∈ L2(R3)}. First we claim that

ν−1
0 L0 : {g ∈ L2(R3) : e%|v|

2
g(v) ∈ L2(R3)} → {g ∈ L2(R3) : e%|v|

2
g(v) ∈ L2(R3)}. (3.24)
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From (3.19) we have ν−1
0 L0g(v) = g(v)−ν−1

0 e−%|v|
2 ´

R3 k0(v, v∗)
e%|v|

2

e%|v∗|2
e%|v∗|

2
g(v∗)dv∗, and, using (3.23),

for % < 2ϑ ≤ 1/4,

|e%|v|2ν−1
0 L0g(v)|

≤ |e%|v|2g(v)|+ ν0(v)−1 sup
v

√ˆ
R3

kϑ(v, v∗)
e%|v|2

e%|v∗|2
dv∗

√ˆ
R3

kϑ(v, v∗)
e%|v|2

e%|v∗|2
|e%|v∗|2g(v∗)|2dv∗

. |e%|v|2g(v)|+

√ˆ
R3

kϑ(v, v∗)
e%|v|2

e%|v∗|2
|e%|v∗|2g(v∗)|2dv∗.

Therefore we prove (3.24) from

‖e%|v|2ν−1
0 L0g(v)‖L2

v
. ‖e%|v|2g(v)‖L2

v
+

√
sup
v∗

ˆ
R3

kϑ(v, v∗)
e%|v|2

e%|v∗|2
dv

ˆ
R3

|e%|v∗|2g(v∗)|2

. ‖e%|v|2g(v)‖L2
v
.

(3.25)

Now we view {g ∈ L2(R3) : e%|v|
2
g(v) ∈ L2(R3)} as the Hilbert space with an inner product

〈e%|v|2 ·, e%|v|2 ·〉. Then the compactness of ν−1
0 K0 in this space is equivalent to the compactness of

g 7→
´
R3 k0(v, v∗)

e%|v|
2

e%|v∗|2
g(v∗)dv∗ in a usual L2

v. From Lemma 3.5.1 of [16], it suffices to prove that

(i)
´
R3 k0(v, v∗)

e%|v|
2

e%|v∗|2
dv is bounded in v∗, (ii) k0(v, v∗)

e%|v|
2

e%|v∗|2
∈ L2({|v − v∗| ≥ 1

n and |v| ≤ n}) for

all n ∈ N, and (iii) supv
´
R3 k0(v, v∗)

e%|v|
2

e%|v∗|2
{1|v−v∗|≤ 1

n
+ 1|v|≥n}du → 0 as n → ∞. Both conditions

(i) and (ii) come from the first bound of (3.23) directly. We prove (iii) from (3.22) and the first
bound of (3.23). Now applying the Fredholm alternative to ν−1

0 L0 = id−ν−1
0 K0 in the Hilbert space,

we obtain an inverse map (ν−1
0 L0)−1 which is a bounded operator of the Hilbert space. Note that

L−1
0 (g) = (ν−1

0 L0)−1(ν−1
0 g). Hence we derive that

‖e%|v|2L−1
0 g‖L2

v
= ‖e%|v|2(ν−1

0 L0)−1(ν−1
0 g)‖L2

v
. ‖e%|v|2ν−1

0 g‖L2
v
. (3.26)

From the decomposition of L0, we have L−1
0 g(v) = ν0(v)−1g(v) + ν0(v)−1KL−1

0 g(v) for g ∈ N⊥0 .
Then we have

|e%|v|2L−1
0 g(v)|

≤ |ν0(v)−1e%|v|
2
g(v)|+

∣∣∣ν0(v)−1

ˆ
R3

k0(v, v∗)
e%|v|

2

e%|v∗|2
e%|v∗|

2
L−1

0 g(v∗)dv∗

∣∣∣
≤ ν0(v)−1

{
|e%|v|2g(v)|+

√ˆ
R3

∣∣∣k0(v, v∗)
e%|v|2

e%|v∗|2

∣∣∣2dv∗

√ˆ
R3

|e%|v∗|2L−1
0 g(v∗)|2dv∗

}
,

while
∣∣k0(v, v∗)

e%|v|
2

e%|v∗|2

∣∣2 . 1
|v−v∗|2 e

−2C%
|v−v∗|2

2 ∈ L∞v L1
v∗ from (3.22). Hence we prove (3.18). �

Equipped with Lemma 1 we provide bounds of Aij in (1.34) and its derivatives:

Lemma 3. For 0 < % < 1
4

|Aij(v)| . e−%|v−εu|2 , |∇xAij(v)| . ε|∇xu|e−%|v−εu|
2
, |∂tAij(v)| . ε|∂tu|e−%|v−εu|

2
,

|∇x∂tAij(v)| . ε{|∇x∂tu|+ ε|∇xu||∂tu|}e−%|v−εu|
2
.

(3.27)
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Proof. It is convenient to introduce a notation, with L0 in (3.14),

A0,ij(v) := L−1
0

(
(vivj −

|v|2

3
δij)
√
µ0

)
(v). (3.28)

Then from (3.18) and (3.17) we can immediately prove the first bound in (3.27).
Recall the notations in (3.14) and (3.15). By taking a derivative to L0(3.28), it follows that, from

the decomposition of L0A0,ij(v) = ν0(v)A0,ij(v)−
´
R3 k0(v, v − v∗)A0,ij(v − v∗)dv∗ and (3.20),

L0∂vkA0,ij =∂vk(vivj −
|v|2

3
)
√
µ0 + (vivj −

|v|2

3
)∂vk
√
µ0

−
{
∂vkν0(v)A0,ij(v)−

ˆ
R3

∂vk [k0(v, v − v∗)]A0,ij(v − v∗)dv∗
}
.

(3.29)

From (3.20) and ∇v(|v|2 − |v − v∗|2)2 = 4v∗(|v| + |v − v∗|)(|v − |v − v∗|), it follows |∇v[k0(v, v −
v∗)]| . |v∗| exp{− |v−v∗|

2+|v∗|2
8 } + 1

|v∗| exp{− |v∗|
2

8 − 1
8

(|v|2−|v−v∗|2)2

|v∗|2 }. From the first bound of (3.23),

it follows |
´
R3 ∂vk [k0(v, v − v∗)]A0,ij(v − v∗)dv∗| . e−%|v|

2
for any 0 < % < 1/4. Recall a projection

P̃ on N0. Then |(I − P̃) r.h.s. of (3.29)| . e−%|v|
2
. Now applying (3.18) to ∂vkA0,ij = L−1

0 ((I −
P̃) r.h.s. of (3.29)) we derive

|∇vA0,ij(v)| . e−%|v|2 for any 0 < % < 1/4. (3.30)

From (1.34) and (3.17), and the fact ϕ̃i = vi for i = 1, 2, 3, and ϕ̃4 = |v|2
3 (the notation f̃ is defined

in (3.15)), we have

Aij(v) = L−1
0

(
(vivj −

|v|2

3
δij)
√
µ0

)
(v − εu) = A0,ij(v − εu). (3.31)

Therefore we prove the second and third bounds in (3.27) using the fact that ∇x,tAij(v) = −ε∇x,tu∇vA0,ij(v−
εu).

Now we prove

|∇2
vA0,ij(v)| . e−%|v|2 . (3.32)

By taking one more derivative to (3.29), we derive that

L0∂vk∂v`A0,ij = ∂vk∂v`(vivj −
|v|2

3
)
√
µ0 + ∂v`(vivj −

|v|2

3
)∂vk
√
µ0 + (vivj −

|v|2

3
)∂v`∂vk

√
µ0

− ∂vk∂v`ν0(v)A0,ij(v)− ∂vkν0(v)∂v`A0,ij(v)

+

ˆ
R3

∂vk∂v` [k0(v, v − v∗)]A0,ij(v − v∗) + ∂vk [k0(v, v − v∗)]∂v` [A0,ij(v − v∗)]dv∗.

The terms in the first two lines in r.h.s are easily bounded above as e−%|v|
2
, recalling the fact

|∇vν0(v)|+|∇2
vν0(v)| . 1. We only focus on the terms in the last line. From |∂v`∇v(|v|2−|v−v∗|2)2| ≤∣∣4v∗( v`|v| + (v−v∗)`

|v−v∗|

)
(|v| − |v − v∗|)

∣∣ + 4
∣∣v∗(|v| + |v − v∗|)

(
v`
|v| −

(v−v∗)`
|v−v∗|

)∣∣ . |v∗|2 + |v∗||v|, we have

|∂v`∇v[k0(v, v−v∗)]| . |v∗| exp{− |v−v∗|
2+|v∗|2
8 }+ 1+|v|

|v∗|2 exp{− |v∗|
2

8 −
1
8

(|v|2−|v−v∗|2)2

|v∗|2 }. Using the second

estimate of (3.23) with the first bound of (3.27), we have
∣∣ ´

R3 ∂vk∂v` [k0(v, v− v∗)]A0,ij(v− v∗)dv∗
∣∣ .

e−%|v|
2
. From (3.30) and the first bound of (3.27), it follows that

∣∣ ´
R3 ∂vk [k0(v, v − v∗)]∂v` [A0,ij(v −

v∗)]dv∗
∣∣ . e−%|v|2 . Now we invert the operator L0 and use (3.18) to conclude (3.32).

Finally from ∂t∇xAij(v) = −ε∂t∇xu∇vA0,ij(v−εu)+ε2∇xu∂tu∇2
vA0,ij(v−εu), (3.30), and (3.32),

we conclude the last estimate of (3.27). �

For the estimates of ∂tfR we derive the commutator estimate of ∂tL− L∂t and the corresponding
one for Γ as follows.
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Lemma 4. Suppose ε|u| . 1 in the definition of µ in (1.16). For L and Γ in (1.20) and (1.21),

∂t(Lf) = L∂tf + Lt(I−P)f − L(I−P)(Ptf),

∂t(Γ(f, g)) = {Γ(∂tf, g) + Γ(f, ∂tg)}+ Γt(f, g),
(3.33)

where

Ltg(t, v) := −ε∂tu · ∇vν0(v − εu)g(t, v)

+ ε∂tu ·
ˆ
R3

(∇vk0 +∇v∗k0)(v − εu, v∗ − εu)g(t, v∗)dv∗,

(I−P)Ptg := −ε
4∑
j=0

(Pjg)(I−P)
(
∂tu · ∇v(ϕj

√
µ)
)
,

Γt(f, g)(t, v) :=
ε

2

¨
R3×S2

|(v − v∗) · u|∂tu · (v∗ − εu)
√
µ(v∗)

{
f(t, v′)g(t, v′∗)

×+g(t, v′)f(t, v′∗)− f(t, v)g(t, v∗)− g(t, v)f(t, v∗)
}

dudv∗.

(3.34)

We have ∣∣∣∣ ˆ
R3

Lt(I−P)f(v)g(v)dv

∣∣∣∣ . ε|∂tu|‖ν1/2(I−P)f‖L2
v
‖ν1/2g‖L2

v
,∣∣∣∣ ˆ

R3

L(Ptf)(v)g(v)dv

∣∣∣∣ . ε|∂tu||Pf |‖ν1/2(I−P)g‖L2
v
,∣∣∣∣ ˆ

R3

Γt(f, g)(v)h(v)dv

∣∣∣∣
. ε|∂tu|

(
‖e%|v|2+C·vg‖L∞v ‖ν

1/2(I−P)f‖L2
v

+ ‖e%|v|2+C·vf‖L∞v ‖ν
1/2(I−P)g‖L2

v
+ |Pf ||Pg|

)
‖ν1/2h‖L2

v
.

(3.35)

Pointwise estimates are given as follows: for 0 < % < 1/4 and C ∈ R3

|Lt(I−P)f(t, v)− L(Ptf)(t, v)| . ε|∂tu|‖e%|v|
2+C·vf(t, v)‖L∞v ν(v)2e−%|v−εu|

2
,

|Γt(f, g)(t, v)| . ε|∂tu|‖e%|v|
2+C·vf(t, v)‖L∞v ‖e

%|v|2+C·vg(t, v)‖L∞v
ν(v)

e%|v|2+C·v ,

|Γ(f, g)(v)| . ‖e%|v|2+C·vf(v)‖L∞v ‖e
%|v|2+C·vg(v)‖L∞v

ν(v)

e%|v|2+C·v ,

(3.36)

and

|Γ(f, g)(v)| . ‖e%|v|2+C·vf‖∞
(
ν(v)|g(v)|+

ˆ
R3

kϑ(v, v∗)|g(v∗)|dv∗
)
. (3.37)

Proof. The decomposition (3.33) with (3.34) comes from a direct computation to (1.21) and ∂t(LfR) =
∂t(L(I−P)fR) = L(I−P)∂tfR +Lt(I−P)fR +L(−PtfR). On the other hand, from (3.20) it is easy
to check that, for any 0 < % < 1/4,

|∇vν0(v)| =
∣∣∣¨

R3×S2

u
(v − v∗) · u
|(v − v∗) · u|

µ0(v∗)dudv∗

∣∣∣ . 1,

|∇vk0(v, v∗)|+ |∇v∗k0(v, v∗)| .
(
|v − v∗|−1 + ν0(v)2|v − v∗|

)
k%/2(v, v∗).

These estimates above combining with (3.23) and PL = 0 yield the first two estimates of (3.35).
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We derive Γt as in the third identity of (3.34) from a direct computation to (1.22) and ∂t
√
µ(v∗) =

−ε∂tu · ∇v
√
µ0(v∗ − εu) = 1

2ε∂tu · (v∗ − εu)
√
µ0(v∗ − εu). Then it is standard (see Lemma 2.13 in

[13] for example) to have the last estimate in (3.35).
The first bound of (3.36) is a direct consequence of applying (3.22) and (3.23) to the first identity

of (3.34). For the second bound of (3.36) we bound it as

ε|∂tu|‖e%|v|
2+C·vf(t, v)‖L∞v ‖e

%|v|2+C·vg(t, v)‖L∞v
1

e%|v|2+C·v

¨
R3×S2

|(v − v∗) · u|e−%|v∗|
2−C·v∗dudv∗

.
ν(v)

e%|v|2+C·v ε|∂tu|‖e
%|v|2+C·vf(t, v)‖L∞v ‖e

%|v|2+C·vg(t, v)‖L∞v

For the last bound of (3.36) we recall a standard estimate (e.g. [16]) that

| 1

ν0(v)
e%|v|

2+C·vΓ0(f, g)(v)| . ‖e%|v|2+C·vf(v)‖L∞v ‖e
%|v|2+C·vg(v)‖L∞v .

From the second equality of (3.15) we deduce the last bound of (3.36). A bound (3.37) is standard. �

3.2. Proof of Proposition 6. We verify two statements of Section 1.1 Hilbert Expansion. Firstly,
we will show that the solvability condition (1.33) implies the incompressible condition (1.14). From
(1.16), (1.23), and direct computations we verify the first identity of (1.33). Then from the oddness of

the integrand with respect to the variable ϕi we derive that
〈
ϕi
√
µ, ε

−1(v−εu)·∇xµ√
µ

〉
= 0 for i = 1, 2, 3.

For i = 0, 4, we compute that

〈
ϕi
√
µ,
ε−1(v − εu) · ∇xµ√

µ

〉
=

3∑
`=1

〈ϕi
√
µ, ϕ`ϕ`

√
µ〉∂`u` =

{
δi0 + δi4

√
2

3

}
(∇x · u) for i = 0, 4.

This shows that (1.33) implies (1.14).
Secondly, we will verify the following statement of Section 1.1: the leading order terms of the

hydrodynamic part in (1.28) vanish by solving the Navier-Stokes equations (1.13)-(1.15). Consider

(1.28). We set Pf2 = {ρ̃ϕ0 +
∑3

`=1 ũ`ϕ` + θ̃ϕ4}
√
µ whose coefficients will be determined as in (3.1).

Then the leading order term of (1.28) = 1
δ (1.35) can be decomposed as

− 1

δ
P
(

(v − εu) · (∂tu+ u · ∇xu)
√
µ

+ (v − εu) ·
(
∇xρ̃ϕ0

√
µ−

3∑
`=1

∇xũ`ϕ`
√
µ+∇xθ̃ϕ4

√
µ
)

︸ ︷︷ ︸
(3.38)∗

−
3∑

`,m=1

κ(v − εu) ·A`m∇x∂`um
)
, (3.38)

− 1

δ
(I−P)

(
(v − εu) ·

(
∇xρ̃ϕ0

√
µ+

3∑
`=1

∇xũ`ϕ`
√
µ+∇xθ̃ϕ4

√
µ
))

+
1

δ
(I−P)

( 3∑
`,m=1

κ(v − εu) ·A`m∇x∂`um
)
,

(3.39)
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while the lower order term consists of

−1

δ
(v − εu) · ∇x

(
ρ̃ϕ0
√
µ+

3∑
`=1

ũ`ϕ`
√
µ+ θ̃ϕ4

√
µ
)

+
1

δ
(v − εu) ·

(
∇xρ̃ϕ0

√
µ+

3∑
`=1

∇xũ`ϕ`
√
µ+∇xθ̃ϕ4

√
µ
)

+
κ

δ

3∑
`,m=1

(v − εu) · ∇xA`m∂`um.

(3.40)

First we focus on a leading order contribution of (3.38)∗ in (3.38). A direct computation yields〈
ϕi
√
µ, (3.38)∗

〉
=

{
Ci∇x · ũ, i = 0, 4

∂iρ̃〈ϕi
√
µ, ϕi

√
µ〉+ ∂iθ̃〈ϕi

√
µ, ϕiϕ4

√
µ〉 = ∂i

(
ρ̃+

√
2
3 θ̃
)
, i = 1, 2, 3.

(3.41)

Among many other choices we make a special choice (ρ̃, ũ, θ̃) = (p, 0, 0) which is equivalent to (3.1).
From (1.38), (3.41), and (3.1), it follows that for (u, p) solving (1.13)

(3.38) =
1

δ
(v − εu)

√
µ ·
{
∂tu+ u · ∇xu− κη0∆u+∇xp

}
=

1

δ
(v − εu)

√
µ · (1.13) = 0, (3.42)

which verifies the second statement of Section 1.1.
Now we turn to proving the estimates. While the leading order terms vanish in (1.28), the rest of

terms of (1.28) are bounded as follows. Upon the choice of (3.1), the first term of (3.39) vanishes and
the first line of (3.40) are bounded by∣∣∣ ε

2δ
(v − εu) · ∇xu · (v − εu)Pf2

∣∣∣ . ε

δ
|∇xu||p|〈v − εu〉2

√
µ. (3.43)

From (3.27) we deduce that the second term of (3.39) and the second line of (3.40) are bounded
respectively by

κ

δ
|∇2

xu||v − εu|e−%|v−εu|
2
,
εκ

δ
|∇xu||v − εu|e−%|v−εu|

2
for any 0 < % < 1/4. (3.44)

In conclusion we end up with the following result: Assume (u, p) solves (1.13)-(1.15), and both (1.34)
and (3.1) hold. Then

|(1.28)− (3.39)| . ε

δ
{|∇xu||p|+ κ|∇xu|}〈v − εu〉2e−

|v−εu|2
4 , (3.45)

|(I−P)(3.39)| = |(3.39)| . 1

δ
κ|∇2

xu|e−%|v−εu|
2
. (3.46)

The term ∂t(1.28) can be bounded similarly. The entire leading order term of ∂t(1.28) can be
decomposed as

−1

δ
P
(

(v − εu) · ∂t(∂tu+ u · ∇xu)
√
µ+ (v − εu) ·

(
∇x∂tpϕ0

√
µ
)

−
3∑

`,m=1

κ(v − εu) ·A`m∇x∂`∂tum
)
, (3.47)

−1

δ
(I−P)

(
(v − εu) · (∇x∂tpϕ0

√
µ)
)

+
1

δ
(I−P)

( 3∑
`,m=1

κ(v − εu) ·A`m∇x∂`∂tum
)
. (3.48)
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Following the argument to get (1.38) and (3.41), we derive that

(3.47) = −1

δ
(v − εu)

√
µ · ∂t(1.13) = 0. (3.49)

On the other hand,

|(3.48)| . 1

δ
κ|∇2

x∂tu|e−%|v−εu|
2
. (3.50)

Now the lower order term ∂t(1.28)− (3.47)− (3.48) consists of

ε

δ
∂tu ·

{
(∂tu+ u · ∇xu)

√
µ+∇xPf2 − κ∇x

( 3∑
`,m=1

A`m∂`um

)}

+
κ

δ
(v − εu) · ∇x

( 3∑
`,m=1

∂tA`m∂`um

)
− 1

δ
(v − εu) · ∇x∂t

(
pϕ0
√
µ
)

+
1

δ
(v − εu) ·

(
∇x∂tpϕ0

√
µ
)
.

(3.51)

Since the lower order term of ∂t(1.28) always contains |∂t(v− εu)| ≤ ε|∂tu|, they can be bounded by,
from (3.27) and (3.1),

|(3.51)| . ε

δ
|∂tu|

{
|∂tu|+ |u||∇xu|+ |∇xp|+ ε|∇xu||p|+ κε|∇xu|2 + κ|∇2

xu|
}
e−%|v−εu|

2

+
ε

δ
{|∇x∂tu|(1 + κ|∇xu|) + |∂tp||∇xu|}e−%|v−εu|

2
.

(3.52)

Now we consider (1.29). From (1.34), (3.1), and (3.27), we derive that

|(∂t + u · ∇x)Pf2| .
{
|∂tp|+ |u||∇xp|+ ε|p|{|∂tu|+ |u||∇xu|}

}
〈v − εu〉2e−

|v−εu|2
4 , (3.53)

|∂t(∂t + u · ∇x)Pf2|

.
{
|∂2
t p|+ |∂tu||∇xp|+ |u||∇x∂tp|+ ε|∂tp|{|∂tu|+ |u||∇xu|}

+ ε|p|{|∂2
t u|+ |∂tu||∇xu|+ |u||∇x∂tu|}+ ε|∂tu|{r.h.s. of (3.53)}

}
〈v − εu〉2e−

|v−εu|2
4 ,

(3.54)

and, for 0 < % < 1/4,

|(∂t + u · ∇x)(I−P)f2| . κ
{
{|∇x∂tu|+ |u||∇2

xu|}+ ε{|∂tu|+ |u||∇xu|}|∇xu|
}
e−%|v−εu|

2
, (3.55)

|∂t(∂t + u · ∇x)(I−P)f2|

. κ
{
{|∇x∂2

t u|+ |∂tu||∇2
xu|+ |u||∇2

x∂tu|}+ ε{|∂tu|+ |u||∇xu|}|∇x∂tu|

+ ε{|∂2
t u|+ |∂tu||∇xu|+ |u||∇x∂tu|}|∇xu|+ ε|∂tu|{r.h.s. of (3.55)}

}
e−%|v−εu|

2
.

(3.56)

Next we consider the last term in (1.29). From (1.16) and (1.14)

(∂t + ε−1v · ∇x)
√
µ

√
µ

=
1

2

[
(v − εu) · ∇xu · (v − εu) + ε(∂tu+ u · ∇xu) · (v − εu)

]
,

∂t

(
(∂t + ε−1v · ∇x)

√
µ

√
µ

)
=

1

2

[
ε(∂2

t u+ u∇x∂tu− ∂tu · ∇xu) · (v − εu)− ε2∂tu · (∂tu+ u · ∇xu)

+ (v − εu) · ∇x∂tu · (v − εu)
]
,

and hence we derive (3.12) and (3.13).
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Applying (3.27) to (1.34), it follows that, for 0 < % < 1
4 ,

|(I−P)f2| . κ|∇xu|e−%|v−εu|
2
, |∂t(I−P)f2| . κ{|∂t∇xu|+ ε|∂tu||∇xu|}e−%|v−εu|

2
. (3.57)

From (3.1)

|Pf2| . |p|e−
|v−εu|2

4 , |∂tPf2| . |∂tp|e−
|v−εu|2

4 + ε|∂tu||p|〈v − εu〉e−
|v−εu|2

4 . (3.58)

These estimates give (3.10) and (3.11).

The last term of (1.29) is bounded as

ε

δ

∣∣∣(∂t + ε−1v · ∇x)
√
µ

√
µ

f2

∣∣∣ . ε

δ
{|p|+ κ|∇xu|}{|∇xu|+ ε(|∂tu|+ |u||∇xu|)}e−%|v−εu|

2
, (3.59)

ε

δ

∣∣∣∂t((∂t + ε−1v · ∇x)
√
µ

√
µ

f2

)∣∣∣
.
ε

δ
{|∇xu|+ ε(|∂tu|+ |u||∇xu|)}{|∂tp|+ κ|∂t∇xu|+ ε|∂tu|(|p|+ κ|∇xu|)}e−%|v−εu|

2

+
ε

δ
(|p|+ κ|∇xu|){|∇x∂tu|+ ε(|∂2

t u|+ |u||∇x∂tu|+ |∂tu||∇xu|)

+ ε2|∂tu|(|∂tu|+ |u||∇xu|)}e−%|v−εu|
2
.

(3.60)

Lastly from (3.36), (3.1), and (1.34)

ε

δκ
|Γ(f2, f2)(v)| = ε

δκ
|Γ(f2, f2)(v)− Γ(Pf2,Pf2)|

.
ε

δ
(|p|+ κ|∇xu|)|∇xu|ν(v)e−%|v−εu|

2
,

(3.61)

ε

δκ
|∂tΓ(f2, f2)(v)|

.
ε

δ
{(|p|+ κ|∇xu|)|∂t∇xu|+ (|∂tp|+ κ|∇x∂tu|)|∇xu|}ν(v)e−%|v−εu|

2

+
ε2

δ
|∂tu|(|p|+ κ|∇xu|)|∇xu|ν(v)e−%|v−εu|

2
,

(3.62)

where we have used Γ(Pf2,Pf2) = Γ(p
√
µ, p
√
µ) = 0 to eliminate the contribution of p2 in (3.61).

Finally we wrap up the estimates of the source term of (3.2) to show (3.4) and (3.5). The term
(I−P)R1 consists of (3.39), which is bounded as (3.46) and hence we prove (3.4). The rest of terms
form R2, which can be proved to be bounded as (3.5), from (3.45), (3.53), (3.55), (3.59), and (3.61).

Now we consider the source term of (3.3). The term (I−P)R3 consists of (3.48), which is bounded
as (3.50). From (3.49), (3.52), (3.54)-(3.56), (3.12), (3.13), (3.60), (3.62), and (3.36), we prove (3.7).

4. A priori estimates for fR

For each ε > 0 an existence of a unique solution in a time interval [0,∞) can be found in [13].
Thereby we only focus on a priori estimates of fR in different spaces. For the sake of simplicity at
times we will use simplified notations

‖g(t, x, v)‖Lp1t L
p2
x L

p3
v

:=
∥∥∥∥∥‖g(t, x, v)‖Lp3v (R3)

∥∥
L
p2
x (Ω)

∥∥∥
L
p1
t ([0,T ])

, ‖g‖Lpt,x,v := ‖g‖LptLpxLpv . (4.1)

Recall the boundary integral and the norms in (2.5). Also recall w = w%,ß(x, v) in (2.3) and w′ =
w%′,ß(x, v) for 0 < %′ < %.
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4.1. L2-Energy estimate. Our starting point is a basic L2-energy estimate for the Boltzmann
remainder fR and its temporal derivative ∂tfR in which the dissipation (1.31) plays an important role
in the nonlinear estimate.

Proposition 7. Under the same assumptions in Proposition 6, we have

‖fR(t)‖2L2
x,v

+ d2

ˆ t

0
‖κ−

1
2 ε−1√ν(I−P)fR‖2L2

x,v
+

ˆ t

0
|ε−

1
2 fR|2L2

γ

. ‖fR(0)‖2L2
x,v

+ (1 + ‖(3.12)‖L∞t,x)

ˆ t

0
‖PfR(s)‖2L2

x
ds+

δ2

κ3
‖κ1/2PfR(s)‖2L∞t L6

x
‖κ1/2PfR‖2L2

tL
3
x

+
εκ2

δ2
|∇xu|2L2

tL
2(∂Ω) + κε1/8‖∇xu‖2L2

t,x
+ κε2‖(3.4)‖2L2

t,x
+ ‖(3.5)‖2L2

t,x
,

(4.2)

where

d2 :=
σ0

2
− δε‖wfR‖L∞t,x,v − (ε

15
16 ‖wfR‖L∞t,x,v)

2 − ε2‖(3.10)‖L∞t,x −
ε2

κ
‖(3.10)‖2L∞t,x − εκ

1/2‖(3.12)∗‖L∞t,x .
(4.3)

Here Lpt = Lpt ([0, t]) in particular. Note that a weighted L∞-bound of fR is involved in this energy
estimate, where the weight w = w%,ß(x, v) is defined in (2.3).

We also have

‖∂tfR(t)‖2L2
x,v

+ d2,t‖κ−
1
2 ε−1√ν(I−P)∂tfR‖2L2

t,x,v
+ |ε−

1
2∂tfR|2L2

tL
2
γ
− ε‖∂tu‖L∞t,x |fR|

2
L2
tL

2
γ

. ‖∂tfR(0)‖2L2
x,v

+ κ−1δ2‖PfR‖2L∞t L6
x
{‖PfR‖2L2

tL
3
x

+ ‖P∂tfR‖2L2
tL

3
x
}

+
{
κ−1‖∂tu‖2L∞t,x + ‖∇x∂tu‖L∞t,x + ε‖∂2

t u‖L2
tL
∞
x

+ εκ−1/2(1 + ‖∂tu‖L∞t,x)‖(3.10)‖L∞t,x

+ ‖(3.12)‖L∞t,x + ‖(3.13)∗‖L∞t,x
}
×
ˆ t

0
‖P∂tfR(s)‖2L2

x
ds

+
{
κ−1‖∂tu‖2L∞t,x + ‖∇x∂tu‖L∞t,x + ε‖∂2

t u‖L2
tL
∞
x

+ (ε‖(3.10)‖L∞t,x)2

+ (εκ−1/2‖(3.11)‖L∞t,x)2 + ‖(3.13)∗‖L∞t,x
}
×
ˆ t

0
‖PfR(s)‖2L2

x
ds

+
{
ε(1 + ε‖(3.10)‖L∞t,x)‖∂tu‖L∞t,x + εκ‖∇x∂tu‖L∞t,x + ε2κ‖∂2

t u‖L2
tL
∞
x

+ (εκ1/2‖(3.13)∗‖L∞t,x)2 + (εδ‖wfR‖L∞t,x,v)
2
}
× ‖ε−1κ−1/2√ν(I−P)fR‖2L2

t,x,v

+ e−
%

4ε2 {‖(3.12)‖2L∞t,x + ‖∇x∂tu‖2L2
tL
∞
x
}+ (εκ1/2‖(3.6)‖L2

t,x
)2 + ‖(3.7)‖2L2

t,x

+
εκ2

δ2
||∂t∇xu|+ ε|∂tu||∇xu||2L2

tL
2(∂Ω) +

ε3κ2

δ
|∇xu|2L2

tL
2(∂Ω)‖∂tu‖L∞t,x ,

(4.4)

where ∂tfR(0, x, v) := fR,t(0, x, v) is defined in (2.6). Here

d2,t :=
σ0

2
− ε(κ−1/2 + ε‖∂tu‖L∞t,x)‖(3.10)‖L∞t,x − εκ‖(3.12)‖L∞t,x − (εκ1/2‖(3.13)∗‖L∞t,x)2

− εκ‖∇x∂tu‖L∞t,x − ε
2κ‖∂2

t u‖L2
tL
∞
x

+ ε‖∂tu‖L∞t,x(1 + ε‖∂tu‖L∞t,x)

− ε−
%

4ε2 (εκ1/2‖w%′,ß∂tfR‖L2
tL
∞
x,v

)2 − εδ(1 + ε‖∂tu‖L∞x,v)‖wfR‖L∞t,x
− (εκ1/2‖wfR‖L∞t,x,v)

2,

(4.5)

where 0 < %′ < %.
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Remark 8. We utilize several different time-space norms to control the fluid source terms, which
possess the initial-boundary and boundary layers as in Theorem 3.

The following trace theorem is useful to control the boundary terms.

Lemma 5 (Trace theorem).

1

ε

ˆ t

0

ˆ
γN+

|h|dγds .N

¨
Ω×R3

|h(0)|+
ˆ t

0

¨
Ω×R3

|h|+
ˆ t

0

¨
Ω×R3

|∂th+
1

ε
v · ∇xh|, (4.6)

where γN+ := {(x, v) ∈ γ+ : |n(x) · v| > 1/N and 1/N < |v| < N}.

The proof is standard (for example see Lemma 3.2 in [13] or Lemma 7 in [6]).

Proof of Proposition 7. First we prove (4.2). An energy estimate to (3.2) and (3.8) reads as

1

2
‖fR(t)‖2L2

x,v
− 1

2
‖fR(0)‖2L2

x,v
+

1

κε2

ˆ t

0

¨
Ω×R3

fRLfR (4.7)

+
1

2ε

ˆ t

0

ˆ
γ+

|fR|2 −
1

2ε

ˆ t

0

ˆ
γ−

|Pγ+fR −
ε

δ
(1− Pγ+)(I−P)f2|2 (4.8)

=
δ

κε

ˆ t

0

¨
Ω×R3

Γ(fR, fR)(I−P)fR (4.9)

+
2

κ

ˆ t

0

¨
Ω×R3

Γ(f2, fR)(I−P)fR (4.10)

+

ˆ t

0

¨
Ω×R3

(I−P)R1(I−P)fR (4.11)

+

ˆ t

0

¨
Ω×R3

R2fR (4.12)

+

ˆ t

0

¨
Ω×R3

−(∂t + ε−1v · ∇x)
√
µ

√
µ

|fR|2. (4.13)

Among others two terms (4.9) and (4.13) are most problematic.
We start with (4.7). From the spectral gap estimate in (1.25), we have

(4.7) ≥ 1

2
‖fR(t)‖2L2

x,v
− 1

2
‖fR(0)‖2L2

x,v
+ σ0‖κ−

1
2 ε−1√ν(I−P)fR‖2L2

t,x,v
. (4.14)

Now we consider (4.9), in which we need integrability gain of PfR in L6
x of the next sections. From

decomposition fR = PfR + (I−P)fR and Γ = Γ+ − Γ− in (1.22), we derive

|(4.9)| . δ

κε

∑
i=±

ˆ t

0

¨
Ω×R3

|ν−
1
2 Γi(|fR|, (I−P)fR)||

√
ν(I−P)fR|

+
δ

κε

∑
i=±

ˆ t

0

¨
Ω×R3

|ν−
1
2 Γi(|PfR|, |PfR|)||

√
ν(I−P)fR|

. δε‖wfR‖L∞x,v‖κ
− 1

2 ε−1√ν(I−P)fR‖2L2
t,x,v

+
δ

κ3/2
‖κ1/2PfR‖L∞t L6

x
‖κ1/2PfR‖L2

tL
3
x
‖κ−

1
2 ε−1√ν(I−P)fR‖L2

t,x,v
.

(4.15)
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From (3.57) and (3.58),

|(4.10)|

≤ ε

κ1/2
‖(3.10)‖L∞t,x{‖PfR‖L2

t,x
+ κ

1
2 ε‖κ−

1
2 ε−1√ν(I−P)fR‖L2

t,x,v
}

× ‖κ−
1
2 ε−1√ν(I−P)fR‖L2

t,x,v

. {ε2‖(3.10)‖L∞t,x +
ε2

κ
‖(3.10)‖2L∞t,x}‖κ

− 1
2 ε−1√ν(I−P)fR‖2L2

t,x,v
+ ‖PfR‖2L2

tL
2
x
.

(4.16)

From (3.4) and (3.5) we derive that

|(4.11)| . κ1/2ε‖(3.4)‖L2
t,x
‖κ−1/2ε−1(I−P)fR‖L2

t,x,v
,

|(4.12)| . ‖(3.5)‖2L2
t,x,v

+ ‖PfR‖2L2
t,x,v

+ κ1/2ε‖(3.5)‖L2
t,x,v
‖κ−1/2ε−1(I−P)fR‖L2

t,x,v
.

(4.17)

Next using (3.12) it follows that

|(4.13)|

. κ1/2ε‖w−1ν3/2∇xu‖L2
t,x,v
‖wfR‖L∞t,x,v‖κ

− 1
2 ε−1√ν(I−P)fR‖L2

t,x,v

+ ‖(3.12)‖L∞t,x

ˆ t

0
‖PfR(s)‖2L2

x
ds+ εκ1/2‖(3.12)∗‖L∞t,x‖κ

− 1
2 ε−1√ν(I−P)fR‖2L2

t,x,v

.
{

(ε
15
16 ‖wfR‖L∞t,x,v)

2 + εκ1/2‖(3.12)∗‖L∞t,x
}
‖κ−

1
2 ε−1√ν(I−P)fR‖2L2

t,x,v

+ ‖(3.12)‖L∞t,x

ˆ t

0
‖PfR(s)‖2L2

x
ds+ (κ

1
2 ε

1
16 ‖∇xu‖L2

t,x
)2.

(4.18)

Finally we control the boundary term (4.8) using a trace theorem (4.6). First we have, from (3.8),

(4.8) =
1

2ε

ˆ t

0

ˆ
γ+

{|fR|2 − |Pγ+fR|2} −
ε

2δ2

ˆ t

0

ˆ
γ−

|(1− Pγ+)(I−P)f2|2

−
ˆ t

0

ˆ
γ−

1

ε1/2
Pγ+fR

ε1/2

δ
(1− Pγ+)(I−P)f2

≥ 1

2
|ε−

1
2 (1− Pγ+)fR|2L2

tL
2
γ+

− 1

8C
|ε−

1
2Pγ+fR|2L2

tL
2
γ+

− (
ε

2δ2
+ 2C

ε

δ2
)

ˆ t

0

ˆ
γ+

|(1− Pγ+)(I−P)f2|2 for C � 1,

(4.19)

where we have used the fact |Pγ+fR|L2
γ+

= |Pγ+fR|L2
γ−

from Pγ+fR(t, x, v) being a function of (t, x, |v|)
due to u|∂Ω = 0.

Now we estimate Pγ+fR. Since Pγ+ in (3.8) is a projection of cµ
√
µ on γ+, it follows

´
γ+
|Pγ+f |2 ≤

2
´
γN+
|Pγ+f |2 for large enoughN > 0, where γN+ := {(x, v) ∈ γ+ : |n(x)·v| > 1/N and 1/N < |v| < N}.
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Setting h = |f |2 in (4.6) and using (3.2), (3.4), and (3.5) we derive

1

ε

ˆ t

0

ˆ
γ+

|fR|2dγds

≤ CN
¨

Ω×R3

|fR(0)|2 +

ˆ t

0

¨
Ω×R3

|fR|2

+

ˆ t

0

¨
Ω×R3

∣∣∣[− 1

ε2κ
LfR +

1

κ
Γ(f2, fR) +

δ

εκ
Γ(fR, fR)

−
(∂t + ε−1v · ∇x)

√
µ

√
µ

fR + (I−P)R1 + R2

]
fR

∣∣∣
≤ CN

{
‖fR(0)‖2L2

x,v
+ ‖PfR‖2L2

t,x,v
+ ‖ε−1κ−1/2√ν(I−P)fR‖2L2

t,x,v

+ (4.15) + (4.16) + (4.17) + (4.18)
}
.

(4.20)

Furthermore from (3.8) and (4.20)

|fR|2L2
tL

2
γ−
. |fR|2L2

tL
2
γ+

+
ε2

δ2
|(1− Pγ+)(I−P)f2|2L2

tL
2
γ−

= |fR|2L2
tL

2
γ+

+
ε2κ2

δ2
|∇xu|2L2

tL
2(∂Ω). (4.21)

Finally we collect the terms as

r.h.s of (4.14) + (4.19) +
1

4C
|ε−

1
2Pγ+fR|2L2

tL
2
γ+

+
ε−1

16C
|fR|2L2

tL
2
γ−

≤ r.h.s of (4.15) + (4.16) + (4.17) + (4.18) +
1

4C
× r.h.s of (4.20) +

ε−1

16C
× r.h.s of (4.21).

We choose large N and then large C so that CN
4C � σ0. Using Young’s inequality for products, and

then moving contributions of ‖κ−
1
2 ε−1√ν(I−P)fR‖2L2

t,x,v
to l.h.s., we derive (4.2).

Next we prove (4.4). An energy estimate to (3.3) and (3.9) lead to (4.4)

1

2
‖∂tfR(t)‖22 −

1

2
‖∂tfR(0)‖22 +

1

κε2

ˆ t

0

¨
Ω×R3

∂tfRL∂tfR (4.22)

+
1

2ε

ˆ t

0

ˆ
γ+

|∂tfR|2

− 1

2ε

ˆ t

0

ˆ
γ−

|Pγ+∂tfR −
ε

δ
(1− Pγ+)∂t(I−P)f2 + rγ+(fR)− ε

δ
rγ+((I−P)f2)|2 (4.23)

=− 1

ε2κ

ˆ t

0

¨
Ω×R3

Lt(I−P)fR∂tfR +
1

ε2κ

ˆ t

0

¨
Ω×R3

L(PtfR)(I−P)∂tfR (4.24)

+
2δ

κε

ˆ t

0

¨
Ω×R3

Γ(fR, ∂tfR)(I−P)∂tfR +
2

κ

ˆ t

0

¨
Ω×R3

Γ(f2, ∂tfR)(I−P)∂tfR (4.25)

+
2

κ

ˆ t

0

¨
Ω×R3

Γ(∂tf2, fR)(I−P)∂tfR (4.26)

+
2

κ

ˆ t

0

¨
Ω×R3

Γt(f2, fR)∂tfR +
δ

εκ

ˆ t

0

¨
Ω×R3

Γt(fR, fR)∂tfR (4.27)

+

ˆ t

0

¨
Ω×R3

(I−P)R3(I−P)∂tfR (4.28)
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+

ˆ t

0

¨
Ω×R3

R4∂tfR (4.29)

+

ˆ t

0

¨
Ω×R3

−(∂t + ε−1v · ∇x)
√
µ

√
µ

|∂tfR|2 +

ˆ t

0

¨
Ω×R3

∂t

(−(∂t + ε−1v · ∇x)
√
µ

√
µ

)
fR∂tfR. (4.30)

We consider the first term of (4.30). We decompose ∂tfR = P∂tfR+(I−P)∂tfR. The contribution
of P∂tfR can be bounded above as, from (3.12),

‖(3.12)‖L∞t,x

ˆ t

0
‖P∂tfR(s)‖2L2

x
ds. (4.31)

For the contribution of (I − P)∂tfR we utilize an extra decomposition 1|v|≤ε−1 + 1|v|≥ε−1 Then it is
bounded as

‖(3.12)‖∞
{˚

1|v|≤ε−1 |v|ν(v)|(I−P)∂tfR|2

+

˚
1|v|≥ε−1

|v|3/2

w′(v)
w′(v)∂tfR(v)

√
ν(v)|(I−P)∂tfR|

}
. ‖(3.12)‖∞

{
ε−1‖

√
ν(I−P)∂tfR‖2L2

t,x,v
+ e−

%

4ε2 ‖w′∂tfR‖L2
tL
∞
x,v
‖
√
ν(I−P)∂tfR‖L2

t,x,v

}
.

(4.32)

For the second term of (4.30) using (3.13) we bound it by

‖(3.13)∗‖L∞t,x‖
√
ν(I−P)fR‖L2

t,x,v
‖
√
ν(I−P)∂tfR‖L2

t,x,v

+ e−
%

4ε2 ‖∇x∂tu‖L2
tL
∞
x
‖wfR‖L∞t,x,v‖

√
ν(I−P)∂tfR‖L2

t,x,v

+ {‖∇x∂tu‖L∞t,x + ‖(3.13)∗‖L∞t,x}
{ ˆ t

0
‖PfR(s)‖2L2

x
ds+

ˆ t

0
‖P∂tfR(s)‖2L2

x
ds
}
.

(4.33)

Using (3.35) we bound (4.24) and (4.27) as

|(4.24)| . κ−
1
2 ‖∂tu‖L∞t,x‖κ

− 1
2 ε−1√ν(I−P)fR‖L2

t,x,v

× {‖P∂tfR‖L2
t,x

+ κ
1
2 ε‖κ−

1
2 ε−1√ν(I−P)∂tfR‖L2

t,x,v
}

+ κ−
1
2 ‖∂tu‖L∞t,x‖κ

− 1
2 ε−1√ν(I−P)∂tfR‖L2

t,x,v
‖PfR‖L2

t,x
,

(4.34)

|(4.27)| . κ−
1
2 ε‖∂tu‖L∞t,x‖(3.10)‖L∞t,x{‖

√
ν(I−P)fR‖L2

t,x,v
+ ‖PfR‖L2

t,x
}‖∂tfR‖L2

t,x,v

+ δκ−1‖∂tu‖L∞t,x{‖P∂tfR‖L2
t,x

+ ‖
√
ν(I−P)∂tfR‖L2

t,x,v
}

× {‖PfR‖L∞t L6
x
‖PfR‖L2

tL
3
x

+ ‖κ−
1
2 ε−1(I−P)fR‖L2

t,x,v
κ

1
2 ε‖wfR‖L∞t,x,v}.

(4.35)

The rest of terms can be controlled similarly as in the proof of (4.2):

(4.22) ≥ 1

2
‖∂tfR(t)‖2L2

x,v
− 1

2
‖∂tfR(0)‖2L2

x,v
+ σ0‖κ−

1
2 ε−1√ν(I−P)∂tfR‖2L2

t,x,v
, (4.36)

|(4.25)| . {δε‖wfR‖L∞t,x,v + ε2‖(3.10)‖L∞t,x}‖κ
− 1

2 ε−1√ν(I−P)∂tfR‖2L2
t,x,v

+
δ

κ3/2
‖κ1/2PfR‖L∞t L6

x
‖κ1/2P∂tfR‖L2

tL
3
x
‖κ−

1
2 ε−1√ν(I−P)∂tfR‖L2

t,x,v
(4.37)

+
ε

κ1/2
‖Pf2‖L∞t,x‖P∂tfR‖L2

t,x
‖κ−

1
2 ε−1√ν(I−P)∂tfR‖L2

t,x,v
,
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(4.38)

|(4.26)| . κ−
1
2 ε‖
√
ν∂tf2‖L∞t,x,v{‖PfR‖L2

t,x
+ ‖
√
ν(I−P)fR‖L2

t,x,v
}‖κ−

1
2 ε−1(I−P)∂tfR‖L2

t,x,v
, (4.39)

|(4.28)| . κ1/2ε‖(3.6)‖L2
t,x
‖κ−1/2ε−1(I−P)∂tfR‖L2

t,x,v
, (4.40)

|(4.29)| . ‖(3.7)‖L2
t,x

{
‖P∂tfR‖L2

t,x
+ κ1/2ε‖κ−1/2ε−1(I−P)∂tfR‖L2

t,x,v

}
. (4.41)

Lastly we estimate (4.23) and the first term of (4.30). As in (4.19) we derive that (4.23) is bounded
from below by

1

2
|ε−

1
2 (1− Pγ+)∂tfR|2L2((0,T );L2

γ+
) −

1

8C
|ε−

1
2Pγ+∂tfR|2L2((0,T );L2

γ+
)

− C
{ ε
δ2
|(1− Pγ+)∂t(I−P)f2|2L2((0,T );L2

γ− ) + ε‖∂tu‖∞|fR|2L2((0,T );L2
γ+

)

+ ‖∂tu‖∞
ε3

δ
|(I−P)f2|2L2((0,T );L2

γ+
)

}
≥1

2
|ε−

1
2 (1− Pγ+)∂tfR|2L2((0,T );L2

γ+
) −

1

8C
|ε−

1
2Pγ+∂tfR|2L2((0,T );L2

γ+
)

− C
{εκ2

δ2
||∂t∇xu|+ ε|∂tu||∇xu||2L2

tL
2(∂Ω) + ε‖∂tu‖∞|fR|2L2((0,T );L2

γ+
)

+ ‖∂tu‖∞
ε3

δ
κ2|∇xu|2L2

tL
2(∂Ω)

}
for C � 1,

(4.42)

where we have used |rγ+(g)|L2(γ−) . ε‖∂tu‖∞|g|L2(γ−) from (3.9). Now we bound Pγ+∂tfR using (4.6).

Following the argument arriving at (4.20) and setting h = |∂tf |2 we derive

1

ε

ˆ t

0

ˆ
γ+

|∂tfR|2dγds

.N ‖∂tfR(0)‖L2
x,v

+ ‖∂tfR‖L2
t,x,v

+

ˆ t

0

¨
Ω×R3

∣∣∣(− 1

ε2κ
L∂tfR + r.h.s of (3.3)

)
∂tfR

∣∣∣
.N ‖∂tfR(0)‖2L2

x,v
+ ‖P∂tfR‖2L2

t,x
+ ‖ε−1κ−1/2√ν(I−P)∂tfR‖2L2

t,x,v

+ (4.31) + · · ·+ (4.35) + (4.37) + · · ·+ (4.41).

(4.43)

We conclude (4.4) by collecting the terms. �

4.2. L6
x-integrability gain for PfR.

Proposition 8. Under the same assumptions in Proposition 6, we have for all t ∈ [0, T ]

d6‖PfR(t)‖L6
x

. (ε‖(3.12)‖L∞t,x + εκ−1‖(3.10)‖L∞t,x)‖fR(t)‖L2
x,v

+ ε‖∂tfR(t)‖L2
x,v

+ o(1)(κε)1/2‖wfR(t)‖L∞x,v +
ε

δ
|(3.10)|L4(∂Ω) + ε‖(3.4)‖L2

x,v
+ ε‖(3.5)‖L2

x,v

+
( 1

εκ
+
δ

κ
‖w%,ßfR(t)‖L∞x,v

){
‖(I−P)fR‖L2

t,x,v
+ ‖(I−P)∂tfR‖L2

t,x,v
+ ε‖∂tu‖L∞t,x‖PfR‖L2

t,x

}
+ ‖w%,ßfR(t)‖1/2L∞x,v

{
|fR|1/2L2

tL
2(γ+)

+ |∂tfR|1/2L2
tL

2(γ+)

}
,

(4.44)

where

d6 := 1−
[ δ
κ
‖PfR(t)‖1/2

L6
x
‖PfR(t)‖1/2

L2
x

+ ε‖u(t)‖L∞x
]1/6

. (4.45)
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Proof. For the sake of simplicity we use notations (4.1) throughout this subsection.
We view (3.2) as a weak formulation for a test function ψ¨

Ω×R3

fRv · ∇xψ︸ ︷︷ ︸
(4.46)1

−
ˆ
γ
fRψ︸ ︷︷ ︸

(4.46)2

−
¨

Ω×R3

ε∂tfRψ︸ ︷︷ ︸
(4.46)3

=

¨
Ω×R3

ψ

{
1

εκ
LfR −

2ε

κ
Γ(f2, fR)− δ

κ
Γ(fR, fR) +

(ε∂t + v · ∇x)
√
µ

√
µ

fR − ε(I−P)R1 − εR2

}
.

(4.46)

The proof of the lemma is based on a recent test function method in the weak formulation ([12, 13]).
We define

P̃fR :=
{
a+ b · v + c

|v|2 − 3√
6

}√
µ0 and P̃ fR := (a, b, c), (4.47)

where a := 〈fR,
√
µ0〉, b := 〈fR, v

√
µ0〉, and c := 〈fR, |v|

2−3√
6

√
µ0〉. We choose a family of test functions

as

ψa := (|v|2 − βa)v
√
µ0 · ∇xϕa, (4.48)

ψi,jb,1 := (v2
i − βb)

√
µ0∂jϕ

j
b, i, j = 1, 2, 3, (4.49)

ψi,jb,2 := |v|2vivj
√
µ0∂jϕ

i
b, i 6= j, (4.50)

ψc := (|v|2 − βc)v
√
µ0 · ∇xϕc, (4.51)

where we choose βa = 10, βb = 1, βc = 5 such that

0 =

ˆ
R3

(|v|2 − βa)
|v|2 − 3√

6
(v1)2µ0(v)dv =

ˆ
R

(v2
1 − βb)µ0(v1)dv1 =

ˆ
R3

(|v|2 − βc)v2
i µ0(v)dv. (4.52)

Here,

−∆xϕa = a5 with
∂ϕa
∂n

∣∣∣
∂Ω

= 0, (4.53)

−∆xϕ
j
b = b5j with ϕjb|∂Ω = 0, (4.54)

−∆xϕc = c5 with ϕc|∂Ω = 0. (4.55)

A unique solvability to the above Poisson equations when (a, b, c) ∈ L6(Ω) and an estimate

‖∇2
xϕ(a,b,c)‖L6/5(Ω) + ‖∇xϕ(a,b,c)‖L2(Ω) + ‖ϕ(a,b,c)‖L6(Ω) . ‖|P̃ fR|5‖L6/5(Ω) . ‖P̃ fR‖

5
L6(Ω). (4.56)

is a direct consequence of Lax-Milgram and suitable extension (extend a5 of (4.53) evenly in x3 ∈ R,
and b5 and c5 of (4.54) and (4.55) oddly in x3 ∈ R, then solve the Poisson equation, and then restrict

the whole space solutions to the half space x3 > 0) and a standard elliptic estimate (L
6
5 (Ω) →

Ẇ 2, 6
5 (Ω) ∩ Ẇ 1,2(Ω) ∩ L6(Ω)).

From M1,εu,1(v) = M1,0,1(v) +O(ε)|u||v − εu|M1,εu,1(v) we can easily check that

|PfR(t, x, v)− P̃fR(t, x, v)| . ε|u(t, x)||v − εu|√µ|fR(t, x, v)|. (4.57)

Therefore we have

‖PfR(t)‖L6
x
.‖PfR(t)‖L6

x,v
. ‖P̃fR(t)‖L6

x,v
+ ε‖u(t)‖∞{‖PfR(t)‖L6

x
+ ‖(I−P)fR(t)‖L6

x,v
}

.(1 + ε‖u‖∞)‖P̃ fR(t)‖L6
x

+ ε‖u(t)‖∞‖(I−P)fR(t)‖L6
x,v
.

(4.58)
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Note that ‖(I − P)fR(t)‖L6
x,v
≤ ‖(I − P)fR(t)‖2/3L∞x,v

‖(I − P)fR(t)‖1/3
L2
x,v
. o(1)(κε)1/2‖wfR(t)‖L∞x,v +

(κε)−1‖(I−P)fR(t)‖L2
x,v

. Hence to prove the lemma and (4.44) it suffices to prove the same bound

for ‖P̃ fR‖L6
x,v

:= ‖(a, b, c)‖L6
x
.

Following the direct computations in the proof of Lemma 2.12 in [13] we derive that

(4.46)1 =


−5‖a(t)‖66 + o(1)‖P̃fR(t)‖66 +O(1)‖(I−P)fR(t)‖66 if ψ = ψa,

−2
´

Ω bi∂i∂jϕ
j
b + o(1)‖P̃fR(t)‖66 +O(1)‖(I−P)fR(t)‖66 if ψ = ψi,jb,1,´

Ω bj∂i∂jϕ
i
b +
´

Ω bi∂j∂jϕ
i
b +O(1)‖(I−P)fR(t)‖66 if ψ = ψi,jb,2 and i 6= j,

5‖c(t)‖66 + o(1)‖P̃fR(t)‖66 +O(1)‖(I−P)fR(t)‖66 if ψ = ψc.

(4.59)

For ‖bi‖66, using the second and third estimate of (4.59) we deduce that

‖bi‖6L6(Ω) = −
ˆ

Ω
bi∆xϕ

i
bdx = −

ˆ
Ω
bi∂

2
i ϕ

i
bdx−

∑
j(6=i)

ˆ
Ω
bi∂

2
jϕ

i
bdx

=
1

2

∑
j

(4.46)1|ψj,ib,1 −
∑
j(6=i)

(4.46)1|ψi,jb,2 + o(1)‖P̃fR(t)‖66 +O(1)‖(I−P)fR(t)‖66.
(4.60)

Now we consider the boundary term (4.46)2. From (4.48)-(4.51) and (4.52)

ˆ
γ
ψPγ+fR =


´
∂Ω ∂nϕa

´
R3(|v|2 − βa)(v · n)2µ0dvdSx = 0 if ψ = ψa,

0 if ψ = ψi,jb,1 or ψi,jb,2,´
∂Ω ∂nϕc

´
R3(|v|2 − βc)(v · n)2µ0dvdSx = 0 if ψ = ψc.

(4.61)

Here we have used the Neumann boundary condition of (4.53) for ψa, and the last identity in (4.52)

for ψc. For ψi,jb,1 or ψi,jb,2 we used the fact that the integrands are odd in v. From (3.8), we decompose

f |γ = Pγ+f +1γ+(1−Pγ+)f −1γ−
ε
δ (1−Pγ+)f2. From (4.61) together with (3.57) and (3.58) we have

|(4.46)2| =
∣∣∣
��

����
ˆ
γ
ψPγ+fR +

ˆ
γ
ψ{1γ+(1− Pγ+)fR − 1γ−

ε

δ
(1− Pγ+)f2}

∣∣∣
. |∇xϕ|L4/3(∂Ω)

{
|(1− Pγ+)fR|4,γ+ +

ε

δ
|(3.10)|L4(∂Ω)

} (4.62)

where we have used |
´
γ+
ψ(1 − Pγ+)f | . |∇xϕ|L4/3(∂Ω)|(1 − Pγ+)f |4,γ+ at the last line. Here ϕ ∈

{ϕa, ϕb, ϕc}. For the first term of (4.62) we interpolate

|(1− Pγ+)fR|4,γ+ . |ε−
1
2 (1− Pγ+)fR|1/22,γ+

ε
1
4 ‖w%,ßfR‖1/2∞ . (4.63)

For the second term of (4.62), we use (4.56) and a trace theorem (Ẇ 1, 6
5 (T2 × R+) ∩ L2(T2 × R+)→

W
1− 1

6/5
, 6
5 (T2)), and the Sobolev embedding (W

1
6
, 6
5 (T2)→ L4/3(T2)) to conclude that

|∇xϕ|
L

4
3 (T2)

. |∇xϕ|
W

1
6 ,

6
5 (T2)

. ‖∇xϕ‖
Ẇ 1, 65 (T2×R+)∩L2(Ω)

. ‖P̃ fR‖5L6(T2×R+). (4.64)

Next we consider (4.46)3. For ψ of (4.48)-(4.51) and ϕ of (4.53)-(4.55), using (4.56), it follows that

|(4.46)3| . ε‖∂tfR‖L2
x,v
‖ψ‖L2

x,v
. ε‖∂tfR‖L2

x,v
‖∇xϕ‖L2

x
. ε‖∂tfR‖L2

x,v
‖P̃ fR‖5L6

x

≤ O(1)[ε‖∂tfR‖L2
x,v

]6 + o(1)‖P̃ fR‖6L6
x
.

(4.65)
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Lastly we consider the right hand side of (4.46). From (1.21), (3.23), (3.37), and (4.56), it follows∣∣∣¨
Ω×R3

ψ
1

εκ
LfR

∣∣∣ =
∣∣∣¨

Ω×R3

ψ
1

εκ
L(I−P)fR

∣∣∣
.

1

εκ

ˆ
Ω

ˆ
R3

|∇xϕ(a,b,c)(x)|µ(v)1/4
[
ν(v)|(I−P)fR(x, v)|

+

ˆ
R3

kϑ(v, v∗)|(I−P)fR(x, v∗)|dv∗
]
dvdx

.
1

εκ
‖∇xϕ(a,b,c)‖L2

x
‖(I−P)fR‖L2

x,v
.

1

εκ
‖P̃ f‖5L6

x
‖(I−P)fR‖L2

x,v

≤ o(1)‖P̃ fR‖6L6
x

+
[
ε−1κ−1‖(I−P)fR‖L2

x,v

]6
.

(4.66)

Note that, from (3.37), |Γ( εκf2, fR)| . ε
κ‖w%,ßf2‖∞w%,ß(v)−1

[
ν(v)fR(v) +

´
R3 kϑ(v, v∗)fR(v∗)dv∗

]
.

Then from (3.57) and (3.58)∣∣∣¨
Ω×R3

ψ
ε

κ
Γ(f2, fR)

∣∣∣ . ‖∇xϕ(a,b,c)‖L2
x

ε

κ
‖(3.10)‖∞‖fR‖L2

x,v

≤ o(1)‖P̃ fR‖6L6
x

+
[
εκ−1‖(3.10)‖∞‖fR‖L2

x,v

]6
.

(4.67)

For the contribution of Γ(fR, fR) we decompose fR = PfR + (I−P)fR. From (3.37) (or (3.36))

|Γ(fR, fR)(v)|
. |Γ(PfR,PfR)(v)|+ |Γ((I−P)fR, (I−P)fR)(v)|
. ν(v)|PfR|2

+ ‖w%,ßfR‖∞
{
ν(v)|(I−P)fR)(v)|+

ˆ
R3

kϑ(v, v∗)|(I−P)fR)(v∗)|dv∗
}
.

(4.68)

Then from (4.48)-(4.51), (3.23), and the Hölder’s inequality (1 = 1/2 + 1/3 + 1/6)∣∣∣¨
Ω×R3

ψ
δ

κ
Γ(fR, fR)

∣∣∣
.
δ

κ
‖∇xϕ(a,b,c)‖L2

x

{
‖PfR‖L3

x
‖PfR‖L6

x
+ ‖w%,ßfR‖L∞x,v‖(I−P)fR‖L2

x,v

}
.
δ

κ
‖P̃ fR‖5L6

x
‖PfR‖3/2L6

x
‖PfR‖1/2L2

x
+

εδ

κ1/2
‖P̃ fR‖5L6

x
‖w%,ßfR‖L∞x,v‖ε

−1κ−1/2(I−P)fR‖L2
x,v
,

(4.69)

where we have used an interpolation ‖PfR‖L3 ≤ ‖PfR‖1/2L6 ‖PfR‖
1/2
L2 and (4.56) at the last step. A

contribution of the rest of terms in the r.h.s of (4.46) can be easily bounded as, from (3.4) and (3.5),¨
Ω×R3

|ψ|
∣∣∣∣(ε∂t + v · ∇x)

√
µ

√
µ

fR − ε(I−P)R1 − εR2

∣∣∣∣
. ‖PfR‖5L6

x

{
ε‖(3.12)‖∞‖fR‖L2

x,v
+ ε‖(3.4) + (3.5)‖L2

x,v

}
.

(4.70)

In conclusion, collecting the terms from (4.59) with (4.60), (4.62) with (4.63) and (4.64), (4.65),
(4.66), (4.67), (4.69), (4.70), and utilizing (4.58), and two facts from (A.1):

sup
0≤s≤t

‖(I−P)fR(s)‖L2
x,v
. ‖(I−P)fR‖L2

t,x,v
+ ‖(I−P)∂tfR‖L2

t,x,v
+ ε‖∂tu‖L∞t,x‖PfR‖L2

t,x
,

sup
0≤s≤t

|(1− Pγ+)fR(s)|L2(γ+) . sup
0≤s≤t

|fR(s)|L2(γ+) . |fR|L2
tL

2(γ+) + |∂tfR|L2
tL

2(γ+),

(4.71)

we prove (4.44). �
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4.3. Average in Velocity. We prove a version of velocity lemma when a suitable bound for source
terms is only known in a finite time interval. In this section we often specify domains in which an Lp-
norm is taken while the simplified notation (4.1) will be used only when the domain is [0, T ]×Ω×R3.

Proposition 9. Assume the same assumptions in Proposition 6. Then we have, for 2 < p < 3,

d3

∥∥PfR∥∥L2
tL

p
x

. (1 + ε‖(3.12)‖L2
tL
∞
x

)‖fR‖L∞t L2
x,v

+
{ 1

εκ
+
δ

κ
‖w%,ßfR‖L∞t,x,v + ‖w%,ßfR‖

p−2
p

L∞t,x,v

}
‖
√
ν(I−P)fR‖L2

t,x,v

+ ‖fR(0)‖L2
γ

+ ε‖(3.6)‖L2
t,x

+ ε‖(3.7)‖L2
t,x
,

(4.72)

with

d3 := 1−O(ε)‖u‖L∞t,x −
ε

κ
‖(3.10)‖

L∞t L
2p
p−2
x

− δ

κ
‖PfR‖

3(p−2)
p

L∞t L
6
x
‖w%,ßfR‖

6−2p
p

L∞t,x,v
, (4.73)

and for %′ < %

d3,t

∥∥P∂tfR∥∥L2
tL

p
x

.
1

κ
‖∂tu‖L∞t,x

(
1 + ε2‖(3.10)‖L∞t,x

)
‖PfR‖L2

t,x
+
δε

κ
‖∂tu‖L∞t,x‖PfR‖

3(p−2)
p

L∞t L
6
x
‖wfR‖

6−2p
p

L∞t,x,v
‖PfR‖L2

tL
p
x

+
ε

κ
‖∂tu‖L∞t,x(δ‖wfR‖L∞t,x,v + ‖(3.10)‖L∞t,x)‖

√
ν(I−P)fR‖L2

t,x,v

+ (κε)
2
p−2 ‖w%′,ß∂tfR‖L2

tL
∞
x,v

+ ‖∂tfR‖L∞t L2
x,v

+ ε‖(3.13)‖L2
tL
∞
x
‖fR‖L∞t L2

x,v

+
{ 1

κε
+
δ

κ
‖w%,ßfR‖L∞t,x,v +

ε

κ
‖(3.10)‖L∞t,x + ε‖(3.12)‖L∞t,x

}
‖
√
ν(I−P)∂tfR‖L2

t,x,v

+ ‖∂tfR(0)‖L2
γ

+
ε

κ
‖(3.11)‖L2

t,x,v
‖w%,ßfR‖L∞t,x,v + ε‖(3.6)‖L2

t,x
+ ε‖(3.7)‖L2

t,x
,

(4.74)

with

d3,t := 1−O(ε)‖u‖L∞t,x −
ε

κ
‖(3.10)‖

L∞t L
2p
p−2
x

− ε‖(3.12)‖
L∞t L

2p
p−2
x

− δ

κ
‖PfR‖

3(p−2)
p

L∞t L
6
x
‖w%,ßfR‖

6−2p
p

L∞t,x,v
, (4.75)

where both bounds are uniform-in-p for 2 < p < 3.

We prove the proposition by several steps.

Step 1: Extension. We define a subset

Ω̃ := (0, 2π)× (0, 2π)× (0,∞) ⊂ R3. (4.76)

We regard Ω̃ as an open subset but not a periodic domain as Ω. Without loss of generality we
may assume that fR(0, x, v) is defined in R3 × R3 and ‖fR(0)‖Lp(R3×R3) . ‖fR(0)‖Lp(Ω̃×R3) for all

1 ≤ p ≤ ∞. Then we extend a solution for whole time t ∈ R as

fI(t, x, v) := 1t≥0fR(t, x, v) + 1t≤0χ1(t)fR(0, x, v), (4.77)

where a smooth non-negative function χ1 satisfies χ1(t) ≡ 1 for t ∈ [−1, 0], χ1(t) ≡ 0 for t < −2, and
0 ≤ d

dtχ1 ≤ 4.

A closure of Ω̃ is given as cl(Ω̃) = [0, 2π]× [0, 2π]× [0,∞). Let us define t̃B(x, v) ∈ R for (x, v) ∈
(R3\Ω̃) × R3. We consider B̃(x, v) := {s ∈ R : x + sv ∈ R3\cl(Ω̃)}. Clearly if B̃(x, v) 6= ∅ then

{s > 0} ⊂ B̃(x, v) or {s < 0} ⊂ B̃(x, v) exclusively. If {s > 0} ⊂ B̃(x, v), let I+ be the largest

interval such that {s > 0} ⊂ I+ ⊂ B̃(x, v). And if {s < 0} ⊂ B̃(x, v), let I− be the largest interval

such that {s > 0} ⊂ I− ⊂ B̃(x, v).
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We define

t̃B(x, v) =


0 if x ∈ ∂Ω̃,

inf B̃(x, v) if x ∈ R3\cl(Ω̃) and B̃(x, v) 6= ∅ and {s > 0} ⊂ I+ ⊂ B̃(x, v),

sup B̃(x, v) if x ∈ R3\cl(Ω̃) and B̃(x, v) 6= ∅ and {s < 0} ⊂ I− ⊂ B̃(x, v),

−∞ if B̃(x, v) = ∅ and x /∈ ∂Ω̃.

(4.78)

Using (4.78) we define

fE(t, x, v) := 1(x,v)∈(R3\Ω̃)×R3fI(t+ εt̃B(x, v), x̃B(x, v), v) with x̃B(x, v) := x+ t̃B(x, v)v. (4.79)

It is easy to see that ε∂tfE + v · ∇xfE = 0 in the sense of distributions.
Next we define two cutoff functions. For any N > 0 we define smooth non-negative functions as

χ2(x) ≡ 1 for x ∈ [−π, 3π]× [−π, 3π]× [−π,∞),

χ2(x) ≡ 0 for x /∈ [−2π, 4π]× [−2π, 4π]× [−2π,∞), |∇xχ2| ≤ 10,
(4.80)

χ3(v) ≡ 1 for |v| ≤ N − 1, and |vi| ≥ 2/N for all i = 1, 2, 3,

χ3(v) ≡ 0 for |v| ≥ N or |vi| ≤ 1/N for any i = 1, 2, 3, |∇vχ3| ≤ 10.
(4.81)

We denote

U := [−2π, 4π]×[−2π, 4π]×[−2π,∞), V := {v ∈ R3 : |v| ≤ N}∩
⋂

i=1,2,3

{v ∈ R3 : |vi| ≥ 1/N} (4.82)

We define an extension of cut-offed solutions

f̄R(t, x, v) := χ2(x)χ3(v)
{
1Ω̃(x)fI(t, x, v) + fE(t, x, v)

}
for (t, x, v) ∈ (−∞, T ]× R3 × R3. (4.83)

We note that in the sense of distributions f̄R solves

ε∂tf̄R + v · ∇xf̄R = ḡ in (−∞, T ]× R3 × R3,

ḡ :=
v · ∇xχ2

χ2
f̄R + 1t≥01Ω̃(x)χ2(x)χ3(v)[ε∂t + v · ∇x]fR

+ 1t≤0{ε∂tχ1(t)fR(0, x, v) + χ1(t)v · ∇xfR(0, x, v)}

(4.84)

Here we have used the fact that f̄R in (4.84) is continuous along the characteristics across ∂Ω̃ and
{t = 0}. We derive that, using (4.84),

f̄R(t, x, v) =
1

ε

ˆ t

−∞
ḡ(s, x− t− s

ε
v, v)ds for (t, x, v) ∈ (−∞, T ]× R3 × R3. (4.85)

Recall ϕ̃i ∈ {ϕ̃0, · · · ϕ̃4} in (4.47). From (4.83) we note that∥∥∥∥ˆ
R3

f̄R(t, x, v)ϕ̃i(v)
√
µ0(v)dv

∥∥∥∥
L2
t ((0,T );Lpx(Ω̃))

=

∥∥∥∥ˆ
R3

χ2(x)χ3(v)fR(t, x, v)ϕ̃i(v)
√
µ0(v)dv

∥∥∥∥
L2
t ((0,T );Lpx(Ω̃))

(4.86)

From (1.24), we decompose

(4.86) ≥
∥∥∥∑

j

χ2(x)P̃jfR(t, x)

ˆ
R3

χ3(v)ϕ̃j(v)ϕ̃i(v)µ0(v)dv
∥∥∥
L2
t ((0,T );Lpx(Ω̃))

−
∥∥∥∥ˆ

R3

χ3(v)(I− P̃)fR(t, x, v)ϕ̃i(v)
√
µ0(v)dv

∥∥∥∥
L2
t ((0,T );Lpx(Ω̃))

.
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We consider the right hand side of above terms. From (4.57),
´
ϕ̃iϕ̃jµ0 = δij , and (4.81), the first

term can be bounded below by
(
1−O(ε)‖u‖∞ −O( 1

N )
)∥∥χ2PfR

∥∥
L2
t ((0,T );Lpx(Ω̃))

. For the second term

we use (4.57), L2
t (0, T ) ⊂ Lpt (0, T ), and L1({|v| ≤ N}) ⊂ Lp({|v| ≤ N}) to bound it above by

CT,N‖(I−P)fR‖Lp((0,T )×Ω̃×R3) +
(
O(ε)‖u‖∞ +O( 1

N )
)∥∥PfR∥∥L2

t ((0,T );Lpx(Ω̃))
. Hence we derive

(4.86)

≥
(
1−O(ε)‖u‖∞ −O(

1

N
)
)∥∥PfR∥∥L2

t ((0,T );Lpx(Ω̃))
− CT,N‖(I−P)fR‖Lp((0,T )×Ω̃×R3)

≥
(
1−O(ε)‖u‖∞ −O(

1

N
)
)∥∥PfR∥∥L2

t ((0,T );Lpx(Ω̃))

− CT,N‖w%,ßfR(t)‖
p−2
p

L∞((0,T )×Ω̃×R3)
‖(I−P)fR‖

2
p

L2((0,T )×Ω̃×R3)
.

(4.87)

Step 2: Average lemma. Recall ϕ̃i ∈ {ϕ̃0, · · · ϕ̃4} in (4.47). We choose ϕ̃(v) such that

χ3(v)|ϕ̃i(v)|
√
µ0(v) ≤ ϕ̃(v), ϕ̃(v) ∈ C∞c (R3)

and ϕ̃(v) ≡ 0 for |v| ≥ N or |vi| ≤ 1/N for any i = 1, 2, 3.
(4.88)

Lemma 6. We define

S(ḡ)(t, x) :=
1

ε

ˆ t

−∞

ˆ
R3

|ḡ(s, x− t− s
ε

v, v)|ϕ̃(v)dvds for (t, x) ∈ (−∞, T ]× R3. (4.89)

Then, for p < 3 and 1� N ,

‖S(ḡ)‖L2
t ((0,T );Lpx(T2×R)) .N ‖1(t,x,v)∈DT ḡ‖L2((0,T )×(T2×R)×{|v|≤N}), (4.90)

where the bound (4.90) only depends on N but can be independent on p < 3.

We remark that from (4.85) and (4.89)
´
R3 f̄R(t, x, v)ϕ̃i(v)dv ≤ S(ḡ)(t, x).

Proof of Lemma 6. We prove (4.90) by a TT ∗(SS∗ for our case) method. First we derive a dual
of S in the following equalities:ˆ T

−∞

ˆ
R3

S(ḡ)(t, x)h(t, x)dxdt

=

ˆ T

−∞

ˆ
R3

1

ε

ˆ t

−∞

ˆ
R3

|ḡ(s, x− t− s
ε

v, v)|ϕ̃(v)h(t, x)dvdsdxdt

=

ˆ T

−∞

ˆ
R3

ˆ
R3

|ḡ(s, x, v)|
[

1

ε

ˆ T

s
h(t, x+

t− s
ε

v)ϕ̃(v)dt

]
dvdxds

=

ˆ T

−∞

¨
R3×R3

|ḡ(t, x, v)|
[

1

ε

ˆ T

t
h(s, x+

s− t
ε

v)ϕ̃(v)ds

]
dvdxdt

=

ˆ T

−∞

¨
R3×R3

|ḡ(t, x, v)|S∗(h)(t, x, v)dvdxdt,

(4.91)

where we have defined

S∗(h)(t, x, v) :=
1

ε

ˆ T

t
h(τ, x+

τ − t
ε

v)ϕ̃(v)dτ. (4.92)

Here, in the second equality of (4.91) we have used the Fubini theorem for changing order of s and
t integrations, and then used a change of variables x 7→ x − t−s

ε v. In the third equality of (4.91) we
have used a change of variable (t, s) 7→ (s, t) and the fact Supp(g) ⊂ (−∞, T ]× U × V .
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On the other hand, for 1/p+ 1/q = 1, following the argument of (4.91) with h(t, x) = 1x∈Ω̃h(t, x)
we derive that

‖S(ḡ)‖L2
t ((−1,T ];Lpx(Ω̃)) = sup

‖h‖
L2
t ((−1,T ];L

q
x(Ω̃))

≤1

ˆ T

−1

ˆ
Ω̃
S(ḡ)(t, x)h(t, x)dxdt

= sup
‖h‖

L2
t ((−1,T ];L

q
x(Ω̃))

≤1

ˆ T

−1

¨
U×V

|ḡ(t, x, v)|S∗(h)(t, x, v)dvdxdt.

(4.93)

It is important to check the integral region in space of the last term of (4.93). From (4.92), we

note that if x + τ−t
ε v /∈ cl(Ω̃) for all τ ∈ [t, T ] then the last term would vanish since supp(h) ⊂

(−∞, T ]× Ω̃. Therefore we can exclude (t, x, v) from the last integration in (4.93) if L(t, x, v)∩ Ω̃ = ∅
for L(t, x, v) := {x+ τ−t

ε v : τ ∈ [t, T ]}. Now we define

DT :=
{

(t, x, v) ∈ (−1, T ]× U × V : L(t, x, v) ∩ Ω̃ 6= ∅
}
. (4.94)

Then we can write

(4.93) = sup
‖h‖

L2
t ((−1,T ];L

q
x(Ω̃))

≤1

ˆ T

−1

¨
U×V

1(t,x,v)∈DT |ḡ(t, x, v)|S∗(h)(t, x, v)dvdxdt

≤ ‖1(t,x,v)∈DT ḡ‖L2((−1,T ]×U×V ) sup
‖h‖

L2
t ((−1,T ];L

q
x(Ω̃))

≤1

∥∥S∗(h)(t, x, v)
∥∥
L2((−1,T ]×U×V )

.
(4.95)

Therefore to prove (4.90) it suffices to show that

‖S∗(h)‖L2((−1,T ]×U×V ) . ‖h‖L2
t ((−1,T ];Lqx(Ω̃)). (4.96)

Note that since supp(h) ⊂ (−1, T ] × U and supp(ϕ̃) = V for (x, v) ∈ U × V , we have, with x =
(x1, x2, x3), v = (v1, v2, v3)

|x1 +
τ − t
ε

v1| ≥
|τ − t|
ε
|v1| − |x1| ≥

10πNε

ε

1

N
− 4π > 4π if τ ≥ t+ 10πNε.

Hence we can rewrite (4.92) as

S∗(h)(t, x, v) =
1

ε

ˆ min{T,t+10πNε}

t
h(τ, x+

τ − t
ε

v)ϕ̃(v)dτ

for (x, v) ∈ U × V, if supp(h) ⊂ (−1, T ]× U.
(4.97)

On the other hand, from (4.91), we have for supp(h) ∈ (−1, T ]× Ω̃,

‖S∗(h)‖2L2((−1,T ]×U×V ) =

ˆ T

−1

¨
U×V

S∗(h)(t, x, v)S∗(h)(t, x, v)dvdxdt

=

ˆ T

−1

¨
U×V

SS∗(h)(t, x)h(t, x)dxdt

≤ ‖SS∗(h)‖L2
t ((−1,T );Lpx(U))‖h‖L2

t ((−1,T ];Lqx(Ω̃)).

Therefore to show (4.96) (which will imply (4.90)) we only need to prove that, for supp(h) ⊂ (−1, T ]×
Ω̃,

‖SS∗(h)‖L2
t ((−1,T ];Lpx(U)) . ‖h‖L2

t ((−1,T ];Lqx(Ω̃)). (4.98)
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Now we prove (4.98). From (4.89) and (4.97), we read

SS∗(h)(t, x) =
1

ε

ˆ t

−1

ˆ
R3

S∗(h)(s, x− t− s
ε

v, v)ϕ̃(v)dvds

=
1

ε2

ˆ t

−1

ˆ
R3

ˆ min{T,s+10πNε}

s
h(τ, x− t− s

ε
v +

τ − s
ε

v)dτ(ϕ̃(v))2dvds

=
1

ε2

ˆ t

−1

ˆ min{T,s+10πNε}

s

ˆ
R3

h(τ, x+
τ − t
ε

v)(ϕ̃(v))2dvdτds.

Now for the same reason to restrict τ -integration in (4.97) we rewrite the above expression as

SS∗(h)(t, x) =
1

ε2

ˆ t

max{−1,t−10πNε}

ˆ min{T,s+10πNε}

s

ˆ
R3

h(τ, x+
τ − t
ε

v)(ϕ̃(v))2dvdτds. (4.99)

We consider a map with the change of variables

v ∈ V 7→ y := x+
τ − t
ε

v ∈ R3, dv = dy
/∣∣∣∣∂y∂v

∣∣∣∣ =
ε3

|τ − t|3
dy. (4.100)

Now we apply (4.100) to (4.99) and derive that

|SS∗(h)(t, x)| ≤ 1

ε2

ˆ t

t−10πNε

ˆ min{s+10πNε}

s

ˆ
Ω̃
|1τ∈[−1,T ]h(τ, y)| ε3

|τ − t|3
ϕ̃
(
ε
|y − x|
|τ − t|

)2
dydτds.

(4.101)

First using the Minkowski’s inequality and the Young’s inequality to a convolution in y with
1 + 1/p = 1/q + 1/(p/2) we have∥∥∥∥ 1

ε2

ˆ t

t−10πNε

ˆ s+10πNε

s

ˆ
Ω̃
1τ∈[−1,T ]|h(τ, y)| ε3

|τ − t|3
ϕ̃
(
ε
|y − x|
|τ − t|

)2
dydτds

∥∥∥∥
Lpx(Ω̃)

≤ 1

ε2

ˆ t

t−10πNε

ˆ s+10πNε

s

∥∥∥∥ˆ
Ω̃
1τ∈[−1,T ]|h(τ, y)| ε3

|τ − t|3
ϕ̃
(
ε
|y − x|
|τ − t|

)2
dy

∥∥∥∥
Lpx(Ω̃)

dτds

≤ 1

ε2

ˆ t

t−10πNε

ˆ s+10πNε

s
‖1τ∈[−1,T ]h(τ, ·)‖Lqx(Ω̃)

∥∥∥ ε3

|τ − t|3
ϕ̃
(
ε
| · |
|τ − t|

)2∥∥∥
L
p/2
x (Ω̃)︸ ︷︷ ︸

(4.102)∗

dτds.

(4.102)

From the properties of ϕ̃ ∈ C∞c , it follows that

(4.102)∗ ≤
ε3

|τ − t|3

(
|τ − t|3

ε3

) 2
p
[ˆ

R3

|ϕ̃(ỹ)|p dỹ

] 1
p/2

.

(
ε

|τ − t|

)3− 6
p

,

where ỹ = ε
|τ−t|(y − x) with dỹ = ε3

|τ−t|3 dy. Therefore we derive that

‖SS∗(h)(t, ·)‖Lpx .
1

ε2

ˆ t

t−10πNε

ˆ s+10πNε

s
‖1τ∈[−1,T ]h(τ, ·)‖Lqx(Ω̃)

(
ε

|τ − t|

)3− 6
p

dτds. (4.103)
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Using the Minkowski’s inequality and the Young’s inequality, finally we prove (4.98) as∥∥‖SS∗(h)(t, ·)‖Lpx
∥∥
L2
t (0,T )

.
1

ε2

∥∥∥1[t−10πNε,t](s)
∥∥∥
L1
s

∥∥∥∥∥ sup
s∈[t−10πNε,t]

ˆ s+10πNε

s
‖1τ∈[−1,T ]h(τ, ·)‖Lqx(Ω̃)

(
ε

|τ − t|

)3− 6
p

dτ

∥∥∥∥∥
L2
t

.
1

ε2
10πNε

∥∥∥∥∥
ˆ t+10πNε

t−10πNε
‖1τ∈[−1,T ]h(τ, ·)‖Lqx(Ω̃)

(
ε

|τ − t|

)3− 6
p

dτ

∥∥∥∥∥
L2
t

.
1

ε2
10πNε

∥∥‖h(τ, ·)‖Lqx(Ω̃)

∥∥
L2
τ ((−1,T ])

∥∥∥∥∥
(
ε

|t|

)3− 6
p

∥∥∥∥∥
L1
t ((0,10πNε))

. N
−1+ 6

p ‖h‖L2
t ((−1,T ];Lqx(Ω̃)).

�

Step 3: Applying Lemma 6. Now we apply Lemma 6 to (4.85) and derive that∥∥∥∥ˆ
R3

f̄R(t, x, v)ϕ̃(v)dv

∥∥∥∥
L2
t ((−1,T ];Lpx(Ω̃))

. ‖1(t,x,v)∈DT ḡ‖L2((−1,T ]×U×V )

. ‖fR(t, x, v)‖L2((0,T ]×Ω̃×V ) + ‖fR(0, x, v)‖L2(Ω̃×V )

+ ‖1(t,x,v)∈DT fI(t+ εt̃B(x, v), x̃B(x, v), v)‖L2((−1,T ]×(U\Ω̃)×V ) (4.104)

+ ‖[ε∂t + v · ∇x]fR‖L2((0,T ]×Ω̃×V ), (4.105)

where we have used (4.83), (4.77), (4.79), and the fact that |v · ∇xχ2(x)| .N 1 on v ∈ V .

First we consider (4.104). We split the cases of (4.104) according to (4.78). For x ∈ ∂Ω̃, which

has a zero measure in L2((−1, T ]× (U\Ω̃)× V ), we have t̃B(x, v) = 0 from the first line of (4.78). If

B̃(x, v) = ∅ and x /∈ ∂Ω̃ then t̃B(x, v) = −∞ from the last line of (4.78) and hence f̄R(−∞) = 0 since
χ1(−∞) = 0 in (4.77). Therefore we derive that

(4.104) ≤ ‖1{s<0}⊂B̃(x,v)1(t,x,v)∈DT fI(t+ εt̃B(x, v), x̃B(x, v), v)‖L2((−1,T ]×(U\Ω̃)×V ) (4.106)

+ ‖1{s>0}⊂B̃(x,v)1(t,x,v)∈DT fI(t+ εt̃B(x, v), x̃B(x, v), v)‖L2((−1,T ]×(U\Ω̃)×V ). (4.107)

We need a special attention to (4.106). Since (t, x, v) ∈ DT we know that inf{τ ≥ t : x + τ−t
ε v ∈

cl(Ω̃)} ≤ T. If {s < 0} ⊂ B̃(x, v) then, from the third line of (4.78), t̃B(x, v) = sup B̃(x, v) = sup{s ∈
R : x+ sv ∈ R3\cl(Ω̃)} ≤ (T − t)/ε. Therefore the argument of fI in (4.106) is confined as

(t+ εt̃B(x, v), x̃B(x, v), v) ∈ (−∞, T ]× ∂Ω̃× V. (4.108)

For (4.107), from the second line of (4.78), t̃B(x, v) = inf B̃(x, v) = inf{s ∈ R : x+sv ∈ R3\cl(Ω̃)} ≤ 0.
Therefore t+εt̃B(x, v) ≤ t ≤ T and hence the argument of fI in (4.107) is confined as in (4.108). Now
we apply the Minkowski’s inequality in time, change of variables t + εt̃B(x, v) 7→ t, and use (4.108)
to derive that

(4.106) + (4.107) .
∥∥∥‖fI(t, x̃B(x, v), v)‖L2

t ((−1,T ])

∥∥∥
L2
x,v((U\Ω̃)×V )

. (4.109)
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Let us define an outward normal ñ(x) on ∂Ω̃. More precisely

ñ(x) =


(0, 0,−1) if x3 = 0 and x ∈ ∂Ω̃,

((−1)
x1
2π

+1, 0, 0) if x1 ∈ {0, 2π} and x ∈ ∂Ω̃,

(0, (−1)
x2
2π

+1, 0) if x2 ∈ {0, 2π} and x ∈ ∂Ω̃.

(4.110)

From (4.82) we have therefore (x, v) ∈ (U\Ω̃)× V then |ñ(x̃B(x, v)) · v| ≥ 1/N . We consider maps

(x1, x3) 7→ x̃B(x, v) ∈ (0, 2π)× (0, 2π)× {x3 = 0},

with
∣∣∣ det

(∂(x̃B,1(x, v), x̃B,2(x, v))

∂(x1, x3)

)∣∣∣ =
∣∣∣ v2

v · ñ

∣∣∣,
(xi, x3) 7→ (x̃B,i(x, v), x̃B,3(x, v)) ∈ (0, 2π)× (0,∞),

with
∣∣∣ det

(∂(x̃B,i(x, v), x̃B,3(x, v))

∂(x1, x3)

)∣∣∣ =
∣∣∣ vi
v · ñ

∣∣∣, for i = 1, 2.

(4.111)

Note that if v ∈ V of (4.82) then |vi| ≥ 1/N for all i = 1, 2, 3. We define

γ̃ := ∂Ω̃× R3, γ̃N := ∂Ω̃× (R3\V ). (4.112)

We apply the change of variables (4.111) to (4.109):

(4.109) =

∥∥∥∥[ ˆ 4π

−2π

ˆ ∞
−2π

ˆ 4π

−2π
‖fI(t, x̃B(x, v), v)‖2L2

t ((−1,T ])dx1dx3dx2

]1/2∥∥∥∥
L2
v(V )

≤
∥∥∥∥[5× 6πN

ˆ
∂Ω̃

ˆ T

−1
|fI(t, y, v)|2|v · ñ(y)|dtdy

]1/2∥∥∥∥
L2
v(V )

. ‖fR‖L2((0,T )×γ̃\γ̃N ) + ‖fR(0)‖L2(γ̃\γ̃N ).

(4.113)

We recall the trace theorem:

ˆ T

0

ˆ
γ̃\γ̃1/N

|h|dγds . sup
t∈[0,T ]

‖h(t)‖L1(Ω̃×V ) +

ˆ T

0
‖h(s)‖L1(Ω̃×V )ds

+

ˆ T

0
‖[ε∂t + v · ∇x]h‖L1(Ω̃×V )ds.

(4.114)

We apply (5.33) with h = f2 and derive an estimate

‖fR‖2L2((0,T )×γ̃\γ̃N )

. sup
t∈[0,T ]

‖fR(t)‖2
L2(Ω̃×V )

+

ˆ T

0
‖fR(s)‖2

L2(Ω̃×V )
ds+

ˆ T

0

¨
Ω̃×V

∣∣fR[ε∂t + v · ∇x]fR
∣∣dxdvds

.T ‖fR‖2L∞([0,T ];L2(Ω×R3)) +
∥∥[ε∂t + v · ∇x]fR

∥∥
L2([0,T ]×Ω×R3)

.

(4.115)

Finally we conclude a bound of (4.104) as below via (4.106), (4.107), (4.109), (4.113), and (4.115)

(4.104) . ‖fR(0)‖L2
γ

+ ‖fR‖L∞([0,T ];L2(Ω×R3)) +
∥∥[ε∂t + v · ∇x]fR

∥∥
L2([0,T ]×Ω×R3)︸ ︷︷ ︸

(4.116)∗

. (4.116)

43



Next we estimate (4.105) (and (4.116)∗). Using (4.84) and (3.2) we conclude that

(4.105) + (4.116)∗

.

∥∥∥∥− 1

εκ
L(I−P)fR +

ε

κ
Γ(f2, fR) +

δ

κ
Γ(fR, fR)

−
(ε∂t + v · ∇x)

√
µ

√
µ

fR + ε(I−P)R1 + εR2

∥∥∥∥
L2((0,T ]×Ω×V )

.

Following the arguments of (4.15)-(4.18), and (3.4), (3.5), we derive that

(4.105) + (4.116)∗

.
{ ε
κ
‖(3.10)‖

L∞t ((0,T );L
2p
p−2
x (Ω))

+
δ

κ
‖PfR‖

L∞t ((0,T );L
2p
p−2
x (Ω))

}
‖PfR‖L2

t ((0,T );Lpx(Ω))

+
{ 1

εκ
+
δ

κ
‖w%,ßfR‖L∞t ((0,T )×Ω×R3)

}
‖(I−P)fR‖L2

t ((0,T )×Ω×R3)

+ ε
∥∥(3.12)

∥∥
L2
t ((0,T );L∞x (Ω))

‖fR(t)‖L∞t ((0,T );L2(Ω×R3))

+ ε{‖(3.4)‖L2
t ((0,T );L2

x(Ω)) + ‖(3.5)‖L2
t ((0,T );L2

x(Ω))},

(4.117)

where we further bound

‖PfR‖
L

2p
p−2
x (Ω)

≤ ‖PfR‖
3(p−2)
p

L6
x(Ω)
‖w%,ßfR‖

6−2p
p

L∞x (Ω). (4.118)

Step 4. Proof of (4.72). First we use (4.87) and then (4.104) and (4.105). We bound (4.104)
via (4.109) and (4.113), which are bounded by (4.115) and (4.117) respectively. These conclude that,
for p < 3, (

1−O(ε)‖u‖∞ −O(
1

N
)
)∥∥PfR∥∥L2

t ((0,T );Lpx(Ω̃))

− CT,N‖w%,ßfR(t)‖
p−2
p

L∞((0,T )×Ω̃×R3)
‖(I−P)fR‖

2
p

L2((0,T )×Ω̃×R3)

≤
∥∥∥∥ˆ

R3

f̄R(t, x, v)ϕ̃i(v)
√
µ0(v)dv

∥∥∥∥
L2
t ((0,T );Lpx(Ω̃))

≤
∥∥∥∥ˆ

R3

f̄R(t, x, v)ϕ̃(v)dv

∥∥∥∥
L2
t ((0,T );Lpx(Ω̃))

. ‖fR‖L∞([0,T ];L2(Ω×R3)) + ‖fR(0)‖L2
γ

+ r.h.s. of (4.117) with (4.118).

(4.119)

Then we move a contribution of ‖PfR‖L2
t ((0,T );Lpx(Ω)) to the l.h.s and use (4.118). This concludes

(4.72).

Step 5: Sketch of proof for (4.74). We follow the same argument for (4.72). Thereby we
only pin point the difference of the proof of (4.74). Recall ∂tfR(0, x, v) = fR,t(0, x, v) from (2.6). We

regard Ω̃ as an open subset but not a periodic domain as Ω. Without loss of generality we may assume
that fR,t(0, x, v) is defined in R3 × R3 and ‖fR,t(0)‖Lp(R3)×R3 . ‖fR,t(0)‖Lp(Ω̃)×R3 for all 1 ≤ p ≤ ∞.

Then we extend a solution for whole time t ∈ R as

fI,t(t, x, v) := 1t≥0∂tfR(t, x, v) + 1t≤0χ1(t)fR,t(0, x, v). (4.120)

Using t̃B(x, v) in (4.78) we define

fE,t(t, x, v) := 1(x,v)∈(R3\Ω̃)×R3fI,t(t+ εt̃B(x, v), x̃B(x, v), v). (4.121)
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We define an extension of cut-offed solutions

f̄R,t(t, x, v) := χ2(x)χ3(v)
{
1Ω̃(x)fI,t(t, x, v)+fE,t(t, x, v)

}
for (t, x, v) ∈ (−∞, T ]×R3×R3. (4.122)

We note that in the sense of distributions f̄R,t solves

ε∂tf̄R,t + v · ∇xf̄R,t = ḡt in (−∞, T ]× R3 × R3, where

ḡt :=
v · ∇xχ2

χ2
f̄R,t + 1t≥01Ω̃(x)χ2(x)χ3(v)[ε∂t + v · ∇x]∂tfR

+ 1t≤0χ2(x)χ3(v){ε∂tχ1(t)fR,t(0, x, v) + χ1(t)v · ∇xfR,t(0, x, v)}.

(4.123)

Here we have used the fact that f̄R,t in (4.123) is continuous along the characteristics across ∂Ω̃ and
{t = 0}. We derive that, using (4.123),

f̄R,t(t, x, v) =
1

ε

ˆ t

−∞
ḡt(s, x−

t− s
ε

v, v)ds for (t, x, v) ∈ (−∞, T ]× R3 × R3. (4.124)

Now we apply Lemma 6 to (4.124) and derive that, for p < 3,

‖S(ḡt)‖L2
t ((0,T );Lpx(T2×R))

.‖1(t,x,v)∈DT ḡt‖L2((0,T )×(T2×R)×{|v|≤N})

. ‖fR,t(0)‖L2(Ω×R3) + ‖ε∂tfR,t + v · ∇xfR,t‖L2((0,T )×Ω̃×V )

+ ‖1(t,x,v)∈DT fI,t(t+ εt̃B(x, v), x̃B(x, v), v)‖L2((−1,T ]×(U\Ω̃)×V ).

(4.125)

Following the same argument of (4.116)-(4.117) we deduce that

(4.125) .‖∂tfR‖L∞([0,T ];L2(Ω×R3)) + ‖∂tfR(0)‖L2
γ

+
∥∥− 1

εκ
L(I−P)∂tfR + ε× r.h.s. of (3.3)

∥∥
L2((0,T ]×Ω×V )

.
(4.126)

From (4.31)-(4.33), the last term of (4.126) is bounded above by{1

κ
‖∂tu‖L∞t,x

(
1 + δε‖wfR‖L∞t,x,v

)
+
ε2

κ
‖(3.10)‖L∞t,x

}{
‖PfR‖L2

t,x
+ ‖
√
ν(I−P)fR‖L2

t,x,v

}
+
{ 1

κε
+
δ

κ
‖wfR‖L∞t,x,v +

ε

κ
‖(3.10)‖L∞t,x + ε‖(3.12)‖L∞t,x

}
‖
√
ν(I−P)∂tfR‖L2

t,x,v

+
{ δ
κ
‖PfR‖

3(p−2)
p

L∞t L
6
x
‖wfR‖

6−2p
p

L∞t,x,v
+
ε

κ
‖(3.10)‖

L∞t L
2p
p−2
x

+ ε‖(3.12)‖
L∞t L

2p
p−2
x

}
‖P∂tfR‖L2

tL
p
x

+
ε

κ
‖(3.11)‖L2

t,x,v
‖wfR‖L∞t,x,v + ε‖(3.13)‖L2

tL
∞
x
‖fR‖L∞t L2

x,v
+ ε{‖(3.6)‖L2

t,x
+ ‖(3.7)‖L2

t,x
}.

(4.127)

Here the most singular term comes from 1
ε2κ
L(PtfR) in the r.h.s. of (3.3) .

On the other hand from (4.122) and the argument of (4.86) we derive

‖S(ḡt)‖L2
t ((0,T );Lpx(T2×R)) &

∥∥∥∥ˆ
R3

f̄R,t(t, x, v)ϕ̃i(v)
√
µ0(v)dv

∥∥∥∥
L2
t ((0,T );Lpx(Ω̃))

&
(
1−O(ε)‖u‖∞ −O(

1

N
)
)∥∥P∂tfR∥∥L2

t ((0,T );Lpx(Ω̃))

− (κε)
2
p−2 ‖w′∂tfR‖L2

t ((0,T );L∞x,v(Ω×R3)) −
1

κε
‖(I−P)∂tfR‖L2((0,T )×Ω×R3).

(4.128)
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Here we have used∥∥∥∥ˆ
R3

χ2(x)χ3(v)(I−P)∂tfR(t, x, v)ϕ̃i(v)
√
µ0(v)dv

∥∥∥∥
L2
t ((0,T );Lpx(Ω̃))

≤‖(I−P)∂tfR(t, x, v)‖L2
t ((0,T );Lpx,v(Ω̃×R3))

.
∥∥∥‖w′∂tfR‖ p−2

p

L∞x,v(Ω×R3)
‖(I−P)∂tfR‖

2
p

L2
x,v(Ω×R3)

∥∥∥
L2
t ((0,T ))

.
∥∥∥‖w′∂tfR‖ p−2

p

L∞x,v(Ω×R3)

∥∥∥
L

2p
p−2
t ((0,T ))

∥∥∥‖(I−P)∂tfR‖
2
p

L2
x,v(Ω×R3)

∥∥∥
Lpt ((0,T ))

. (κε)
2
p ‖w′∂tfR‖

p−2
p

L2
t ((0,T );L∞x,v(Ω×R3))

(κε)
− 2
p ‖(I−P)∂tfR‖

2
p

L2((0,T )×Ω×R3)

. (κε)
2
p−2 ‖w′∂tfR‖L2

t ((0,T );L∞x,v(Ω×R3)) + (κε)−1‖(I−P)∂tfR‖L2((0,T )×Ω×R3).

(4.129)

Combining (4.128), (4.125), (4.126), and (4.127) and choosing N � 1 we conclude (4.74).

4.4. L∞-estimate. In this section we develop a unified L∞-estimate in the local Maxwellian setting.

We devise the weight functions to control an extra growth in |v| comes from
(∂t+ε−1v·∇x)

√
µ√

µ and its

temporal derivative:

w%,ß(x, v) = w := exp{%|v|2 − zß(x3)(x · v)} for 0 < ß� %

2π
and 0 < % <

1

4
,

where zß : R+ → R+ is defined as, for ß > 0

zß(x3) = ß for x3 ∈
[
0,

1

ß
− 1
]
, and zß(x3) =

1

1 + x3
for x3 ∈

[1
ß
− 1,∞

)
.

We often abuse the notation of w%,ß and w. We compute to have

v · ∇xw%,ß(x, v)

w%,ß(x, v)

= −zß(x3)|v|2 − v3∂x3zß(x3)(x1v1 + x2v2 + x3v3)

= −zß(x3)|v3|2 − x3∂x3zß(x3)|v3|2 − zß(x3)(|v1|2 + |v2|2)− ∂x3zß(x3)(x1v1 + x2v2)v3

= −ß1[0,ß−1−1](x3)|v|2 − 1[ß−1−1,∞)(x3)(1 + x3)−2|v3|2 − 1[ß−1−1,∞)(x3)
1

1 + x3
(|v1|2 + |v2|2)

− ∂x3zß(x3)(x1v1 + x2v2)v3,

where we have used ∂x3zß(x3) = 1[ß−1−1,∞)(x3) −1
(1+x3)2 . The last term, the sole term without a sign,

can be bounded as

| − ∂x3zß(x3)(x1v1 + x2v2)v3|

≤ 2
√

2π1[ß−1−1,∞)(x3)(1 + x3)−2(|v1|2 + |v2|2)1/2|v3|

≤ 4π21[ß−1−1,∞)(x3)(1 + x3)−2(|v1|2 + |v2|2) +
1

2
1[ß−1−1,∞)(x3)(1 + x3)−2|v3|2.

Therefore we conclude that

−v · ∇xw%,ß(x, v) ≥
{

ß1[0,ß−1−1](x3)|v|2 +
1

2
1[ß−1−1,∞)(x3)(1 + x3)−2|v3|2

+ (1− 4π2ß)1[ß−1−1,∞)(x3)
1

1 + x3
(|v1|2 + |v2|2)

}
w%,ß(x, v)

≥ zß(x3)

2
|v|2w%,ß(x, v).

(4.130)

46



We consider

h(t, x, v) = w%,ß(x, v)fR(t, x, v). (4.131)

An equation for h can be written from (3.2) and (3.8) as

∂th+
1

ε
v · ∇xh+

νß

ε2κ
h =

1

ε2κ
Kwh+ Sh, (4.132)

h|γ− = wPγ+

( h
w

)
+ r. (4.133)

For (4.131), we have r = − ε
δw(1−Pγ+)f2 and Sh := δ

κεΓw(h, h) + 2
κΓw(wf2, h) +w(I−P)R1 +wR2,

and

νß := ν(v)− εκ
v · ∇xw%,ß

w%,ß
+ ε2κ

(∂t + ε−1v · ∇x)
√
µ

√
µ

, (4.134)

where we denote Γw(·, ·)(v) := w(v)Γ( ·w ,
·
w)(v) and Kw(·) := wK( ·w).

If we have

ε5/2κ|∂tu|+ ε1/2 sup
x∈Ω

(1 + x3)|∇xu(t, x)| <∞, (4.135)

then for sufficiently small ε, κ > 0, from (4.130),

νß ≥ ν(v) +
εκ

2
zß(x3)|v|2 − ε2κ{ε|∂tu|+ |∇xu||v|}|v − εu| ≥

ν(v)

2
+
εκ

4
zß(x3)|v|2. (4.136)

From (1.20), (1.22), and (2.3)

|w(v)Γ(
h

w
,
h

w
)(v)|

≤
¨

R3×S2

|(v − v∗) · u|
√
µ(v∗)e

−%|v∗|2+ %
2
|v∗|{|h(v′)||h(v′∗)|+ |h(v)||h(v∗)|

}
dudv∗

.% ν(v)‖h‖2L∞v .

(4.137)

From (3.20) clearly we have

k(v, v∗)
w%,ß(v)

w%,ß(v∗)
≤ kw(v, v∗) :=

2C2

|v − v∗|
e
− |v−v∗|

2

8
− 1

8
(|v−εu|2−|v∗−εu|2)2

|v−v∗|2
w%,ß(v)

w%,ß(v∗)
. (4.138)

As in (3.23) we derive ˆ
R3

kw(v, v∗)dv∗ .
1

1 + |v|
. (4.139)

Proposition 10. Recall w%,ß in (2.3). Assume the same assumptions in Proposition 6. In addition
we assume (4.135), and the conditions of % and ß in (2.3). Then

d∞‖w%,ßfR‖L∞t,x,v
. ‖w%,ßf(0)‖L∞x,v +

ε

δ
‖(3.10)‖L∞t,x + ε2κ(‖(3.4)‖L∞t,x + ‖(3.5)‖L∞t,x)

+
1

ε1/2κ1/2
‖PfR‖L∞t L6

x
+

1

ε3/2κ3/2

{
‖
√
ν(I−P)fR‖L2

t,x,v
+ ‖
√
ν(I−P)∂tfR‖L2

t,x,v

}
+

1

ε1/2κ3/2
‖∂tu‖L∞t,x‖PfR‖L2

t,x
,

(4.140)

where

d∞ := 1− ε2‖(3.10)‖L∞t,x − εδ‖w%,ßfR‖L∞t,x,v . (4.141)
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Proposition 11. Assume the same assumptions of Proposition 10. We denote

w′(x, v) := w%′,ß(x, v) for %′ < %. (4.142)

Let p < 3. Then

d∞,t‖w′∂tfR‖L2
t ((0,T );L∞x,v(Ω×R3))

. εκ1/2‖w′∂tfR(0)‖L∞x,v +
1

ε3/pκ3/p
‖P∂tf‖L2

tL
p
x

+
1

ε3/2κ3/2
‖
√
ν(I−P)∂tf‖L2

t,x,v

+
ε

δ
‖(3.11)‖L∞x,v +

ε2

δ
‖∂tu‖L∞x,v‖(3.10)‖L∞x,v + ε2κ‖(3.6)‖L∞x,v + ε2κ‖(3.7)‖L2

tL
∞
x

+ ε
(
‖∂tu‖L∞t,x + ε‖(3.11)‖L∞t,x + εκ‖(3.13)‖L2

tL
∞
x

)
‖wfR‖L∞t,x,v

+ ε
(
ε‖(3.11)‖L∞t,x + εκ‖(3.13)‖L2

tL
∞
x

+ ‖∂tu‖L∞t,x
(
1 + ε2‖(3.10)‖L∞t,x + εδ‖wfR‖L∞t,x,v

))
‖wfR‖L∞t,x,v ,

(4.143)

with

d∞,t := 1− ε2‖(3.10)‖L∞t,x − εδ‖wfR‖L∞t,x,v . (4.144)

In the proof of propositions, for simplicity, we often use ‖ · ‖∞ for ‖ · ‖L∞t,x,v , ‖ · ‖L∞x,v or ‖ · ‖L∞x
if there would be no confusion.

Proof of Proposition 10. We define backward exit time and position as

tb(x, v) := ε
x3

v3
, xb(x, v) := x− x3

v3
v for (x, v) ∈ Ω× R3. (4.145)

Since the characteristics for (4.132) are given by (x− t−s
ε v, v), we have, for 0 ≤ t− s < tb(x, v),

d

ds

{
e−
´ t
s

νß
ε2κh(s, x− t− s

ε
v, v)

}
= e−

´ t
s

νß
ε2κ

{ 1

ε2κ
Kwh+ Sh

}
(s, x− t− s

ε
v, v). (4.146)

Here e−
´ t
s

νß
ε2κ = e−

´ t
s

νß(τ,x− t−τε v,v)

ε2κ
dτ . We regard (x1 − t−s

ε v1, x2 − t−s
ε v2) ∈ R2 belongs to T2 without

redefining them in [−π, π]2.
Now we represent h using (4.146) and (4.133) as

h(t, x, v) =1t−tb(x,v)<0e
−
´ t
0

νß
ε2κh(0, x− t

ε
v, v)

+

ˆ t

max{0,t−tb(x,v)}
e−
´ t
s

νß
ε2κ

1

ε2κ
Kwh(s, x− t− s

ε
v, v)ds (4.147)

+

ˆ t

max{0,t−tb(x,v)}
e−
´ t
s

νß
ε2κSh(s, x− t− s

ε
v, v)ds

+ 1t−tb(x,v)≥0e
−
´ t
t−tb(x,v)

νß
ε2κh(t− tb(x, v), xb(x, v), v). (4.148)
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Since the integrand of (4.148) reads on the boundary, using the boundary condition (4.133) and
(4.146) again, we represent it as

h(t− tb(x, v), xb(x, v), v)

=w(xb(x, v), v)cµ
√
µ(v)

ˆ
v3<0

h(t− tb(x, v), xb(x, v), v)

√
µ(v)|v3|

w(xb(x, v), v)
dv + r(t− tb(x, v), xb(x, v), v)

=w(xb(x, v), v)cµ
√
µ(v)

ˆ
v3<0

e−
´ t−tb(x,v)
0

νß
ε2κh(0, xb(x, v)− t− tb(x, v)

ε
v, v)

√
µ(v)|v3|

w(xb(x, v), v)
dv

+ w(xb(x, v), v)cµ
√
µ(v)

ˆ
v3<0

×
ˆ t−tb(x,v)

0
e−
´ t−tb(x,v)
s

νß
ε2κ

1

ε2κ
Kwh(s, xb(x, v)− t− tb(x, v)− s

ε
v, v)

√
µ(v)|v3|

w(xb(x, v), v)
dsdv

(4.149)

+ w(xb(x, v), v)cµ
√
µ(v)

ˆ
v3<0

×
ˆ t−tb(x,v)

0
e−
´ t−tb(x,v)
s

νß
ε2κSh(s, xb(x, v)− t− tb(x, v)− s

ε
v, v)

√
µ(v)|v3|

w(xb(x, v), v)
dsdv

+ r(t− tb(x, v), xb(x, v), v),

where r = − ε
δw(1− Pγ+)f2 and e−

´ t−tb(x,v)
0

νß
ε2κ := e−

´ t−tb(x,v)
0

1
ε2κ

νß(τ,x− tb(x,v)

ε
v− t−tb(x,v)−s

ε
v,v)dτ .

Note that, from (3.4), (3.5), (3.57), (3.58), and (4.137),

|Sh(s, x− t− s
ε

v, v)| . ν(v)
δ

κε
‖h‖2∞ +

ν(v)

κ
‖(3.10)‖∞‖h‖∞ + ‖(3.4)‖∞ + ‖(3.5)‖∞,

|w(1− Pγ+)f2| . ‖(3.10)‖∞.
(4.150)

We derive a preliminary estimate as

|h(t, x, v)| . e−
ν

2ε2κ
t‖h(0)‖∞

+ εδ sup
0≤s≤t

‖h(s)‖2∞ + ε2 sup
0≤s≤t

‖(3.10)‖∞‖h(s)‖∞

+
ε

δ
sup

0≤s≤t
‖(3.10)‖∞ + ε2κ(‖(3.4)‖∞ + ‖(3.5)‖∞) (4.151)

+

ˆ t

0

e−
ν

2ε2κ
(t−s)

ε2κ

ˆ
R3

kw(v, v∗)|h(s, x− t− s
ε

, v∗)|dv∗ds (4.152)

+ w(xb(x, v), v)cµ
√
µ(v)

ˆ
v3<0

ˆ t−tb(x,v)

0

e−
ν

2ε2κ
(t−s)

ε2κ

×
ˆ
R3

kw(v, v∗)|h(s, xb(x, v)− t− tb(x, v)− s
ε

v, v∗)|dv∗ds
√
µ(v)|v3|

w(xb(x, v), v)
dv. (4.153)
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We note that |h(s, x− t−s
ε , v∗)| has the same upper bound. Then we bound (4.152) by a summation

of (4.151) and

sup
(xb,v)∈∂Ω×R3

t−tb≥0

w(xb, v)cµ
√
µ(v)

ˆ
v3<0

ˆ t−tb

0

e−
ν

2ε2κ
(t−s)

ε2κ

×
ˆ
R3

kw(v, v∗)|h(s, xb −
t− tb − s

ε
v, v∗)|dv∗ds

√
µ(v)|v3|

w(xb, v)
dv,

(4.154)

and importantly

ˆ t

0

e−
ν(v)

2ε2κ
(t−s)

ε2κ

ˆ
R3

kw(v, v∗)

ˆ s

0

e−
ν(v∗)
2ε2κ

(s−τ)

ε2κ

×
ˆ
R3

kw(v∗, v∗∗)|h(s, x− t− s
ε

v − s− τ
ε

v∗, v∗∗)|dv∗∗dτdv∗ds.

(4.155)

We consider (4.155). We decompose the integration of τ ∈ [0, s] = [0, s − o(1)ε2κ] ∪ [s − o(1)ε2κ, s].
The contribution of

´ s
s−o(1)ε2κ · · · dτ is bounded as

2

ν(v)

(
1− e−

ν(v)

2ε2κ

)
‖kw(v, ·)‖L1

o(1)ε2κ

ε2κ
‖kw(v∗, ·)‖L1 sup

0≤s≤t
‖h(s)‖∞ ≤ o(1) sup

0≤s≤t
‖h(s)‖∞. (4.156)

For the rest of term we decompose kw(v∗, v∗∗) = kw,N (v∗, v∗∗) + {kw(v∗, v∗∗)− kw,N (v∗, v∗∗)} where
kw,N (v∗, v∗∗) := kw(v∗, v∗∗) ×1 1

N
<|v∗−v∗∗|<N & |v∗|<N . From (4.139),

´
R3 kw(v∗, v∗∗)1|v∗|≥Ndv∗∗ . 1/N . Also from the fact kw(v∗, v∗∗) ≤ e−C|v∗−v∗∗|

2

|v∗−v∗∗| ∈ L
1({v∗−v∗∗ ∈ R3}),

supv∗
´
R3 kw(v∗, v∗∗){1 1

N
≥|v∗−v∗∗| + 1|v∗−v∗∗|≥N}dv∗∗ ↓ 0 as N →∞. Hence for N � 1

(4.155) ≤
ˆ t

0

e−
ν(v)

2ε2κ
(t−s)

ε2κ

ˆ
R3

kw,N (v, v∗)

ˆ s−o(1)ε2κ

0

e−
ν(v∗)
2ε2κ

(s−τ)

ε2κ

×
ˆ
R3

kw,N (v∗, v∗∗)|h(s, x− t− s
ε

v − s− τ
ε

v∗, v∗∗)|dv∗∗dτdv∗ds

≤ CN
ˆ t

0

e−
ν(v)

2ε2κ
(t−s)

ε2κ

ˆ
|v∗|≤2N

ˆ s−o(1)ε2κ

0

e−
ν(v∗)
2ε2κ

(s−τ)

ε2κ

×
ˆ
|v∗∗|<2N

|fR(s, x− t− s
ε

v − s− τ
ε

v∗, v∗∗)|dv∗∗dτdv∗ds

+ o(1) sup
0≤s≤t

‖h(s)‖L∞x,v ,

(4.157)

where we have used the fact supx kw(v∗, v∗∗)w%,ß(v∗∗) ≤ CN < ∞ when 1
N < |v∗ − v∗∗| < N and

|v∗| < N (then |v∗∗| < 2N).
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Now we decompose fR = PfR + (I−P)fR. We first take integrations (4.157) over v∗ and v∗∗ and
use Holder’s inequality with p = 6, p = 2 in 1/p+ 1/p′ = 1 for PfR, (I−P)fR respectively to derive

(4.157)

≤ (4N)3CN
1

ν(v)
sup

0≤s≤t
0≤τ≤s−o(1)ε2κ

(¨
|v∗|≤N,|v∗∗|≤2N

|PfR(s, x− t− s
ε

v − s− τ
ε

v∗, v∗∗)|6dv∗∗dv∗

)1/6

+ (4N)3CN
1

ν(v)

× sup
0≤s≤t

0≤τ≤s−o(1)ε2κ

(¨
|v∗|≤N,|v∗∗|≤2N

|(I−P)fR(s, x− t− s
ε

v − s− τ
ε

v∗, v∗∗)|2dv∗∗dv∗

)1/2

.

(4.158)

Now we consider a map

v∗ ∈ {R3 : |v∗| ≤ N} 7→ y := x− t− s
ε

v − s− τ
ε

v∗ ∈ Ω, where
∣∣∣ ∂y
∂v∗

∣∣∣ =
∣∣∣s− τ

ε

∣∣∣3 & ε3κ3. (4.159)

We note that this mapping is not one-to-one and the image can cover Ω at most N times. Therefore
we have (¨

|v∗|≤N,|v∗∗|≤N
|PfR(s, x− t− s

ε
v − s− τ

ε
v∗, v∗∗)|6dv∗∗dv∗

)1/6

≤ N1/6

(¨
|v∗|≤N,|v∗∗|≤N

|PfR(s, y, v∗∗)|6dv∗∗
dy

ε3κ3

)1/6

≤ N1/6

ε1/2κ1/2
‖PfR(s)‖L6

x,v
,

(¨
|v∗|≤N,|v∗∗|≤N

|(I−P)fR(s, x− t− s
ε

v − s− τ
ε

v∗, v∗∗)|2dv∗∗dv∗

)1/2

≤ N1/2

ε3/2κ3/2
‖(I−P)fR(s)‖L2

x,v
.

Therefore we conclude that

(4.155)

≤ (4N)3CN (4.158) + o(1) sup
0≤s≤t

‖h(s)‖L∞x,v

≤ (4N)4CN

{
1

ε1/2κ1/2
sup

0≤s≤t
‖PfR(s)‖L6

x,v
+

1

ε3/2κ3/2
sup

0≤s≤t
‖(I−P)fR(s)‖L2

x,v

}
+ o(1) sup

0≤s≤t
‖h(s)‖L∞x,v

.N
1

ε1/2κ1/2
sup

0≤s≤t
‖PfR(s)‖L6

x,v
+

1

ε3/2κ3/2

{
‖(I−P)fR‖L2

t,x,v
+ ‖(I−P)∂tfR‖L2

t,x,v

}
+

1

ε1/2κ3/2
‖∂tu‖L∞t,x‖PfR‖L2

t,x
+ o(1) sup

0≤s≤t
‖h(s)‖L∞x,v ,

(4.160)

where we have used (A.1) the Sobolev embedding in 1D at the last line.
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Now we consider (4.153) and (4.154). We decompose s ∈ [0, t − tb] = [0, t − tb − o(1)ε2κ] ∪ [t −
tb − o(1)ε2κ, t− tb]. The contribution of

´ t−tb
t−tb−o(1)ε2κ · · · is bounded as

o(1)ε2κ

ε2κ
‖kw(v, ·)‖L1 sup

0≤s≤t
‖h(s)‖∞ ≤ o(1) sup

0≤s≤t
‖h(s)‖∞. (4.161)

For s ∈ [0, t− tb − o(1)ε2κ] we consider a map as (4.159)

v ∈ {v ∈ R3 : v3 < 0} 7→ y := xb −
t− tb − s

ε
v ∈ Ω, where

∣∣∣∣∂y∂v
∣∣∣∣ =

∣∣∣∣ t− tb − sε

∣∣∣∣3 & ε3κ3. (4.162)

Following the argument to have (4.158) we bound

the contribution of

ˆ t−tb−o(1)ε2κ

0
· · · of (4.154)

.N
1

ε1/2κ1/2
‖PfR(s)‖L6

x,v
+

1

ε3/2κ3/2

{
‖(I−P)fR‖L2

t,x,v

+ ‖(I−P)∂tfR‖L2
t,x,v

}
+

1

ε1/2κ3/2
‖∂tu‖L∞t,x‖PfR‖L2

t,x
.

(4.163)

In conclusion, we bound |h(t, x, v)| by (4.151), (4.160), (4.161), (4.163) and conclude (4.140) by
choosing small enough o(1) in (4.160) and (4.161). �

Proof of Proposition 11. Since many parts of the proof are overlapped with the proof of Propo-
sition 10 we only pin point the differences. An equation for w′∂tfR takes the similar form of (4.132)
and (4.133). We can read (3.3) for

h(t, x, v) = w′(x, v)∂tfR(t, x, v), for %′ < %, (4.164)

as (4.132) and (4.133) replacing

Sh =
2

κ
Γw′(w

′f2, h) +
2δ

εκ
Γw′(w

′fR, h) +
2

κ
Γw′(w

′∂tf2,w
′fR)

− ∂t
((∂t + ε−1v · ∇x)

√
µ

√
µ

)w′
w

wfR + w′(I−P)R3 + w′R4

− 1

ε2κ
w′Lt(I−P)fR +

1

ε2κ
w′L(PtfR) +

2

κ
w′Γt(f2, fR) +

δ

εκ
w′Γt(fR, fR),

r = −ε
δ
w′(1− Pγ+)∂tf2 + w′rγ+(fR)−w′

ε

δ
rγ+(f2),

(4.165)

where rγ+(g) has been defined in (3.9).
We have the same equality of (4.147), (4.148) with (4.149) for h of (4.164) but replacing Sh and

r of (4.165). Note that w′(x,v)
w(x,v) . e−(%−%′)|v|2 and hence

∣∣∣∂t( (∂t+ε−1v·∇x)
√
µ√

µ

)
w′

w

∣∣∣ . (3.13) from (3.13).

From (3.36), (3.6), (3.7), (3.57), (3.12), (3.13), (3.58), and (4.137), we bound terms of (4.165)

|Sh| . ν(v)
{1

κ
|(3.10)|+ δ

κε
‖wfR‖∞

}
‖h‖∞ + (3.6) + (3.7)

+
(ν(v)

κ
(3.11) + (3.13) + |∂tu|

( 1

εκ
+
ε

κ
(3.10) +

δ

κ
‖wfR‖∞

))
‖wfR‖∞,

(4.166)

|r| . ε

δ
(3.11) +

ε2

δ
|∂tu|(3.10) + ε|∂tu|‖wfR‖∞. (4.167)

52



Then as in (4.151)-(4.155) we derive a preliminary estimate as

|h(t, x, v)|

. e−
ν

2ε2κ
t‖h(0)‖∞ +

ε2κ

ν(v)
(4.166) + (4.167) (4.168)

+

ˆ t

0

e−
ν

2ε2κ
(t−s)

ε2κ

ˆ
R3

kw′(v, v∗)|h(s, x− t− s
ε

, v∗)|dv∗ds (4.169)

+ w′(xb(x, v), v)cµ
√
µ(v)

ˆ
v3<0

ˆ t−tb(x,v)

0

e−
ν

2ε2κ
(t−s)

ε2κ

×
ˆ
R3

kw′(v, v∗)|h(s, xb(x, v)− t− tb(x, v)− s
ε

v, v∗)|dv∗ds
√
µ(v)|v3|

w′(xb(x, v), v)
dv. (4.170)

As (4.154) and (4.155), we bound (4.169) by a summation of (4.168) and

ˆ t

0

e−
Cν

2ε2κ
(t−s)

ε2κ

ˆ s−o(1)ε2κ

0

e−
Cν

2ε2κ
(s−τ)

ε2κ

ˆ
|v∗|≤2N

×
ˆ
|v∗∗|≤2N

|h(s, x− t− s
ε

v − s− τ
ε

v∗, v∗∗)|dv∗∗dv∗dτds, (4.171)

+ sup
(xb,v)∈∂Ω×R3

t−tb≥0

w′(xb, v)cµ
√
µ(v)

ˆ
v3<0

ˆ t−tb−o(1)ε2κ

0

e−
ν

2ε2κ
(t−s)

ε2κ

×
ˆ
|v∗|≤2N

|h(s, xb −
t− tb − s

ε
v, v∗)|dv∗ds

√
µ(v)|v3|

w′(xb, v)
dv (4.172)

+ o(1) sup
0≤s≤t

‖h(s)‖L∞x,v . (4.173)

Then we follow the argument of (4.158)-(4.160) to derive that, for p < 3,

|(4.171)| .
ˆ t

0

e−
Cν

2ε2κ
(t−s)

ε2κ

ˆ s−o(1)ε2κ

0

e−
Cν

2ε2κ
(s−τ)

ε2κ

N1/3

ε3/pκ3/p
‖P∂tf(τ)‖Lpx,vdτds (4.174)

+

ˆ t

0

e−
Cν

2ε2κ
(t−s)

ε2κ

ˆ s−o(1)ε2κ

0

e−
Cν

2ε2κ
(s−τ)

ε2κ

N1/2

ε3/2κ3/2
‖P∂tf(τ)‖L2

x,v
dτds. (4.175)
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Now we use the Young’s inequality for temporal convolution twice to derive that, for p < 3,

‖(4.171)‖L2
t (0,T )

.

∥∥∥∥e− Cν
2ε2κ
|s|

ε2κ

∥∥∥∥
L1
s(R)

∥∥∥∥
×
ˆ s

0

e−
Cν

2ε2κ
(s−τ)

ε2κ

(
N1/3

ε3/pκ3/p
‖P∂tf(τ)‖Lpx,v +

N1/2

ε3/2κ3/2
‖(I−P)∂tf(τ)‖L2

x,v

)
dτ

∥∥∥∥
L2
s(R)

.

∥∥∥∥e− Cν
2ε2κ
|s|

ε2κ

∥∥∥∥
L1
s(R)

∥∥∥∥e− Cν
2ε2κ
|τ |

ε2κ

∥∥∥∥
L1
τ (R)

×
(

N1/3

ε3/pκ3/p
‖P∂tf‖L2

t ((0,T );Lpx(Ω)) +
N1/2

ε3/2κ3/2
‖(I−P)∂tf‖L2((0,T )×Ω×R3)

)
.N

1

ε3/pκ3/p
‖P∂tf‖L2

t ((0,T );Lpx(Ω)) +
1

ε3/2κ3/2
‖(I−P)∂tf‖L2((0,T )×Ω×R3).

(4.176)

As in (4.163), for (4.172) we use (4.162) to derive that, for p < 3,

‖(4.172)‖L2
t (0,T )

.

∥∥∥∥ ˆ t

0

e−
Cν

2ε2κ
(t−s)

ε2κ

(
1

ε3/pκ3/p
‖P∂tf(s)‖Lpx,v +

1

ε3/2κ3/2
‖(I−P)∂tf(s)‖L2

x,v

)
ds

∥∥∥∥
L2
t (0,T )

.

∥∥∥∥e− Cν
2ε2κ
|s|

ε2κ

∥∥∥∥
L1
s(R)

{ 1

ε3/pκ3/p
‖P∂tf‖L2

t ((0,T );Lpx(Ω)) +
1

ε3/2κ3/2
‖(I−P)∂tf‖L2((0,T )×Ω×R3)

}
.

1

ε3/pκ3/p
‖P∂tf‖L2

t ((0,T );Lpx(Ω)) +
1

ε3/2κ3/2
‖(I−P)∂tf‖L2((0,T )×Ω×R3),

(4.177)

where we have used the Young’s inequality for temporal convolution.
In conclusion, we bound ‖h‖L2

tL
∞
x,v

by ‖(4.168)‖L2
tL
∞
x,v
, (4.176), (4.173), (4.177) and conclude (4.143)

by choosing small enough o(1) in (4.173). �

4.5. Proof of Theorem 2. An existence of a unique global solution F for each ε > 0 can be found
in [12, 13, 14, 15]. Thereby we only focus on the (a priori) estimates (2.13).

Step 1. Define T∗ > 0 as

T∗ = sup
{
t ≥ 0 : min{d2, d2,t, d6, d3, d3,t, d∞, d∞,t} ≥

σ0

4

and
δε1/2

κ

√
D(s) + εδ‖w%,ßf(s)‖L∞x,v +

ε1/2δ

κ1+P
‖PfR(s)‖L2

x
� 1

for all 0 ≤ s ≤ t
}
,

(4.178)

where d2, d2,t, d6, d3, d3,t, d∞, d∞,t are defined in (4.3), (4.5), (4.45), (4.73), (4.75), (4.141) and (4.144).
From (2.10) and (4.178) we read all the estimates of Proposition 7, Proposition 8, Proposition 10,

Proposition 9, and Proposition 11 in terms of E(t) and D(t) as follows.
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From (4.140), (4.178), and (2.10)

sup
0≤s≤t

‖w%,ßfR(s)‖L∞x,v

.
1

ε1/2κ1/2
sup

0≤s≤t
‖PfR(s)‖L6

x,v
+

1

ε1/2κ

√
D(t)+

1

ε1/2κ1+P
‖PfR‖L2

t,x

+ ‖w%,ßf(0)‖∞ + ε1/2 exp
( 3

κP′

)
.

(4.179)

Now applying (4.179) to (4.44) we derive that

sup
0≤s≤t

‖PfR(s)‖L6
x
.
ε

κ
exp

( 1

κP′

)
sup

0≤s≤t

√
E(s) +

1

κ1/2

√
D(t)+

1

κ1/2+P
‖PfR‖L2

t,x

+ (εκ)
1
2 ‖w%,ßf(0)‖L∞x,v + ε1/2 exp

( 3

κP′

)
.

(4.180)

From (4.179), (4.180), and (4.178) and (2.10) we conclude that

sup
0≤s≤t

{
κ

1
2 ‖PfR(s)‖L6

x
+ ε

1
2κ‖w%,ßfR(s)‖L∞x,v

}
. exp

( 3

κP′

)
+
√
Fp(0) + sup

0≤s≤t

{√
E(s) +

√
D(s)

}
+

1

κP
‖PfR‖L2

t,x︸ ︷︷ ︸
(4.181)∗

. (4.181)

From (4.72), (4.181), (4.178) and (2.10)

κ
1
2 ‖PfR‖L2

t ((0,t);L
p
x) . (4.181)∗

{
1 +

ε1/2δ

κ
(4.181)∗ +

(
ε

p+2
2(p−2)κ

2
p−2 (4.181)∗

) p−2
p
}

︸ ︷︷ ︸
(4.182)∗

.
(4.182)

Using (4.181) and (2.9), from (4.74) and (4.143), we deduce that, for p < 3 and %′ < %,

κ
1
2

+ß
∥∥P∂tfR∥∥L2

t ((0,t);L
p
x)

+ (εκ)3/pκ
1
2

+ß‖w%′,ß∂tfR‖L2
t ((0,t);L

∞
x,v)

. (4.182)∗

{
1 + ε

1− 3−p
p δκ

− 3
p {(4.181)∗ + (4.182)∗}

}
︸ ︷︷ ︸

(4.183)∗

. (4.183)

Step 2. Using the estimates of the previous step we will close the estimate ultimately in the
basic energy estimates (4.2) and (4.4) via the Gronwall’s inequality. We note that from (2.9) the

multipliers of
´ t

0 ‖PfR(s)‖2L2
x
ds in (4.2) and

´ t
0 ‖P∂tfR(s)‖2L2

x
ds in (4.4) are bounded above by

O(1)κ−2P
(
1 + εκ

1
2
−P + (εκ

1
2
−P)2

)
. κ−2P, (4.184)

where we have used (2.11).
In (4.2) and (4.4) we bound

‖κ1/2PfR‖L2
tL

3
x
. κ

1
2

(1− p
3

)‖PfR‖
1− p

3

L2
tL
∞
x
‖κ1/2PfR‖

p
3

L2
tL

p
x
.T (εκ)−

1
2

(1− p
3

)|(4.181)∗|1−
p
3 |(4.183)∗|

p
3 ,

‖P∂tfR‖L2
tL

3
x
. ‖P∂tfR‖

1− p
3

L2
tL
∞
x
‖P∂tfR‖

p
3

L2
tL

p
x
. ε−

3
p

(1− p
3

)
κ
− 1

2
−P− 3

p
(1− p

3
)|(4.183)∗|.

(4.185)
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We can check that the multiplier of ‖ε−1κ−1/2√ν(I−P)fR‖2L2
t,x,v

in (4.4) is bounded as, from (2.10)

and (4.181),{
ε(1 + ε‖(3.10)‖L∞t,x)‖∂tu‖L∞t,x + εκ‖∇x∂tu‖L∞t,x + (εκ1/2‖(3.13)∗‖L∞t,x)2 + (εδ‖wfR‖L∞t,x,v)

2
}

. εκ1/2−P + εδ2κ−2|(4.181)∗|2.

Applying (4.181), (4.182), (4.183), (4.185) to (4.2) + o(1)(4.4), using the above bound and (2.11),
and collecting the terms, we derive that

sup
0≤s≤t

E(s) + (1− εδ2κ−2|(4.181)∗|2)D(t)

. E(0) + F(0) + exp
( 6

κP′

)
+ (4.184)

ˆ T

0
E(s)ds

+ δ2ε−(1− p
3

)κ−4+ p
3 |(4.181)∗|4−

2p
3 |(4.183)∗|

2p
3

+ δ2ε
− 6
p

(1− p
3

)
κ
−3−2P− 6

p
(1− p

3
)|(4.181)∗|2|(4.183)∗|2.

(4.186)

Under the assumption of

ε1/2δκ−1(4.181)∗ � 1, ε
p+2

2(p−2)κ
2
p−2 (4.181)∗ � 1,

[
ε

1− 3−p
p δκ

− 3
p
]1/2

(4.181)∗ � 1,

[δ2ε−(1− p
3

)κ−4+ p
3 ]1/4(4.181)∗ � 1, [δ2ε

− 6
p

(1− p
3

)
κ
−3−2P− 6

p
(1− p

3
)
]1/4(4.181)∗ � 1,

(4.187)

we derive that, for some constants C1 > 0 and C2 > 0,

sup
0≤s≤t

E(s) +D(t) ≤ C1

(
E(0) + Fp(0) + exp

( 6

κP′

))
+ C2κ

−P
ˆ t

0
E(s)ds. (4.188)

Note that among others the last condition condition is the strongest in (4.187), which can be read
as, from δ =

√
ε of (2.11),

δ
1
2
− 3
p

(
1− p

3

)
κ
− 3

4
−P

2
− 3

2p
(1− p

3
)
(4.181)∗ � 1. (4.189)

Applying the Gronwall’s inequality to (4.188) (we may redefine E(t) as sup0≤s≤t E(s) if necessary),
we derive that

sup
0≤s≤t

E(s) ≤ C1

(
E(0) + Fp(0) + exp

( 6

κP′

)){
1 +

C2t

κP
exp

(C2t

κP

)}
.

Applying this estimate to the last term of (4.188) and using the fact P′ < P we derive that, after
redefining C1 if necessary,

sup
0≤s≤t

E(s) +D(t) + Fp(t) ≤ C1

(
E(0) + Fp(0) + 1

)
exp

(2C2t

κP

)
for all t ≤ T∗, (4.190)

under the assumptions of (2.10), (4.178), and (4.187).

Step 3. Now we find out the ranges of δ, κ, ε satisfying the assumptions of (4.178) and (4.187).
From (2.12) and (4.190), if we choose δ as

δ ≤

[
κ

3
2

+P+ 3
p

(1− p
3

)

C1

(
E(0) + Fp(0) + 1

) exp
(−2C2T

κP

)] 1

1− 6
p (1− p3 )

. (4.191)

then we can achieve (4.189) and hence all conditions of (4.187). Clearly (2.11) and (2.12) ensure
(4.191).
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Now from (4.190) and (2.11) we derive (2.13), which implies

sup
0≤s≤t

{
‖κ1/2PfR(s)‖L6

x
+ ‖ε1/2κw%,ßfR(s)‖L∞x,v + ‖(εκ)3/pκ

1
2

+Pw%′,ßfR(s)‖L2((0,s);L∞x,v)

}
. δ−

1
2

+ 3
p

(1− p
3

)
.

These imply min{d2, d2,t, d6, d3, d3,t, d∞, d∞,t} ≥ 1
4 and δε1/2

κ

√
D(t) � 1 from (4.3), (4.5), (4.45),

(4.73), (4.75), (4.141) and (4.144).
Then by the standard continuation argument we can verify all assumptions (4.178) up to t ≤ T

and T = T∗. The estimate (2.13) follows easily.

5. Navier-Stokes approximations of the Euler equations

In this section we prove Theorem 3. The proof of the theorem relies on the integral representation
of the solution to the Navier-Stokes equations using the Green’s function for the Stokes problem in
the same spirit of [47].

5.1. Elliptic estimates and Nonlinear estimates. In this section, we prove the estimates of
the solutions of incompressible Navier-Stokes equations in large Reynolds numbers with the no slip
boundary condition satisfying (1.13)-(1.15) based on recent Green’s function approach using the vor-
ticity formulation of (2.16)-(2.18) applied to the inviscid limit problem [44, 47, 38, 54]. An advantage
of working with analytic function spaces is the Cauchy estimates useful for recovery of the loss of
derivatives. We recall the spaces, norms, and terminology we have defined in Section 2.

Lemma 7 ([47, 54], Embeddings and Cauchy estimates). The following holds

(1) Bλ,κt ⊂ L1,λ and Bλ,κ ⊂ L1,λ.
(2) ‖g1g2‖∗,λ . ‖g1‖∞,λ‖g2‖∗,λ.

(3)
∑
|β|=1 ‖Dβg‖∗,λ .

‖g‖∗,λ̃
λ̃−λ , for any 0 < λ < λ̃.

For (2) and (3), ‖ · ‖∗,λ can be either ‖ · ‖∞,λ,κ or ‖ · ‖∞,λ,κt or ‖ · ‖∞,λ,0 or ‖ · ‖1,λ.

Lemma 8 ([47, 54], Elliptic estimates). Let φ be the solution of −∆φ = ω with the zero Dirichlet
boundary condition, and let u = ∇× φ. Then

‖u‖∞,λ + ‖∇u‖1,λ . ‖ω‖1,λ,

‖∇hu‖∞,λ + ‖∇u3‖∞,λ .
∑

0≤|β|≤1

‖∇βhω‖1,λ,

‖∂3uh‖∞,λ .
∑

0≤|β|≤1

‖∇βhω‖1,λ + ‖ωh‖∞,λ,

‖ζ−1∇β
′

h u3‖∞,λ .
∑

0≤|β|≤1

‖∇β+β′

h ωh‖1,λ.

(5.1)

Proof. Here we only sketch the proofs. For full justification we refer to Proposition 2.3 in [47] for 2D
and Section 4 of [54] for 3D and the proofs therein. From (|ξ|2 − ∂2

z )φξ = ωξ and φξ(0) = 0 we write

φξ(z) =

ˆ z

0
G−(y, z)ωξ(y)dy +

ˆ ∞
z

G+(y, z)ωξ(y)dy,

with G±(y, z) :=
−1

2|ξ|

(
e±|ξ|(z−y) − e−|ξ|(y+z)

)
.

(5.2)
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The first two estimates of (5.1) can be easily derived from this explicit form. For the third estimate of
(5.1), we write u1 = ∂2(−∆)−1ω3 − ∂3(−∆)−1ω2 and ∂3u1 = ∂3∂2(−∆)−1ω3 − ∂3∂3(−∆)−1ω2. Then
the third estimate of (5.1) follows from the identity

∂z(∂3(−∆)−1ω2)ξ =
1

2

( ˆ z

0
|ξ|e−|ξ|(z−y)(1− e−2|ξ|y)ωξ,2(s, y)dy

+

ˆ ∞
z
|ξ|e−|ξ|(y−z)(1 + e−2|ξ|z)ωξ,2(x, y)dy

+

ˆ ∞
z

(−2|ξ|)e−|ξ|(y−x)e−2|ξ|zωξ,2(s, y)dy

)
− ωξ,2(z).

Next we prove the last estimate. Note that

1 + z

z
∇hu3(z) =

1

z

ˆ z

0
∂y∇hu3(xh, y)dy +∇hu3(z)

=
1

z

ˆ z

0
∇h
(
∂1∂3(−∆)−1ω2 − ∂2∂3(−∆)−1ω1

)
(xh, y)dy +∇hu3(z).

From (5.2) we read that for i = 1, 2∣∣∣|ξ||β|(∂3(−∆)−1ωi)ξ(s, z)
∣∣∣

≤ 1

2

( ˆ z

0
e−|ξ|(z−y)(1− e−2|ξ|y)|ξ||β||ωξ,i(s, y)|dy +

ˆ ∞
z

e−|ξ|(y−z)(1 + e−2|ξ|z)|ξ||β||ωξ,i(s, y)|dy
)

. sup
0≤σ<λ

∥∥|ξ||β|ωξ,h∥∥L1(∂Hσ)
.

From the identity and estimate above we conclude the last bound of (5.1). �

As a consequence of Lemma 8, we have the following nonlinear estimates.

Lemma 9 ([47, 54]). Let u and ũ be the velocity field associated with ω = ∇x × u and ω̃ = ∇x × ũ
respectively. Then

‖u · ∇ω̃‖1,λ . ‖ω‖1,λ‖∇hω̃‖1,λ + ‖(1 + |∇h|)ω‖1,λ‖ζ∂zω̃‖1,λ,
‖ω · ∇ũ3‖1,λ . ‖ωh‖1,λ‖∇hũ3‖∞,λ + ‖ω3‖1,λ‖∂3ũ3‖∞,λ . ‖ω‖1,λ‖(1 + |∇h|)ω̃‖1,λ,
‖ω · ∇ũh‖1,λ . ‖ωh‖1,λ‖∇hũh‖∞,λ + ‖ω3‖∞,λ‖∂3ũh‖1,λ . ‖ω‖1,λ

(
‖ω̃3‖∞,λ + ‖(1 + |∇h|)ω‖1,λ

)
.

(5.3)

Moreover

‖u · ∇ω̃h‖∗,λ . ‖ω‖1,λ‖∇hω̃h‖∗,λ +
(
‖(1 + |∇h|)ω‖1,λ + ‖ζ∂zω3‖∞,λ

)
‖ζ∂zω̃h‖∗,λ,

‖ω · ∇ũh‖∗,λ . ‖ω3‖∞,λ,0
(
‖(1 + |∇h|)ω̃‖1,λ + ‖ω̃h‖∗,λ

)
+ ‖ωh‖∗,λ

∑
0≤|β|≤1

‖∇βhω̃‖1,λ, (5.4)

where ‖ · ‖∗,λ can be either ‖ · ‖∞,λ,κ or ‖ · ‖∞,λ,κt.
Furthermore

‖u · ∇ω̃3‖∞,λ,0 . ‖ω‖1,λ‖∇hω̃3‖∞,λ,0 + ‖(1 + |∇h|)ω‖1,λ‖ζ∂3ω̃3‖∞,λ,0,
‖ω · ∇ũ3‖∞,λ,0 . ‖ωh‖∗,λ‖(1 + |∇h|2)ω̃h‖1,λ + ‖ω3‖∞,λ,0‖(1 + |∇h|)ω̃h‖1,λ,

(5.5)

where ‖(1 + |∇h|k)g‖∗ =
∑k

`=0 ‖∇`hg‖∗.
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Proof. Again we refer to Proposition 2.3 in [47] for 2D and Section 4 of [54] for the full justification.
The bounds (5.3) and (5.4) directly follow from Lemma 8. The proof of the first estimate of (5.5) is
an outcome of applying (5.1) to an easy bound

‖u · ∇ω̃3‖∞,λ,0 . ‖uh‖∞,λ‖∇hω̃3‖∞,λ,0 + ‖ζ(z)−1u3‖∞,λ‖ζ(z)∂3ω̃3‖∞,λ,0.

For the second estimate of (5.5) it suffices to prove the bound for ωh ·∇hũ3. From |ζ(z)(1+φκ(z))| . 1
or |ζ(z)(1 + φκ(z) + φκt(z))| . 1,

‖ωh · ∇hũ3‖∞,λ,0 . ‖ωh‖∗,λ
∥∥∥ζ(z)(1 + φκ(z) + φκt(z))

∇hũ3

ζ(z)

∥∥∥
∞,λ
. ‖ωh‖∗,λ‖ζ−1∇hũ3‖∞,λ.

Then we use the last bound of (5.1) to finish the proof. �

We finally record the crucial estimate of nonlinear forcing terms N = −u·∇ω+ω·∇u, as an outcome
of Lemma 9, that will be also crucially used to control B = [∂x3(−∆)−1(−u · ∇ω + ω · ∇u)] |x3=0 in
the vorticity formulation (2.16) and (2.18).

Lemma 10 ([47, 54], Nonlinear estimate). Let λ ∈ (0, λ0 − γs) be given. We have the following:

‖(1 + |∇h|)N‖1,λ .
(
‖(1 + |∇h|)ω‖1,λ + ‖(1 + |∇h|)ω3‖∞,λ,0

)
‖(1 + |∇h|2)ω‖1,λ

+
∑
|β|=1

‖(1 + |∇h|)Dβω‖1,λ‖(1 + |∇h|2)ω‖1,λ, (5.6)

∑
|β|=1

‖Dβ(1 + |∇h|)N‖1,λ

.
∑
|β|≤1

‖Dβ(1 + |∇h|)ω‖1,λ
( ∑
|β|≤2

‖Dβ(1 + |∇h|)ω‖1,λ) + ‖(1 + |∇h|)ω‖∞,λ,0
)

+
∑
|β|≤1

‖Dβ(1 + |∇h|)ω3‖∞,λ,0‖(1 + |∇h|)2ω‖1,λ.

(5.7)

For [[ · ]]∗,λ to be either [[ · ]]∞,λ,κ or [[ · ]]∞,λ,κt,

[[N ]]∗,λ . ‖(1 + |∇h|2)ω‖1,λ[[ω]]∗,λ + ‖(1 + |∇h|)ω‖1,λ[[Dω]]∗,λ, (5.8)∑
|β|=1

[[DβN ]]∗,λ .
∑
|β|=1

‖(1 + |∇h||βh|+2)ω‖1,λ[[ω]]∗,λ

+
∑
|β|=1

[[Dβω]]∗,λ(‖(1 + |∇h|2)ω‖1,λ + β3[[Dβ3
3 ω]]∗,λ)

+
∑
|β|=2

[[Dβω]]∗,λ‖(1 + |∇h|)ω‖1,λ.

(5.9)

The proof relies on Lemma 9. We refer to Lemma 4.2 and Lemma 4.5 in [54] for the detailed proof.

5.2. Green’s function and integral representation for the Vorticity formulation. By taking
the Fourier transform of (2.16)-(2.18) in xh ∈ T2, we obtain

∂tωξ − κη0∆ξωξ = Nξ in R+, (5.10)

κη0(∂x3 + |ξ|)ωξ,h = Bξ, ωξ,3 = 0 on x3 = 0, (5.11)

with ωξ|t=0 = ω0ξ for ξ ∈ Z2. Here

∆ξ = −|ξ|2 + ∂2
x3
, (5.12)
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and

Nξ = Nξ(t, x3) := (−u · ∇ω + ω · ∇u)ξ (t, x3), Bξ = Bξ(t) := (∂x3(−∆ξ)
−1Nξ,h(t))|x3=0. (5.13)

Here (−∆ξ)
−1 denotes the inverse of −∆ξ with the zero Dirichlet boundary condition at x3 = 0.

We give the integral representation and present key estimates on Green’s function for the Stokes
problem. As shown in [47, 54], letting Gξ(t, x3, y) be the Green’s function for (5.10)-(5.11), the
solution can be represented by the integral formula via Duhamel’s principle:

ωξ(t, x3) =

ˆ ∞
0

Gξ(t, x3, y)ω0ξ(y)dy +

ˆ t

0

ˆ ∞
0

Gξ(t− s, x3, y)Nξ(s, y)dyds

−
ˆ t

0
Gξ(t− s, x3, 0)(Bξ(s), 0)ds,

(5.14)

where

Gξ =

Gξh 0 0
0 Gξh 0
0 0 Gξ3

 , (5.15)

with Gξh of (5.19) and Gξ3 of (5.22): for Gξ∗ can be either Gξh or Gξ3

∂tGξ∗(t, x3, y)− κη0∆ξGξ∗(t, x3, y) = 0, x3 > 0, (5.16)

κη0(∂x3 + |ξ|)Gξh(t, x3, y) = 0, x3 = 0, (5.17)

Gξ3(t, x3, y) = 0, x3 = 0. (5.18)

The following estimates and properties for Gξ will be useful to show the propagation of analytic
norms of ω, ∂tω and ∂2

t ω.

Lemma 11 ([47, 54]). (1) (Bounds on Gξh) The Green’s function Gξh for the Stokes problem
(5.16) and (5.17) is given by

Gξh = H̃ξ +Rξ, (5.19)

where H̃ξ is the one dimensional Heat kernel in the half-space with the homogeneous Neumann
boundary condition which takes the form of

H̃ξ(t, x3, y) = Hξ(t, x3 − y) +Hξ(t, x3 + y) =
1√
κη0t

(
e
− |x3−y|

2

4κη0t + e
− |x3+y|2

4κη0t

)
e−κη0|ξ|2t, (5.20)

and the residual kernel Rξ due to the boundary condition satisfies

|∂kx3
Rξ(t, x3, y)| . bk+1e−θ0b(x3+y) +

1

(κη0t)(k+1)/2
e
−θ0 |x3+y|2

κη0t e−
κη0|ξ|

2t
8 , (5.21)

with b = |ξ|+ 1√
κη0

and Rξ(t, x3, y) = Rξ(t, x3 + y).

(2) (Formula of Gξ3) The Green’s function Gξ3 for the Stokes problem (5.16) and (5.18) is given
by one dimensional Heat kernel in the half-space with the homogeneous Dirichlet boundary
condition as

Gξ3(t, x3, y) = Hξ(t, x3 − y)−Hξ(t, x3 + y) =
1√
κη0t

(
e
− |x3−y|

2

4κη0t − e−
|x3+y|2
4κη0t

)
e−κη0|ξ|2t. (5.22)

(3) (Complex extension) The Green’s function Gξ has a natural extension to the complex domain
Hλ for small λ > 0 with similar bounds in terms of Re y and Re z (cf. (3.16) in [47]). The
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solution ωξ to (5.10)-(5.11) in Hλ has a similar representation: for any z ∈ Hλ, let σ be the
positive constant so that z ∈ ∂Hλ, then ωξ satisfies

ωξ(t, z) =

ˆ
∂Hλ

Gξ(t, z, y)ω0ξ(y)dy +

ˆ t

0

ˆ
∂Hλ

Gξ(t− s, z, y)Nξ(s, y)dyds

−
ˆ t

0
Gξ(t− s, z, 0)(Bξ(s), 0)ds.

The proof of Lemma 11 can be found in Proposition 3.3 and Section 3.3 of [47]. The next lemma
concerns the convolution estimates.

Lemma 12. Let T > 0 be given. Recall the norms defined in Section 2. For any 0 ≤ s < t ≤ T and
k ≥ 0, there exists a constant CT > 0 so that the following estimates hold: for Gξ∗ can be either Gξh
or Gξ3

(1) (L1
λ estimates)

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

Gξ∗(t, z, y)gξ(y)dy

∥∥∥∥
L1
λ

≤ CT
k∑
j=0

∥∥(ζ(z)∂z)
jgξ
∥∥
L1
λ
, (5.23)

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

Gξ∗(t− s, z, y)gξ(y)dy

∥∥∥∥
L1
λ

≤ CT
k∑
j=0

∥∥(ζ(z)∂z)
jgξ
∥∥
L1
λ
. (5.24)

(2) (L∞λ,κt estimates)

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

Gξ∗(t, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κt

≤ CT
k∑
j=0

∥∥(ζ(z)∂z)
jgξ
∥∥
L∞λ,κ

, (5.25)

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

Gξ∗(t− s, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κt

≤ CT
k∑
j=0

√
t

s

∥∥(ζ(z)∂z)
jgξ
∥∥
L∞λ,κs

. (5.26)

(3) (L∞λ,κ estimates) For either κ = 0 or κ > 0

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

Gξ∗(t, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κ

≤ CT
k∑
j=0

∥∥(ζ(z)∂z)
jgξ
∥∥
L∞λ,κ

, (5.27)

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

Gξ∗(t− s, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κ

≤ CT
k∑
j=0

∥∥(ζ(z)∂z)
jgξ
∥∥
L∞λ,κ

. (5.28)

Proof. We only give a proof for Gξh since Gξ3 can be handled easier than the other. The proof of
(1) and (2) can be found in Propositions 3.7 and 3.8 of [47]. Here we present the detail for (3), the
second inequality. We consider real values y, z ∈ R+ only as the complex extension follows similarly
(cf. (3) in Lemma 11). Note that in view of (5.19), (5.20) and (5.21), it suffices to show

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

R(t− s, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κ

≤ CT
k∑
j=0

∥∥(ζ(z)∂z)
jgξ
∥∥
L∞λ,κ

, (5.29)

k∑
j=0

∥∥∥∥(ζ(z)∂z)
j

ˆ ∞
0

H(t− s, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κ

≤ CT
k∑
j=0

∥∥(ζ(z)∂z)
jgξ
∥∥
L∞λ,κ

, (5.30)
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where R(t, z, y) = be−b(y+z) and H(t, z, y) = 1√
κt
e−
|y−z|2
Mκt for some M > 0. We start with (5.29). Let

k = 0 first. First note that∣∣∣∣ˆ ∞
0

R(t− s, z, y)gξ(y)dy

∣∣∣∣ =

∣∣∣∣e−bz ˆ ∞
0

be−(ᾱ+b)y(1 + φκ(y))
eᾱy

1 + φκ(y)
gξ(y)dy

∣∣∣∣
≤ e−bz(1 + φκ(0)) ‖gξ‖L∞λ,κ

ˆ ∞
0

be−(ᾱ+b)ydy,

since φκ is a decreasing function. The last integral is uniformly finite for all |ξ| and κ. Hence,∥∥∥∥ˆ ∞
0

R(t− s, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κ

. sup
z

(
1 + φκ(0)

1 + φκ(z)
e(ᾱ−b)z

)
‖gξ‖L∞λ,κ .

For ᾱ > 0, if κ < 1
4η0ᾱ2 then

sup
z

(
1 + φκ(0)

1 + φκ(z)
e(ᾱ−b)z

)
.

√
κ+ 1

infz

[
(
√
κ+ 1

1+| z√
κ
|p )e

z
2
√
η0κ

] < min
{

1,

√
κ+ 1

√
κ+ 1

(2
√
η0)pp!

}
, (5.31)

where the last bound follows from the fact that
1

1 + | z√
κ
|p
e

z
2
√
η0κ ≥ 1

1 + | z√
κ
|p
{1 +

1

p!
| z

2
√
η0κ
|p} ≥ min

{
1,

1

(2
√
η0)pp!

}
.

For k ≥ 1, since |ζ(z)∂zR| . be−
bz
2 , the derivative estimates follow analogously. Therefore, (5.29)

holds true.
We move onto (5.30). Let k = 0 first. Note that, for 0 ≤ s < t ≤ T and κ . 1

e
− |y−z|2

2Mκ(t−s) e−ᾱy = e
− 1

2
| y−z√

Mκ(t−s)
+ᾱ
√
Mκ(t−s)|2

e
M
2
ᾱ2κ(t−s)e−ᾱz ≤ e

M
2
ᾱ2κ(t−s)e−ᾱz . e−ᾱz, (5.32)

and thus∣∣∣∣ˆ ∞
0

H(t− s, z, y)gξ(y)dy

∣∣∣∣ =

∣∣∣∣∣
ˆ ∞

0

1√
κ(t− s)

e
− |y−z|2
Mκ(t−s) e−ᾱy(1 + φκ(y))

eᾱy

1 + φκ(y)
gξ(y)dy

∣∣∣∣∣
. e−ᾱz ‖gξ‖L∞λ,κ

ˆ ∞
0

1√
κ(t− s)

e
− |y−z|2

2Mκ(t−s) (1 + φκ(y))dy.

For the last integral, we divide the integral into two:
´∞

0 =
´ z

2
0 +
´∞
z
2

. For the latter, since φκ is

decreasing and the kernel is in L1
y, we deduceˆ ∞

z
2

1√
κ(t− s)

e
− |y−z|2

2Mκ(t−s) (1 + φκ(y))dy . 1 + φκ(z).

For
´ z

2
0 dy, note |y − z| ≥ z

2 and 1 + φκ(y) ≤ 1 + φκ(0) for y ∈ (0, z2). Henceˆ z
2

0

1√
κ(t− s)

e
− |y−z|2

2Mκ(t−s) (1 + φκ(y))dy . e−
|z|2

16Mκ(t−s) (1 + φκ(0)).

Then ∥∥∥∥ˆ ∞
0

H(t− s, z, y)gξ(y)dy

∥∥∥∥
L∞λ,κ

. sup
z

(
1 + φκ(0)

1 + φκ(z)
e
− |z|2

16Mκ(t−s) + 1

)
‖gξ‖L∞λ,κ .

A similar argument as in (5.31) shows that 1+φκ(0)
1+φκ(z)e

− |z|2
16Mκ(t−s) is uniformly finite in κ. This shows

(5.30) for k = 0.
62



For the derivative estimate, by splitting the integral into two parts and using ∂zH(t, z, y) =
−∂yH(t, z, y), we rewrite

ˆ ∞
0

ζ(z)∂zH(t− s, z, y)gξ(y)dy =

ˆ z
2

0
ζ(z)∂zH(t− s, z, y)gξ(y)dy − ζ(z)H(t− s, z, z

2
)gξ(

z

2
)

+

ˆ ∞
z
2

ζ(z)H(t− s, z, y)∂ygξ(y)dy.

For the first integral, since |y − z| ≥ z
2 for y ∈ (0, z2),

|ζ(z)∂zH(t− s, z, y)| . z

1 + z

1

κ(t− s)
e
− |y−z|2

2Mκ(t−s) . |y − z| 1

κ(t− s)
e
− |y−z|2

2Mκ(t−s)

.
1√

κ(t− s)
e
− |y−z|2

4Mκ(t−s) .

Hence, by the same argument as in k = 0 leads to the desired bound. For the second term,

|ζ(z)H(t− s, z, z
2

)gξ(
z

2
)| . z√

κ(t− s)
e
− |z|2

4Mκ(t−s) e−ᾱ
z
2 (1 + φκ(

z

2
)) ‖gξ‖L∞λ,κ

. e−
|z|2

8Mκ(t−s) e−ᾱ
z
2 (1 + φκ(z)) ‖gξ‖L∞λ,κ

= e
− 1

2
| z

2
√
Mκ(t−s)

−ᾱ
√
Mκ(t−s)|2

e
M
2
ᾱ2κ(t−s)e−ᾱz(1 + φκ(z)) ‖gξ‖L∞λ,κ

. e−ᾱz(1 + φκ(z)) ‖gξ‖L∞λ,κ ,

which leads to the desired bound. For the last integral, note that ζ(z) ≤ 2ζ(y) for y ≥ z
2 . Therefore the

corresponding integral can be treated in the same way as in k = 0 with gξ(y) replaced by ζ(y)∂ygξ(y).
This shows (5.30) for k = 1. Other k ≥ 2 can be estimated analogously. �

The next result concerns the estimates for the trace kernel.

Lemma 13. Let aξ(s) = [∂z(−∆ξ)
−1gξ] |z=0. Then for any 0 ≤ s < t ≤ T and k ≥ 0, we have the

following

k∑
j=0

∥∥(ζ(z)∂z)
jGξh(t− s, z, 0)aξ(s)

∥∥
L1
λ
. ‖gξ‖L1

λ
, (5.33)

k∑
j=0

∥∥(ζ(z)∂z)
jGξh(t− s, z, 0)aξ(s)

∥∥
L∞λ,κ
.

1√
t− s

‖gξ‖L1
λ
. (5.34)

Proof. Note that from (5.19), (5.20) and (5.21), the conormal derivatives (ζ(z)∂z)
j of Gξh(t− s, z, 0)

enjoy the same bounds as Gξh(t− s, z, 0): for some small constant c0,

|(ζ(z)∂z)
jGξ(t− s, z, 0)| . be−c0bz +

1√
κ(t− s)

e
−c0 |z|2

κ(t−s) . (5.35)

Therefore, it suffices to show the bounds for k = 0. We first recall the representation formula for aξ
(cf. (4.29) of [38] or (4.2) of [54]):

aξ(s) =

ˆ ∞
0

e−|ξ|ygξ(y)dy,
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from which we have ‖aξ‖L∞λ . ‖gξ‖L1
λ
. Since the above upper bound of G(t− s, z, 0) is integrable in

z, (5.33) follows. To show (5.34), we compute ‖Gξh(t− s, z, 0)‖L∞λ,κ :

‖Gξh(t− s, z, 0)‖L∞λ,κ . sup
z

[
be(ᾱ−c0b)z

1 + φκ(z)

]
+

1√
t− s

sup
z

 e
ᾱz−c0 |z|2

κ(t−s)
√
κ+
√
κφκ(z)

 .
It is a routine to check that both supremum norms are uniformly bounded in κ and |ξ|. Therefore
(5.34) is obtained. �

5.3. Proof of Theorem 3. Our goal is to show that ω(t) indeed belongs to C1([0, T ];Bλ,κ) without
the initial layer under the compatibility condition (2.34), and that ∂2

t ω in Bλ,κt with the initial
layer. The existence of ω(t) in C1([0, T ];Bλ,κt) under the assumption of Theorem 3 can be proved
by following the argument of [47] and [54]. For the 2D case, Theorem 1.1 of [47] indeed ensures the
existence of ω(t) in C1([0, T ];Bλ,κt) under the assumption of Theorem 3. Such a result follows from
Lemma 7, Lemma 11, Lemma 12, Lemma 8, Lemma 9. A 3D result can be obtained analogously.
Hence, it suffices to show the propagation of the analytic norms in (2.35).

Step 1: Propagation of analytic norms for ω. It is convenient to define

|||ω(t)|||t := |||ω(t)|||∞,κ + |||ω(t)|||1. (5.36)

The estimation of ω follows from the nonlinear iteration using the representation formula (5.14).
The estimates for the L1-based norm |||ω(t)|||1 are already available in Section 5 of [54] (for 2D see

Section 4.1 of [47]): From (5.23), (5.24) and (5.33), we have that for k = 0, 1, 2

k∑
j=0

‖(ζ(x3)∂x3)jωξ‖L1
λ

≤
k∑
j=0

∥∥∥∥(ζ(x3)∂x3)j
ˆ ∞

0
Gξ(t, x3, y)ω0ξ(y)dy

∥∥∥∥
L1
λ

+

k∑
j=0

ˆ t

0

∥∥∥∥(ζ(x3)∂x3)j
ˆ ∞

0
Gξ(t− s, x3, y)Nξ(s, y)dy

∥∥∥∥
L1
λ

ds

+

k∑
j=0

ˆ t

0

∥∥(ζ(x3)∂x3)jGξ(t− s, x3, 0)(Bξ(s), 0)
∥∥
L1
λ

ds

.
k∑
j=0

∥∥(ζ(x3)∂x3)jω0ξ

∥∥
L1
λ

+
k∑
j=0

ˆ t

0

∥∥(ζ(x3)∂x3)jNξ(s)
∥∥
L1
λ

ds+

ˆ t

0
‖Nξ(s)‖L1

λ
ds.

For k = 1, after summing up over ξ ∈ Z2, we deduce that∑
0≤|β|≤1

‖Dβ(1 + |∇h|)ω(s)‖1,λ .
∑

0≤|β|≤1

‖Dβ(1 + |∇h|)ω0‖1,λ

+

ˆ t

0

∑
0≤|β|≤1

‖Dβ(1 + |∇h|)N(s)‖1,λds.
(5.37)
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Using (5.6), (5.7), and the definition of ||| · |||s in (5.36) we derive that

ˆ t

0

∑
0≤|β|≤1

‖Dβ(1 + |∇h|)N(s)‖1,λds .
ˆ t

0
|||ω(s)|||2s

[
1 + (λ0 − λ− γ0s)

−α]ds
.
(
t+

1

γ0

)
sup

0≤s≤t
|||ω(s)|||s.

(5.38)

The second order derivatives can be treated similarly except for the contributions of N for which
we apply the analyticity recovery estimate using (3) of Lemma 7 while other terms are estimated in
the same way. More precisely, we have

∑
|β|=2

‖Dβ(1 + |∇h|)N(s)‖1,λ .
1

λ̃− λ

∑
0≤|β|≤1

‖Dβ(1 + |∇h|)N(s)‖1,λ̃ for any λ̃ > λ, (5.39)

while we choose λ̃ = λ+λ0−γ0s
2 in particular. We note that still λ̃ < λ0−γ0s if λ < λ0−γ0s and hence

from (5.6) and (5.7)

∑
0≤|β|≤1

‖Dβ(1 + |∇h|)N(s)‖1,λ̃(s)

.
( ∑

0≤|β|≤1

‖Dβ(1 + |∇h|)ω(s)‖1,λ̃(s)

)( ∑
0≤|β|≤2

[[Dβω(s)]]∞,λ̃(s),κ

)
+
( ∑

0≤|β|≤2

‖Dβ(1 + |∇h|)ω(s)‖1,λ̃(s)

)( ∑
0≤|β|≤1

‖Dβ(1 + |∇h|)ω(s)‖1,λ̃(s)

)
.
[
1 + (λ0 − λ− γ0s)

−α]|||ω(s)|||2s.

Therefore we derive that for t < λ0
2γ0

and λ < λ0 − γ0t

∑
|β|=2

‖Dβ(1 + |∇h|)ω(t)‖1,λ

.
∑
|β|=2

‖Dβ(1 + |∇h|)ω0‖1,λ0 +

ˆ t

0

[
1 + (λ0 − λ− γ0s)

−(α+1)
]
|||ω(s)|||2sds

.
∑
|β|=2

‖Dβ(1 + |∇h|)ω0‖1,λ0 +
(

(λ0 − λ− γ0t)
−α 1

γ0
+ t
)

sup
0≤s≤t

|||ω(s)|||2s.

(5.40)

Therefore, we conclude that, from (5.37) with (5.38), and (5.40)

|||ω(t)|||1 .
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)ω0‖1,λ0 + (t+
1

γ0
) sup

0≤s≤t
|||ω(s)|||2s for t <

λ0

2γ0
. (5.41)

The propagation of the boundary layer norm |||ω(t)|||∞,κ can be shown analogously using L∞λ,κ
estimates of Lemma 12 and Lemma 13: For k = 0, 1, 2 and κ > 0 for i = 1, 2 and κ = 0 for i = 3 we
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have
k∑
j=0

‖(ζ(x3)∂x3)jωξ,i‖L∞λ,κ

≤
k∑
j=0

∥∥∥∥(ζ(x3)∂x3)j
ˆ ∞

0
Gξi(t, x3, y)ω0ξ,i(y)dy

∥∥∥∥
L∞λ,κ

+
k∑
j=0

ˆ t

0

∥∥∥∥(ζ(x3)∂x3)j
ˆ ∞

0
Gξ,i(t− s, x3, y)Nξ,i(s, y)dy

∥∥∥∥
L∞λ,κ

ds

+
k∑
j=0

ˆ t

0

∥∥(ζ(x3)∂x3)jGξ,i(t− s, x3, 0)Bξ,i(s)
∥∥
L∞λ,κ

ds

.
k∑
j=0

∥∥(ζ(x3)∂x3)jω0ξ,i

∥∥
L∞λ,κ

+
k∑
j=0

ˆ t

0

∥∥(ζ(x3)∂x3)jNξ,i(s)
∥∥
L∞λ,κ

ds

+ (1− δi3)

ˆ t

0

1√
t− s

‖Nξ,i‖L1
λ
.

Let k = 1. After summing up over ξ ∈ Z and i = 1, 2 (with κ > 0) and i = 3 (with κ = 0), we
deduce that∑
0≤|β|≤1

[[Dβω(t)]]∞,λ,κ .
∑

0≤|β|≤1

[[Dβω0]]∞,λ0,κ +

ˆ t

0

∑
0≤|β|≤1

[[DβN(s)]]∞,λ,κds+

ˆ t

0

1√
t− s

|||ω(s)|||21ds.

Using the definition of ||| · |||s in (5.36), and applying Lemma 10 with (5.6), (5.8), and (5.9), we derive∑
0≤|β|≤1

[[DβN(s)]]∞,λ,κ .
( ∑

0≤|β|≤2

‖Dβ(1 + |∇h|)ω(s)‖1,λ
)( ∑

0≤|β|≤1

[[Dβω(s)‖∞,λ,κ
)

+ ‖(1 + |∇h|)ω(s)‖1,λ
∑
|β|=2

[[Dβω(s)]]∞,λ,κ

.
[
1 + (λ0 − λ− γ0s)

−α]|||ω(s)|||2s.
Therefore we derive that∑

0≤|β|≤1

[[Dβω(t)]]∞,λ,κ

.
∑

0≤|β|≤1

[[Dβω0]]∞,λ0,κ +

ˆ t

0
|||ω(s)|||2s

[
1 + (λ0 − λ− γ0s)

−α]ds
+

ˆ t

0

1√
t− s

|||ω(s)|||2sds

.
∑

0≤|β|≤1

[[Dβω0]]∞,λ0,κ +
(√

t+
1

γ0

)
sup

0≤s≤t
|||ω(s)|||2s.

(5.42)

Now we control the second order derivatives similarly except for the N . As in (5.39) we use the
analyticity recovery estimate using Lemma 7∑

|β|=2

[[DβN(s)]]∞,λ,κ .
1

λ̃− λ

∑
0≤|β|≤1

[[DβN(s)]]∞,λ̃,κ for any λ̃ > λ, (5.43)
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while again we choose λ̃ = λ+λ0−γ0s
2 in particular. We note that still λ̃ < λ0 − γ0s if λ < λ0 − γ0s

and hence from (5.8) and (5.9)∑
0≤|β|≤1

[[DβN(s)]]∞,λ̃(s),κ . (λ0 − λ− γ0s)
−α|||ω(s)|||2s.

Therefore we derive that for t < λ0
2γ0

and λ < λ0 − γ0t∑
|β|=2

[[Dβω(t)]]∞,λ,κ

.
∑
|β|=2

‖Dβω0‖∞,λ0,κ +

ˆ t

0
(λ0 − λ− γ0s)

−(α+ 3
2

)|||ω(s)|||2sds+

ˆ t

0

1√
t− s

|||ω(s)|||21ds

.
∑
|β|=2

‖Dβω0‖∞,λ0,κ + (λ0 − λ− γ0t)
−α
( ˆ t

0
(λ0 − λ− γ0s)

− 3
2 ds
)

sup
0≤s≤t

|||ω(s)|||2s

+
√
t sup

0≤s≤t
|||ω(s)|||2s

.
∑
|β|=2

‖Dβω0‖∞,λ0,κ +
(

(λ0 − λ− γ0t)
−α 1

γ0
+
√
t
)

sup
0≤s≤t

|||ω(s)|||2s.

(5.44)

Therefore we conclude that, from (5.42) and (5.44),

|||ω(t)|||∞,κ .
∑

0≤|β|≤2

‖Dβω0‖∞,λ0,κ +
(√

t+
1

γ0

)
sup

0≤s≤t
|||ω(s)|||2s for t <

λ0

2γ0
. (5.45)

In conclusion, from (5.41), (5.45), and by a standard continuity argument we obtain for sufficiently
large γ0

sup
0≤t< λ0

2γ0

|||ω(t)|||t .
∑

0≤|β|≤2

‖Dβω0‖∞,λ0,κ +
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)ω0‖1,λ0 . (5.46)

Step 2: Propagation of analytic norms for ∂tω. The continuity of ω(t) in t follows from the
mild solution form (5.14) of ωξ(t). We claim that ω(t) ∈ C1([0, T ];Bλ,κ) and moreover |||∂tω(t)|||t is
bounded. To this end, we first derive the mild form of ∂tωξ from (5.14):

∂tωξ(t, x3) =

ˆ ∞
0

Gξ(t, x3, y)∂tω0ξ(y)dy +

ˆ t

0

ˆ ∞
0

Gξ(t− s, x3, y)∂sNξ(s, y)dyds

−
ˆ t

0
Gξ(t− s, x3, 0)(∂sBξ(s), 0)ds,

(5.47)

where we recall ∂tω0 in (2.32). To justify this formula, we first recall (5.16)-(5.18). We start with
the horizontal part of the formula (5.47) for ∂tωξ,h. From Lemma 11, Gξh(t, x3, y) = Hξ(t, x3 −
y) + Hξ(t, x3 + y) + Rξ(t, x3 + y). Then by using the fact that H ′ξ(t, ·) is an odd function, we see

∂x3Gξh(t, x3, y)|x3=0 = R′ξ(t, y). Now we read (5.17) as

κη0R
′
ξ(t, y) + κη0|ξ|Gξh(t, 0, y) = 0, κη0R

′
ξ(t, x3) + κη0|ξ|Gξh(t, x3, 0) = 0, (5.48)

where we have used that Hξ(t, ·) is an even function for the second relation. On the other hand, since
we also have ∂y3Gξh(t, x3, y)|y=0 = R′ξ(t, x3), we deduce that

κη0(∂y3 + |ξ|)Gξh(t, x3, y3) = 0, y3 = 0. (5.49)

It is straightforward to see ∆ξGξh = ∂2
x3
Gξh − |ξ|2Gξh = ∂2

yGξh − |ξ|2Gξh.
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We now take ∂t of (5.14):

∂t

ˆ ∞
0

Gξh(t, x3, y)ω0ξ,h(y)dy =

ˆ ∞
0

∂tGξ,h(t, x3, y)ω0ξ,h(y)dy

=

ˆ ∞
0

κη0(∂2
y − |ξ|2)Gξh(t, x3, y)ω0ξ,h(y)dy

=
[
κη0∂yGξh(t, x3, y)ω0ξ,h(y)

]y=∞
y=0

−
ˆ ∞

0
κη0|ξ|2Gξh(t, x3, y)ω0ξ,h(y)dy

−
ˆ ∞

0
κη0∂yGξh(t, x3, y)∂yω0ξ,h(y)dy

=
[
κη0∂yGξh(t, x3, y)ω0ξ,h(y)

]y=∞
y=0

−
[
κη0Gξh(t, x3, y)∂yω0ξ,h(y)

]y=∞
y=0

+

ˆ ∞
0

Gξh(t, x3, y)κη0∆ξω0ξ,h(y)dy

= −κη0∂yGξh(t, x3, 0)ω0ξ,h(0) + κη0Gξh(t, x3, 0)∂yω0ξ,h(0)

+

ˆ ∞
0

Gξh(t, x3, y)κη0∆ξhω0ξ,h(y)dy,

and

∂t

ˆ t

0

ˆ ∞
0

Gξh(t− s, x3, y)Nξ,h(s, y)dyds =

ˆ ∞
0

Gξh(t, x3, y)Nξ,h(0, y)dy

+

ˆ t

0

ˆ ∞
0

Gξh(s, x3, y)∂tNξ,h(t− s, y)dyds,

∂t

ˆ t

0
Gξh(t− s, x3, 0)Bξ(s)ds = Gξh(t, x3, 0)Bξ(0) +

ˆ t

0
Gξh(t− s, x3, 0)∂sBξ(s)ds

Therefore we obtain

∂tωξ,h(t, x3) =−κη0∂yGξh(t, x3, 0)ω0ξ,h(0) + κη0Gξh(t, x3, 0)∂yω0ξ,h(0)−Gξh(t, x3, 0)Bξ(0)

+

ˆ ∞
0

Gξh(t, x3, y){κη0∆ξω0ξ,h(y) +Nξ,h(0, y)}dy

+

ˆ t

0

ˆ ∞
0

Gξh(t− s, x3, y)∂sNξ,h(s, y)dyds−
ˆ t

0
Gξh(t− s, x3, 0)∂sBξ(s)ds.

(5.50)

Next we show that the first line in the right-hand side is 0. From (5.49)

−κη0∂yGξh(t, x3, 0)ω0ξ,h(0) + κη0Gξh(t, x3, 0)∂yω0ξ,h(0) = Gξh(t, x3, 0)κη0(|ξ|+ ∂y)ω0ξ,h(0),

and hence the first line of (5.50) reads

Gξh(t, x3, 0) [κη0(|ξ|+ ∂x3)ω0ξ,h(0)−Bξ(0)] , (5.51)

which is zero due to the first compatibility condition of (2.34). Recalling ∂tω0 in (2.32), the formula
(5.47) for ∂tωξ,h has been established. We may follow the same procedure to verify the vertical part of
the formula (5.47) for ∂tωξ,3 by noting that the second compatibility condition of (2.34) removes the
term −κη0∂yGξ3(t, x3, 0)ω0ξ,3(0) which would create the initial layer otherwise because ∂yGξ3(t, x3, 0)
does not vanish.

We may now repeat Step 1 for ∂tω using the representation formula (5.47). The estimates are
obtained in the same fashion. For the nonlinear terms, since ∂tN = −u ·∇∂tω−∂tu ·∇ω+ω ·∇∂tu+
∂tω · ∇u, the structure of ∂tN with respect to ∂tω is consistent with the one of N with respect to ω
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and we can use the bilinear estimates (5.3) and (5.4). In summary, one can derive that for t < λ0
2γ0

|||∂tω(t)|||1 .
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)∂tω0‖1,λ0 + (t+
1

γ0
) sup

0≤s≤t
|||ω(s)|||s sup

0≤s≤t
|||∂tω(s)|||s, (5.52)

|||∂tω(t)|||∞,κ .
∑

0≤|β|≤2

‖Dβ∂tω0‖∞,λ0,κ + (
√
t+

1

γ0
) sup

0≤s≤t
|||ω(s)|||s sup

0≤s≤t
|||∂tω(s)|||s, (5.53)

which lead to the desired bounds for ∂tω(t) by choosing sufficiently large γ0.

Step 3: Propagation of analytic norms for ∂2
t ωξ. As a consequence of Step 2, ∂tωξ(t, x3)

solves the following system

∂2
t ωξ − κη0∆ξ∂tωξ = ∂tNξ in R+, (5.54)

κη0(∂x3 + |ξ|)∂tωξ,h = ∂tBξ on x3 = 0, (5.55)

∂tωξ,3 = 0 on x3 = 0, (5.56)

with ∂tωξ|t=0 = ∂tω0ξ for ξ ∈ Z2 where ∂tω0 is defined in (2.32). Then as done in Step 2, by using
the properties of Gξ and integration by parts and by the last compatibility condition of (2.34), we
can derive the representation formula for ∂2

t ω:

∂2
t ωξ(t, x3) = (Gξh(t, x3, 0) [κη0(|ξ|+ ∂x3)∂tω0ξ,h(0)− ∂tBξ(0)] , 0)

+

ˆ ∞
0

Gξ(t, x3, y)∂2
t ω0ξ(y)dy +

ˆ t

0

ˆ ∞
0

Gξ(t− s, x3, y)∂2
sNξ(s, y)dyds

−
ˆ t

0
Gξ(t− s, x3, 0)(∂2

sBξ(s), 0)ds,

(5.57)

where we recall ∂2
t ω0 in (2.32). As we do not require higher order compatibility condition for the

horizontal vorticity, a new term representing the initial-boundary layer emerges. We first examine
Gξ(t, z, 0). Recall (5.35).

Similar to Lemma 13, we have for C0 <∞

k∑
j=0

∥∥(ζ(z)∂z)
jGξ(t, z, 0)

∥∥
L1
λ
. C0,

k∑
j=0

∥∥(ζ(z)∂z)
jGξ(t, z, 0)

∥∥
L∞λ,κt

. C0. (5.58)

From (5.58), (5.33) and (5.3)

∑
0≤|β|≤2

∑
ξ∈Z2

eλ|ξ|
∥∥∥Dβ

ξ (1 + |ξ|)
[
(Gξh(t, x3, 0) (κη0(|ξ|+ ∂x3)∂tω0ξ,h(0)− ∂tBξ(0)) , 0)

]∥∥∥
L1
λ

. κη0

∑
0≤|β|≤2

‖∇βh(1 + |∇h|)∇∂tω0,h‖1,λ +
∑

0≤|β|≤2

‖∇βh(1 + |∇h|)∂tN(0)‖1,λ

. κη0‖(1 + |∇h|3)∇∂tω0‖1,λ + ‖(1 + |∇h|4)∂tω0‖1,λ
∑

0≤|β|≤1

‖Dβ(1 + |∇h|3)∂tω0‖1,λ.
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Hence an L1-based analytic norm is easily obtained as∣∣∣∣∣∣∂2
t ω(t)

∣∣∣∣∣∣
1

. κη0‖(1 + |∇h|3)∇∂tω0‖1,λ + ‖(1 + |∇h|4)∂tω0‖1,λ
∑

0≤|β|≤1

‖Dβ(1 + |∇h|3)∂tω0‖1,λ

+
∑

0≤|β|≤2

‖Dβ(1 + |∇h|)∂2
t ω0‖1,λ0 + (t+

1

γ0
) sup

0≤s≤t
|||ω(s)|||s sup

0≤s≤t

∣∣∣∣∣∣∂2
t ω(s)

∣∣∣∣∣∣
s

+ (t+
1

γ0
) sup

0≤s≤t
|||∂tω(s)|||2s.

(5.59)

Now we move to the L∞-based analytic norm bound. We compute ‖Gξ(t, z, 0)‖L∞λ,κt :

‖(ζ(z)∂z)
jGξ(t, z, 0)‖L∞λ,κt . sup

z

[
be(ᾱ−c0b)z

1 + φκ(z) + φκt(z)

]
+ sup

z

 eᾱz−c0
|z|2
κt

√
κt+

√
κtφκ(z) +

√
κtφκt(z)

 .
It is a routine to check that both supremum norms are uniformly bounded in κ and |ξ|. Hence (5.58)
shows that the kernel Gξ(t, z, 0) is well-behaved in L1

λ and the initial-boundary layer analytic space
L∞λ,κt. Then we run the same argument as in Step 2 but with L∞λ,κt in place of L∞λ,κ. Thanks to (5.58),

the estimates of the first term in (5.57) are bounded by the initial norm (2.33):∑
0≤|β|≤2

∑
ζ∈Z2

eλ|ξ|
∥∥∥Dβ

ξ

[
(Gξh(t, x3, 0) (κη0(|ξ|+ ∂x3)∂tω0ξ,h(0)− ∂tBξ(0)) , 0)

]∥∥∥
L∞λ,κt

. κη0

∑
0≤|β|≤2

‖∇βh∇∂tω0‖∞,λ +
∑

0≤|β|≤2

‖∇βh∂tN(0)‖1,λ

. κη0

∑
0≤|β|≤2

‖∇βh∇∂tω0‖∞,λ + ‖(1 + |∇h|3)∂tω0‖1,λ
∑

0≤|β|≤1

‖Dβ(1 + |∇h|2)∂tω0‖1,λ.

Other three terms are estimated in the same way as in [47] or [54] and we arrive that∣∣∣∣∣∣∂2
t ω(t)

∣∣∣∣∣∣
∞,κt

. κη0

∑
0≤|β|≤2

‖∇βh∇∂tω0‖∞,λ + ‖(1 + |∇h|3)∂tω0‖1,λ
∑

0≤|β|≤1

‖Dβ(1 + |∇h|2)∂tω0‖1,λ

+
∑

0≤|β|≤2

‖Dβ∂2
t ω0‖∞,λ0,κt + (

√
t+

1

γ0
) sup

0≤s≤t
|||ω(s)|||s sup

0≤s≤t

∣∣∣∣∣∣∂2
t ω(s)

∣∣∣∣∣∣
s

+ (
√
t+

1

γ0
) sup

0≤s≤t
|||∂tω(s)|||2s.

(5.60)

Finally combining (5.59) and (5.60) and then choosing sufficiently large γ0 we derive a desired

estimate for
∣∣∣∣∣∣∂2

t ω(t)
∣∣∣∣∣∣
t

for t ∈ (0, λ0
2γ0

).

Altogether from (5.46), (5.52), (5.53), (5.59), and (5.60), we finish the proof of the estimate (2.35).

Step 4: Estimate (1), vorticity estimates. Both (2.36) and (2.37) are direct consequences
of (2.35). To show (2.38), we first note that the boundedness of ω(t) norms implies |∂x3ωξ(t, x3)| .
e−ᾱx3e−λ|ξ| for all |ξ| and x3 ≥ 1 (away from the boundary). When x3 ≤ 1, we draw on the equation

70



(5.10) to rewrite ∂2
x3
ωξ,h = 1

κη0
{∂tωξ,h + κη0|ξ|2ωξ,h −Nξ,h} and the boundary condition (5.11):

∂x3ωξ,h(t, x3) = ∂x3ωξ,h(t, 0) +

ˆ x3

0
∂2
x3
ωξ,h(t, y)dy

= −|ξ|ωξ,h(t, 0) +
1

κη0
Bξ(t) +

ˆ x3

0

1

κη0
[∂tωξ,h + κη0|ξ|2ωξ,h −Nξ,h](t, y)dy.

(5.61)

We now appeal to |Bξ(t)| ≤ ‖Nξ(t)‖L1
λ

and
∑

0≤`≤1(
∣∣∣∣∣∣∂`tω(t)

∣∣∣∣∣∣
∞,κ +

∣∣∣∣∣∣∂`tω(t)
∣∣∣∣∣∣

1
) <∞ to obtain that

for all x3 ∈ R+

|∂x3ωξ,h(t, x3)| . 1

κ
e−ᾱx3e−λ|ξ| for 0 < λ < λ0, (5.62)

which proves (2.38) for ωh and ` = 0. The remaining case can be estimated similarly. Near O(1)
boundary, from (5.54) and (5.55), we derive

∂x3∂tωξ,h(t, x3)

= −|ξ|∂tωξ,h(t, 0) +
1

κη0
∂tBξ(t) +

ˆ x3

0

1

κη0
[∂2
t ωξ,h + κη0|ξ|2∂tωξ,h − ∂tNξ,h](t, y)dy.

(5.63)

Together with
∑

0≤`≤1

∣∣∣∣∣∣∂`tω(t)
∣∣∣∣∣∣
∞,κ +

∑
0≤`≤2

∣∣∣∣∣∣∂`tω(t)
∣∣∣∣∣∣

1
< ∞ we deduce (2.38) for ωh and ` = 1.

For ω3 we use ∇ · ω = 0 to write ∂3ω3 = −∂1ω1 − ∂2ω2. Now (2.38) for ω3 follows from (2.36).

Step 5: Estimate (2), velocity estimates, except (2.42). From (5.2)

|ξ|βh |∂β3
z ∂

`
tφξ(t, z)| .

ˆ
∂Hλ
|ξ||β|−1e−|ξ||y−z||∂`tωξ(t, y)||dy| for β3 ≤ 1. (5.64)

For |β| = |βh|+ β3 = 1 we bound (5.64) by e−λ|ξ|‖∂`tω(t)‖1,λ. Then from (2.35) we conclude (2.39).
For |β| ≥ 2 and β3 ≤ 1, we bound (5.64) by

(5.64) .
ˆ
∂Hλ
|ξ||β|−2|ξ|e−|ξ||y−z|e−ᾱRe ye−λ|ξ|

(
1 + φκ(y) + φκt(y)

)
|dy|

. |ξ||β|−2e−λ|ξ|e−min(1, ᾱ
2

)x3

ˆ
∂Hλ

e−
ᾱ
2

Re y
(
1 + φκ(y) + φκt(y)

)
|dy|

. |ξ||β|−2e−λ|ξ|e−min(1, ᾱ
2

)x3 for |β| ≥ 2, and β3 ≤ 1, and ` = 0, 1, 2, and t ∈ [0, T ],

(5.65)

where we have used |ξ||y − z|+ ᾱ
2 Re y ≥ min(1, ᾱ2 )x3 for |ξ| ≥ 1 and (2.35).

For β3 = 2, 3 we use ∂2
z∂

`
tφξ = |ξ|2∂`tφξ + ∂`tωξ. Then following the same argument of (5.65), we

derive

|ξ|βh |∂β3
z ∂

`
tφξ(t, z)|

. |ξ||βh|+2|∂β3−2
z ∂`tφξ(t, z)|+ |ξ|βh |∂β3−2

z ∂`tωξ(t, z)|

.


(|ξ||β|−2 + |ξ|βh)e−λ|ξ|e−min(1, ᾱ

2
)Re z(1 + φκ(z)) for ` = 0, 1, and β3 = 2,

(|ξ||β|−2 + |ξ|βh)e−λ|ξ|e−min(1, ᾱ
2

)Re zκ−1 for ` = 0, 1, and β3 = 3,

(|ξ||β|−2 + |ξ|βh)e−λ|ξ|e−min(1, ᾱ
2

)Re z(1 + φκ(z) + φκt(z)) for ` = 2, and β3 = 2.

(5.66)

Finally from (5.65) and (5.66) we conclude (2.40) and (2.41).

71



Step 6: Estimate (3), pressure estimates and (2.42). We next turn to the pressure. Taking
the divergence to (1.13) and using (1.14), we deduce

−∆p =
3∑

`,m=1

∂`um∂mu`. (5.67)

We obtain the boundary condition of p by reading the third component of (1.13), and then using
(1.14) and (1.15),

∂3p = κη0∆u3 = κη0∂3∂3u3 = −κη0∂1∂3u1 − κη0∂2∂3u2

= −κη0∂1(ω2 + ∂1u3)− κη0∂2(−ω1 + ∂2u3)

= −κη0∂1ω2 + κη0∂2ω1 for x3 = 0,

(5.68)

where ω1 = ∂2u3 − ∂3u2 and ω2 = −∂1u3 + ∂3u1.
In the Fourier side we read the problem as

(|ξ|2 − ∂2
3)pξ(t, x3) = gξ(t, x3) :=

3∑
`,m=1

(∂`um∂mu`)ξ(t, x3) for x3 ∈ R+,

∂3pξ(t, 0) = −iκη0ξ1ωξ,2(t, 0) + iκη0ξ2ωξ,1(t, 0).

(5.69)

A representation of pξ(t, x3) is given by

pξ(t, x3) = −
ˆ x3

0

1

2|ξ|
e−|ξ|(x3−y)gξ(y)dy −

ˆ ∞
x3

1

2|ξ|
e−|ξ|(y−x3)gξ(y)dy

−
ˆ ∞

0

1

2|ξ|
e−|ξ|(y+x3)gξ(y)dy

− 1

|ξ|
e−|ξ|x3(−iκη0ξ1ωξ,2(t, 0) + iκη0ξ2ωξ,1(t, 0)),

(5.70)

which is valid for all ξ 6= 0. When ξ = 0, by integrating (5.69) and by using the boundary conditions
∂3p0(t, 0) = 0, u(t, xh, 0) = 0 and the divergence free condition ∇ · u = 0, we first obtain

∂3p0(t, x3) = − 1

(2π)2

ˆ x3

0

¨
T2

3∑
`,m=1

∂`um∂mu`dxhdy3

= − 1

(2π)2

¨
T2

(u · ∇u3)(t, xh, x3)dxh

= − 2

(2π)2

¨
T2

(u3∂3u3)(t, xh, x3)dxh,

(5.71)

where we have used the integration by parts and ∇ · u = 0 at the last step.
Observe that ∂3p0 decays exponentially in x3, and in particular

´∞
0 |∂3p0(t, x3)|dx3 < ∞. The

integration yields

p0(t, x3) = p0(t, 0)−
ˆ x3

0

2

(2π)2

¨
T2

(u3∂3u3)(t, xh, y3)dxhdy3.

Since p0(t, 0) is a free constant in x3, we fix p0(t, x3) by choosing

p0(t, 0) =
2

(2π)2

ˆ ∞
0

¨
T2

(u3∂3u3)(t, xh, y3)dxhdy3 <∞,

such that

p0(t, x3) =
2

(2π)2

ˆ ∞
x3

¨
T2

(u3∂3u3)(t, xh, y3)dxhdy3. (5.72)
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The pressure p is then recovered by

p(t, xh, x3) = p0(t, x3) +
∑

|ξ|≥1,ξ∈Z2

pξ(t, x3)eixh·ξ, (5.73)

where p0(t, x3) and pξ(t, x3) are given in (5.72) and (5.70).
Now the pressure estimate follows readily from the velocity and vorticity estimates. To show (2.43),

we first note from (2.39) and (2.40) |p0(t, x3)| . |u3(t, x)|
´

Ω |∂3u3(t, x)|dx . 1 and from Lemma 8

|gξ| . e−λ|ξ|
2∑
i=1

(
‖∂iuh‖2∞,λ + ‖ζ−1∂iu3‖∞,λ‖ζ∂3ui‖∞,λ

)
. e−λ|ξ|

 ∑
0≤|β|≤1

‖∇βhω‖
2
1,λ +

∑
1≤|β|≤2

‖∇βhωh‖1,λ

 ∑
0≤|β|≤1

‖∇βhω‖1,λ + ‖ζωh‖∞,λ

 ,
from which we deduce |p(t, xh, x3)| . 1. The estimation of ∂tp and ∂2

t p follows analogously.
For the decay estimates (2.44), we start with ` = 0 and β = 0. Due to our choice of p0(t, x3) in

(5.72), using (2.39) and (2.40), we have the spatial decay for p0(t, x3):

|p0(t, x3)| .
ˆ ∞
x3

¨
T2

(1 + φκ(y3))e−min(1, ᾱ
2

)y3dxhdy3 . κ
− 1

2 e−min(1, ᾱ
2

)x3 .

For ξ 6= 0, we use another estimate for |gξ| and Lemma 8

|gξ(y)| .
3∑

`,m=1

∑
η∈Z2

e−λ|ξ−η|e−min(1, ᾱ
2

)y(1 + φκ(y))|(∂mu`)η(y)|

. κ−
1
2 e−λ|ξ|e−min(1, ᾱ

2
)y

3∑
`,m=1

∑
η∈Z2

eλ|η||(∂mu`)η(y)|,

(5.74)

from which we deduce that |pξ(t, x3)| . κ−
1
2 e−min(1, ᾱ

2
)x3 . Hence (2.44) holds for ` = 0 and β = 0.

For the pressure gradient estimate when |β| = 1, from (5.71) and (2.40) we first note

|∂3p0(t, x3)| . sup
xh∈T2

(|u3||∂3u3|) . (1 + φκ(x3))e−min(1, ᾱ
2

)x3 .

For ξ 6= 0, by (5.74) it is easy to see that |ξpξ(t, x3)| . κ−
1
2 e−min(1, ᾱ

2
)x3 . Note that ∂3pξ(t, x3) has

a similar integral form as |ξ|pξ(t, x3) and the estimate follows in the same way, which results in

|∂3pξ(t, x3)| . κ−
1
2 e−min(1, ᾱ

2
)x3 . This finishes (2.44) for ` = 0 and |β| = 1. The remaining cases for

` = 1 and |β| = 0, 1 can be treated in the same way.
For the decay estimate of ∂2

t p, we take into account the initial layer which occurs at ∂2
t ω and ∇∂2

t u.
First using (2.39), (2.40) and (2.41) we have

|∂2
t p0(t, x3)| .

∣∣∣∣ˆ ∞
x3

¨
T2

(u3∂3∂
2
t u3 + ∂2

t u3∂3u3 + 2∂tu3∂3∂tu3)(t, xh, y3)dxhdy3

∣∣∣∣
.
(
1 + φκ(x3) + φκt(x3)

)
e−min(1, ᾱ

2
)x3 ,
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while for |ξ| 6= 0 we have

|∂2
t gξ(y)| .

3∑
`,m=1

∑
η∈Z2

e−λ|ξ−η|e−min(1, ᾱ
2

)y(1 + φκ(y))|(∂mu`)η(y)|

. κ−
1
2 e−λ|ξ|e−min(1, ᾱ

2
)y

2∑
i=1

3∑
`,m=1

∑
η∈Z2

eλ|η||(∂m∂itu`)η(y)|,

from which we deduce (2.45).
The last estimate for ∂`tu for ` = 1, 2 follows from the equation: ∂tu = κη0∆u − u · ∇u −∇p and

∂2
t u = κη0∆∂tu− u · ∇∂tu− ∂tu · ∇u−∇∂tp.
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Appendix A. Sobolev embedding in 1D

Often we have used a standard 1D embedding: For T > 0,

|g(t)|2 .T
ˆ T

0
|g(s)|2ds+

ˆ T

0
|g′(s)|2ds for t ∈ [0, T ]. (A.1)

A proof is based on an equality:

|g(t)|2 =
1

T/2

ˆ t+T/2

t

(
g(s)−

ˆ s

t
g′(τ)dτ

)2
ds.

For 0 < t ≤ T/2,

|g(t)|2 ≤ 1

T/2

ˆ t+T/2

t

(
2|g(s)|2 + 2

∣∣∣ ˆ s

t
g′(τ)dτ

∣∣∣2)ds

≤ 1

T/2

ˆ t+T/2

t

(
2|g(s)|2 + 2|s− t|

ˆ s

t
|g′(τ)|2dτ

)
ds

≤ 2

T/2

ˆ t+T/2

t
|g(s)|2ds+

2

T/2

ˆ t+T/2

t
|s− t|

ˆ s

t
|g′(τ)|2dτds

≤ 2

T/2

ˆ t+T/2

t
|g(s)|2ds+ T

ˆ t+T/2

t
|g′(s)|2ds

.T

ˆ T

0
|g(s)|2ds+

ˆ T

0
|g′(s)|2ds.

For T/2 < t ≤ T , using

|g(t)|2 =
1

T/2

ˆ t

t−T/2

(
g(s)−

ˆ s

t
g′(τ)dτ

)2
ds,
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we derive that

|g(t)|2 ≤ 1

T/2

ˆ t

t−T/2

(
2|g(s)|2 + 2

∣∣∣ ˆ s

t
g′(τ)dτ

∣∣∣2)ds

≤ 2

T/2

ˆ t

t−T/2
|g(s)|2ds+ T

ˆ t

t−T/2
|g′(s)|2ds

.T

ˆ T

0
|g(s)|2ds+

ˆ T

0
|g′(s)|2ds.
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