INCOMPRESSIBLE EULER LIMIT FROM BOLTZMANN EQUATION WITH

DIFFUSE BOUNDARY CONDITION FOR ANALYTIC DATA
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ABSTRACT. A rigorous derivation of the incompressible Euler equations with the no-penetration
boundary condition from the Boltzmann equation with the diffuse reflection boundary condition has
been a challenging open problem. We settle this open question in the affirmative when the initial
data of fluid are well-prepared in a real analytic space, in 3D half space. As a key of this advance, we
capture the Navier-Stokes equations of

viscosily ~ Knudsen number
Mach number

satisfying the no-slip boundary condition, as an intermediary approximation of the Euler equations
through a new Hilbert-type expansion of the Boltzmann equation with the diffuse reflection boundary
condition. Aiming to justify the approximation we establish a novel quantitative LP-L> estimate of
the Boltzmann perturbation around a local Maxwellian of such viscous approximation, along with the
commutator estimates and the integrability gain of the hydrodynamic part in various spaces; we also
establish direct estimates of the Navier-Stokes equations in higher regularity with the aid of the initial-
boundary and boundary layer weights using a recent Green’s function approach. The incompressible
Euler limit follows as a byproduct of our framework.
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1. INTRODUCTION

An important and active research direction in mathematical physics/PDE is on the so-called
Hilbert’s sixth problem [29] seeking a unified theory of the gas dynamics including different levels of
descriptions from a mathematical standpoint by connecting the behavior of solutions to equations
from kinetic theory to solutions of other systems that arise in formal limits, such as the N-body prob-
lem, the Euler equations, the Navier-Stokes equations, etc. In particular, the hydrodynamic limit of
the Boltzmann equation has received a great deal of attention and enthusiasm in the mathematics
and physics communities since the pioneering work [30] by Hilbert, which was the first example of
his sixth problem. Remarkably, all the basic fluid equations of compressible, incompressible, invis-
cid, or viscous fluid dynamics can be derived from the Boltzmann equation of rarefied gas dynamics
upon the choice of appropriate scalings in a small mean free path limit. Though formal derivations
are rather well-understood, as far as mathematical justifications go, despite great progress over the
decades (for example see [1, 2, 3, 13, 19, 23, 50] and the references therein), full understanding of
the hydrodynamic limit incorporating important physical applications such as boundary effects or
physical phenomena is still far from being complete. The goal of this paper is to make a rigorous
connection between the Boltzmann equation and the incompressible Euler equations in the presence
of the boundary by bypassing the inviscid limit of the incompressible Navier-Stokes equations.

The dimensionless Boltzmann equation with the Strouhal number St and the Knudsen number Xn
takes the form of

StOF + -V, F = ;Q(F, ). (1.1)
Here the distribution function of the gas is denoted by F'(¢,z,v) > 0 with the time variable t € Ry :=
{t > 0}, the space variable = (21,72, 23) € Q C R?, and the velocity variable v = (v1, v2,v3) € R3.
The Boltzmann collision operator Q(-,-) of the hard sphere takes the form of

QF.G) = /R L 10 =) uPONG0L) + G0 F)

(1.2)
— F(v)G(vs) — G(v) F (vs) }dudoy,
where v := v — ((v — vs) - w)u and v}, := vx + ((v — vi) - u)u. This operator satisfies the so-called
collision invariance property: for any F'(v) and G(v) decaying sufficiently fast as |v| — 0,
v]* -3
F.G 1 dv = (0,0,0 1.3
[ QEGW)(10, = )= 0,0,0), (1.3)

which represents the local conservation laws of mass, momentum and energy. The celebrated Boltz-
mann’s H-theorem reveals the entropy dissipation:

Q(F, F)(v)In F(v)dv <0, (1.4)

R3
for any F'(v) > 0 decaying sufficiently fast as |[v| — 0. An intrinsic equilibrium, satisfying Q(-,-) = 0,
is given by a local Maxwellian associated with the density R > 0, the macroscopic velocity U € R3

and the temperature 7' > 0
R lv —UJ?
Mpur(v) = exp {— , (1.5)
(2nT)? 2T

which is known as the only configuration attaining the equality in (1.4).
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In addition to the Strouhal number and Knudsen number we introduce the Mach number Ma.
By passing St, Xn, and Ma to zero, one can formally derive PDEs of hydrodynamic variables for the
fluctuations around the reference state (1,0, 1), which are determined as

1 -3
(p(t> JE), u(tv .1'), H(ta l‘)) = 91\/}1310 % Rg{F(ta x, U) - MLO,I(U)} (17 v, ’U|\/6 )d’U (16)
The famous Reynolds number appears as a ratio between the Knudsen number and Mach number
through the von Karman relation:

1
__ X (1.7)
Re Ma
For instance, the incompressible Navier-Stokes equations with ®e = 1, namely the viscosity of order
one, can be derived by setting St = Ma = Kn = € as € | 0. In this paper we are particularly interested

in a scale of large Reynolds number as follows:
St=c=Ma and Kn = ke with k =k(e) [ 0ase]0, (1.8)

through which we will derive the incompressible Euler equations with the no-penetration boundary
condition in the limit

Oug +ug - Veug +Vepep =0, Vie-ug =0 in Q, (1.9)
ugp-n=0 on 0Q, (1.10)

with 0,0 + up - V30 = 0 and V,0(t,x) + V,p(t,z) = 0. Here n = n(z) denotes an outward normal at
x on the boundary 0. For the sake of simplicity we set an initial datum 6yp(z) = 0 = po(z) so that

O(t,x) =0=p(t,z) for all t > 0. (1.11)

In many important physical applications such as a turbulence theory, it would be relevant to
take into account the physical boundary in the hydrodynamic limit. A boundary condition of the
Boltzmann equation is determined by the interaction law of the gas with the boundary surface. One of
the physical conditions is the so-called diffuse reflection boundary condition, which takes into account
an instantaneous thermal equilibration of reflecting gas particle (see [9, 12]): for (z,v) € {99 x R3 :
n(x)-v < 0},

F(t,2,0) = euMy .1 (0) / F(t, 2,0)(n(z) - v)do, (1.12)
n(z)-v>0

where we have taken an isothermal boundary with a rescaled temperature 1 for the sake of simplicity.

Here, the normalization constant ¢, := 1/( fn(x)-u>0 M 0,1(0)(n(x)-v)do) leads to the null flux condi-

tion [ps F'(t,z,v)(n(z)-v)dv = 0 on € 9. In particular, it is well-known that the diffuse boundary
condition (1.12) is a kinetic boundary condition featuring a mismatch with the no-penetration bound-
ary condition (1.10) of the the Euler flow under (1.8), without any small parameter with respect to
1/Re or Ma. One can readily see this by expanding F' around a local Maxwellian M ¢y, 1(v) as-
sociated with a flow of the no-penetration boundary condition (1.10) directly. Unfortunately, this
local Maxwellian does not honor the diffuse reflection boundary condition when a flow satisfies the
no-penetration boundary condition (1.10). In fact a size of the boundary mismatch could be an order
of the tangential component of the Euler flow ur at the boundary. Therefore a uniform bound to
verify the limit (1.6) in a scale of large Reynolds number (1.8) is not expected even at the formal level.
This poses a major obstacle in the Euler limit from the Boltzmann equation with the diffuse reflection
boundary. It is worth noting that such a mismatch does not appear at least at the formal level when
the specular reflection boundary condition is imposed: F(t,z,v) = F(t,z, R;v) on z € 02 where
Ryv = v —2n(z)(n(z) - v); while the mismatch can possess a small factor for the so-called Maxwell
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boundary condition, a convex combination of the specular reflection and the diffuse reflection bound-
ary conditions, by choosing the coefficient for diffuse reflection known as the accommodation constant
to vanish as Re — oo.

Remarkably, an analogous, better-known boundary mismatch phenomenon exists in the realm of
mathematical fluid dynamics, specifically in the inviscid limit problem of the Navier-Stokes equations
that addresses the validity of the Euler solutions as the leading order approximation of the Navier-
Stokes solutions in the vanishing viscosity limit. The inviscid limit for the no-slip boundary condition
features a boundary mismatch between two different boundary conditions for the Navier-Stokes and
Euler flows. In fact, whether the solution to the Navier-Stokes equations with a kng-viscosity (a
physical constant 79 can be computed explicitly from the Boltzmann theory as in (1.37)) satisfying
the no-slip boundary condition

Ou+u - Veu — kngAu+ Vep =0 in €, (1.13)
Ve u=0 in ©Q, (1.14)
u=0 on 08, (1.15)

converges to the solution of the Euler equations satisfying the no-penetration boundary condition
(1.9)-(1.10) in k = 1/Re | 0 is an outstanding problem, which is arguably the most relevant and
challenging because of the mismatch of two boundary conditions between (1.15) and (1.10) resulting
in the formation of boundary layers such as Prandtl layer and unbounded vorticity near the boundary.
While the verification of the inviscid limit is still largely open, it holds under certain symmetry as-
sumption on the domain and data or under the flat boundary and strong regularity such as analyticity
at least near the boundary [45]. A classical way to tackle the inviscid limit problem is to study the
Prandtl expansion [48, 49, 44]: u(t,x1, 2, x3) = ug(t, 1, 2, x3)+up(t, x1, T2, %)—}—O(\/E) Recently,
different frameworks that avoid the boundary layer expansion have become available [47, 38, 54].

The incompressible Euler limit from the Boltzmann equation turns out to be intimately tied to
the inviscid limit of the incompressible Navier-Stokes equations, which accounts for the similarity
of two boundary mismatches. A beautiful connection stems from the Navier-Stokes solutions of
(1.13)-(1.15) in large Reynolds numbers: at least formally, not only they are approximated by the
Euler equations (1.9)-(1.10) but also they approximate the Boltzmann equation (1.1) under (1.8)
with (1.12), in fact better than the Euler equations (1.9)-(1.10) at each Mach number & > 0, because
the Navier-Stokes equations contain a high order correction term xngAwu that captures the dissipative
nature of the Boltzmann collision operator (as we will see in Section 1.1). And importantly, a local
Maxwellian M; ,.1(v) associated with u satisfying the no-slip boundary condition (1.15), satisfies the
diffuse reflection boundary condition (1.12) without singular terms. In other words, the Navier-Stokes
solutions are compatible with the diffuse reflection boundary condition. Therefore, under the scale
(1.8) the Navier-Stokes solution of (1.13)-(1.15) stands in between the Boltzmann solution of (1.1),
(1.12) and the Euler solution (1.9)-(1.10).

In this paper, inspired by these observations, we propose to study the Euler limit from the Boltz-
mann equation through the Navier-Stokes solutions that hold both features of the Euler and the
Boltzmann under (1.8) at each Mach number € > 0. To this end, we expand the Boltzmann solution
F around a local Maxwellian associated with a Navier-Stokes flow u to (1.13)-(1.15):

p(v) := M ey (v), (1.16)

as
F=p+efo/u+e¥2 fryi, (1.17)
and analyze (1.17) via a new Hilbert expansion presented in Section 1.1. Although the notations
F¢ and f¢ may be more precise for the equation depending on e, we will abuse the notations by

dropping the superscript € for the sake of simplicity. The next order correction fo can be entirely
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determined by the Navier-Stokes flow and it turns out that its contribution is always smaller than
fr’s one in our choice of € and k. A choice of the range of the Mach number with respect to the
Reynolds number: ¢ < k = 1/Re in ¢ | 0 plays an important role in our analysis and the formal
expansion. We will discuss the relation and its role in Section 1.2. With such a choice of the scale,
uniform-in-¢ estimates of the Boltzmann remainder fr are achieved by a novel quantitative LP-L>
estimate in a setting of the local Maxwellian of the Navier-Stokes approximation (1.16), along with
the commutator estimates and the integrability gain of the hydrodynamic part in various spaces.

In order to establish the Euler limit by using the Navier-Stokes solutions of (1.13)-(1.15) as a
reference state as € | 0 in a scale of large Reynolds number (1.8), it is imperative to show the
uniform-in-x convergence of the Navier-Stokes solutions to the Euler solutions of (1.9)-(1.10), where
the inviscid limit comes into play. In this paper, we take the spatial domain to be the upper-half space
with periodic boundary conditions in the horizontal components and analytic data for the Navier-
Stokes solutions of (1.13)-(1.15) and obtain uniform-in-x estimates built upon a recent development
on the inviscid limit problem in the half-space based on the Green’s function approach using the
boundary vorticity formulation [44, 47, 38, 54].

Our main result concerns a rigorous justification of the passage from the solutions to the dimen-
sionless Boltzmann equation (1.1) of the scale (1.8) with the diffuse reflection boundary condition
(1.12) to the solution of the incompressible Euler equation (1.9) with the no-penetration boundary
condition (1.10), without introducing any boundary expansion of the Boltzmann equation:

Theorem 1 (Informal statement). We consider a half space in 3D
Q:=T? xRy > (x1,x9,23), where T is a periodic interval of (—m, ). (1.18)

For some choice of € and k(e), there exists a large set of initial data Wiy, f2,in and frin such that a
unique solution F(t,xz,v) of the form (1.17) to (1.1) and (1.12) with (1.8) exists on [0,T] for some
T > 0 and satisfies

F(t,z,v) — M} ey
sup £y —0 as €10,
0<t<T 5\/m L2(QxR3)
and
F(t,z,v) = My cup1
sup EUE, —0 as €10,
o<t<T || (1 + [v])2\/Mio1 L2(QxR3)

while u and ug denote solutions of the Navier-Stokes (1.13)-(1.15) and Euler equations (1.9)-(1.10),
respectively.

The precise statement of Theorem 1 is given in Theorem 4 and Corollary 5 in Section 2.3.

Remark 1. To the best of our knowledge our result of this paper appears to be the first rigorous in-
compressible Euler limit result from the Boltzmann solutions with the sole diffuse reflection (therefore
the accommodation constant ~1) in the boundary condition! Moreover, our framework captures the
wnuviscid limit of mathematical fluid dynamics from the Boltzmann theory.

Remark 2. Another natural choice of the scale in the study of the Euler limit might be €% = k with
an integer q > 1. Then the second correction %Lfg is shifted to the next hierarchy (see (1.27)) and as
a consequence the Euler equations become the leading approzimation with loss of knoAuw. Without the
boundary, a higher order expansion F = pup+[efi+e%fo+e fa+-- A" frRIVIE for pp = M1 cyp,1 has
been established in [10, 56]. In the presence of the boundary, on the other hand, such an expansion
features a boundary mismatch. The usual approach is then drawn on a boundary layer expansion,
correcting an interior Hilbert-like expansion at the boundary to satisfy the boundary conditions (for
example, see [27, 55]). Our approach is based on an interior expansion up to the second correction fo
that avoids the boundary layer expansion under our choice of scale ¢ < Kk (see (2.11)).
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Before discussing the essence of the methodology and novelty of our result, we shall briefly overview
some relevant literatures on the hydrodynamic limit of the Boltzmann equation. One of the first
mathematical studies of the limits at the formal level may go back to a work [30] of Hilbert, in which
he introduced so-called the Hilbert expansion. Based on the truncated Hilbert expansion rigorous
justifications of fluid limits have been shown as long as the solutions of corresponding fluids are
bounded in some suitable spaces, for example, in the compressible fluid limits in [7, 53], incompressible
fluid limits in [10, 23, 5], diffusive limits from the Vlasov-Maxwell-Boltzmann system in [32], and
relativistic fluid limits in [52]. All the derivations mentioned above did not take into account the
boundary, while one of the main obstacles to study the Boltzmann solutions with the boundary
is its boundary singularity (see [35, 20, 21]). In [22], an LP-L*° framework has been developed to
construct a unique global solution of the Boltzmann equation with physical boundary conditions.
Such a framework has been developed successfully in various problems of the Boltzmann theory (for
example [24, 25, 26, 14, 8, 27, 36, 37, 55]). In particular, in [12, 13], the authors have constructed a
solution of the Boltzmann equation satisfying the diffuse reflection boundary condition and proved
the validity of the hydrodynamic limit toward the incompressible Navier-Stokes-Fourier system in
both steady and unsteady settings, based on a novel L-bound of the hydrodynamic part.

Rigorous passage from the renormalized solutions of [11] ([46] with the physical boundary) of the
Boltzmann equation toward (weak) solutions of fluid equations has been also extensively explored
(see [17, 50, 33] for the references in this direction). In particular, the program of the incompressible
Navier-Stokes limit to the Leray-Hopf weak solutions has been developed successfully in [2, 3, 40, 41,
19] without the physical boundary and with the boundary in [42, 33]. As for the incompressible Euler
limit in terms of the entropy production, based on the relative entropy method, a dissipative solution
of the incompressible Euler equations in [39] has been studied in [40, 41, 51] without the boundary.
Notably the results have been extended to the domain with the boundary for the specular reflection
boundary condition in [50], and for the Maxwell boundary condition in [4], assuming to set that the
accommodation constant (a factor of diffuse reflection) vanishes as € | 0.

For the rest of this section, we present the strategy and key ideas developed in the proof of our result
starting with a new (formal) Hilbert expansion followed by the control of the Boltzmann remainder
fr and higher regularity of Navier-Stokes flows, for the rigorous justification of the formal expansion.

1.1. Hilbert expansion in a scale of large Reynolds number. Through a new formal Hilbert-
type expansion of Boltzmann equation with the diffuse reflection boundary condition we aim to
capture the Navier-Stokes equations of vanishing viscosity proportional to %n/Ma and satisfying the
no-slip boundary condition.

It is worth pointing out that although more convenient choice of an expansion of F' is seemingly
the one around the global Maxwellian 19 := M 1 such as F' = pig+e(u-v)po —|—€2f2\/,t70—|—85f3\//,70,
unfortunately this choice will produce, in the Hilbert expansion (1.26)-(1.30), an unbounded term
%\/%Q(u - vito, fr/Ho) even compared to the strongest control in hand, namely a dissipation term
(see (1.31))! To achieve a sharper estimate, which provides weaker restriction on x and ¢, and hence
weaker restriction on the initial data, we work on an expansion around the local Maxwellian pu.

It is conceptually convenient in our analysis to introduce an auxiliary parameter 6 = d(¢) | 0 as
¢ | 0, which indicates a size of the fluctuation (F — p)/e:

F =+ fo/ii + 5 fr/10 (1.19)

In (1.17) we have chosen § = /¢ and in Section 2.3 we will have the same choice such as (2.11),
however in Section 2.1, Section 3 and Section 4, § will be regarded as a free parameter and will be
chosen at the last step of closing our argument (as (2.11)!).
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Interior Expansion. We investigate an expansion (1.19) of the Boltzmann equation (1.1) at the
local Maxwellian p in (1.16). Let

Lf= ;;Q(u, Vif), T(f.g) = \}EQ(\/EJZ N (1.20)
The operators L and I' can be read as
LI@) = 2f(0) = K(0) = (o) f(0) = [ k(o000 (1.21)

F(f: g)(t7 ’U) = F+(f7g)(t7 ’U) - F—(f, g)(t, ?})
= //RBX§2 (v = va) - uly/i(vs) (£ (8, 0)g(t,0)) + g(t,0) (¢, vL) ) dudo, (1.22)

- // (0 = ve) w3 /(o) (5, 0)g(,0) + g(t,0) £ (2, 02))dude,
R3xS2

where the precise form of k is delayed to be presented in (3.19). We will demonstrate basic properties
of operators L and T" in Section 3.1. From (1.3) the null space of L, denoted by N, is a subspace of
L?(R3) spanned by orthonormal bases {¢;\/fi}i, with

wo:=1, @ =v;—eu; fori=1,2,3, @4:=(jv—-ceul*>-3)/V6. (1.23)
We define a hydrodynamic projection P as an L2-projection on A such as

Pg = Z(ng)¢]\/ﬁ7 -P]g = <g7 QDJ\/:E% and Pg = (P097P1g7p297p3g7 P4g)7 (124)

where (-,-) stands for an L2-inner product. It is well-known that the operators enjoy PL = LP =

PT = 0. Importantly the linear operator L enjoys a coercivity away from the kernel N: for v(v) >0
defined in (1.21)

(Lf, f) = o0llVv(I=P)f||72gs) for some og > 0. (1.25)

Now we plug the expansion (1.19) into the rescaled equation (1.1) with the scale (1.8). It turns

out that by relating fo with the flow and locating it carefully in the hierarchy we can exhibit the

dissipative nature of the Boltzmann collision operator at the leading order of the fluid approximation.

In particular we locate (v —eu) - V(I — P) f in }-order hierarchy to capture s-order viscosity in the
fluid equation (1.13):

1 1 O +e vV,
Ofr+-v-Vafr+ 5-Lfr+ (0 )\/ﬁfR (1.26)
€ E°K NIT
1 (e l(v—eu) -Veu 1
=—{ N +-Lf} (1.27)
e o e lu-Vep
— = — eu) - 1.2
5{ NG + NG + (v — eu) Vggfg} (1.28)
€ (O +e v Va)/I
_ g{atfﬁu.vxfﬁ v fg} (1.29)
2 € 0
+ ;F(f% fr) + %F(f% f2) + &F(fm fr)- (1.30)
We can readily see an L?-energy structure of fp with a strong dissipation
1
// ——Lfrfrdvdz Z e 62T = P) frll72(qums): (1.31)
OxR3 €K

which inherits its lower bound from the coercivity (1.25).
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Let us first consider an Z-hierarchy (1.27). For any non-vanishing term of (1.27) would cause
unpleasant unboundedness, we make the term vanish entirely by solving an equation (1.27) = 0. By
the Fredholm alternative, an inverse map

L7 N+t = Nt where N stands an L2-orthogonal complement of A, (1.32)
is well-defined and hence the solvability condition is given by
el (v—eu)-V >
( ) Vapt = Z Dt PePm/1t € N'L. (1.33)

\/'E £m=1
This condition indeed implies the incompressible condition (1.14).

Once (1.14) holds, we have szzl O PePm~/Ih = Z?,m:l Optim (Peom — %&m)\/ﬁ. Now we
solve (1.27) = 0 by setting

lv — eul?

3
(I-P)fo=—k Z ApnOpty, with Apy,, = L! (SOZSOm\F - 3 5gm\/ﬁ). (1.34)

£m=1

Then we move to an §-hierarchy (1.28). The hydrodynamic part of (1.28), unless it vanishes, would
induce an unbounded term again. We expand § x (1.28), using (1.16) and (1.34), as
—(v—eu)- (Ou+u-Vyu)y/p+ (v—-eu) V,Pfo
3
1.35
+r(v—eu) - Vx( Z Agm(?gum>. (1.35)
Lm=1
The leading order term of the last term in (1.35) contributes the following to the hydrodynamic part
of (1.35) as
> > |v — eul?

KoY {itr /I Ao )OkOpim = K Y <(‘Pi§0k - Téik)\//jv A€m>8ka€um

£m k=1 {m,k=1

3
=K > (LAip, Apm) OxOptim,
£m,k=1

(1.36)

where we have used the fact Ay, € N+ and M\/ﬁ € N at the first step and the definition of A;;
at the last step. It is well-known (e.g. Lemma 4.4 in [3]) that for some constant 79 > 0

2
(LA, Aem) = 10(8ek0mi + 0¢iOmi) — §ﬁ05£m5ik- (1.37)

Therefore we deduce that (1.36) vanishes for ¢ = 0,4, and the xno-viscosity term in (1.13) can be
captured:

2
(1.36) = Km0 > _ {(OexOumi + Seibmi) — §5em5ik}ak3wm
tm.k (1.38)
2
= kno{Au; — OV -u — gaiv cu} = knoAu; for i =1,2,3.
Here we have used the incompressible condition (1.14) at the last step. On the other hand, a leading
order term of the hydrodynamic part of (v — eu) - VP fo contributes to the pressure term of (1.13)
by choosing a special form of Pfy as in (3.1). Therefore the whole leading order terms of the

hydrodynamic part in (1.28) do vanish by solving the Navier-Stokes equations (1.13) and (1.14)! For
the sake of brevity we refer to Section 3 for the full expansion of (1.26)-(1.30).
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Boundary Conditions. Now we consider a boundary condition of fr. Noticeably the local
Maxwellian p becomes M ;1 on the boundary from the no-slip boundary condition (1.15), and hence
w satisfies the diffuse reflection boundary condition (1.12). For the detailed study of the boundary
condition of fr we introduce the incoming and outgoing boundaries

vi = {(z,v) € I x R3 : n(x) - v = 0}.

Since p satisfies the diffuse reflection boundary condition (1.12) with a constant wall temperature
= 1, by plugging (1.19) into the boundary condition, we arrive at

(2 f2 + e fr)ly. = cuv/nlv (€2 f2 + 0efr)/ pu(v) (n(z) - v)do.

n(z) t)>0

Letting P, be an L?({v : n(x) - v > 0})-projection of ,/c,f1, we derive that

frlta. )l = Pofrlte,0) = S(1= P folta,v)

c (1.39)

= \Jeunlv / r(t,2,0)\fu(0)(n(2) - v)do — S(1= Pyt 2, v).
(z)- U>0

Note that fn(z)-v>0 cup(v)(n(zx) - v)dv = 1.

On the other hand, we emphasize that, with the no-penetrate boundary condition of (1.10), the
associated local Maxwellian M ., 1 does not satisfy the diffuse reflection boundary condition in
general. Therefore the Boltzmann remainder fr would have a singularity of an order of 1/4/¢ in
(1.17).

1.2. Uniform controls of the Boltzmann remainder fr. For a rigorous justification of the
Hilbert expansion (1.19), the major task is to establish uniform-in-¢ estimates of the Boltzmann
remainder fg in L2. The equation of the Boltzmann remainder fg in (1.26)-(1.30) with the boundary
condition (1.39) features a discrepancy between the behavior of the hydrodynamic part P fr and pure
kinetic part (I — P)fg: schematically an L2-energy estimate reads

d
I ROIZ: + 17 572X = P) frllZ: ~ [ Vaul 1 [P frllZ: + // (P fr,Pfr)(I - P)f.

A key difficulty arises from a growth of the hydrodynamic part at least as elVe*lz> which might
behave as an exponential of the reciprocal of some power of the viscosity x due to the unbounded
vorticity formed near the boundary, while such strong singularity of the hydrodynamic part enters the
nonlinear estimate in turn. In fact such trilinear estimate can be effectively handled only by a point-
wise bound of the solutions. Unfortunately as the physical boundary conditions create singularities
in general ([35]), the high Sobolev estimates would not be possible. In this paper we develop a
quantitative LP-L*° estimate solely in the setting of the local Maxwellian associated with the Navier-
Stokes flow, in the presence of the diffuse reflection boundary.

Thanks to a strong control of the dissipation from the spectral gap of (1.25), the nonlinear term
can be bounded as

_1 -1 1
02| P frllgers IPfrll zrslle™ n72 Vo (X = P)frl 2 - (1.40)

Notably an integrability gain of the hydrodynamic part Pfr should play a role; however a classical
velocity average lemma P fr € H;/ > c L3 fails to fulfill the need in 3D. We achieve such a higher
integrability by developing a recent LS-bound of hydrodynamic part of [13] in the setting of the local
Maxwellian on the scale of large Reynolds number. We utilize the micro-macro decomposition and
the equation to control x'/2v - V,Pfr mainly by 1/QL(I — P)fr and ex28,fr. We invert the

operator v - VP, employing a recent test function method of [12] in the local Maxwellian setting, to
9



establish a crucial LS-bound of the hydrodynamic part, which is controlled by the dissipation plus
the a priori L2-bound of 9, fg:

I6Y2P fr(t) g S e 52X =P fal0)z, +en?[0ufn(®) 2, + 1ot (141)

In other words we can achieve the LS-estimate of (1.41) as “one spatial derivative gain” through the
dissipation provided a temporal derivative being controlled, while the temporal derivative preserves
the boundary conditions. It is a critical point in which a temporal derivative gets involved in our
analysis of Boltzmann and fluids as well!

New difficulties arise as commutator estimates of i{@tL fr— LO:fr} induce singularities even at
the linear level, as well as 9;(9; + & v - Va)/ifr//1t and the source terms in the equation of 9 fr
possess higher temporal derivatives of the fluid with an initial layer. In fact after a careful analysis
we realize such singular terms amount to

1 t
= [ 1P ey

while B3 depends on the singularity of derivatives of the Navier-Stokes flow in large Reynolds numbers.

We establish a unified L*-estimate in the local Maxwellian setting, devising a special weight
function t,g(z,v) in order to control an extra growth in |v| from (8 + e v - Vu)\/ifr/\/B and
its temporal derivative. We control fr in L{°LS® by the hydrodynamic part Pfp in LS and the
dissipation, studying the particle-trajectory bouncing against the diffuse reflection boundary and
geometric change of variables related to the bouncing trajectories. The temporal derivative J;fr
needs some special attention since the source term of the equation of d;fr possesses V,0?u, which
turns out to have an initial-boundary layer. For that we measure 0;fr using a different time-space
norm, namely a weighted L?LS°, and control it by the hydrodynamic part of 0; fg in L?L3 (with more
singular factor-in-¢ than the counterpart for fr) and the dissipation. Although our estimate of 9 fr
is singular than fr due to our choice of different spaces, we are able to balance such extra singularity
by the strong dissipation and careful trilinear estimates.

We establish L? L2 —controls for Pfr and P, fr via the trajectory rather than the classical average
lemma. In fact a direct application of such average lemma has some subtle issue since the source terms
of fr and 9, fr equations are known to be bounded within a finite time interval only, while the L?L3-
control enters the nonlinear estimates. In fact it is not clear whether our iteration of estimates would
guarantee a nonempty finite time interval of validity. Instead we utilize the Duhamel formula along
the trajectories and an extension of solutions in specially designed domains, and employ the T7T™*-
method developed in [31, 28, 14]. As a result we achieve L?LL estimates for fr and 0, fr uniformly
for all p < 3, which gives us a sufficient bound in L?L3 by interpolating with our L*>-estimates.

Finally upon combining all the estimates above together we are able to bound an energy by the
Gronwall’s inequality. The resulting bound is not uniform but growing exponentially as e/ ,.513’ in
which the power depends on the higher regularity of the fluid. Luckily we are able to find a range of
€ with respect to  in a scale of large Reynolds number to absorb the Gronwall growth, and achieve
a uniform bound of the Boltzmann remainder, which ensures the rigorous justification of the Hilbert
expansion in Section 1.1. The main theorem of the uniform controls of the Boltzmann remainder fgr
is given in Theorem 2.

1.3. Higher Regularity of Navier-Stokes equations in the Inviscid Limit. The inviscid limit

of the Navier-Stokes equations (1.13)-(1.15) is at the heart of our approach. Furthermore, in order to

control fgr, as explained in the above, we need to derive quantitative higher regularity estimates of

the Navier-Stokes solutions which are not directly available in the usual inviscid limit results. Before

discussing new features of our analysis, we briefly discuss some prior works on the inviscid limit most

relevant to our result. Due to the formation of boundary layers in the limit caused by the mismatch
10



of boundary conditions (1.15) and (1.10), a classical way to tackle the inviscid limit problem is via the
Prandtl expansion, of which rigorous justification was shown in [48, 49] for well-prepared data with
analytic regularity and in [44] for the initial datum with Sobolev regularity when the initial vorticity is
bounded away from the boundary. In particular, the author of [44] introduced the boundary vorticity
formulation of (1.13)-(1.15) (see (2.16)-(2.18)) which prompted subsequent interesting works in the
field. Among others, in a recent work [47], the authors proved the inviscid limit in 2D based on
the Green’s function approach based on Maekawa’s vorticity formulation without having to construct
Prandtl boundary layer corrections but by utilizing the boundary layer weights in the norm. In
[38, 54], the inviscid limit was shown for initial data that is analytic only near the boundary and has
finite Sobolev regularity in the complement in 2D and 3D respectively.

Our analysis of the Navier-Stokes solutions in the limit is based on the Green’s function approach
for the Stokes problem using the vorticity formulation (2.16)-(2.18) in the same spirit of [47]. However,
the existing methods [47, 38, 54] do not immediately fulfill the goal of our hydrodynamic limit because
the analysis of our remainder fg requires higher regularity of Navier-Stokes solutions, more specifically
L? and L*™ bounds for higher order derivatives up to two temporal derivatives of V,u and p and
two spatial derivatives of 0;u, while the existing methods do not decipher any bounds for temporal
derivatives and the boundedness of the conormal derivatives in their analytic norms does not rule out

xi singularity of the normal derivative of the vorticity in the boundary layer, which may cause the
3

loss of L? integrability. To get around these issues, we pursue new estimates of temporal derivatives of
the vorticity w by demanding the compatibility conditions for the initial data. With such conditions,
the initial layer is absent for w and 0;w; we can derive an analogous integral representation formula
for Oyw so that we may run the same fixed point argument for dyw as in [47] without the initial layer.
For the second temporal derivative, we handle the initial-boundary layer for the horizontal part with
the initial-boundary weight function. These new features allow us to attain the derivative estimates
of the vorticity in the normal direction without % singularity near the boundary at the expense of
losing a power of y/k, which is crucial for the control of fr. The velocity and pressure estimates are
then recovered by utilizing elliptic regularity results and the Biot-Savart law in the analytic setting.
The main results of Navier-Stokes solutions to (1.13)-(1.15) are given in Theorem 3.

2. MAIN RESULTS

For the sake of the readers we present the precise statement of main theorems and their notations
in this section. We first present the uniform controls of the Boltzmann remainder fr of Theorem
2, and the higher regularity of the Navier-Stokes equations in the inviscid limit of Theorem 3. As
a consequence of those two theorems we will show a rigorous justification of kinetic approximation
of Navier-Stokes in high Reynolds numbers of Theorem 4. Then using the vorticity estimates in
Theorem 3 and the famous Kato’s condition in the inviscid limit, we prove a hydrodynamic limit
toward the incompressible Euler equations in Corollary 5.

2.1. Uniform controls of the Boltzmann remainder fr (Theorem 2). We recall the expansion
of Boltzmann solution F = p + € fo\/f + defry/ft in (1.19) around the local Maxwellian p(v) :=
M cy,1(v) for any given flow (u, p) solving the incompressible Navier-Stokes equation with the no-slip
boundary condition (1.13)-(1.15).

11



Inspired by the energy structure of the PDE and the coercivity of the linear operator L in (1.25),
we define an energy and a dissipation as

E(t) = IIfrRO2axmsy + 0SR20 xps):
t
D)= | |5~ 2e ™ (T = P) fr(s)||22 0z ds

Co , (2.1)
+ /0 |52 V(T — P)Ofr(s) |2 g ds

t 1 L
+ [ (1 o) + o r() )

As explained in Section 1.2, the temporal derivative gets involved mainly in order to access the LS-
bound of the hydrodynamic part P fr, while we will control the following auxiliary norm to be used
in order to handle the nonlinearity: for p < 3 and ¢ > 0

Fp(t) := Oililit{HHl/QPfR(S)HQLG(Q) + 162 PRI T2 0,510 (52)

+ 1P Y2 PO, fRllT2 0,0y 10y + 1625008 R(S) 1700 (crm3) (22)
1
1R 75 0, (5) B 0 ey

Here we have introduced weight functions, in order to control an extra quadratic growth in |v| from

(O +e - Ve )VEIR/ /1t

1
1, 5(z,v) = 10 := exp{ov|* — j5(z3)(z - v)} for 0<B< % and 0 < p < T (2.3)
where 35 : Ry — R is defined as, for § > 0
1 1
38(z3) =B for a3 € [0, 5 1], and 3g(z3) = 172 for x3 € [B —1,00). (2.4)

We have denoted wy g(z,v) = w' for ¢ < p. Also we have denoted the boundary norms and integral

as
1/p 1/p
olex = ([ b [ al) ol = ([ 1aP)
- Y- V4

+ /Yi f= /aQ L(x).vgof(l‘,v)!n(x) -v|dvdS,.

Next we discuss the initial data of the Boltzmann equation. We note that an initial datum of f
is already determined by given flow (u,p). For given initial data fro := fr,in, inspired by the PDE,
we define

(2.5)

Ve

1 1 2
OifRo :==— v Vefrin — ameR,m + ;Fm(f% IR,in) + gFin(fR,ina IR,in)

O 4+ e - Vo) /Thin
& - Wi o4 (1= )3t ) o + R, p)o.
where (I —P)R; and Ry are defined in (3.2) with § = /¢ and p;n, Lin, I are induced by the initial
Naiver-Stokes velocity wu;,. For the remainder fr in (1.17), we will use the norms of the initial data:
£(0) := E(fro) = [IfrollZ2(@xrs) + 10efR 00172 @ xr3): (2.7)
12
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1 1
Fp(0) :={r2|frolr2 + £¥72|0: frol L2

(2.8)
1 3 2
+ 26w froll Lo @xrs) + (5’f)1+p’“@meU'atfR,oHLoo(QxRS)} .

Theorem 2 (Uniform controls of the Boltzmann remainder fr). Suppose for T >0 and B > 1/2

1 1 1
D IVa0full o) + aYE > 10¢ull oo o<y + Pl < - (2.9)
(=01 ¢=0,1,2

We further assume that, for 0 < B’ < B,

ZHaquL°°([O,T];L°°(Q)ﬁL2(Q))+ Z ”VgafuuLoo([@,T];Loo(Q)mB(Q))

=12 0<<1
1<[8[<2
+ Z HVgatzuHL2([0,T];Loo((z)mL2(Q)) (2.10)
18l=1

1
+ 1020l 2oy @nrz@)y + D, V0D oo o0.17.20 (@)nr2(0)) S €XP (Kﬂy)
|81=0,1

For given such T > 0, let us choose €,0 and k as, for some € > 1,

§ =+ and & =exp (%Q;T) (2.11)

Assume that an initial datum for the remainder fr;, satisfies, for some p <3 and |p — 3| < 1,

VEO) + /Fp(0) < 1. (2.12)

Then we construct a unique solution fr(t,x,v) of the form of

F = M cua+ &> for/Micut1 + 0efr/Micus in [0,T] x Q x R?,

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.12) with
the scale of (1.8) and (2.11), and satisfies the initial condition F|i—g = M ey, 1 +e2 £y, /M e 1|t=0+
de fRrin\/Mi cuili=0, in a time interval t € [0,T]. Moreover, we have

070 sy {VED + VDI + R0} S 1, (213)

0<t<T

Remark 3. The condition (2.11) in the theorem is indeed the largest \/e can be allowed. Any smaller

V€ than exp ( > (which means /e decaying faster than exp ( 1/2> as k } 0) will produce the same

result. In terms of (1.8) the relation (2.11) implies that the Knudsen number Xn has to vanish only
slightly faster than the Mach number Ma:

St=¢=Ma and

T
o _1NM¢0 as ¢ 0. (2.14)
The proof of Theorem 2 will be given in Section 4.

2.2. Higher regularity of Navier-Stokes equations in the inviscid limit (Theorem 3). For
the Navier-Stokes solutions to (1.13)-(1.15), we introduce real analytic norms and function spaces,
adopted from [47] and [54] for the 3D counter part with slight modifications.

In this subsection and Section 5, we will use the following notations: x = (xp, z3) = (21, z2,x3) €
T?xRy =Q, V, =V = (V,03) = (On,, Ony, Oy ); for a vector valued function g € R3, g = (gn, g3) =

(91,92, 93)-
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We denote the vorticity by
w=Vxu u=Vx(-A)lw, (2.15)
while the second identity is the famous Biot-Savart law. Here (—A)~! denotes the inverse of —A

with the zero Dirichlet boundary condition on 9f2.
Our analysis of the Navier-Stokes solutions is based on the vorticity formulation in 3D ([43, 44]):

Ow — kNpAw = —u - Vw +w - Vu in Q, (2.16)
w ‘tzo = Win in Q, (217)
k10 (0zs + V/ —=An)wh = [Ops(—A) N (—u - Vwp +w - Vauy)], w3=0 on 09, (2.18)

where /—Aj, = |V},| is defined as
vV —Ah .%'h,fl‘g Z ’f‘gg $3 th§ (2.19)
£ez?
Here, g¢(x3) 27r 5 [fp2 €7 Sg(xp, z3)dr), € C with € = (&1, &) € Z? denotes the Fourier transform
in the horlzontal variables, which satisfies g(x1,z2,23) = > ¢cze ge(x3)e™n . The Fourier transform
can be regarded as a function g¢(z) where z is sitting in a pencil-like complex domain: for any A > 0,

Hy = {z €C:Rez>0, [Imz| < Amin{Rez, 1}}. (2.20)

We define analytic function spaces without the boundary layer, £7*, for holomorphic functions
with a finite norm, for p > 1,

1/p
gllpx == Zek'g'llggllﬁ where [|ge|cr = Sup </8H |9§(2)|p|d2|> : (2.21)

cez?

Next we introduce an L®-based analytic boundary layer function space, for A > 0 and s > 0, that
consists of holomorphic functions in H, with a finite norm

A
19lloo e = Z € m”QfHﬁiﬁy (2.22)
£ez?
where [|gellzze, = €% ge(2) |l 50 == sup.epy, €*?ge(2) and
e&Rez e@Rez
lodles, = |5 c0e)| = sup 5 laeCal
¢ Ar 1+ ¢H(z) ¢ ol ZEH 1+ (bn( ) ¢
Here, a boundary layer weight function is defined as
1 1
Dw(2) = (i) with ¢(z) = ————— for some v > 1. (2.23)

NN 1+ |Rezl|f
We define B** for holomorphic functions g = (g1, g2, g3) with a finite norm
[l9lloors = D Ngilloonn + l193l00,1.0- (2.24)
i=1,2
We note that B} C €5, but B0 C g4 if @ > 0.

Due to its singular nature of the Navier-Stokes flow in the inviscid limit, we introduce the conormal

derivatives .

D = (Dn, D3) = (Vr,((23)05) where ((2) = 7 s (2.25)

With the multi-indices § = (B, 83) = (Bl,ﬁg,ﬂg) , the higher derivatives are denoted by
= 0)'05° D§* and D} = (i&1)" (i€s) % D5?.
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Now we define, for \g > 0, 79 >0, a > 0, kK > 0, and t € (0, 22)

> 270
gl s = sup { > ([DPglloopn + > (Ao—A- 70t)a[[DﬂgHoo,)\,n}, (2.26)
A<do=0t L cig<1 181=2
ol = s {3 0%+ 19uligla
A< o—0t 0<|B|<1
=IA= (2.27)
Fo—A—0t)® S IDA(1+ |vh|>g|m}.
|B]=2
With an initial-boundary layer weight function as in [47]
1 z
(2) = ——d(—2), 2.28

we define an initial-boundary layer function space B for holomorphic functions g = (g1, g2, g3)
with a finite norm

[[9]oonnt = D lgilloo st + l13]l001.05 (2.29)
i=1,2
where an L°°-based analytic norm with the initial-boundary layer is defined as
N aRez
= e o =] = z 230
191l 00, t 22 lgellese,, Ngellese, = |11 o gbm(z)gg( ) - (2.30)
EEZ )N
A
We finally define, for t € (0, ﬁ),
gl oo e = U { D (PP glloonmt + Y (Ao — A= ’Yot)a[[Dﬁg]]oo,/\,nt}- (2.31)
<Ao—70?

0<|BI<1 |8]=2

In this subsection and Section 5, «, & are given positive small constants, Ay is a given positive
constant, and ~g is a sufficiently large constant to be determined in Theorem 3.

Next we discuss the initial data of the velocity u;, and the corresponding vorticity wi, = Vz X Up.
Inspired by the PDEs, let

wWo 1= Win, Owo = KNolAwy — ug - Vwg + wo - Vg,
ug =V x (=A)Lwg,  Gug =V x (=A) 19w, (2.32)
8t2w0 = kN Adwwy — ug - VOwg — Orug - Vwg + wo - VOrug + 0w - Vug.
Theorem 3. Let \g > 0 and w;, € BOF with (2.32) satisfy
Y IDPofwolling + D IDP0fwollsopew < 00 for £=0,1,2. (2.33)
0<|BI<2 0<|BI<2
Further assume that wi, = wo and (2.32) satisfies the compatibility conditions on 02

K10(0zy + /= Ap)won = [0y (—A) " (—uo - Vo + wo - Vg )],

(2.34)
wo,3 =0, oz =0.

Then there exists a constant vg > 0 and a time T > 0 depending only on Ay and the size of the
initial data such that the solution w(t) to the wvorticity formulation of the Navier-Stokes equations
(2.16)-(2.18) exists in C1([0, T]; BN with 02w in C(0,T; B ) for 0 < X < N satisfying

sup
te[0,7)

22: H]afw(t)ml n 21: H)afw(t)wm 07| e | < 00 (2.35)
=0 =0 ’
1
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Furthermore, for each (t,x) € [0,T] x €,

(1) (Bounds on the vorticity and its derivatives) w(t,z) enjoys the following bounds:

|V};Bfwh(t,a:)| < gm0 (1 + ¢u(x3)), ]V};@fwg(t,a:)] <e ™ fori 4 =0,1, (2.36)
|0Fwn(t, )| < e (L + ¢plw3) + due(w3)), [Ofws(t,x)| < e 7, (2.37)
|8$36fwh(t,a:)] < gTlemo®s ]8m3afw3(t,x)] < e (14 ¢y (w3)) for £ =0,1. (2.38)

(2) (Bounds on the velocity and its derivatives) The corresponding velocity field u(t,x) satisfies
the following:

Ofu(t,x)| 1 for £=0,1,2, (2.39)

> VPO ult,x)| S (1+ dulas) + (18] — 1) t)e™ min(L3)2 for ¢ = 0,1, (2.40)
1<1B]1<2

> IVPORu(t, )| S (1 + ¢ul(xs) + pue(ws))e” ™nh2)7s, (2.41)
181=1

Moreover, we have the decay estimate for Ofu:

00u| < kzemmn(LS)Ts for p =1 2. (2.42)
(3) (Bounds on the pressure and its derivatives) The pressure defined in (5.73) satisfies the fol-
lowing:
Ofp(t,z)| <1 for£=0,1,2, (2.43)
Z \VAalp(t, z)| < K 2em min(l5)es for£=0,1, (2.44)
0<|BI<1
020] < (572 + da(ag))e M (2.45)

Remark 4. For simplicity of the presentation, we have taken the analytic data with the same ana-
lyticity radius in x1, T2 and xs with the exponential decay for large x3. As shown in [38, 54], more
general initial data requiring the analyticity only near the boundary can be taken.

Remark 5. The horizontal vorticity wy and the vertical vorticity ws obey different boundary condi-
tions (2.18) which enforce different behaviors near the boundary. This is well-reflected in our L™
based norms in (2.24) and (2.29). As noted in [54], such incompatible behaviors of wy, and ws in 3D
are dealt with the L' based norm (2.27) which contains one more tangential derivative (1 + |Vy|),
which is different from 2D analysis [47, 38].

Remark 6. We demand the compatibility conditions in (2.34) in order to avoid singular initial-
boundary layers for the temporal derivatives of the vorticity. If the first two conditions in (2.34) were
not satisfied, the initial-boundary layers would occur for the first temporal derivative of the vorticity.
For the second temporal derivative, we handle the initial-boundary layer for the horizontal part with
the initial-boundary layer weight, while for the vertical part we further demand Oywo 3|zs=0 = 0 in
order to rule out a singular initial-boundary layer caused by the Dirichlet boundary condition. This
amounts to requiring the second order vanishing condition at the boundary for wo 3, which is satisfied
by a large class of wg. We remark that the first condition of (2.34) is also satisfied by a large class
of wo. In fact, if not, by the result of [47], we can obtain a short time solution w(t) to (2.16)-(2.18)
and may reset the initial data by wo = @(t = to) for sufficiently small ty > 0.

The proof of Theorem 3 will be given in Section 5.
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2.3. Main Theorem. Now we present the full statement of the main theorems of this paper:

Theorem 4 (Kinetic approximation of Navier-Stokes in large Reynolds numbers). We
consider a half space Q in 3D as in (1.18). Suppose an initial datum of the Navier-Stokes flow u;,
1s divergence-free V. - uj = 0 in Q0 and the corresponding initial vorticity w;, = Vi X U, belongs to
the real analytic space B " of (2.24) for some Ao > 0 such that (2.33) holds. Further we assume
that wyy, satisfies the compatibility conditions (2.34) on 02. Then there exists a unique real analytic
solution (u(t,x), Vzp(t,x)) to (1.13)-(1.15) in [0,T] x Q, while T' > 0 only depends on Ao and the size
of the initial data as in (2.33).

Choosing a pressure p(t,z) such that p(t,x) — 0 as x3 1 00, we set the local Mazwellian and the
second order correction fo as

1 v — eul?
pi= My = 2n)’ eXp{—w}, f2:=Pfo+(I—P)fo=ppoy/u+ (1.34).
T)2

For given such T > 0, let us choose € and k in the relation of (2.11).
Assume that an initial datum for the remainder fr i, satisfies (2.12) for somep < 3 and |p—3| < 1.
Then we construct a unique solution fr(t,x,v) of the form of

F= Ml,su,l + 52f2 Ml,z—:u,l + 53/2fR V Ml,z—:u,l m [O7T] x 2 X R?)a

which solves the Boltzmann equation (1.1) and the diffuse reflection boundary condition (1.12) with
the scale of (1.8) and (2.11), and satisfies the initial condition Fli—o = M cu,, 1 +€2 for/ M1 cun |t=0+

32 fr in/Mi cun |i=0-

Moreover we derive that, for each € and k of (2.11),

T
5 exXp (m) fO?ﬁ K<< 1. (246)

F(tv Z, U) - Ml,su(t,w),l(v)
sup

0<t<T ev/ M cut,z),1 (V) .

Proof. The existence of the Navier-Stokes solutions follows from Theorem 3. For the remaining
assertions, we note that all the estimates (2.39)-(2.42) of Theorem 3 ensure the conditions of Theorem
2 with 5 = % Therefore the conclusion follows directly as a consequence of Theorem 2 and Theorem

3. O
The incompressible Euler limit follows as a byproduct of the main theorem:

Corollary 5 (Hydrodynamic limit toward the incompressible Euler equation). Let ug(t,x)
be a (unique) solution of the incompressible Euler equations (1.9)-(1.10) with the initial condition
Up|i=0 = Win in Q. Then

F(tv z, U) - Ml,euE(t,z),l(v)

e(l+v])?v/ Mo (v)

—» 0 as €]0.

Ost<T L2(QxR3)

Proof. Note that
F(t,ﬂ?,v) - Ml,suE(t,x),l(v) = [F(t,a:,v) - Ml,su(t,m),l(v)] + [Ml,su(t,x),l(v) - Ml,suE(t,x),l(v)] .

The first term can be bounded as in (2.46). We bound the second term by an expansion:

|(v—cup)+a(ug—u)|?

lu(t, ) —uE(t,x)]/OE\(U—EUE)—Fa(uE—u)]e 2 da.

Note that |leu| e~ < 1 and ||eug| e < 1 from Theorem 3. Then we conclude that the second term

converges to 0 as x | 0 from Theorem 3 and the famous Kato’s condition for vanishing viscosity limit

in [34]. O
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3. HILBERT EXPANSION AROUND A LOCAL MAXWELLIAN AND SOURCE TERMS

In this section we complete the Hilbert expansion along with the outline of the introduction. As a
result we prove

Proposition 6. Suppose that F' of (1.19), with a free parameter 8, solve (1.1) and (1.12) with (1.8)
and that (u,p) solves (1.13)-(1.15). We choose a hydrodynamic part fa as

P f> = ppo/i, (3.1)
with the pressure p of the Navier-Stokes flow in (1.13), and (I —P)fo has been given in (1.34). Then
fr in (1.19) satisfies that

_11} .
(0 +¢ 7 vx)\/ﬁfR+(I_P)i)f{1+9‘i2, (3.2)

[3t+ v-Vg e }fR = *F(fz,fR)Jre%F(fR,fR)—

[&—i— —v-V, + 3 ]@fR

=— EQ%Lt(I - P)fR + EQ%L(PtfR) + iir(fRy Oifr) + %F(f%atfR) + %P(atf% fR)

+ %Pt(f%fR) + ;Pt(fRyfR) (3:3)
(0 +e 1w V)1t (O +etv- V)1t
- NG O frR — 3t< NG )fR

+ (I —P)R3 + Ry,

where the commutators Ly, Py and T'y are given in (3.34), while
1
edlv=eul® (T — P)YR, (¢, 2, v)| < f,i|v2u| (3.4)
e?lv == 9%y (1, 2, v)| (|p\ + K| Vul)| Vau| + = (|atp| + K[Vul)

(I hu] + [l V2u]) (3.5)

o

9
+ =5 (Ipl + £l Vaul) (10l + [ul[Voul),

e |1 = P)Ry(t,,v)| £ 5IV20pul, (3.6)

e@lv—fu\ﬂm(t z,v)]

€
glafp] + — \V OPu| + = |V Opllul + —|uHV28tu] —l— (1 + eklu|)|Opu||V2u|

9
+ 5+ [ul)(lpl + £lVaul) + keldpul}[Vadpu| + g{lpl + K| Voul }07 ul (3.7)

€ 2k
+ 5 {(ul + lpl + ¥[plluD|Orul + (1 + eluDOp |} Voul + == (1 + efu])|Oul| Voul”
+ = Haﬂtl + [Vapl +€l0p] + — (\pl2 + £|ul||Vap| + €0l |p[) }Orul.
At the boundary fr and Oifr satisfy

Jrt.2. o)l = Pofr(te,0) = S(1= P) (I = P)fa(t,x,0), (3:8)
18



Oufly = Pr0ufn = 5(1= P )0 = P)fa + vy, (fr) = 57y, (1= P)fo),

T, (9) = O/ cup(v / s b )()~Ud0 (3.9)
+yfeuno / L 9aun(einta) oo

In addition,

eflv == | o (b, 2, 0)| S [p(t, )] + K[ Voult,z)], (3.10)
edlv=2ul® |, £, (¢, 2, v)| < |0up| + (| V20| + |0l |Vaul) + €|l |pl, (3.11)
O +e vV,
(v— 6u>_2’ (O +e v )\/ﬁ’ < | Vau| + €|0ul + |ul|Vul, (3.12)
NG
(3.12).
O +e vV,
(U—Eu>*2‘8t <( ite \;ﬁ )\//7> ‘
2 2 (3.13)
S Vel + e{|07u| + |u||Vedpu| + |Opu||Vaul} + e7[0u|(|0pu| + |u|[Veul) .
(3.13).

Remark 7. We note that due to the choice of (3.1) we remove a contribution of p? in = I'(f2, f2).And
also we remark that Ry is quasi-linear for O2p and V,0%u

3.1. Derivatives of A4;; and Commutators in the local Maxwellian setting. First we check
properties of L and I' defined in (1.20). Recall the notation of the global Maxwellian po := Mo 1. It
is convenient to define

Lof(0) = QU0 VRN, TolF9)0) = Qi Vo)), (314)
For a given eu, we define f(-) := f(- 4 eu). Then we have
Lf(v+eu) = Lof(v), T(f,g)(v+eu)="To(f,§)(v). (3.15)

As in (1.23) a null space of Lg, denoted by A, is a subspace of L?(R?) spanned by orthonormal bases

{piyv/Ho0}izg With
Go:=1, @i:=wv; fori=1,2,3, @4 :=(v>-3)/V6. (3.16)

We denote a projection P on Nj as in (1.24). From standard properties of Lo and (3.15), we can
easily deduce the corresponding properties of L, namely the null space in (1.23), the spectral gap
estimate in (1.25), and the existence of a unique inverse L' : Nt — A/t in (3.17) which is defined
via Ly' : Ngb — Njb with the identity

(L7 P)w) = (Lg ) (v = eu). (3.17)

The inverse enjoys the following bound which turns out useful to prove Lemma 3.

Lemma 1. For0<g<% andge/\/bL

2 2 —
lvo(v)e?™ L g(0) Lo S (¥ g(v) e + ro(v) e
19
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The proof is based on the well-known decomposition of Ly = vy — Ky and the compactness of Kj:
We first recall a standard decomposition

Log(v) = vo(v)g(v) — Kog(v)
::// (v — i) - ufpo (ve)dudvsg(v)
IR3><S2

- W I, 0= sl Viae,)
— 10 ()8 )9(e2) — po(v}) /o ()g(v) b,

where (v) < v(v) S (v). For (1.21) we have v(v) = vg(v — eu) and k(v vy) = ko(v — eu, vy —eu). It
is well-known (see (3.50) and (3.52) in [16]) that one can write Kog(v) = [zs ko(v,v4)g(vs)dv, such
that for some constants C,Cy > 0

(3.19)

o]+ v C B Al O ] e 2
Ko(v,v) = Chlv —vye” 1 — —2 8T8 fomwl® | (3.20)

o]
It is convenient to introduce a new notation, for ¢ > 0,

1 vy |2—p Yo =lex )2

kg (v,vy) == lo—val? (3.21)

RN

Clearly |ko(v,vs)] < kg(v,vy) for 0 <9 < 1/8.
Standard compactness estimates read as follows:

Lemma 2. For 0 < o < 29 and C € R3, there exists Co9 > 0 such that

eelv?+Cv 1

V—Vx 2
‘kﬁ(v,fu*) e=Ce™ 5 for 0 < 0 < 20, (3.22)

@Q‘U*P“!‘C'U* ~ |’U — U*‘

Moreover

. . €Q|v\2+0v d 1
/RB( + v — ) ﬁ(v,v*)w Vi S0 1+ [o]

. el +Cu (3.23)
E— <
/]R?» v — v*lkﬁ(v’ o) eelvs?+C . dve Se 1,

while the same bounds replacing |v| with |v.| hold for integrations over v.

2 1 12)2
The proof of (3.22) relies on a fact that the exponent has a majorant —|v — v,|? — % <
—20(|v| + |v4])||v| = |vs]| which is a negative definite. Note that an exponent of < |‘2 equals

o(|v] + |v«|)||v] — |vs]| which can be absorbed as long as 0 < o < 2. This yields (3. 22) We re-
fer to a proof of Lemma 5 in [20] for details to show (3.23).

Proof of Lemma 1. We consider an operator g(v) + vy 'Log(v) :=
of {g € L2(R?) : 2"’ g(v) € L2(R3)}. First we claim that

o (v) Log(v) on a restricted space

v Lo : {g € LA(R®) : e’ g(v) € L2(R?)} — {g € L*(R?) : 2" g(v) € LA(R?)}. (3.24)
20



From (3.19) we have vy ' Log(v) = g(v)—vy el * Jzs ko(v v*)
for p <29 <1/4,

2 _
eyt Log(v)]

olol? eelvl2 eolvl? 2 )
< 1e?""g(v)] + vp(v sup /R3 ko (v, vy) o ——du, /R3 kg(v,v*)m]eglv* g(vy)|2dvs

eQ| vl?
< ’eglvl )| + \// kg (v,vy) o |eelvs® g (v, ) [2dus,.

Therefore we prove (3.24) from

69|”*| g(vy)dvy, and, using (3.23),

IvI

2
[eelvl®y, oL < Jleelvl? k eglv‘ ~_d olva|? 2
09(0)llzy S N1 g ()l +[sup | kolv,v) Zmdv [ ey (v.)]
< e ()] 13-

Now we view {g € L2(R3) : e?"’g(v) € L2(R3)} as the Hilbert space with an inner product
% eeloly, en the compactness of v, " Ky in this space is equivalent to the compactness o
e?lvl®. eolv”.) " Then th t f vy ' Ko in thi i ivalent to th t f

eu

g~ fps ko(v,v*) = ‘zg(v*)dv* in a usual L2. From Lemma 3.5.1 of [16], it suffices to prove that

v|2
i) Jgs ko(v, vs) < Q‘U ‘2 dv is bounded in vy, (ii) ko(v,v«) il € L?>({|lv —vs| > L and |v] < n}) for

te“*lz n

glv

all n € N, and (iii) sup, [gs ko(v, vs) Q‘MQ{ —ve<L T 1jy>ntdu — 0 as n — oo. Both conditions
(i) and (ii) come from the first bound of (3.23) directly. We prove (iii) from (3.22) and the first
bound of (3.23). Now applying the Fredholm alternative to v Lo =id— vy 'K, in the Hilbert space,
we obtain an inverse map (v, 17o)~! which is a bounded operator of the Hilbert space. Note that
Lyt (9) = (vy 'Lo) (v tg). Hence we derive that

2 _ 2 _
e L5 gl = lle2*" (75 Lo) M5 ) s S e w5 g sz (3.26)

From the decomposition of Ly, we have Ly g(v) = vo(v) " 1g(v) + vo(v) 1K Lytg(v) for g € Ng-.
Then we have

2 _
e L1 (v)
. eolvl?
< Iuo(v)TeeltPg \+(VO A e T (AL
eQ|U|2 2.1
< ()71 e g(v)| + /‘kovv* —oE| s /\e@|“*| Lgtg(v.)2dv, b,
v|? \v—1z*|2
while ‘ko(v,v*):j‘%ﬂz S ‘Ui}*P e 202~ € LL} from (3.22). Hence we prove (3.18). O

Equipped with Lemma 1 we provide bounds of A;; in (1.34) and its derivatives:
Lemma 3. For 0 < o< 1
A (0)] S e |1V, Ay (0)] S el Vapule 2= 10,445 (0)] < eldpulem o E

|V20:Aij(v)| S e{|VaOiu| + €|V ul||Opul e olv—eul?
21
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Proof. 1t is convenient to introduce a notation, with Ly in (3.14),

N g (g P
Ag5(v) = Ly (v = 5-03) Vo ) (). (3.28)

Then from (3.18) and (3.17) we can immediately prove the first bound in (3.27).
Recall the notations in (3.14) and (3.15). By taking a derivative to Lo(3.28), it follows that, from
the decomposition of LoAgij(v) = v(v)Ag,i;(v) — [gs ko(v, v — v4)Ag,ij(v — v4)dv, and (3.20),

2
'Ufwmw o, vim

—{ B () 40,50 /%m 0= ) Ao (0 — ) .

From (3.20) and V,(|v|? — |v — U*| 22 = 4U*(]v| + v — vi|)(Jo = |[v — vi]), it follows |V, [ko(v,v —
ve)]| S |vi] exp{— w} + T ‘exp{ |U*| 8%} From the first bound of (3.23),
it follows | [ps Oy, [ko(v,v — v4)] Ao (v — v*)dv*] < e 9 for any 0 < o < 1/4. Recall a projection
P on Np. Then |(I — P) rhs. of (3.29)] < e 9. Now applying (3.18) to 8y, Aos; = L (T —
P) r.hus. of (3.29)) we derive

2
LoaukAoﬂ'j :8vk (’Uz"l)j ’ | ( )
3.29

|VoAo,ij(v)] S e~ P for any 0 < o < 1/4. (3.30)
From (1.34) and (3.17), and the fact @; = v; for i = 1,2,3, and ¢4 = % (the notation f is defined
n (3.15)), we have
[v[?

Ais(0) = L5 ((viv; = 5-055) /0 ) (v — ) = Ag (v — eu). (3.31)

3

Therefore we prove the second and third bounds in (3.27) using the fact that V1 A;;(v) = =V, uV,Ag i5(v—

Eu).
Now we prove
|2

V3 Aoi5(v)] S e @h.
By taking one more derivative to (3.29), we derive that

(3.32)

2 2 2
L0y, 00, Av,ij = Oy, O, (v — u)f%— O, (Vv — [v 3 ——)Ou /100 + (viv; — ‘3‘)61,48%\/;70
o0 A0is(0) ~ (01 s
/ e (Ko (v, v — v4)] Ao i (v — vi) + O, [ko(v, v — 04)] 0y, [Ao,ij (v — vi)]dvy.

The terms in the first two lines in r.h.s are easily bounded above as e*9|”|2, recalling the fact
|V oo (v)|+]V200(v)| < 1. We only focus on the terms in the last line. From |8, V, (Jv]|* —[v—v.]?)?| <

|4v*<‘v| n <“*”*>f)(\u\ v = va])| + 4]va (o] + v - v*y)(w W“*)f)\ < Jos]? + |0s]|v], we have

[v—v4] [v] [v—vy|
10, Vo [ko(v, v—0,)]| < |vs] exp{— L= +|v*|2 P+ H'v' exp{—% — %W} Using the second
estimate of (3.23) with the first bound of (3.27), we have | Jz3 Oy, O, [Ko (v, v — v4)] A i (v — U*)dv*} <
e~e*. From (3.30) and the first bound of (3.27), it follows that | s Qv [ko(v, v — v,)]0y, [Agij (v —
v,)]dv.| < e~ Now we invert the operator Ly and use (3.18) to conclude (3.32).
Finally from 0;V,A;;(v) = —e0:V,uVyAg (v —eu) +2V,uduV2 Ag i (v —eu), (3.30), and (3.32),
we conclude the last estimate of (3.27). O

For the estimates of 0; fr we derive the commutator estimate of 0;L — LJ; and the corresponding
one for I' as follows.
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Lemma 4. Suppose e|u| S 1 in the definition of p in (1.16). For L and T" in (1.20) and (1.21),
Oy(Lf) = LOf + Li(I = P)f — L(I = P)(P+f),

(T (f,9)) ={T(:f,9) + T (£, 09)} + Te(f. 9), (3.33)

where
Lig(t,v) := —e0pu - Vyro(v — cu)g(t,v)

—i—a@tu‘/ (Voko + Vi, ko) (v — eu, vy — eu)g(t, vy )duy,
R3
(I-P)Pyg _—EZ 29)(I—P) (0w - Vo(piv/R)), (3.34)
y(f, // [(v = vs) - wBpu - (vs — ew)y/p(ve) { f(¢,0)g
R3xS?

x +g(t, o) f(t, L) = f(t,v)g(t vs) — gt v) (L, v*)}dudv*-
We have

L(I = P)f(v)g(v)dv| S eldpull[v!/(T = P) fll 2 ' ?g]l 2.

3

< el@eul [Pf[v1/2(X1 = P)g|l 12,

L(Pf)(v)g(v)dv

3

Li(f, 9)(v)h(v)dv

3
2 .
< elovul (e =g e /(X P) £l

1)2 U
o [P f] e [0 2(X = P)gllz + |PFIIPgl) 12l 3.

(3.35)

Ty 5

Pointwise estimates are given as follows: for 0 < o < 1/4 and C € R3

|Li(I = P) f(t,0) — L(P:f)(t,0)| S ldpul| @ +E f(t,0) || poor(v)2e el ==,
v(v)

2 . 2 .
ITo(f,9)(t,0)] S eldpul[[ e f (2, 0) | e | e +C”9(t,v)HLg°W7 (3.36)
v(v)

2 C. 2 C-
ID(f,9)(0)] S e+ f(0)| e e 9Ly pren

and

(O] 5 19Ol (vl + [ Folo,vlalon)ldv.). (3.37)

Proof. The decomposition (3.33) with (3.34) comes from a direct computation to (1.21) and (L fr) =
W(L(I-P)fr) =L(I-P)0ifr+ Li(I—-P)fr+ L(—P.fr). On the other hand, from (3.20) it is easy
to check that, for any 0 < o < 1/4,

Voro(v)] = j//RsXSQ umug(v*)dudv* <1

[Voko(v,02)] + [V ko(v, 0] S ([0 = vl ™+ 10 (0)%0 = 0] gya(v, v2).

These estimates above combining with (3.23) and PL = 0 yield the first two estimates of (3.35).
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We derive I'; as in the third identity of (3.34) from a direct computation to (1.22) and 0¢+/p(vs) =
—edyu - Vyy/po(vs — eu) = 2edu - (ve — eu)y/po(vs — eu). Then it is standard (see Lemma 2.13 in
[13] for example) to have the last estimate in (3.35).

The first bound of (3.36) is a direct consequence of applying (3.22) and (3.23) to the first identity
of (3.34). For the second bound of (3.36) we bound it as

2. . 2. 1 _ 2_c.
£|Opul[|e@PTHE £ (£, 0)] poo ||l +CUg(t,v)HL5<>7€Q‘U‘2+C'U //RS SQy(v—v*).Lqe ol =Cs o,
X

v\v 2 . 2 .
< el 1, ) e e g1, )

For the last bound of (3.36) we recall a standard estimate (e.g. [16]) that

1 24+C- 24 0. 2, .
\Vo(v)e@'”” “To(f, 9)(0)] S [[e€PFHC f(v) | poe € FHE g (0) | oo

From the second equality of (3.15) we deduce the last bound of (3.36). A bound (3.37) is standard. [

3.2. Proof of Proposition 6. We verify two statements of Section 1.1 Hilbert Expansion. Firstly,
we will show that the solvability condition (1.33) implies the incompressible condition (1.14). From
(1.16), (1.23), and direct computations we verify the first identity of (1.33). Then from the oddness of

the integrand with respect to the variable ¢; we derive that <goi\/ﬁ, W> =0fori=1,2,3.

For ¢ = 0,4, we compute that

e (v —eu)- Vx,u> _
\/ﬁ

This shows that (1.33) implies (1.14).

Secondly, we will verify the following statement of Section 1.1: the leading order terms of the
hydrodynamic part in (1.28) vanish by solving the Navier-Stokes equations (1.13)-(1.15). Consider
(1.28). We set P fo = {ppo + 22:1 Uppr + 9~g04}\/ﬁ whose coefficients will be determined as in (3.1).
Then the leading order term of (1.28) = %(1.35) can be decomposed as

2 .
<g0¢\//7, (@il Peper/ 1) Opug = {51;0 + 51'4\/;} (Vg -u) fori=0,4.

3
(=1

_ 1P((v ) - (Bu + u- Veu) i

)
3 ~ 3
+ (v —eu) - (Vappoy/it — Z Valepe/ 1t + Vebpa/1t) — Z k(v — eu) - Agmvxagum)’ (3.38)
/=1 fm=1

(3.38).

3
_ %(1 ~P)((v —cu) - (VappovTi+ S Voo + Valipayi))
=1
3 (3.39)
1
+ g(I - P)( Z k(v —eu) - Agmvmagum),
£m=1
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while the lower order term consists of

3

1 B B ~

—5(v —eu) - Vo oV + Y depeV/ii+ Opa/i)
/=1

3
1 3 ~ -
+5(v —cu) - (Vx,ogoo\/ﬂ + E Vatepe/ 1t + Vx9<p4\/ﬁ> (3.40)

(=1

3
+§ > (v —ew) - VaAmOptim.

m=1

First we focus on a leading order contribution of (3.38), in (3.38). A direct computation yields

(i (3.38).)
(CV-@, i=0,4 (3.41)
OB o) + 00/l pion/B) = 0 (5+[20), i=1,2,3.

Among many other choices we make a special choice (p, 4, 0) = (p,0,0) which is equivalent to (3.1).
From (1.38), (3.41), and (3.1), it follows that for (u,p) solving (1 13)

1
5(1} —eu)y/p- {Ou+u- Vou — knpAu+ Vap} = —(v —eu)/p- (1.13) = 0, (3.42)
which verifies the second statement of Section 1.1.

Now we turn to proving the estimates. While the leading order terms vanish in (1.28), the rest of
terms of (1.28) are bounded as follows. Upon the choice of (3.1), the first term of (3.39) vanishes and
the first line of (3.40) are bounded by

(3.38) =

O«)

255 (0 —eu) - Vou - (v —ew)Pfy| < S|Vaullpl(v — eu)? /. (3.43)

From (3.27) we deduce that the second term of (3.39) and the second line of (3.40) are bounded
respectively by

§|Viu\|v - €u|e_9|”_6“‘2, ?|qu||v - <€u|e_@|”_€“|2 for any 0 < o < 1/4. (3.44)

In conclusion we end up with the following result: Assume (u, p) solves (1.13)-(1.15), and both (1.34)
and (3.1) hold. Then

vV—EU 2
1(1.28) — (3.39)] < g{muup\ K| Vol o — eu)2em T (3.45)
|(I—P)(3.39)] = |(3.39)] < %ﬁ\viuye*@‘“*w'? (3.46)

The term 0;(1.28) can be bounded similarly. The entire leading order term of 0;(1.28) can be
decomposed as

—%P ((v —ceu) - O(Ou~+u- Vau)/u+ (v —eu) - (Vx(?tpcpo\/ﬁ)

— Z k(v — eu) Agmvgc(?gatum), (3.47)
l,m=1

3
—%(I - P) ((v —ceu) - (Vy 8tpg00\f)> ! (I — P)< Z k(v —eu) - Agmvm(?gatum). (3.48)

fm=1
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Following the argument to get (1.38) and (3.41), we derive that
(3.47) = —%(v — cu) /- 9(1.13) = 0. (3.49)
On the other hand,
1(3.48)] < éfqvgatme—g\v—wl?. (3.50)
Now the lower order term 0;(1.28) — (3.47) — (3.48) consists of

S0 { O+ u Vo) i+ VaP fa = nVa 23: AtmOpin ) |
£,m=1

3
K (3.51)
+ g(v —eu) - Vz<e mgﬂ 8,5Agm8gum)
1 1
— g(fu —eu) - V0 (pcpo\/ﬂ) + g(v —eu) - (antp(PO\/ﬁ)’

Since the lower order term of 0;(1.28) always contains |0;(v — eu)| < €|0u|, they can be bounded by,
from (3.27) and (3.1),

[CRDIPS %!@ul{\&:ul + || Vau| + [Vap| + el Voullp + kel Voul? + x| V2u| Jedlvmeul”

+ HAIVadyul (L + £V oul) + 0rp| Vol el ==P .
Now we consider (1.29). From (1.34), (3.1), and (3.27), we derive that
0+ u- V)Pl < {10upl 4l Vepl + lpl{lo] + ol [Vaul} (o - cu?e™ "5, (359
0+ u- V)P
S {‘8t2p| + |0l [Vap| + |ul[VaOip| + €] Oipl{[Orul + |ul[Vaul} (3.54)

9 _ |v—5u|2

+ e|p|{|0u| + |0u||Vou| + |u||Vidiu|} + |dpul{r.hs. of (3.53)}}<v —eu)‘e” &,
and, for 0 < p < 1/4,
(O +u-Ve)I=P)f2] S ﬁ{{!VIGtUI + [ul|V3ul} + e{[dpul + !UlIVIUI}!VIUI}B_le_Eu‘Qa (3.55)
0¢(0r + u- Vi) (I—P) fof
< w{{IV.0%ul + |00l V2ul + [l V20l } + ={ Oyl + ul [V} Vo0 (3.56)
+ e{|0%u| + 0| |V pu| + |ul|Ve0su|}| Vau| + €|dul{r.hs. of (3.55)}}6‘“”‘5“‘2.
Next we consider the last term in (1.29). From (1.16) and (1.14)

O +e -V,
(t+€;ﬁ )\//7:;[(u—eu).qu-(v—eu)+s(8tu+u.vxu).(v_eu)L
Oy +e -V,
Oy (( i+ € \;’H )\/'UJ> = %[6(83U+vaatu—atuvxu) (U-&u) —52atU' (5tu+uvxu)

+ (v —eu) - Vaduu - (v — eu)],

and hence we derive (3.12) and (3.13).
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Applying (3.27) to (1.34), it follows that, for 0 < p < i,
(I —P)fo| < k|Vaule @~ 19,1 = P)fo] < 5{|0,Vaou| + ¢|0u||Vpu| e elv=ul*, (3.57)
From (3.1)

|v—5u|2 \1)—5u|2 \1)—611.\2

[Pl Slple™ 7, |0 S|0ple™ " +ldpullp|(v — eupe™ . (3.58)
These estimates give (3.10) and (3.11).
The last term of (1.29) is bounded as

8 + E_lv ) v$ —o|v—eu
°| & WE ) S 1ol + mIVulHIVul + (0] + [l Vou)pe s (3.50)
JH 5
O +e -V,
“Jo (2 WE))|
5 Vi
STl + (000 + [l Vo H10upl + #1000l (] + T e o=
+ S (ol + #IVeul) Vel + <(10Ful + ullVodyu] + 10l Vo)
+ 2|0y (|0u] + [u||V pul) yeelv—eul®,
Lastly from (3.36), (3.1), and (1.34)
g g
Z D (for £2)0)] = - [D(fos f2)(0) = D(P S, P o)
oK 0 ) (3.61)
< Spl + A Vo) [V (w)e o=l
1O (fa, £2)(v)]
51‘1 t 2, J2)(V
< SUpl + AV a0Vl + (0] + 51V} [Vl ()= (3.6

2
+ %|8tu\(|p| K| Vau]) | Vaulv(v)e—elv—eul®,

where we have used I'(P f2, P f2) = I'(p\/it, py/R) = 0 to eliminate the contribution of p® in (3.61).
Finally we wrap up the estimates of the source term of (3.2) to show (3.4) and (3.5). The term
(I —P)MR; consists of (3.39), which is bounded as (3.46) and hence we prove (3.4). The rest of terms
form MRy, which can be proved to be bounded as (3.5), from (3.45), (3.53), (3.55), (3.59), and (3.61).
Now we consider the source term of (3.3). The term (I —P)R3 consists of (3.48), which is bounded
as (3.50). From (3.49), (3.52), (3.54)-(3.56), (3.12), (3.13), (3.60), (3.62), and (3.36), we prove (3.7).

4. A PRIORI ESTIMATES FOR fgr

For each € > 0 an existence of a unique solution in a time interval [0,00) can be found in [13].
Thereby we only focus on a priori estimates of fr in different spaces. For the sake of simplicity at
times we will use simplified notations

lgllr = ||9||LPL£L5~ (4.1)
t

t,x,v

o, 2, 0)lzps ez = ||t ety zcon | o .1
Recall the boundary integral and the norms in (2.5). Also recall o = t,g(z,v) in (2.3) and w’ =
o, g(z,v) for 0 < ¢ < p.
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4.1. L?-Energy estimate. Our starting point is a basic L2-energy estimate for the Boltzmann
remainder fr and its temporal derivative J; fr in which the dissipation (1.31) plays an important role
in the nonlinear estimate.

Proposition 7. Under the same assumptions in Proposition 6, we have
t 1 t .
IOl + o [ 16 e Vot = Pislly + [ 1 falks
2 ! 2 & 1 2 1/2 2
S IfrO)72, + (1 +11(3.12)] 25 /0 |Pfr(s)52ds + —5lls" 2P fr(s)ll7ge g I *PrrlFary  (42)

2
ER
Vel + R IVl 4 RGO, +1G5)I2

where

2
oy 15 3
dy = — — de||vofr|lree  — (g6 |0 fRr| Lo )2 _ 52“(3‘10)”]@36 - ;H(?}lo)”%goz - €ﬁ1/2H(3.12)*||LffZ.

2 t,x,v t,x,v
(4.3)
Here LY = L¥(]0,t]) in particular. Note that a weighted L*®-bound of fr is involved in this energy
estimate, where the weight v = 1, g(x,v) is defined in (2.3).
We also have

1 1
||3tfR(t)||%g’v +dag|lwT2e T VU I =PI fRIT  +e 28tfR|%§L?Y - 5Hatu||L§f’z|fR|%§L2Y
S HatfR(O)H%g’v + 157 02| PFRI T o IPFRIZ2 s + 1POSRIIT2 s}
+ {51“@“”%% + | Vadeullngs, +ell0full 20 + o™ 2 (1+ [|0pull s, )| (3.10) | e,
t
+11(3:12)]| Lge, + ||(3-13)*||L;’f;} X /0 1P8:fr(s)|72ds

. (4.4)
+ e PIEAD ) + 13190z } < [ IPIas) s
{1+ 21310z |9rul s, + enlIVaBiul s, + 22411070l 2
+ (eR2)(313). rgs)? + (80 s, 2} <l AT~ P) frll2s
+ W 312)3 g, + [ Vadiul 2 0k + (e621B6) 3 )? + B2,
+ i;’fH@Vmu\ + datqua:UH%ng(aQ) + fﬁvxuyiﬂz(mﬂy@uy%,
where 0y fr(0,z,v) := fr+(0,x,v) is defined in (2.6). Here
day = % — (k2 4 e|Opull e, ) 1(3.10) [ e, — erill(3.12)[| s, — (242 (3.13).|gs, )?
— er|[Vadeullze, — k|07 ull 12 o0 + el Ol e, (1 + €l| Deul ze,) (45)

__e_
— 37 (k' 2|0y 50: frll 2 e, ) — €6(1 + el Osull e, )Iv0 frl| 2,

— (e6' 2w frll L )%

t,x,v

where 0 < o < o.
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Remark 8. We utilize several different time-space norms to control the fluid source terms, which
possess the initial-boundary and boundary layers as in Theorem 3.

The following trace theorem is useful to control the boundary terms.

Lemma 5 (Trace theorem).

t t
1
// h|d7ds§N// ]h(O)\+/// |h|+/// Ok + S0 Vo, (4.6)
N QOxR3 0 QxR3 0 QOxR3 3

where vy = {(z,v) € v+ : |n(x) - v| > 1/N and 1/N < |v| < N}.
The proof is standard (for example see Lemma 3.2 in [13] or Lemma 7 in [6]).

Proof of Proposition 7. First we prove (4.2). An energy estimate to (3.2) and (3.8) reads as

Sn®ls, — ey, + = [ [ sk (17)
va [ g [ ] 1P s poa-Rine (49
=2 [ vt P (19
L2 rama- ey (410
[ a-Pma- ey @)
o[ e T e (113)

Among others two terms (4.9) and (4.13) are most problematic.
We start with (4.7). From the spectral gap estimate in (1.25), we have

1 1 _1
(4.7) = S 1ROz, = 51/ O)F,, +oollx 2™ Vil = P)rll}; . (4.14)

Now we consider (4.9), in which we need integrability gain of P fr in LS of the next sections. From
decomposition fr =Pfr+ (I-P)fpand ' =T, —T_ in (1.22), we derive

49r<2/ [l A = PURIVAT - Pl

[ R R P s
S el iz, I te VBT = Pl

+T/Q\\ﬁl/QPfRIILOOLﬁ!!ﬂl/zpr\lelelﬂ e V(I =P)frllz -
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From (3.57) and (3.58),

|(4.10)]

1/2!!(3 10)[[ 5= {lIPfrll 22, +r3el|n2e T (I -

x I3 VoL - P)fullys .

g2 1
SAEPNB10) 2z, + —lIB10)[F Hiw™2e™ V(T -
From (3.4) and (3.5) we derive that

|(410)] S &2 (34)lI gz lIw e (T =P)fallz .

(412)] SIBHIF2  +IPfrli  +r2e|(3.5) 2 s /2!
t,x,v t,x,v t,x,v

Next using (3.12) it follows that

|(4.13)]

S &Pl APV gz IRl

t,z,v

t,x,v

1

1 1
+1(3.12) ||L°<>/ 1P fr(s)|[72ds + (52€35 || Voul g2 )*.

Finally we control the boundary term (4.8) using a trace theorem (4.6). First

(48) = o AU = 1Py ) = 555 (1= Py )(I—P)fof?
2% 26 -

™2 /(I ~
+11(3.12)|2e, / |Pfr(s)72ds +ex'?(312)ul Lz 2™ V(T = P)frlf,

S {(EeWlwfrllg, )? +ex'/2(3:12) g Hik~2e Vo (L= P)frll2s

P) a2

P)fRH%gM

P)frllrz, ,

// P =P AP,

1, 1 3 2
5’5 2(1 ’y+ fR’LQLQ - 8C’ '\/+fR|L%L%+

—(222+2052)/0 /wyu

z,v}

+ 1P fRlTz,s-

(-

P)frllzz,

P)fp? for C > 1,

(4.16)

(4.17)

(4.18)

we have, from (3.8),

(4.19)

where we have used the fact ]ow}:g\L%+ =P, fR’Lif from P, fr(t,z,v) being a function of (¢, z, |v|)

due to u|pn = 0.

Now we estimate P,, fg. Since P, in (3.8) is a projection of ¢,./it on 74, it follows f7+ |Py, fI? <
Qfﬂ’ |P,, f|? for large enough N > 0, where v& := {(z,v) € 74 : |n(z)-v| > 1/N and 1/N < |v| < N}.
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Setting h = |f|? in (4.6) and using (3.2), (3.4), and (3.5) we derive

1 [t 5
! / FrlPdyds
0 Jyy

frt(I-P)R + 9%2] ij

S
t
<cv [[ iR+ [ //Q Ul
2
B (8,: +ely. VI)\/ﬁ
< On{lIfrO)Zz, + PSRl |+ lle™ s 2@~ P)frlf,
+ (4.15) + (4.16) + (4.17) + (4.18) }.

t J
+/0 //QXR3 - 7LfR+ F(fQ,fR) ?F(f&fR) (4.20)
Vi
Furthermore from (3.8) and (4.20)

82 62H,2

’fR‘ZL?Lg_ 5 ‘fR|%§L2{+ + ﬁ“l - P’y+)(I - P)fﬂ%gL%_ = ‘fR@fL?H_ +t 5 52 |qu\L2L2 (69" (421)
Finally we collect the terms as

1, 1 gt
rhos of (4.14) + (419) + 1 5le72 Py, fRyZ;ng+ + @|le%ng_

1 —1
< rhus of (415) + (4.16) + (417) + (4.18) + 7 x rhis of (4.20) + 156—0 « r.hus of (4.21).

We choose large N and then large C so that ¥ < 0p. Using Young’s inequality for products, and
then moving contributions of ||x~ 2¢ LI - )fRHL2 to Lh.s., we derive (4.2).
t,x,v

Next we prove (4.4). An energy estimate to (3.3) and (3.9) lead to (4.4)

t

1013 - Slosr @+ 5 [ auntonss (122)

+ / , |0cfrI?

_/ / Py i = 50 = PO =P o (fr) = G (T=PIRIP - (4.23)

t
- /0 //Q . LI~ P)frdif + 5 /0 //Q PR = P)oun (4.24)

20 t 2 t
,%/0 //QXRS F(fR,atfR)(I—P)atfR+H/0 //mgs T(fo, 0ifr) (I — P)O,fr (4.25)
2 t

J%/O //Qngr(ath’fRXI_P)atfR (4.26)
2 [t 5 [t

+/‘€/o //sszBFt(fz’fR)atfR+m/o //QXR3 Le(fr, frR)OufR (4.27)

+ /Ot //QXRS (I-P)R3(I—-P)o,fr (4.28)

31



+ /0 t //Q B0 (4.29)

+/Ot//QXR3 _(at+€_\;;’vm)\/ﬂ\3tf3|2+/0t//mR36t<_(at+E:;Z'vx)ﬂ)ch’)tfR. (4:30)

We consider the first term of (4.30). We decompose 0; fr = PO, fr+ (I—P)0,fr. The contribution
of PO, fr can be bounded above as, from (3.12),

t
612 ez, [ 1POTa(s) s (431)

For the contribution of (I — P)J;fr we utilize an extra decomposition 1j,j<.-1 + 1jy>.-1 Then it is
bounded as

1312)1{ [J] Lutzeslolo @)X~ P21 af
+ /// 1|v|>s—1%m’(v)atfa(v)mmP)at fR|} (4.32)

__e
S 1312 oo { e IV = P)O:SRIZ:  + e 00, frll 2 1ee, VT~ PYOSRILs b

t,x,

For the second term of (4.30) using (3.13) we bound it by

1(3.13). 23 Vo (X = P frllpz VoI~ P)aufllys
__o_
73 | Vadul e 0l s, VAT~ PYLSR] 1z (4.33)

t,x,v

Vet + 18130 1 [ 1P s + [ 1Ol ss).
Using (3.35) we bound (4.24) and (4.27) as
|(4.20)] S 52|00l s lm2e ™ Vo (L = P frllz
x PO frllpz, + r2ell2e V(L —P)difrllzz )} (4.34)
+ 172 | pull s |5 26T V(T = P)i iz P FrllLs

;U

_1
(4.27)] £ 5~ 2l zzs 1310 | zas (Vo (T — P)fall iz

+ x5 Ol zzs {1 PO frllzz, + VT~ PO frl s} (4.35)

_1 1
< (1P fallers 1P Fall zrs + w2 A= P)fallz wielwfali, )

The rest of terms can be controlled similarly as in the proof of (4.2):

+ 1P falz, G frllLs

t,x,v

1 1 _1 _
(4.22) > S| frb)7s, = 510 O)Fz, + ool 2™ VAT - P)aufl, . (4.36)
1
(4.25)] < {Oelw frllrg, , +<*1(3.10) |25 HIn ™2 VoI = P)ocfrl72
) 1
2Pl e g 1KY Pou Sl g 1w~ 26 V(T = P)Oufrllnz (4.37)

E _1
+ 1P Fallige | POl w3 WAL~ P)ayfrllys
K N T LT,V
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(4.38)
(4.26)] <~ 2ellVodhfallze,, (1P Fall iz, + VP~ P)frlliz, YIn e (T~ P)oyfalz . (4.39)
(4.28)] < KM2E](3.6) 12, 52 (T~ P)Auallsz . (4.40)
(4.20)] < 1Bz {1POSrllLz, + 52 X~ P)aufrllz, ). (4.41)

Lastly we estimate (4.23) and the first term of (4.30). As in (4.19) we derive that (4.23) is bounded
from below by

1 1 1, 1
*\5 2(1- Pv+)8tfR\%2((o,T);Lg+) - @15 2Pv+atfR|%2((o,T);Lg+)

C{ 5211 = Py )01 = P)fali2omyzz ) + €\|3tu||oo’fR\2L2((o,T);Lg+)

63 2
+ H@,gulloo*!(l - P)f2|L2((o,T);L3 )}
(4.42)
>

1
€72 (1~ Py, )OSRl 013L2,) " ot : +3tfR|%2((o,T);Lg+)

l\D\H

- C{?H@Vzu\ + E‘atquzUHigB(aQ) + 5”atuHoo‘fR’%2((0,T);L%+)

3
g
1 Ortlloe 42 Tl m)} for C > 1,

where we have used |+, (9)|72(,_) S €l|9¢ulloolg|r2(y_ from (3.9). Now we bound P, 9; fr using (4.6).
Following the argument arriving at (4.20) and settlng h = |0, f|* we derive

1 t
1 / / 10, fr|2dds
€Jo Jag
t
SN 10efR(O0)I 2, + 106 fRll2 | + /0 //Q s (
X

SN ||5tfR(0)”%g’v + ||P8tfR”%§z +le TV (I - P)atfRHigm
+(4.31) 4+ -+ (4.35) + (4.37) 4 - - - + (4.41).
We conclude (4.4) by collecting the terms. O

— iL@tfR +r.h.s of (3.3))&5]%‘ (4.43)

4.2. LS-integrability gain for P fg.
Proposition 8. Under the same assumptions in Proposition 6, we have for all t € [0,T]

dg|| P fr(t)|l s
< (EllB12)lzge, +en™H(3.10)|zgs I FR ()22, + el Oefr(B)llL2,

g
+o(1)(re) /2w fr (1) | Lge, + 5163-10) Lagan) +elBA)rz , +ell(3:5)ll1z,,

1 19
+ (= + Sliwgsfr® oz, ) {IE=P)frl, +I1C=P)oifalls_ +elOwliy |1Pfrlz )

+ s /rOILz, {2l 5720, ) + \atfm;gigm)},
(4.44)
where 5 )
2 2 1/6
do = 1= | ZIPfr@I 1P FR)S +elu® x| (4.45)
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Proof. For the sake of simplicity we use notations (4.1) throughout this subsection.
We view (3.2) as a weak formulation for a test function ¢

//Q IR / fro— // <00t
446

(4. 46)3

(Eat +v- VI)\/E
Vi

(4.46),
//Q R3 { Lir= 7F(f2’fR) B éF(fR’fR) fr—e(I-P)R; — 6%2} )

(4.46)

The proof of the lemma is based on a recent test function method in the weak formulation ([12, 13]).

We define
|v]* -

f’fR:: {a—kb-v—{—cv\/é

where a := (fr, /lt0),b := (fr, vy/1W0), and ¢ := (fg, |v|\jé_3w/,u0>. We choose a family of test functions
as

3}\/;70 and Pfp = (a,b,c), (4.47)

Yo = (|[v]* = Ba)v/10 - Vata, (4.48)
%31 = (v — Bb)\//ToanOg, i, =1,2,3, (4.49)
vy = ooy idieh, i # d, (4.50)

Ve = ([v]* = Be)v/io - Vaepe, (4.51)

where we choose 8, = 10,8, = 1, 5. = 5 such that

v|? —
0= /RS(|U|2 _ Ba)| | 3(111)2,u0(v)dv = /R(v% — By)po(v1)dvy = /RS(|U2 - 60)1}1'2#0(7))(111- (4.52)

V6
Here,
e —a® with 2%a| g, (4.53)
on lag
—Axgpi = b? with QDZ|8Q =0, (4.54)
—Ayp. = with @.aq = 0. (4.55)

A unique solvability to the above Poisson equations when (a,b,c) € L5(2) and an estimate

) + IVe@bollzz@) + 19@sellzs@ S IPIRP s S IPfRlGsq).  (4.56)

vaso(a,b,c)

is a direct consequence of Lax-Milgram and suitable extension (extend a® of (4.53) evenly in z3 € R,
and b° and ¢ of (4.54) and (4.55) oddly in x3 € R, then solve the Poisson equation, and then restrict
the whole space solutions to the half space z3 > 0) and a standard elliptic estimate (Lg(Q) —
W25 (Q) N WL2(Q) N LE(Q)).

From M cy,1(v) = M 0,1(v) + O(e)|u||v — eu|Mj ¢,1(v) we can easily check that

|Pfr(t,xz,v) — PfR(t z,v)| S elu(t, z)||v — eul/pl fr(E, x, v)]. (4.57)
Therefore we have
1PfR@®)Ls SIPfR®)Le, S IPfR®)Le, +ellw®lloo{lPFrB)lLe + (X = P)fr(t)llLe, }

S+ ellulloo) I PFRE) s + ellu(®) || (X — P) fr(t)l| s,
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2/3 1/3
Note that (I = P)fr(t)ze, < (1= P)fr®)|72 (L= P)fa@®}% < o(1)(ke) 2|l frlt)]|rzs, +
(ke) "' (T = P) fr(t)|| 2 . Hence to prove the lemma and (4.44) it suﬁﬁces to prove the same bound

for | Pfrl s, = ll(a,b,c)lls.
Following the direct computations in the proof of Lemma 2.12 in [13] we derive that

=5l|la(®)lI§ + oV IPFr(1)[§ + OM)II(T — P) fr(t)IIE if ¢ = ta,
i), = | 2 Jab0i) + o DIBFR(OIE + O~ P) (8 it = 33 o
Jobs030524 + Jo bs0s, + O(VI|(X = P f(t) if = i and i #
Blle(®)I§ + o(V)IPfr(®)E + O[T — P) fr(t)II§ if ¢ = te.
For ||b;]|¢, using the second and third estimate of (4.59) we deduce that
16il| 760y = —/QbiAxSOidm = —/Q Fhde — Z / 07 ppda
(4.60)

_! ) (4.46)1] 5.0 — > (4.46), Iw +o(1)[Pfr(t)|§ + O)|I(X - P) fr(t)]E-
2 b1
j T ()

Now we consider the boundary term (4.46)s. From (4.48)-(4.51) and (4.52)
Jog On®a fpa(J0* = Ba) (v n)?HodvdSy = 0 if ¥ = v,

/ VP, frR=40 if ¢ = 1y or ¥7, (4.61)
! Joq One [gs ([0 = Be)(v - n)2podvdS, =0 if ¢ = .

Here we have used the Neumann boundary condition of (4.53) for 9,, and the last identity in (4.52)
for v.. For 1/12’1 or w;’]z we used the fact that the integrands are odd in v. From (3.8), we decompose
fly=P f+1,, (1-P,)f—1,_5(1—P,,)f2. From (4.61) together with (3.57) and (3.58) we have

(4100l = | [ wPFas [0t 0= P fa— 1,50 - Pos) o

< IVaplparson) 111 = Py ) fRlagq, + g|(3-10)!L4(am}

where we have used ‘fw V(1 = Py ) fl S IVaplpaseol(l — Py flas, at the last line. Here ¢ €
{@as b, c}. For the first term of (4.62) we interpolate

(1= Py frliny S 172 (1= Py) faly2 e¥ s frll L (4.63)

For the second term of (4.62), we use (4.56) and a trace theorem (V'Vl’g("]l‘2 xRy NLA(T?2 x Ry) —
1 6
Wl_m’g(’ﬂ'@)), and the Sobolev embedding (W%%(TQ) — L*3(T?)) to conclude that

|szD|L3 (T2) ~ S Vel

D 5
wb e SIVelin 8 mom g S 1PFRISsram,y (460)

Next we consider (4.46)3. For v of (4.48)-(4.51) and ¢ of (4.53)-(4.55), using (4.56), it follows that

|(4.46)3] < el|sfrllLz |10llez, S elldefrllcz IVapllrz < ellifrllcz IIPFrIIGe

< O()[elldesfrllz2 )° + oI P frlls-
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Lastly we consider the right hand side of (4. 46) From (1.21), (3.23), (3.37), and (4.56), it follows

\//W Y- Lin| = (//SW LT P) x|

// Vap(ape) (@) (v )1/4[ (V)T = P) fr(z,v)|
/Rs kg (v, v:)|(I = P) fr(z, v*)!dv*}dvdx (4.66)

Eiuvzgoabcumul— P)fllzz , HPfHLeH( P)fallr2
<o(D)||PfrlSs + [eh (T - >fR||L2 °

Note that, from (3.37), (2 for fr)l S g falloots(0)~ [1(0) f(w) + fuo kolv,02) faloa)dos].
Then from (3.57) and ( 358)

9
’// (anfR)‘ S IVaPape ez =113-10) ool frll 22,
QxR3 K )

= _ 6
o(IPfrlzs + [er71(3.10) ool fRll 22, |-
For the contribution of I'(fr, fr) we decompose fr =P fr+ (I —P)fr. From (3.37) (or (3.36))

T (fr, fr) (V)]
S IT(Pfr, Pfr)(v)| + [T((I—P)fr, (I - P)fr)(v)]
S v(v)|Pfrl? (4.68)

+ w0 Rl { ¥(0)|(X = P) fr) (v) + /R ko(v,0) (= P) fr) (v v |.
Then from (4. 48) (4.51), (3.23), and the Holder’s inequality (1 =1/2+1/3 +1/6)

’//QX]R3 fRafR)’

o {IP fall | Pfrllg + llognfallie, (T —P)fallss, b (4.69)

(4.67)

5 7”v9630(a,b,c)
J 3/2 12 €0 = 1
< CNPLRIG P LRI NPIRI + 5 IPFallg Ioesfalle, e~ a2 (= ) xll iz

where we have used an interpolation ||Pfg| ;s < ||PfRH1/2||PfRH1/2 and (4.56) at the last step. A
contribution of the rest of terms in the r.h.s of (4.46) can be easily bounded as, from (3.4) and (3.5),

// " (€0 +v-Va) /1
QxR3 VH
S 1P Sl {elBA2) ol frllzz,, + €ll(34) + (35) 1z, |-

In conclusion, collecting the terms from (4.59) with (4.60), (4.62) with (4.63) and (4.64), (4.65),
(4.66), (4.67), (4.69), (4.70), and utilizing (4.58), and two facts from (A.1):

sup [[(T=P)fr(s)llr2, SIA=P)frllrz  +IT=P)O:Srlrz  +elldwule Prrlzz

0<s<t t,x,v t,x,v

Sup, (1= Py, ) fr(S)|L2(ys) S Sup |fR(S)L2(v,) S [fRlL202(10) + [0cfRI L2020,

fR — S(I — P)i)fil — 6%2

(4.70)

(4.71)

we prove (4.44). O
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4.3. Average in Velocity. We prove a version of velocity lemma when a suitable bound for source
terms is only known in a finite time interval. In this section we often specify domains in which an LP-
norm is taken while the simplified notation (4.1) will be used only when the domain is [0, 7] x £ x R3.

Proposition 9. Assume the same assumptions in Proposition 6. Then we have, for 2 < p < 3,
ds||Pfr| 1212
S (A +el|(312) || 2o ) frllLgerz
;2

1 6 :
#{ o+ Slwogafrligs,, + Iogsfrl k HIVIT- Pl

K t,x,v

+ 1ROz +elB6)lrz, +elBDllzz

(4.72)

with
) 3(p—2) 6—2p

9
dy :=1—0(e)lullLg=, — ;H(3~10)IILOOL% = PRl g IwesfrlLE (4.73)

t x

and for o' < o
d3¢HPatfRHL$L§

3(p—2) 6—2p

1 oe
S—l10eullnge, (1 + el1(310) Lz ) IIPfrll 2, + Mol e 1P fRll o g ISRl g, 1P SRl

T v

+[1(3-10) | =, ) [V (I — P) fRl| 2

t,x,v

t,x,v

€
+ [0l g, (Ol frll e,

N (4.74)
+ (ke) P2 lwy 80 frll 2 roe, + 100/l Lgor2 , + €ll(3-13) | L2 poe | f Rl Lgor2

1 ) €
+{ =+ Slvpsfrlizy, , + S 1(B3.10)ley +1(312)lz JIVIT— PO frlls

t,x,v

9
10ROz + NGV 2 lwosfrlze, , +ell(36)lzz, +ellBTlzz,,

t,x,v
with

) 3(p=2) 6=2p

9
dag:=1=0()ullrg, = —B10)[] 2 _5”(3'12)”L00L% — PRl g IwesfrllLg, o (4.75)

—2
LeL? Ly

where both bounds are uniform-in-p for 2 < p < 3.

We prove the proposition by several steps.

Step 1: Extension. We define a subset
Q :=(0,27) x (0,27) x (0,00) C R?. (4.76)
We regard ) as an open subset but not a periodic domain as €. Without loss of generality we

may assume that fr(0,z,v) is defined in R* x R and || fz(0)|| 1omaxrs) < /RO o (erxs) for all
1 < p < oo. Then we extend a solution for whole time ¢ € R as

f1(t, x,v) := L0 fr(E, 2, v) + Li<oxai (¢) fr(0, z,v), (4.77)
where a smooth non-negative function y; satisfies x1(¢t) =1 for t € [—1,0], x1(¢t) =0 for t < —2, and
0< fxi <4 ]

A closure of €2 is given as cl(§2) =
(R3\Q) x R3. We consider B(z,v) :
{s > 0} € B(z,v) or {s <0} C B
interval such that {s > 0} C I, C B
such that {s >0} c I_ C B(z,v).

[0

(z,v) exclusively. If {s > 0} C B(x,v), let I be the largest
(z,v). And if {s < 0} C B(x,v), let I_ be the largest interval

27] x [0,27] x [0,00). Let us define tNB(x,v)~€ R for (z,v) €
{seR:z+sve€ R3\cl(Q)}.~Clearly if B(x,v) # () then

)
)
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We define
0 if = e aQ,
Fp(,0) = infl?(:n,v) if xe€ R3\cl(§:2) and l?(:v,v) #0and {s >0} C I} C B;(ac,v),
’ sup B(z,v) if x € R3\cl(Q) and B(z,v) # () and {s <0} C I C B(z,v),
—00 if B(z,v) =0 and z ¢ 0Q.

Using (4.78) we define

(4.78)

fe(t,x,v) = L2 0)e®\Q) cgaf1(t +etp(z,v),ip(z,v),v) with Zp(z,v):=x+tg(z,v)v. (4.79)

It is easy to see that €0;fg + v - Vi fr = 0 in the sense of distributions.
Next we define two cutoff functions. For any N > 0 we define smooth non-negative functions as

x2(x) =1 for x € [—m, 37| X [—7,37] x [—7, 00),

X2(z) =0 for x ¢ [—2m,4n] x [-2m, 47] x [-27,0), |Vexz2| < 10, (480)
x3(v) =1 for [v| < N —1, and |v;| > 2/N for all i =1,2,3, (4.81)
x3(v) =0 for [v| > N or |v;| <1/N for any i =1,2,3, |V,x3| < 10.
We denote
U = [=2m, 7] x [~2m,47] x [-27,00), Vi={v €R®: [o| <N}n (] {v €R?: |v;| > 1/N} (4.82)
i=1,2,3
We define an extension of cut-offed solutions
frt z,v) = xo(z)x3(v){15(z) fr(t,z,v) + f(t,z,v)} for (t,x,v) € (—o0,T] x R* x R®.  (4.83)
We note that in the sense of distributions fr solves
€0ifr +v-Vofr =g in (—o0,T] x R® x R,
7= T2 o sl g(onala)xa(o)eds + o Vil f (4.8

+ ]-tSO{EatXl(t)fR(O’wv’U) + Xl(t)v ’ vaR(07$7,U)}

Here we have used the fact that fg in (4.84) is continuous along the characteristics across Q and
{t = 0}. We derive that, using (4.84),

_ 1 [t t—
fr(t,x,v) = 5/ g(s,z — 5 Sv,v)ds for (t,x,v) € (—o0,T] x R x R3. (4.85)

Recall ¢; € {@o, - @4} in (4.47). From (4.83) we note that

fr(t, 2,0)@i(v)\/ po(v)dv ~
L2((0,T);LE(2))

R3
[, xa@)ae) falt,,0):0) (o)

From (1.24), we decompose

(4.86) Hzxg )P, fr(t, z) /Rs Xg(v)gbj(v)gbi(v)uo(v)dv’

(4.86)

L7 ((0,T);L ()

LE((0,T):L5(9))

_ H/RS x3(0) X = P) fr(t, ,0)@i(v)\/ 1o (v)dv

38

LZ((0,T);L(9))



We consider the right hand side of above terms. Frorn (4.57), [@ipjpo = bij, and (4.81), the first
term can be bounded below by (1 —O(e)[Juls — O )HXQPfRHLQ (0.T):LE()" For the second term
we use (4.57), L?(0,T) C LP(0,T), and L'({|v| < N}) C Lp({|v| < N}) to bound it above by
Crn||(I— P)fRHLP((O,T)xQxRC*») (O@)|Jullso + O(5 )HPfRHL2((o TYLE (@) Hence we derive

(4.86)
> (1-0(@)|ullw — O % )HPfRHL2 ((0,T);LE () = CrN Il =P)fRl 1o (0,r)xcrxm3)
> (1= 0 ulle ~ O N 1Pl o mrzecony o
= O WO, oy 1= PRl e
Step 2: Average lemma. Recall @; € {@o,- - ¢4} in (4.47). We choose ¢(v) such that
DIEEIVi() < $0), B) € CF(RY) s
and ¢(v) =0 for \v[ >N or |y < 1/N for any i = 1,2,3.
Lemma 6. We define
S(g)(t,z) = i/_too - lg(s,x — - Sv,v)|<,5(v)dvds for (t,z) € (o0, T] x R3, (4.89)
Then, for p <3 and 1 < N,
I1S@ 2 0,r);z2m2 xR)) SN 1L (12,00 €079l L2((0.7) x (T2 xR) x {[0] <N} (4.90)

where the bound (4.90) only depends on N but can be independent on p < 3.
We remark that from (4.85) and (4.89) [rs fr(t, 2, v)@i(v)dv < S(g)(¢, ).

Proof of Lemma 6. We prove (4.90) by a TT*(SS* for our case) method. First we derive a dual
of S in the following equalities:

T

| [ s@amtaas

— oo JR3
T 1 t ) "

:/ / / ’9(3,$—
—00 JR3 € J—0 JR3 5
T 1 T

:/ / ]g(s,x,v)\ |:/ h(t,x
—oco JR3 JR3 € Js
T B 1 T

- /;oo //]R?’XR?’ |g(t,x’v)| |:€ ¢ e
T

:/ // lg(t, z,v)|S™(h)(t, z,v)dvdzdt,
—00 JJR3XR3

where we have defined

Sv, v)|@(v)h(t, z)dvdsdzdt

- Sv)@(v)dt] dvdzds (4.91)

— tv)gb(v)ds] dvdzdt

N 1T T—1t .
S*(h)(t, z,v) = — h(t,x + v)p(v)dr. (4.92)
€ Jt
Here, in the second equality of (4.91) we have used the Fubini theorem for changing order of s and
t integrations, and then used a change of variables x +— z — t%sv. In the third equality of (4.91) we
have used a change of variable (t,s) — (s,t) and the fact Supp(g) C (—o0,T] x U x V.
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On the other hand, for 1/p+ 1/q = 1, following the argument of (4.91) with h(f,z) =1
we derive that

HS( )HLQ( LTLLE(Q)) = <1/ /S t :C t x)dxdt

”h||L2(( 1.7); Lq(m)

= / // g(t, z,v)|S*(h)(t, z,v)dvdzdt.
Il <1 UxV

—1,TY; Lq (@)=

xgﬂh(ta l‘)

(4.93)

It is important to check the integral region in space of the last term of (4.93). From (4.92), we
note that if z + =tv ¢ cl(Q) for all 7 € [t,T] then the last term would vanish since supp(h) C
(—00,T] x Q. Therefore we can exclude (,z,v) from the last integration in (4.93) if L(t,z,v) NQ =0
for L(t,x,v) := {z + =tv : 7 € [t,T]}. Now we define

D7 = {(t,2,v) € (-1, T| x U x V : L(t,z,v) N Q # 0}. (4.94)
Then we can write
(4.93) = / // Lt myeon 90t 2, 0)|S* (1) (1, 2, v)dudad
||h||L2(( 1,T); Lq(Q))<1 Uxv (495)
< ||l(tw,v)EDTgHLQ((fl,T]><U><V) sup Hs*(h)(t’m’v)HIﬁ((fl,T}xeV)‘

I HL%((—LT];L%(Q))SI

Therefore to prove (4.90) it suffices to show that
1" Wz ampevy S Wbl oz rapscn): (4.96)
v)

Note that since supp(h) C (—1,7] x U and supp(¢) = V for (z,
(z1,22,23),v = (v1,v2,03)

€ U x V, we have, with x =

-t -1 10mNe 1
\x1+7 v1|Z|T |\vl|f|x1|_ T 6N747r>47r it 7>1¢+107Ne.
€
Hence we can rewrite (4.92) as
1 min{7T,t+107rNe} r—t
S*(h)(t =— h p(v)d
() (t.0) = [ r V)p()dr Lo
for (x,v) e U x V, if supp(h) C (—=1,T] x U.

On the other hand, from (4.91), we have for supp(h) € (—1,T] x €,

I — /ﬁﬂ“ B)(t,,0)S" () ¢, 2, v)dudadt
UxV

/ //UXVSS* )(t, 2)h(t, z)dzdt

< [155%(h HL2 1T)LpU))”hHL2 —1,T);LL())

Therefore to show (4.96) (which will imply (4.90)) we only need to prove that, for supp(h) C (—1,7]x
Q,

1SS* (Ml 2~ myzzwyy S Wl g2 1mna@))- (4.98)
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Now we prove (4.98). From (4.89) and (4.97), we read

SS* (M) (L, z) = é / S () (s - L, 0)p(w)duds

1 t min{7T,s+107Ne} t— s F—3s ~ )
- 52/_1 /R3/5 h(r,x — . v+ . v)d7(p(v))*dvds

1 t min{7T,s+107Ne}
=/, futher
€ —1Js R3

Now for the same reason to restrict 7-integration in (4.97) we rewrite the above expression as

1 t min{T,s+10wrNe} F—1
SS*(h)(t,z) = / / / h(r,z + v)(@(v))2dvdrds.  (4.99)
R3

2
€% Jmax{—1,t—107Ne} €

; tv)(@(v))dedes.

We consider a map with the change of variables

T—1 3 dy &3
Now we apply (4.100) to (4.99) and derive that
min{s+107Ne} e ’y _ .’L" 2
SS* )| < / / / 1 (1,y @(6 ) dydrds.
I55°() EN ) e M e o
(4.101)

First using the Minkowski’s inequality and the Young’s inequality to a convolution in y with
1+1/p=1/q¢+1/(p/2) we have

1 t s+10mNe 53 |y ‘
¥ Loyl ) (2 ayaras
2 /N/ /Q rel-11] PR e

LE(SY)
1 /t /s+107rNs / 53 y |y _ l’| 2
< = | h(r,y go(&? ) dy drds
52 t—10nNe Js o) E[ 1,T]’ ( )‘ |7_ o t’3 |7— _ t| Lg(f)) (4102)
1 t s+10wNe ES ’ . | 2
<= Locry ih(r, - H ( )’ _ drds.
- e? /t—107rNa/s Itret-1mh(m Mg \T—t|3@ 5\7—t| @

(4.102).

From the properties of ¢ € C¢°, it follows that

&3 T—t]?’ e € 33
4.102 pd <
(4.102). < |T—|3< ) [/ Pl 4 ~(|r—t|> ’

where § = (y — z) with dg = ‘Tiig’tpdy. Therefore we derive that

6

s+10mNe c 3_p
sl sy [ o g (g ) Cards (4109
TTINE J 8§



Using the Minkowski’s inequality and the Young’s inequality, finally we prove (4.98) as
[l155*(R) ()l

L2?(0,T)
1 s+107Ne N
§—H1_ - s‘ sup / 1. ci_ymh(r,- q~<) dr
g2 |70 Ne)(5) Li ||seft—10nNet] J s Irei-rmhl )HLZ(Q) T =t 12
t
1 t+107Ne e \% %
S —10mNe / 1.ci—yph(r,- 5 () dr
52 t—10mrNe H STl ( )HLZ(Q) |7—_t| L2
t
1 5
e P
S glOWNgu”h(Ta')HLg(Q)HLg((—LT]) (W)
L}((0,10mN¢))
< N3
SN A 2z @)
]
Step 3: Applying Lemma 6. Now we apply Lemma 6 to (4.85) and derive that
fR(t,l‘,U)(ﬁ(U)d'U -
R3 LF((-1,TLE ()
S I zmenr L2 (-1, xuxv)
S ||fR(t7x?“)HLZ((o,T]XQXv) + ||fR(O>x7U)HL2(Q><V)
+ Lt zwyenr f1(t +etp(,0), 25(2,0), V)| 211y 1) (4.104)
+ [|[ed + v - vx]fR”LQ((QT]XQXv)v (4.105)

where we have used (4.83), (4.77), (4.79), and the fact that [v- Vyx2(z)| Sy lonv e V.

First we consider (4.104). We split the cases of (4.104) according to (4.78). For x € 02, which
has a zero measure in ~LQ((—l,T] x (U\Q) x V), we have tg(z,v) = 0 from the first line of (4.78). If
B(z,v) = () and = ¢ 92 then tp(x,v) = —oc from the last line of (4.78) and hence fr(—o0) = 0 since
X1(—00) = 0 in (4.77). Therefore we derive that

(4.104) < ||1{s<0}cé(x,v)l(t,x,v)ei)TfI(t +etp(z,v), Zp(z,v), U)HLz((_LT]X(U\Q)XV) (4.106)
+ H]-{5>0}CB(3;,U)1(t,z,v)€’DT fI (t + EEB (337 U)7 iB (1" U)u U) HLQ((*LT]X(U\Q)XV)' (4107)
We need a special attention to (4.106). Since (t,z,v) € D we know that inf{r > ¢ : z + =tv €

AQ)} <T. If {s < 0} C B(x,v) then, from the third line of (4.78), t5(z,v) = sup B(z,v) = sup{s €
R: 2+ sv € R3\cl(Q)} < (T —t)/e. Therefore the argument of f; in (4.106) is confined as

(t +etp(z,v), E5(z,v),v) € (=00, T] x IQ x V.

to derive that
(4.106) + (4107) 5 |11t Z5 (2, 0), ) 21|
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Let us define an outward normal 72(z) on dQ. More precisely

(0,0,-1) if 253 = 0 and z € 99,
i(z) = { (=1)z=11,0,0)  if 21 € {0,27} and = € O, (4.110)
(0,(~1)z211,0)  if 2 € {0,27} and z € 0.

From (4.82) we have therefore (x,v) € (U\Q) x V then |a(Zg(z,v)) - v| > 1/N. We consider maps

(z1,23) — Zp(z,v) € (0,27) x (0,27) x {xg =0},
0(Zp1(z,v),Zpa(z,v) )‘ ’
O(z1,x3)
(i, 23) = (Zp,i(w,v), Z3(x,v)) € (0,2m) x (0,00),
0(ZB,i(z,v), Zp3(x,v) )) _ ‘
O(z1,73)

with ‘ det (

(4.111)

with

det (

, fori=1,2.

Note that if v € V of (4.82) then |v;| > 1/N for all i = 1,2,3. We define
7:=00xR3, 3V :=0Q x (R3\V). (4.112)

We apply the change of variables (4.111) to (4.109):

1/2
(4.109) H [/ /_%/ | f1(t,zp(x,v), )\|%?((17T])d$1d$3dx2}

1/2
< H {5 <on [ / i) ﬁ(y)\dtdy}

SRl 20,0y x3\5v) + FRO) | 25058 -

L3(V)
(4.113)

L3 (V)

We recall the trace theorem:

T T
L[ biavds S sup IOl + [ IOy ds
0 Jy\FUN ] 0

telo,T (4.114)

T
+/O e + 0 Valhll 1 e ds.
We apply (5.33) with 2 = f? and derive an estimate

HfR”%%(o,T)MWN)

T T
S s oy + [ n s+ [ [ ialetr+o- Vil fafdeduas (4115

te[0,7)

St R o o 1122 00x2)) + || [£06 + 0 Valfrll 20 rpxaxms)-
Finally we conclude a bound of (4.104) as below via (4.106), (4.107), (4.109), (4.113), and (4.115)

(4.104) < 1frO)llz2 + /Rl 2o~ (o,17:22(0R9)) + [|[€0% + v Val SRl 1200 1yxems) (4.116)

(4.116).

43



Next we estimate (4.105) (and (4.116),). Using (4.84) and (3.2) we conclude that
(4.105) + (4.116),

<[ - Loa- e Erva i + 2t o

0 +v-Vy,
_ (eo )\/ﬁfR—l—e(I—P)D%l—i—sSRg .
Vi L2((0,T]xQ2x V')
Following the arguments of (4.15)-(4.18), and (3.4), (3.5), we derive that
(4.105) + (4.116),

€ 1)
< $2(3.10 w  +—||Pf ™ Ptrlli2om.o»
FIeo0 o WP PSRl oz

L 4117
+ {ETi + — w008 Rl L5 ((0.7)x2xR) }”(I = P)frllz(0m)x0xrs) .

+5H 3'12)HL$((0’T);L30(Q)) ( )||L§°((0,T);L2(Q><R3))
+ e{IlB- Dl 20,220 T 135 2((0.1);12 (02 }

where we further bound

3(p—2) 6—2p

< :
HPfRHL;TpQ(Q) IPIRl 1o (o) o8 Rl 200 (4.118)

Step 4. Proof of (4.72). First we use (4.87) and then (4.104) and (4.105). We bound (4.104)
via (4.109) and (4.113), which are bounded by (4.115) and (4.117) respectively. These conclude that,
for p < 3,

(1= 0@ lulloe = OGP FRI 20,7520

I3

- CTyNHmQ’BfR(t)HLOO((O7T)><Q><R3)H(I )fRHL2 0 T XQXRS)

|/ttt

IN

(4.119)
L3((0,1);LE (D))

IN

fR(t,$,U)(,5<U)dU -
R3 LZ((0,T);L5 ()

S HfRHLOO([O,T];LQ(QXR?’)) + HfR(O)HL?Y +r.h.s. of (4.117) with (4.118).

Then we move a contribution of |[Pfrl|r2(0r);c2(q)) to the Lh.s and use (4.118). This concludes
(4.72).

Step 5: Sketch of proof for (4.74). We follow the same argument for (4.72). Thereby we
only pin point the difference of the proof of (4.74). Recall 0, fr(0,z,v) = fr(0,z,v) from (2.6). We
regard Q as an open subset but not a periodic domain as 2. Without loss of generality we may assume
that fr+(0,z,v) is defined in R3? x R3 and HfR,t(O)HLp(RS)XRS < ||fR’t(O)HLp(Q)XR3 for all 1 < p < oo.
Then we extend a solution for whole time ¢ € R as

f[7t(t, x, U) = 1t208tfR(t, x, U) + 1t§0X1(t)fR,t (0, x, ’U). (4.120)
Using t5(x,v) in (4.78) we define
fE(t, x,v) = 1(m,v)e(R3\Q)XR3fI7t(t + etp(z,v), 2p(x,v),). (4.121)
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We define an extension of cut-offed solutions
Fre(t, 2, v) = x2(2)x3(0){ 15 () fre(t, 2, 0) + fEi(t, 2, 0)} for (t,2,v) € (o0, T] x R* x R?. (4.122)
We note that in the sense of distributions fR,t solves

€01 fri+v-Vaofre= g in (—00,T] x R® x R3, where
V-V
9= Tmfmﬂwol (2)x2(2)x3(0)[0; + v - Vi fr (4.123)

+ Li<ox2(z)x3(v){edx1(t) fR(0, 7, v) + x1(t)v - Va fre(0, 7,0)}.

Here we have used the fact that fg; in (4.123) is continuous along the characteristics across o and
{t =0}. We derive that, using (4.123),

_ 1 [t t—
fre(t,z,v) = / gi(s,x — . Sv,v)ds for (t,x,v) € (—o0, T] x R3 x R3. (4.124)
5

—0o0
Now we apply Lemma 6 to (4.124) and derive that, for p < 3,

1S(9) || 20,7y L2 (T2 xR))

St ,0)e07 9t L2((0,1) % (T2 xR) x {|0]<N})

4.125
S OV 20z + 10k s+ 0 - Ve Frnell oy 129)
+ Hl(t,x,v)eﬁanI,t(t + EgB(l'? 'U)’ '%B(% U)v ’U)HLQ((—LT]X(U\Q)XV)'
Following the same argument of (4.116)-(4.117) we deduce that
(4.125) SN0k frll Lo (0,122 (0xR3)) + 10:fR(0)| 22
1 (4.126)
+ | = LA =P)dfr+e x rhs. of (33) 2o zpxaxyy
From (4.31)-(4.33), the last term of (4.126) is bounded above by
1 g2
{*||3tu||L°° (1+ ol srllez, ) + = 1310) e H{IPfalzz, + V2@ - P)falzz, , }
1
Lt sl + NG 10)gs + el 3122 HIVEE - Pz
3(p-2) o . (4.127)
(IRl oSl TNBAON e +e81D,_ an, NPOSl
F 1B, I frllzs, + el 13) oz 1 Frlrz, +<(1BO)zz, +1GBDllzz, )
Here the most singular term comes from 2 L(P.fr) in the r.h.s. of (3.3) .
On the other hand from (4.122) and the argument of (4.86) we derive
||s<gt>||Lg((0,T);Lg<m» > H [ ratt e 0)ito) oo ~
R3 LE((0,7);LE ()
2 (1= 0 ulloe = O(-) [ POSR]| 12 (omz (4.128)

(/%)p 2| ro atfRHLQ ((0,T); L, (QxR3)) — *”(I P)O:frllL2((0,1)x2xR3)-
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Here we have used
[, xe(onao)T — PI0usult, 2,006 (00 ool

<@ =P)Ocfr(t; 2, 0)ll 2 (0,1); 2., (62xR3)

LE((0,T);LE (%)

p—2 2
< I3 frll 2 (onms (T =P frll? :
o (LA (eSS LT A - o
p=2 2 .
< _ P
< ||l 5 e LF%((O,T))HH(I P) Sz iy oy
p=2 2

2 _2
S (k)7 00" ORI 130 11, (s (88) 7NN = PIOSR L2 0,1y wrxcms)

2 _
S (ke)r2 HmlatfRHL%((O,T);L;?U(QXR3)) + (ko) (T - P)0: frll2((0,1)xxR3)-
Combining (4.128), (4.125), (4.126), and (4.127) and choosing N > 1 we conclude (4.74).

4.4. L*°-estimate. In this section we develop a unified L°°-estimate in the local Maxwellian setting.
(O¢+e~ Lo Vo) /it

i and its

We devise the weight functions to control an extra growth in |v| comes from
temporal derivative:

1
1, 5(z,v) = 10 := exp{olv|* — j5(z3)(z - v)} for 0<B< 2£ and 0 < p < T
T

where 35 : Ry — R is defined as, for § > 0

1 1
3g(z3) =B for x3 € [O,E — 1], and 3g(z3) = 1T 2 for z3 € [E

We often abuse the notation of w, s and tv. We compute to have

—l,oo).

v - Vg, g(z,v)
mg,ﬁ(x7 U)

= —3B($3)!U|2 - 1133353313(963)(361?)1 + xov9 + 363?13)

= —3p(23)|vs|* — 2302,38(w3)|v3]* — 38(23) (Jv1]? + [v2|?) — Dusds(z3) (2101 + T202)U3

= Bl g-1_yy(@3)[v]* = Lig1_1 o) (23) (1 + 23) *Ju3|* = Lig-1_1 o0 (w3) (o1 + |v2f*)

14+ 3
— Oz338(73) (2101 + T202)03,

where we have used Oz,38(73) = Lg-1_1,00) (1‘3)( The last term, the sole term without a sign,

1+z )
can be bounded as

| — Ory38(x3)(T1v1 + T2v2)V3]
< 2V2rl g1 o) (m3) (1 + @3) (o1 ]? + [val?) /3 [us]
_ 1 _
<A1 gr ooy (23) (14 23) 2 (Jon* + [02f*) + 3 L5-1-1,00)(23)(1 + 23) ?Jog|*.
Therefore we conclude that

1
o L-1-1,00)(23) (1 +23)” ?|vg|?

+ (1= 47°B) L g1 1 o) (23)
- 3n(w3)
- 2

v Varo,(w,0) > {Blig g1 y(a) ol +

1 2 2
o (0l o) prgs(wr ) (4130
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We consider

h(t,z,v) =1, g(z,v) fr(t, z,v). (4.131)
An equation for h can be written from (3.2) and (3.8) as
Oh + %v Voh+ ;—Bﬁh: g%methSh, (4.132)
hl,_ =wP,, (ﬁ) T (4.133)
o

For (4.131), we have r = —tw(1— P, ) fo and Sy := 2T (h, 1) + 2T (0 fo, h) + 0(I— P)R; + wRy,
and

-V 10 0 1y .V,
Vg = V(U)—Eliu—i-zfz/ﬁ}( 1re v )\/ﬁ, (4.134)
Wo,5 VH
where we denote I'y (-, -)(v) := w(v)I'(5, 5)(v) and Ky () := wK ().
If we have
%2k 8yu| + /% sup(1 + x3)|Vu(t, z)| < oo, (4.135)
e
then for sufficiently small £,k > 0, from (4.130),
ER v(v) er
vg > v(v) + ?5ﬁ(x3)]v|2 — e2k{e|Ou| + |Vaul[v|}v — eu| > (2) + Zgﬁ(xg)\vP. (4.136)
From (1.20), (1.22), and (2.3)
h h
w)['(—, —
)N, 2yw)

< // (v = v,) - u[/a(on)e @O PHE LR (L)) + [h(0)][B(vs)]| }dudo, (4.137)
R3 xS2
<o V)R-
From (3.20) clearly we have

,,8(v)

2 2 242
20,  lvmvel® 1 (v-eul’lueu®)? 1y, 5(0)

1
8 [v—vs |2

k(v, vy S < kp(v,vy) := e . 4.138
) o) = el = (o) (4139
As in (3.23) we derive
1
Ko (v, 03)dvy < ———. 4.139
| Row oo, < 5 (4.139)

Proposition 10. Recall w,g in (2.3). Assume the same assumptions in Proposition 6. In addition

we assume (4.135), and the conditions of o and B in (2.3). Then
doc || o,8fR| Lge

t,x,v

g
S o8 f(0)lzs, + S1(3-10)[zs, + k(34 gz, + 113-5)llzs,)

! 1 (4.140)
+ 7z 1P FRlery + W{HW(I —P)frllgz , + V(I P)atfRHLim}
1
+ s 10l 1PFRI Lz,
where
doo =1 — 52”(3.10)"[@701 — €5||m97f5fRHL?’ozyv. (4.141)
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Proposition 11. Assume the same assumptions of Proposition 10. We denote
w'(z,v) ==y g(x,v) for o < p. (4.142)
Let p < 3. Then

oot Hm,atfRHLf((O,T);LOO (QxR3))

T,V

1 1
1/2| 4! - - o
S ex 70’0 fr(0) || Lge, + YT PO fllL2re + 572,372 lvv(I P)O:flLz,

2
€ €
+ 1(3:11) [ e, + —[10sull 2z, [|(3.20) || oo, + €%K][(3.6) || 120, + €2&[|(3-7)[| 12 100
sIG1)llgs, + 10l 1ez, [1(3-10) | e, 136l ee, 13- Dl 2L (4.143)
+e(l0eullngs, +ell(3-11) e, + 2l (3.13) [ 200 ) w0 frllze, ,
e (BN ez, +enll(313) | e
+ vz, (14 21310) 1z, +<blioaler) ) Il ..
with
dooyp =1 = €*[[(3.10) |5, — e6][wo frl|Lze, - (4.144)
In the proof of propositions, for simplicity, we often use || - |[oo for || - |lzge, o [ « [lrge, or || - ||z
if there would be no confusion.
Proof of Proposition 10. We define backward exit time and position as
Z3 x3 3
th(z,v) :=e—=, zp(z,v):=x— —v for (z,v) € QxR (4.145)
U3 U3

Since the characteristics for (4.132) are given by (x — £=2v,v), we have, for 0 < ¢ — s < tp(2,v),

d Sy t—s i 1 t—s
%{e s 2eh(s,r — 5 v,v)} =e Js szﬁ{ﬁl(mh%—‘sh}(s,m— . v, ). (4.146)
t—1
i —fjwdr s s ) y .
Here e 2k =g 2k . We regard (1 —2U1, T2 6 v2) € R? belongs to T= without

redefining them in [—, 7]%.

Now we represent h using (4.146) and (4.133) as

t v t
h(ta z, U) :]—t—tb(m,v)<067 o ﬁh(ov xr— gva U)

3 t v —
+/ e Js 2 21 Kyh(s,z — t Sv,v)ds (4.147)
max{0,t—tp (z,v)} E°KR €
t [t t—s
+/ e Js 2eSp(s,x — v,v)ds
max{0,t—tp (z,v)} €

_ It B
1y (a)m0€ ) Eah(t— ty(x, ), 7 (2, ), V). (4.148)
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Since the integrand of (4.148) reads on the boundary, using the boundary condition (4.133) and
(4.146) again, we represent it as

h(t — tp(z,v), zp(x,v),v)

=t (zp(z,v),v)c v/ 1(v / h(t — tp(z,v), acb(x,v),n)—"u(nwdn +7(t — tp(z,v), zp(z,v),v)

03<0 w(zb(z,v),0)
_/t tp(z;v) st t—tp(z \/ 1u(0)] 03]
=t (zp(x,v),v)cu\/ 1 25 h(0, zp(z,v n,)
03<0 ( (z,0) = € m(a:b(a: v),0)
+ 1w (zp(z,v),v)cuy/ 1o
v3<0
t=to (@) ) vy 1 t—t Vu(o)|o
x/ e T K h(s, i (w,v) — b(@,0) =8 LLEINT
0 ek € m(a;b(x v),0) (149)
+ w(zp(z,v) Cu\/M /
0v3<0
t=te(@v) oty v t—t — NITOIE
></ Pl M fs»:Sh(s Tp(x,v) — b(2,v) SU, 0) 0)los| dsdo
0 € m(a:b(a: v),0)
+7(t — tp(z,v), zp(z,v),v),
where r = —%m(l — j—_’,er)f2 and e g o) ;23,,i = e f(f_tb(z’v) i”ﬁ(ﬂz—tb(:’wv— titb(:’v)isb,u)dT.
Note that, from (3.4), (3.5), (3.57), (3.58), and (4.137),
t—s ) v(v)
_ < — RlI? 7
|Sh(s,z v, V) S v(v) —|[hlse + == 11310 lloo [2llo + 1[(3-4) oo + [1(3-5) |0, (4.150)
(1= Py,) fo] < 11(3.10)]|oo-
We derive a preliminary estimate as
[h(t, 2, 0)] S €= A(0) oo
+ed sup [|h(s)[3% +e? sup [[(3.10)]|oo||A(5)]|oo
0<s<t 0<s<t
5 sup [|(3.10)|oo + &5 (]| (3:4)[loo + [1(3-5)llo) (4.151)
0<s<t
+/t€ et S)/ oo (v, v (5,2 — % ) dvd (4.152)
O v, v5)|h(s, 2 — ——, vy )|dusds .
0 e2k gy £
t—tp(z,0) o~ 52, (E9)
a0 ve/ul) [ [T
v3<0J0 E°K

t—t \/
x/ Koo (0, 02) (s, 2 (a1, 0) — LTV =8 v)ldv,ds VLS olosl g, (4.153)
RS

€ (:Eb(a: v),0)
49



We note that |h(s, z — =2, v,)| has the same upper bound. Then we bound (4.152) by a summation
of (4.151) and

~ (=)

t=tb o~ 52
wp wla e [ [T
v3<0J0 E°K

(zb,0)EOOXR3
t—tp>0 (4.154)

t—1tp — 0)|o
X / km(b’v*)‘h(sv'xb - #U,U*)‘dv*ds@dn’
* c w(zb, )

and importantly

L) (1) —2e) (5—r)

t67252r~ S [ 262
[ ] o [T
0 ek R3 0 E4R (4.155)

t _ _
X / Ko (Ui, V) | (8, 2 — Sv — uv*,v**)|dv**d7'dv*ds.
R3 13

We consider (4.155). We decompose the integration of 7 € [0,s] = [0,s — o(1)e%k] U [s — o(1)&?, s].
The contribution of fs‘io(l)sgﬁ ---dr is bounded as

2
v(v)

0! 0(1)e?k
(1 —e 2% ) [k (v, )| Lt ——5— 1Ko (vs, [ 21 sUp [[A(s)]loc < 0(1) sup [A(s)]loo-  (4.156)
E°KR 0<s<t 0<s<t

For the rest of term we decompose Ky (Vs, Vix) = Ko, N (Vs Vsx) + { Ko (Vs, Vsx) — Kio, N (Vs, Vix) } where
km’N(’U*,U**) = km(v*,v**) x1 1 <‘U* ’U**|<N & ‘U ‘<N From (4139),

—Cvs —vsx \2

Jrs Ko (Vs Vi) Ly > Ndvss S 1/N. Also from the fact i (vs, v4s) < € o] € L' ({vs —v4s € R3}),
sup,, [ps Ko ”*7”**){1%2\%—1}*4 + 1)y, —p..|>N }dVsx L 0 as N — oo. Hence for N > 1

4.155) < ‘e 28(2) Y k s—o(1)e?k e_l;(gg*,: (s—7)
(4. )_/052%/&{3 m,N(v,v*)/o e —

t— —
></ Ko, N (Vs, Usx) |18, T — ° i

’l}_
€
(U*)
<CN/ et S>/ / S (4.157)
|vs|<2N 2”

t—s
<[ falsa-
[vses | <2N
+o(1) sup [[h(s)]Lee,
0<s<t

Vsey Vsr) | Ui dTdvsds

Tv*, Vsr ) | d0sdTdsds

v —

where we have used the fact sup, Ku (s, 04:)10,8(04) < Cy < 00 when % < |v, — v| < N and

|vx| < N (then |vi| < 2N).
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Now we decompose fr =P fr+ (I —P)fr. We first take integrations (4.157) over v, and v, and
use Holder’s inequality with p=6,p=21in 1/p+ 1/p’ =1 for P fg, (I — P) fr respectively to derive

(4.157)

1/6
1 _ _
< (4N)3C'N sup // |Pfr(s,x — v _ 5 Tv*, v**)|6dv**dv*
v(v) 0<s<t [0 | SN, |0k | <2N €

0<7T<s—o(1 62

1
v(v)

1/2
t—s §—T
X sup // |(I-P)fr(s,x— v— Vs, Vsx) |2 d0snd .
0<s<t Vs |<N, |vss | <2N € €

0<7<s—0(1)ek

+ (4N)3Cn

(4.158)

Now we consider a map

t—s s—T

s—1T1|3
v — =

v €E{R®: v, < N} sy = — ’ > 363, (4.159)

vy € ), where

Jy
Oy

We note that this mapping is not one-to-one and the image can cover €2 at most N times. Therefore

we have
, 1/6
—s s—T
6
// |Pfr(s,z— v— Vsey Vs )| A0
|04 | <N, vss | <N € €

1/6
dy Nl/ﬁ
< NV/6 ( //| MWN|PfR<s,y,v**>|6dv**€3K3) < PR,

1/2
// |(I—-P)fr(s,x— t_svf S_TU*,U**)|2dU**d’U*
|V | <N |vsen | <N € €

N1/2
< m”( = P)fr(s)lzz -

Therefore we conclude that
(4.155)
< (AN)PC(4.158) + o(1) sup [A(s)]Lz,

0<s<t
1 1
< (4N)*Cw {51/%1/2 Oiggt”PfR(S)HLgv + S SHP ||(I— P) R(S)”L%U}

+o(1) sup [|A(s)llzz, (4.160)
0<s<t

3

1 1
SN 21/2,:1/2 osgggt HPfR(S)HLg_,U + W{H(I - P)fRHLiI,U + [T = P)atfRHLgm}

1
+ i, 10l I1PIRl L, +o( )ozﬁgt”h( g,

where we have used (A.1) the Sobolev embedding in 1D at the last line.
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Now we consider (4.153) and (4.154). We decompose s € [0,t — tp] = [0, — tp — o(1)e2k] U [t —
tp — o(1)e?k,t — t]. The contribution of J;Zi,b—o(l)e% -+- is bounded as

o(1)e’k
e2k

[k (0, )21 sup [[A(s)[oc < o(1) sup [|A(s)]|cc- (4.161)
0<s<t 0<s<t

For s € [0,t — tp, — o(1)e2k] we consider a map as (4.159)
3

t—1tp — t—1p —
pe{beR 03 <0} s y:i=ap— L B Q, where az‘ = ‘;S > e3k3. (4.162)
Following the argument to have (4.158) we bound
t—tp—o(1)ek
the contribution of / -+ of (4.154)
0
1 1
N 7 PR is, + <5773 { 10— P)fllzz (4.163)

+ (T =P)d: frl

t,z,v

1
b+ =77 0wl |1 P £l

In conclusion, we bound |h(¢,z,v)| by (4.151), (4.160), (4.161), (4.163) and conclude (4.140) by
choosing small enough o(1) in (4.160) and (4.161). O

Proof of Proposition 11. Since many parts of the proof are overlapped with the proof of Propo-
sition 10 we only pin point the differences. An equation for w’0; fr takes the similar form of (4.132)
and (4.133). We can read (3.3) for

h(t,z,v) = w'(z,v)0: fr(t,z,v), for o’ < o, (4.164)
as (4.132) and (4.133) replacing

2 25 2

Sh="Tw (v fa,h) + gfm/(m’fm h) + ;Fm/(m’atf% ' fr)
(8t +ely. Vx)\/ﬁ o’ ’ ’

—c%( NG )EmfR—km(I—P)%g—kmD%

1 1 2 1)
— 5 W L(I-P)fr+ 5-w'L(Pifr) + —w'T4(fa, fr) + —W'T+(fr, fr),
ER ER K ER

~ £
r= —gm'(l — Py, )0 fo+w'ry, (fr) — m/grw(fQ)’

(4.165)

where 7, (g) has been defined in (3.9).

We have the same equality of (4.147), (4.148) with (4.149) for h of (4.164) but replacing S; and
/ , ~1y. ,
r of (4.165). Note that 22 < e~(e=¢)IU" and hence ‘a&W)%‘ < (3.13) from (3.13).
From (3.36), (3.6), (3.7), (3.57), (3.12), (3.13), (3.58), and (4.137), we bound terms of (4.165)

153 S V) {1310)] + - o frloc bl + (36) + (3.7)

+ (E 0 + (3.13) + 0ul (= + = (3.10) + ~[wfrllo) ) [0 frc,
2
7| < %(3.11) + %|8tu](3.10) + el |0 fR|oo. (4.167)
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Then as in (4.151)-(4.155) we derive a preliminary estimate as

|h(t, z,v)]
2K

< E K .

e 22 | A(0) oo + V(U)(4.166)+(4 167)

te 22k (t 8) t—s
+/0 52,4.1/]RS ki (v, v:) (s, 2 — - , Ux)|dusds

t—tp (z,v) e—ﬁ(t—s)
v3<0J0 €K
L= tp(@v) - Vulo)[os|
’ « , , b\ ) 7 N d
X /R3 Ky (0, v4) |A(s, zp(x,v) 5 vy)|do ds o (20(z.0), V) 0.

As (4.154) and (4.155), we bound (4.169) by a summation of (4.168) and

C Cy
/t Py Ul /s—o(l) P G T)/
2 2
0 E°K 0 E°R v |<2N

t — —
X / |h(s,z — Sy 2 7_v,,F,v,k*)|dv>,<>,ﬂdv*drds,
£ €

~5n (t9)

tftbfo(l)eQ.%e )

/

-] I A i

(2p,v)EIQXR3 v3<0 J0 E°KR
t—tp >0

A/ 1(v)|vs] \U3|
m

t—tp —S
X / Ih(s, 20 — —2— "0, v,)|dv,ds
|vs|<2N € b’n)

+o(1) sup [|h(s)| Lse, -
0<s<t

Then we follow the argument of (4.158)-(4.160) to derive that, for p < 3,

t e 2e2 H(t s)  ps—o(1)e?k 6*2575%(577) N1/3
(41715 / —an / PO, f(7)lp, drds
0 0

2K 2k e3/PK3/p
C, C,
t —54-(t—s) s—o(1)e?k ,— 55— (s—7) N1/2
€ 2e“k € 2e“k
+/o 25 /o 2. man B0 ()i drds.
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(4.171)
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(4.175)



Now we use the Young’s inequality for temporal convolution twice to derive that, for p < 3,

14171 2 (0,7)

c
e 235181

2
ek llLiw)

5 58 (s—T) 1/3 1/2
e 22 N N
<[ (e IPOH Olaz, + 71T~ PO, )

o B 4176
e—i—é’n|s| e_iigmlﬂ ‘
ek Nnml @ lne
N1/3 N1/2
X <W‘Patf”Lf((0,T);L§(Q)) + WH(I - P)atf||L2((0,T)><Q><R3)>
1 1
SN m”ljatf”L%((O,T);Lg(Q)) + m”(l - P)atfHL2((O,T)><Q><]R3)-
As in (4.163), for (4.172) we use (4.162) to derive that, for p < 3,
1(4.172) | L2 (0,1)
temad =) g 1
< PO ———||(I = P)0, d
| [ o (e PO, + Pz, Jasf
— Gy s 1 1 (4.177)
€ 2e4k
525’ L%(R){W||P0tf||L§((o,T);L§(Q)) + WH(I - P)atfHLZ((O,T)XQXR3)}
1 1

N

m”])atf”L%((o,T);LZ(Q)) + WH(I = P)Ocfll L2 (0,1 x0xR3)

where we have used the Young’s inequality for temporal convolution.
In conclusion, we bound [|Al| 20 by [[(4.168)]| 1200 , (4.176), (4.173), (4.177) and conclude (4.143)
by choosing small enough o(1) in (4.173). O

4.5. Proof of Theorem 2. An existence of a unique global solution F' for each ¢ > 0 can be found
in [12, 13, 14, 15]. Thereby we only focus on the (a priori) estimates (2.13).

Step 1. Define T} > 0 as

T, = sup {t > 0: min{dy, day, ds, ds, ds.4, doo, doos } > %
(561/2 61/25
and - V' D(s) +&b|wg8f(s)|lLge, + m”PfR(S)”Li <1 (4.178)

for allOgsgt},

where da, da ¢, dg, d3, d3 t, doo, doo + are defined in (4.3), (4.5), (4.45), (4.73), (4.75), (4.141) and (4.144).
From (2.10) and (4.178) we read all the estimates of Proposition 7, Proposition 8, Proposition 10,
Proposition 9, and Proposition 11 in terms of £(t) and D(t) as follows.
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From (4.140), (4.178), and (2.10)

sup ng,BfR(S)HLz?v
0<s<t

1 1 1
S 272 S, IPfr(s)|zs , + T2,V D(t)‘FWHPfRHng (4.179)

3
g Ol + 2650 (=)

Now applying (4.179) to (4.44) we derive that

£
sup [P fr(s)lzg S S exp (7 ) sup VEE) + v/ DO+ Pl

0<s<t 0<s<t

(4.180)

3
+ ()% g f )z, + 2 exp ().
’ K
From (4.179), (4.180), and (4.178) and (2.10) we conclude that

1 1
sup {k2[|Pfr(s)lrg +e2rlwosfr(s)|lLe,
0<s<t

< exp (H%) + \/J%Jr S {VE(s) + m}miqsﬂprHLgm _ (4.181)

(4.181).
From (4.72), (4.181), (4.178) and (2.10)
w2 |1P frll 2o ysrn) S (4.181)*{1 ik (4.181), + (gmmfz(zl.lsn*)T} . (418
(4.182).
Using (4.181) and (2.9), from (4.74) and (4.143), we deduce that, for p < 3 and ¢’ < o,
R PO 201y + (1) PR 0 500 Rl 12 0 15855,
< (4.182)*{1 T ek {(4181), + (4.182)*}} . (4.183)

(4.183).

Step 2. Using the estimates of the previous step we will close the estimate ultimately in the
basic energy estimates (4.2) and (4.4) via the Gronwall’s inequality. We note that from (2.9) the

multipliers of fg |Pfr(s)]72ds in (4.2) and fg | PO;fr(s)||3,ds in (4.4) are bounded above by

OM)r™2* (1 + en2 P 4 (é‘lﬁé_m)Q) < k¥, (4.184)

~

where we have used (2.11).
In (4.2) and (4.4) we bound

1 r
3

||“1/2PfR||L?L§ S K2 =5 HPfR”L2LooH’91/2PfR||L2LP Sro(ek) 2 (1_7)|(4 181). | |(4~183)*|‘ )

1Pl 21s S POl 27 | POl oy S 20082 #7000 4183). .

~

1\3

(4.185)
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We can check that the multiplier of ||€_1m_1/2ﬁ(I—P)fRH%2 in (4.4) is bounded as, from (2.10)
t,x,v
and (4.181),
{0+ el 310)1 g el s, + x| Vadrullzs, + (172 (313)l1s)? + (bl frll s, )
< er'?F 4 262672 (4.181), .

Applying (4.181), (4.182), (4.183), (4.185) to (4.2) + o(1)(4.4), using the above bound and (2.11),
and collecting the terms, we derive that

sup E(s) + (1 — 62672 (4.181), ) D(t)

0<s<t
<
N5(0)+f()+exp( 4184/ (s (4186)
4 6%~ (=8 =448 (4.181),[*~ T (4.183) |?”
+526_g(1_g)ﬁ_3—2m—;( ~5)[(4.181), || (4.183), 2.
Under the assumption of
2 3_
/26571 (4181), < 1, e D rp2(4181), < 1, |1 7 on #] VA (4181), < 1, s
[02e=0=B) 45114 (4.181), < 1, [02e »(18) 3 2P 205414 181), < 1,
we derive that, for some constants €; > 0 and € > 0,
6 t
sup £(s) +D(t) < ¢ <5(0) + F»(0) + exp <W>> + Q:Qﬁ_m/ E(s)ds. (4.188)
0<s<t K 0

Note that among others the last condition condition is the strongest in (4.187), which can be read
as, from § = /e of (2.11),

555 (158) 13- 0-D (4181, < 1. (4.189)

Applying the Gronwall’s inequality to (4.188) (we may redefine £(t) as supg<,<; £(s) if necessary),
we derive that

osgggtg(S) <¢ (5(0) + Fp(0) +exp (%)>{1 + % P (ig)}

Applying this estimate to the last term of (4.188) and using the fact P’ < P we derive that, after
redefining &, if necessary,

2
sup E(s) + D(t) + Fp(t) < € (E(0) + Fp(0) + 1) exp (%) for all ¢ < T, (4.190)
0<s<t K

under the assumptions of (2.10), (4.178), and (4.187).

Step 3. Now we find out the ranges of 6, k, e satisfying the assumptions of (4.178) and (4.187).
From (2.12) and (4.190), if we choose § as

1
1-8a-5

g2t 05 —2¢,T
exp ()
€1 (£(0) + Fp(0) 4 1) k¥
then we can achieve (4.189) and hence all conditions of (4.187). Clearly (2.11) and (2.12) ensure
(4.191).

(4.191)
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Now from (4.190) and (2.11) we derive (2.13), which implies

1
sup {152 Pfr() g + 1200 rls) 1, + 1) 753 Py fa(9) l20aze |
8>

< 52—

These imply min{ds,dsy, dg, d3, 31, doo, doc} > + and %«/P(t) < 1 from (4.3), (4.5), (4.45),
(4.73), (4.75), (4.141) and (4.144).

Then by the standard continuation argument we can verify all assumptions (4.178) up to ¢t < T'
and T = T,. The estimate (2.13) follows easily.

5. NAVIER-STOKES APPROXIMATIONS OF THE EULER EQUATIONS

In this section we prove Theorem 3. The proof of the theorem relies on the integral representation
of the solution to the Navier-Stokes equations using the Green’s function for the Stokes problem in
the same spirit of [47].

5.1. Elliptic estimates and Nonlinear estimates. In this section, we prove the estimates of
the solutions of incompressible Navier-Stokes equations in large Reynolds numbers with the no slip
boundary condition satisfying (1.13)-(1.15) based on recent Green’s function approach using the vor-
ticity formulation of (2.16)-(2.18) applied to the inviscid limit problem [44, 47, 38, 54]. An advantage
of working with analytic function spaces is the Cauchy estimates useful for recovery of the loss of
derivatives. We recall the spaces, norms, and terminology we have defined in Section 2.

Lemma 7 ([47, 54], Embeddings and Cauchy estimates). The following holds
(1) BMt C gl and BME C g1,
(2) llgrgzllen S llg1llso,rllg2lls,a-

lgll, s <
(3) Sy [D7gln < 23 for amy 0 < 4 < &,

For (2) and (3), || - ||« can be either || - ||ooxrs 07 || - loorst OF || [loor0 07 || - 1,7

Lemma 8 ([47, 54], Elliptic estimates). Let ¢ be the solution of —A¢ = w with the zero Dirichlet
boundary condition, and let u =YV X ¢. Then

[ulloox + Vullia < llwlla,

IVhtloon + [ Vuslloon S > V5wl
0<|BI<L1

10sunlloon S S IV wllin + lwnlloon, (5.1)
0<|BIL1

1C71 V) uslloon < > IV wnll1a
0<|BI<1

Proof. Here we only sketch the proofs. For full justification we refer to Proposition 2.3 in [47] for 2D
and Section 4 of [54] for 3D and the proofs therein. From (|£|> — 82)¢¢ = we and ¢¢(0) = 0 we write

be(2) = /0 Gy, )y + / " Gy, 2w (y)dy,

-1
with Gi(y,z) = el (eilf\(z—y) _ €—|§\(y+z)>'
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The first two estimates of (5.1) can be easily derived from this explicit form. For the third estimate of
(5.1), we write u; = 82(—A)_1w3 — 83(—A)‘1w2 and d3u; = 8382(—A)_1w3 — 8383(—A)_1(,U2. Then
the third estimate of (5.1) follows from the identity

0.(0s(—A) Leon)e = ( / e 810 (1 28wy (5, y)dy
+ / €leE0-2) (1 4 e=20€02) e 5 (2, ) dy

/ (—2l¢])e el 2'5'2w5,2<s,y>dy)—wgg(z)-

Next we prove the last estimate. Note that

1+ 2

Vyus(z / OyVyuz(zh,y)dy + Vyusz(2)

= i/o V5 (0105(—A)twy — 9205(—A) " wr) (zh, y)dy + Vius(2).
From (5.2) we read that for i = 1,2
‘|§Uﬁ|(33(—ﬁ)_lwi)g(s, z)‘
<5 /0 e KIE A = W) e a(s,w)ldy + / T eI (1 ) g8 5, )y

E
S 0202A e well 1 o, -

From the identity and estimate above we conclude the last bound of (5.1). O

As a consequence of Lemma 8, we have the following nonlinear estimates.

Lemma 9 ([47, 54]). Let u and @ be the velocity field associated with w = Vi X u and & = Vi X @
respectively. Then

(1 + [Va)wllall¢dz0ll1x,

lw - V|1, (L4 VrD)@(1,2:
[w - Vin1x S : tip| oo, AMosanllia S llwllia(lloslloo + (14 Va)wllia)-
(5.3)
Moreover
[ Vap[lon S e+ (1A + [ VaDwllia + 1€0:wsllcon) 1020 42,

lw - Vg |l«x S ||w3||oo7/\,0(”(1 + [VaD)@llia + [|@nllsn)

o Y Vi@, 6

0<|BI<1
where || - ||« can be either || - ||ooa i 07 || - |loox st
Furthermore
[ Vislloono S Wl Vi@slloono 4 [[(1+ [Vh]) (5.5)
o - Vi [loox0 S llwonlleall (1 +Va|*)a ( )&nll1a,

where [|(1+ [V [F)gll. = S5 VAl
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Proof. Again we refer to Proposition 2.3 in [47] for 2D and Section 4 of [54] for the full justification.
The bounds (5.3) and (5.4) directly follow from Lemma 8. The proof of the first estimate of (5.5) is
an outcome of applying (5.1) to an easy bound

[ Vaslloono S [wnlloon | Va@sllsox0 + [1€(2) " usloonlIC(2) 0305 0o,r0-

For the second estimate of (5.5) it suffices to prove the bound for wy, - V3. From |((2)(14¢.(2))] <1
or [(2)(1+ ¢n(z) + ¢wi(2)) S 1,

- Vs _ -
leon - Dnialloeno S Nonllen [C()A + €n(2) + dmt(D) = | S Mo lleallC™ Vidis oo
C(Z) 00,A
Then we use the last bound of (5.1) to finish the proof. O
We finally record the crucial estimate of nonlinear forcing terms N = —u-Vw+w-Vu, as an outcome

of Lemma 9, that will be also crucially used to control B = [0y, (—A) " (—u - Vw + w - V)] |z5=0 in
the vorticity formulation (2.16) and (2.18).

Lemma 10 ([47, 54], Nonlinear estimate). Let A € (0, Ao — vs) be given. We have the following:
I+ VRN a1+ [VaDw i + 1+ [ViDwslloopo) |1+ [Val*)wlli

+ 3 1A+ Vi) D @l sl (1 + VPl (5.6)
18]=1
> D+ |Va])N ||y
18]=1
S DDA+ Vi)l 1,A< D DA+ |Valwlla) + (1 + |vh|)w|oo,)\,0> (5.7)
18]<1 181<2
+ > D1+ [ViDwslloo ol (1 + [Va])?w]l1x.
181<1
For [[ - ]« to be either [[ - Jloors O [[ * oo Akts
[N1ox S 1A+ [VaP)wlhalwllon + 1L+ [Vawlia[Delln, (5.8)
STIDPNTa S 30 I+ V420 Al
|B]=1 181=1
+ 3 (IDPla (11 + [VaP)wllin + Bs([D5 W] ) (5.9)
|8]=1
+ Y (DPllall(1+ Va1
|B]=2

The proof relies on Lemma 9. We refer to Lemma 4.2 and Lemma 4.5 in [54] for the detailed proof.

5.2. Green’s function and integral representation for the Vorticity formulation. By taking
the Fourier transform of (2.16)-(2.18) in x, € T?, we obtain
Opwe — kmoAgwe = Ne  in Ry, (5.10)
kN0 (Ory + |&)wen = Be, wez =0 on w3 =0, (5.11)
with weli=0 = wog for £ € 7Z?. Here
Ae = —|¢? + 02, (5.12)
59



and
Ng = Ng(t, .%'3) = (—u -Vwu+w- V’U,)é (t, .fg), Bé = Bé(t) = (6173(—Ag)_lNéyh(t))’:CB:(). (513)

Here (—A¢)~! denotes the inverse of —Ag with the zero Dirichlet boundary condition at z3 = 0.

We give the integral representation and present key estimates on Green’s function for the Stokes
problem. As shown in [47, 54], letting G¢(t,x3,y) be the Green’s function for (5.10)-(5.11), the
solution can be represented by the integral formula via Duhamel’s principle:

[e'e) t [e'e)
et a3) = /0 Ge(t, 23, y)woe (y)dy + /0 /0 Gelt — 5,23,y Ne (s, y)dyds

. (5.14)
—/0 Ge(t — s,23,0)(Be(s),0)ds,
where
Gen, 0 0
Ge=|0 Gea 0 |, (5.15)
0 0  Ges
with Ggp, of (5.19) and Gz of (5.22): for Gg, can be either G¢j, or Ges
875G§*(t, x3, y) — /ﬁlnoAgGé"*(t, x3, y) = 0, xr3 > 0, (5.16)
K:T][)(az?) + ’é“)Ggh(t,:U;;,y) =0, x3=0, (5.17)
Gé"g(t, 3, y) = 0, xr3 = 0. (5.18)

The following estimates and properties for G¢ will be useful to show the propagation of analytic
norms of w, dyw and Ow.

Lemma 11 ([47, 54]). (1) (Bounds on Ggp) The Green’s function Gy for the Stokes problem
(5.16) and (5.17) is given by

Gen = ffs + R, (5.19)

where ]:15 is the one dimensional Heat kernel in the half-space with the homogeneous Neumann
boundary condition which takes the form of

N 1 _leg—yl? |zgtul?
Hg(t,x;g, y) = H§<t7x3 - Z/) + Hé(tami’) + y) - W <e 43;770t e 4?;m0t )6_'“70'5%, (5'20)

and the residual kernel R¢ due to the boundary condition satisfies

B 1 _polzatul® anglel2e
k k Oob
|8$3R£(t,1‘3,y)| 5 pEtle=f (@a+y) + We 0 Tkmot e 8, (521)

with b= |§[ + = and Re(t,x3,y) = Re(t, 23+ ).
(2) (Formula of G¢s) The Green’s function Ges for the Stokes problem (5.16) and (5.18) is given
by one dimensional Heat kernel in the half-space with the homogeneous Dirichlet boundary

condition as

G (t T ) = H (t xr3 — ) — H (t + ) — 1 ( ‘23 yf ‘23 yt2> —m;o|§\2t (5 )
3\, 3,Y y L3 — Y , L3 T Y e ~10 e 1o e . .22
13 13 3 /rnot

(3) (C’omplex ea:tension) The Green’s function Gf has a natural extension to the complex domain

Hy for small X > 0 with similar bounds in terms of Rey and Rez (cf. (3.16) in [47]). The
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solution we to (5.10)-(5.11) in Hy has a similar representation: for any z € Hy, let o be the

positive constant so that z € OHy, then we satisfies

t
we(t,z) = Ge(t, 2, y)woe (y)dy + / Ge(t — s, 2,y) Ne(s, y)dyds
OH 0 JOH)

—/O Ge(t — 5, 2,0)(Be(s), 0)ds.

The proof of Lemma 11 can be found in Proposition 3.3 and Section 3.3 of [47]. The next lemma

concerns the convolution estimates.

Lemma 12. Let T > 0 be given. Recall the norms defined in Section 2. For any 0 < s <t <T and
k >0, there exists a constant Ct > 0 so that the following estimates hold: for G¢,. can be either Gy,

or Gez
(1) (L} estimates)
k 0 k
Z(W@ﬂ/GMWMMMy < Or Y [I66(2)0:Y gell s »
=0 0 £y §=0

k
J=0

(2) (L3 estimates)

k
=0

(G@QVAWG&G—&%w%@My

k
< Ory_[1(6(=)0:) g¢ | s -
£ =0

(dd@VAmGa@&WQ@My

k
J=0

(3) (LY, estimates) For either k=0 or k>0

k
j=0

<qa@VAmG&u—aaw%@m4

Lt §=0

<Q@@VAWG&maw%@My

L3% j=0

k
Jj=0

(ﬁ@@VAmGa@—&%w%@ﬂy

k
< Cr 3 (€2)0:V ge o -
j=0 |

oo
[')\,f-:

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

Proof. We only give a proof for Ggj, since G¢z can be handled easier than the other. The proof of
(1) and (2) can be found in Propositions 3.7 and 3.8 of [47]. Here we present the detail for (3), the
second inequality. We consider real values y, z € R4 only as the complex extension follows similarly

(cf. (3) in Lemma 11). Note that in view of (5.19), (5.20) and (5.21), it suffices to show

(QQ@VAmR@—&%w%@My

k
<Cr) [[(€(=)0:Y gel| e
=0 ’

oo
E)\,n

(d@@ﬁAmHU—&Aw%@My

k
<Cry_ H(C(z)az)jgsHﬁioﬁ :
=0 ’

oo
l:)\,n
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where R(t, z,y) = be ?W*2) and H(t, z,y) = \/%e S for some M > 0. We start with (5.29). Let

k = 0 first. First note that

ay

[T he I ) ()gg(y)dy’
0

¢
I+ ox(y
< (14 0nl0) el [ b ay,

since ¢y, is a decreasing function. The last integral is uniformly finite for all || and k. Hence,

> 1+ ¢ .
|7 RO s s ssw (“e b)uggugoo-
Ei‘?ﬁ

—5,2,Y)9¢(y dy‘

L+ ¢r(2)

For o > 0, 1f/£< ,2 then

sup (We(“_b)z) < Vel - < min{ ﬂ ) (5.31)
. inf, [(ﬁ+ W)QW] VE G
where the last bound follows from the fact that
T 2 T gyt 2 (0 )

For k > 1, since [((2)0,R| < befb?z, the derivative estimates follow analogously. Therefore, (5.29)
holds true.
We move onto (5.30). Let £ = 0 first. Note that, for 0 <s <t <T and x 1

+a\/M/<t s|2 M 2 = Mgz2,.0t_6) —a& _a
a’k(t— s)e oazSeQan(t s)6 azse a

ly—=z|?
e T 2Mr(t— s)e” ay:e 2 Mm(t

z (5.32)
and thus

_ly—zI? _ ey
¢ I V(14 g(y))

m m%(?ﬂdy

(t — s, z,y)gg(y)dy’ =

ly—=|*
o~ TMR(—) (1+ 6u(y))dy

o
- 1
< e—az - /
~ Hg&Hﬁ“ 0 VE(t—29)

For the last integral, we divide the integral into two: fooo = [¢+ f;o For the latter, since ¢ is
2

decreasing and the kernel is in Lllj, we deduce

[T e (4 0y £ 14 6.
For fO% dy, note |y — z| > £ and 1+ ¢x(y) < 1+ ¢x(0) for y € (0, 5). Hence
ly—z|? 2|2

_ _ly=z o l=E
e 2M(i=3) (1 + ¢ (y))dy < e TMRE=3) (1 4 ¢, (0)).

Then
1+ ¢u(0) — 22
t—s,2,9)9¢(y)dy < sup (6 oMrt=s) 1) |gell oo -
( ) 5( ) o . 1+¢n(z) || 5”[:)\’,ﬂ
I
A similar argument as in (5.31) shows that %e 16M~(t=+) js uniformly finite in k. This shows

(5.30) for k= 0.
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For the derivative estimate, by splitting the integral into two parts and using 0,H(t,z,y) =
—0yH(t,2,y), we rewrite

For the first integral, since |y — z| > 5 for y € (0, 3),

z 1 __ly=z® 1 __ly=z®
8 H(t — 2, < 2M kK (t—s) < _ 2Mk(t—s)
|C(Z) K ( S, % y)| ~ 1_}_2’{6(75_5)6 |y 2:| (t—S)e
—2|2
< #e_élll/?n(t‘—s)'
~ Vet —s)

Hence, by the same argument as in k£ = 0 leads to the desired bound. For the second term,

z z TG
5)\ = ﬂe DI e =3 (1 +¢n( ) Hgﬁ”ggoﬂ

2
=]

<6 W(ts)efa (1+¢:‘i( )) Hgﬁ”goo
2|2 Mn(t B) O‘WF MocQHt s

z
Zy, 3 gf(

CEH(E =52 2)

< e (14 () el -

which leads to the desired bound. For the last integral, note that ((z) < 2((y) for y > 2. Therefore the
corresponding integral can be treated in the same way as in & = 0 with g¢(y) replaced by ((y)0yg¢(y)-
This shows (5.30) for k£ = 1. Other k£ > 2 can be estimated analogously. O

e (1 + 60u(2)) ¢ e

The next result concerns the estimates for the trace kernel.

Lemma 13. Let ag(s) = [0.(—A¢) " ge] |.=0. Then for any 0 < s <t < T and k > 0, we have the
following

k

> 1¢)0:Y Gen(t = 5,2,0)a¢(3)] o1 < llgell - (5.33)
A

7=0

k

ZH 0.) Genlt — 5.2, 0)ag(s) | . Nﬁuggnﬁl. (5.34)

Jj=

Proof. Note that from (5.19), (5.20) and (5.21), the conormal derivatives (¢(2)0)? of Gy (t — s,2,0)
enjoy the same bounds as G¢,(t — s,2,0): for some small constant co,

) 1 —eg 2
(C(2)0.Y Celt = 5,2,0)] S be~ 0P 4 ———™ 0l 3. (5.35)
K(t — s)
Therefore, it suffices to show the bounds for k = 0. We first recall the representation formula for a¢
(cf. (4.29) of [38] or (4.2) of [54]):

ae(s) = / " e g (y)dy,
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from which we have [lag||zee < Hg&”ci' Since the above upper bound of G(t — s, 2, 0) is integrable in
z, (5.33) follows. To show (5.34), we compute ||Gen(t — s, 2,0)| c5

2 2
1Gen( Olloe < sup | £ 1 O
t—s,z, © SSup |—————~ | + su
¢h EXw Pl 0u(e) | " Vims 2 | VE + Vrow(2)

It is a routine to check that both supremum norms are uniformly bounded in x and |£|. Therefore
(5.34) is obtained. O

5.3. Proof of Theorem 3. Our goal is to show that w(t) indeed belongs to C*([0, T; BM*) without
the initial layer under the compatibility condition (2.34), and that 9w in B with the initial
layer. The existence of w(t) in C'([0,T]; BM) under the assumption of Theorem 3 can be proved
by following the argument of [47] and [54]. For the 2D case, Theorem 1.1 of [47] indeed ensures the
existence of w(t) in C1([0,T]; B**) under the assumption of Theorem 3. Such a result follows from
Lemma 7, Lemma 11, Lemma 12, Lemma 8, Lemma 9. A 3D result can be obtained analogously.
Hence, it suffices to show the propagation of the analytic norms in (2.35).

Step 1: Propagation of analytic norms for w. It is convenient to define

llw@l; = Nl (@ o + M@l (5.36)

The estimation of w follows from the nonlinear iteration using the representation formula (5.14).
The estimates for the L'-based norm ||w(t)]|, are already available in Section 5 of [54] (for 2D see
Section 4.1 of [47]): From (5.23), (5.24) and (5.33), we have that for k =0, 1,2

k

S ¢ ()0 Vove 1

J=0

(C(23)0xy / Ge(t, z3, y)woe (y)dy

5

IA
_IM-

ds

C(25)05,) / Gelt — 5,23, y) Ne(s, y)dy

£X

=

/ $3 T3 JGg(t— S Ig,O)(Bg H£1
0

) k t ) t
H(C(‘Tfﬂ)axg)JwOﬁHL}\ + E ,/ H(C(ﬂfs)am)JNs(S)Hﬁi d8+/ [[Ne ()l g1 ds.
j=070 0

J

<

e

Il
=)

J

For k = 1, after summing up over ¢ € Z2, we deduce that

Yo DA+ IVahw)lia S D D+ |Vawolli

0<|BI<1 0<[BI<1

/ > D51+ (V)N (s) 1,ads.

0<|8|<1

(5.37)



Using (5.6), (5.7), and the definition of ||| - ||, in (5.36) we derive that

/0 S D1+ [VA)N(s) 1ads < /0 ()21 + (o — A — 708)~]ds

0<|8I<1 (5.38)

1
S (t+ =) sup llws)ll,.
Y0/ 0<s<t

The second order derivatives can be treated similarly except for the contributions of N for which
we apply the analyticity recovery estimate using (3) of Lemma 7 while other terms are estimated in
the same way. More precisely, we have

1 ~
Z IDP(1+ [VAa)N(s)[l1a S X Z D (1 + IVa)N(s)]y 5 for any A > A, (5.39)
|8]=2 - Togiplzt

while we choose \ = w

from (5.6) and (5.7)

in particular. We note that still )< Ao — oS if A < A\g —~0s and hence

D IDPA+ VDN () 5
0<|p<1

(X IR+ Velse) (X (DPw)lse.)

0<|8I<1 0<|8|<2

+ (X 1D+ Vabe)liag) (D ID°(+ Vahw(s)l )

0<181<2 0<|pIL1
S 14 (o= A—08)"°] |||W(S)”|§-

Therefore we derive that for ¢ < 2)‘700 and A < \g — ot

> IDP(L+ [ Vahw(t)

1A
|B|=2
t

S Z IDP(1 + [V ])woll1,0e + /0 [1+ (Ao — A —108) "] lw(s)[[2ds (5.40)

|B|=2

1

S IDPA+ [VaDwollia, + (()\0 —A—0t) " —+ t) sup [|w(s)]|I%.

181=2 70 0<s<t

Therefore, we conclude that, from (5.37) with (5.38), and (5.40)

1 Ao
lo®ll; £ D ID(1+ | Valwollia + (t+ —) sup [lw(s)[I? for t < —. (5.41)
0<|BI<2 Y0 0<s<t 270

The propagation of the boundary layer norm [|w(t)|,, , can be shown analogously using L5,
estimates of Lemma 12 and Lemma 13: For £ =0,1,2 and Kk > 0 for : = 1,2 and x = 0 for i = 3 we
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have

k
Z 1(¢ (23) Dy Y weill 5o,

C(23)0ns / Gei(t, z3,y)woe i (y)dy

s
)\

ds

x3 w3 / sz - 5,X3,Y )NEZ(S y)dy
ﬁiﬁ’m

k
Z/ Oy Y Gei(t — 8,963,0)3571'(3)”&3%(13

A
ng

(€0 Vel +Z [} e Nt

T
o

+1—513/ﬁ Nl

Let k = 1. After summing up over £ € Z and i = 1,2 (with x > 0) and ¢ = 3 (with x = 0), we
deduce that

S (D%lrn £ Y (D%uilloonet [ 3 (D NGands + [

ﬁHM s)llFfds.
0<IBI<1 0<|Bl<1 0<|pI<1
Using the definition of ||| - |||, in (5.36), and applying Lemma 10 with (5.6), (5.8), and (5.9), we derive

> D NGoonn S (X 1D7Q+19ahw()lia) (D [1D7w(s) o)

0<|BI<1 0<|B]<2 0<|BI<1
+ [[(1+ [Vir))w(s) 1,2 Z [DPw(8)]) oo Ak
|B]=2
S 1+ (o= A =08) " lew(s)]l12-

Therefore we derive that

> [(Dow®)]lsonn

0<|BI<1

< ) (D wolloopen + / llw(s)[IZ[1+ (Ao — A — v08)*]ds
0<|8I<1 0

t
1 2
+ d
| = tetias
1
< DPuwolloorar + (VE+ =) sup [[w(s)|*
S Y 0%l + (VE+ ) sup (o)l

0<IBI<1

(5.42)

Now we control the second order derivatives similarly except for the N. As in (5.39) we use the
analyticity recovery estimate using Lemma 7

1

S D NS oean S 55 > (DN, for any A> A (5.43)
18]1=2 0<|BI<1
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A+Xo—Y0$

while again we choose A= in particular. We note that still A< Ao — Yos if A < Ao — Y08

and hence from (5.8) and (5.9)

S DN ()i S (0 = A 708) o) 12
o<|pILt

Therefore we derive that for t < 22 and A < \g — Yot

27
> IDw®)]loorn

|8]=2
S 2 ID w0l + / 0~ A= 209D uts)lfas + / o)l
~ Wolloo,\g, 0— A—"Y0S 27|||lw(s S w(s S
|6]=2 o ) 0o Vi-—s 1
_ ¢ _3
S D 1D%wollso o + (Ao = A = 0t) a(/ (Ao — A —=08) 2d8) sup [llw(s) |3 (5.44)
1B=2 ‘ Ot
+ v/t sup [Jw(s)Il;
0<s<t
o 1
< Y ID%wollse e + (o = A= 0t) "= + Vi) sup [lw(s)]I2.
18]=2 Y0 0<s<t
Therefore we conclude that, from (5.42) and (5.44),
1 Ao
w(t < DPu ,{+(\/7§+—> sup [[w(s)]|? for t < —. 5.45
loOlloee S 3 157001, =) s I for e < 5% (5.45)

0<8|<2
In conclusion, from (5.41), (5.45), and by a standard continuity argument we obtain for sufficiently
large o

sup  lw@®ll, S D 1D wollcorow + Y ID A+ [Va)woll1r- (5.46)
0<t<zl 0<|8]<2 0<|8]<2

Step 2: Propagation of analytic norms for d;w. The continuity of w(t) in ¢ follows from the
mild solution form (5.14) of we(t). We claim that w(t) € C1([0,T]; ) and moreover ||dw(t)||, is
bounded. To this end, we first derive the mild form of O;we from (5.14):

e’ t fe'e)
Dueoet, 3) =/ Ge(t, 23, ) Dooe (y)dy + / / Gelt — 5,3, 9)0sNe (s, y)dyds
0 070 (5.47)

t
—/ Ge(t — 5,23,0)(0sB¢(s),0)ds,

0
where we recall Jywp in (2.32). To justify this formula, we first recall (5.16)-(5.18). We start with
the horizontal part of the formula (5.47) for dwwep. From Lemma 11, Gep(t, xs,y) = He(t,x3 —
y) + He(t,v3 +y) + Re(t, 23 + y). Then by using the fact that H((t,-) is an odd function, we see

Ous Gen(t, 23, Y)|ws=0 = Rg(t,y). Now we read (5.17) as

Ko R (t,y) + wnolé|Gen(t,0,y) =0,  rmoRe(t, x3) + wnolé|Gen(t, x3,0) = 0, (5.48)

where we have used that H¢(Z,-) is an even function for the second relation. On the other hand, since
we also have Oy, Gen(t, 23, y)ly=0 = R¢(t, 73), we deduce that

K10 (Oys + |€))Gen(t, v3,y3) =0, y3 = 0. (5.49)

It is straightforward to see A¢Gep = 8§3G5h - ]£|2G§h = (’3§G§h — |£]2G§h.
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We now take 0; of (5.14):
O /OOO Gen(t, x3,y)woe,n(y)dy = /OOO 0yGe n(t, 3, y)woe n(y)dy
= [ % 16 Gen 100, e )l
= [Hﬁoangh(t,$37y)wog,h(y)}zzgo - /Ooo K10 |€ | Gen(t, 23, y)woe 1 (y)dy
- /Ooo 100y Gen(t, 23, y)Oywoe n (y)dy

= [Hﬂoangh(t,HCs,y)wog,h(y)}izgo — [knoGen(t, 23, y)Oywoe n(y)]”

y=0
o0
+/ Gen(t, w3, y)knoAewoe,n(y)dy
0
= —/inoangh (t, X3, 0)(,0057]1 (0) + :‘W]()Ggh(t, I3, 0)8yw0§7h(0)

o0
+/ Gen(t, 3, y)knoAenwoe,n(y)dy,
0

=00

and
t ) )
o[ | Gent = svwa ) Neals.w)iduds = [~ Gen(t.0,0) Nea (0.3
0 Jo 0
t )
+// Gen(s,x3,Y)0:Ne b (t — s, y)dyds,
0 Jo

t t
o / Gen(t — 5, 23,0)Be(s)ds = Gen(t, 23, 0)Be (0) + / Gen(t — 5,3, 0)9, B (s)ds
0 0

Therefore we obtain
Opwe n(t, x3) =—rno0yGen(t, 23, 0)woe,n(0) + k1oGen(t, x3,0)0ywoe,n(0) — Gen(t, x3,0)Be(0)

+/ Gen(t, 23, y){rnoAewoe,n(y) + Nen(0,y) }dy (5.50)
o .

t 00 t
[ [ Genlt = 5.0, 0)0.Nea(s,0)duds — [ Genlt — 5.0, 000, Bels)d:
0 Jo 0
Next we show that the first line in the right-hand side is 0. From (5.49)

—r100y Gen(t, 23, 0)woe 1 (0) + K1oGen(t, 23, 0)dywoe n(0) = Gen(t, 23, 0)rmo([€] + 9y )woe n(0),
and hence the first line of (5.50) reads

Gen(t, 3, 0) [Eno(|§] + Ozg)woe n(0) — Be(0)] (5.51)

which is zero due to the first compatibility condition of (2.34). Recalling diwp in (2.32), the formula
(5.47) for Owe 1, has been established. We may follow the same procedure to verify the vertical part of
the formula (5.47) for Oywe 3 by noting that the second compatibility condition of (2.34) removes the
term —rkn0yGes(t, 23, 0)woe 3(0) which would create the initial layer otherwise because 9,Ges(t, x3,0)
does not vanish.

We may now repeat Step 1 for d;w using the representation formula (5.47). The estimates are
obtained in the same fashion. For the nonlinear terms, since ;N = —u-Vow — Oy - Vw +w - Vou +
Oyw - Vu, the structure of 0;N with respect to d;w is consistent with the one of N with respect to w
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and we can use the bilinear estimates (5.3) and (5.4). In summary, one can derive that for ¢ < 2)‘700

1
@)l S D 1D (1 + Va)dwolling () swp ll(s)lls sup flow()ll,,  (5-52)

0<|B[<2 <s<t
1
10 )l S D I1D%0wt]lopon + (VE+—) sup [lw(s)ll, sup (|9 (s)ll, (5.53)
0<|B|<2 70 0<s<t 0<s<t

which lead to the desired bounds for d;w(t) by choosing sufficiently large .

Step 3: Propagation of analytic norms for 6t2w5. As a consequence of Step 2, Oywe(t, x3)
solves the following system

83% - Iﬂ]oAgatc% = 8tN5 in R+, (554)
k10 (O + [€]|)Oswe n, = OrBe  on w3 = 0, (5.55)
Owesz =0 on a3 =0, (5.56)

with Ouwe|i—o = Owwoe for € € 72 where Oywy is defined in (2.32). Then as done in Step 2, by using
the properties of G¢ and integration by parts and by the last compatibility condition of (2.34), we
can derive the representation formula for 9%w:

0fwe(t, 23) = (Gen(t, 23,0) [0 (€] + Dy ) Drwoe 1 (0) — 0 Be(0)],0)

e8] t [oe]
4 [ Geltn ety + [ [ Gelt ~ 5.0, )02Nes,)dyds e
0 0 JO ( )

t
= [ et = s5.20.0)@2e(5),0)s,
0

where we recall 02wg in (2.32). As we do not require higher order compatibility condition for the
horizontal vorticity, a new term representing the initial-boundary layer emerges. We first examine
Ge(t, 2,0). Recall (5.35).

Similar to Lemma 13, we have for Cy < oo

Ed

k
Y)Y Gelt, 2. 0) ]| 1 £ Co. Y [[(C(2)0:) Gelt, 2,0 oo < Con (5.58)

Akt
=0 j=0

From (5.58), (5.33) and (5.3)

> DI+ (¢ [ (Genlt 23, 0) (mo(l€] + Ora)Drwne.n (0) — AuBe(0)) ,0)]

£
0<|Bl<2¢€2?
Skm Y IV (14 Vi) Vorwon|l1x + > IV (14 (V)N (0)1,5
0<|B|<2 0<|B|<2
< 1+ |V,?) Vo 1+ |VuhHo DB(1+|V,3)d
< wnol[ (1 + [Vi]?)Vowwol[1,x + [[(1 4 [Va]®)Owol|1,x D7 (1 + [V3u]?)Oswol|12-

0<|BI<1
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Hence an L'-based analytic norm is easily obtained as

oz @],

S ol (14 [Val?) Vawollia + (14 V4l > DA+ VA dwoll1n

0<8I<1

1
+ > IDPA+ V)07 +(t+—) sup flw(s)[l, sup [[|G7w(s)]|,
0<|8|<2 70 0<s<t 0<s<t

(5.59)

1 2
+(t+ —) sup [[|Gw(s)][5-
Y0 0<s<t

Now we move to the L>-based analytic norm bound. We compute [|G¢(t, 2,0)|| 5 :

2
\

be(&fcob)z az—co

1+ ¢n(z) + ¢Ht(z)

e
+ sup

1(6(2)0:Y Ge(t, 2,0) e, < < sup o | VAt + VEtdg(2) + Vit (2)

It is a routine to check that both supremum norms are uniformly bounded in x and |£|. Hence (5.58)
shows that the kernel G¢(t, 2,0) is well-behaved in El and the initial-boundary layer analytic space
Sxt- Then we run the same argument as in Step 2 but with £3°; in place of L5 Thanks to (5.58),

the estimates of the first term in (5.57) are bounded by the initial norm (2.33):

Ty H D! {(Ggh(t, 3,0) (k170 (|€] 4 Oy ) Do 1 (0) — 9, Be (0)) ,0)] (

0<|B<2 Ce72 EXont
Swm Y IV VOwollon + Y IV ON(0)]|1,
0<|B1<2 0<|B1<2
S Y IVEVOwolloon + |1+ [Va))wollia Y 1D +[V4f?)
0<|8|<2 0<|8I<1

Other three terms are estimated in the same way as in [47] or [54] and we arrive that

1070 ()] s e
Swmo Y IVEVAwolloon + (1 + [Val*)Awollin Y 1D+ [Vi|*)dwollin
0<|8|<2 0<|8I<1

5.60
b0 D50l + (VE+ ) sup [lws)ll, sup [[oFes)| 40
Y0 0<s<t 0<s<t

0<|8|<2

+(\/i+—) sup |0 (s)]2-
Y0 0<s<t

Finally combining (5.59) and ( 0) and then choosing sufficiently large 9 we derive a desired
estimate for [||07w(t)|||, for ¢ € )

(0,
Altogether from (5.46), (5.52), ( 3), (5.59), and (5.60), we finish the proof of the estimate (2.35).

Step 4: Estimate (1), vorticity estimates. Both (2.36) and (2.37) are direct consequences
of (2.35). To show (2.38), we first note that the boundedness of w(t) norms implies |0z,we(t, x3)| S

e3¢l for all [¢] and z3 > 1 (away from the boundary). When z3 < 1, we draw on the equation
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(5.10) to rewrite 02,we j, = ——{Oywe p + K1ol€|*we ,, — Nep} and the boundary condition (5.11):

K70

Opswe n(t, x3) = Opywe p(t,0) + / 8 swen(t,y)dy
(5.61)

51
~[elagn(t0)+ - Be(t) + [ - lowsen -+ rmlé P — Neal(t.)dy.

We now appeal to [Be(1)] < [Ne(t)ley and Soeeay (|00, . + [|060)]],) < 00 to obtain that
for all z3 € Ry

1 -
|Oswe n(t, w3)| < ;e*axse*Wl for 0 < A < Ao, (5.62)

which proves (2.38) for wy and ¢ = 0. The remaining case can be estimated similarly. Near O(1)
boundary, from (5.54) and (5.55), we derive

O, Opwg p(t, x3)

1 5 (5.63)
—[&]|Orwe 1 (t,0) + —0y Be(t) + / ——[OFwe p + Kol Orwe n, — OpNe ) (¢, y)dy.
KTo o Kno

Together with > o,y }H@fw(t)moo o T D 0<e<o H‘@fw(t)ml < oo we deduce (2.38) for wy, and ¢ = 1.
For w3 we use V- w = 0 to write 3wz = —01w; — dawz. Now (2.38) for ws follows from (2.36).

Step 5: Estimate (2), velocity estimates, except (2.42). From (5.2)

€170 0f e (¢, )] 5/ €17 eI 0fwe (¢, ) |dy| - for B3 < 1. (5.64)

H

For |3| = |8n| + B3 = 1 we bound (5.64) by e~ &l||0fw(t)1.5. Then from (2.35) we conclude (2.39).
For |8 > 2 and 3 < 1, we bound (5.64) by

(5.64) < /8 y €112 g e I8llv—=lg=aRew o =NEl (1 1 g, (1) + Bre(v))|dy]

< |£|IB|—2€—/\\§|6—min(l,%)mg /8H e_%Rey(l—l—qﬁ,i(y) +¢Kt(y))|dy| (5.65)
A

< |§]|5|7267)“5|e*min(l’%)x3 for |8] > 2, and 83 <1, and £ =0,1,2, and ¢t € [0,T],

where we have used |||y — z| + $Rey > min(1, §)x3 for [£] > 1 and (2.35).
For B3 = 2,3 we use 920;¢¢ = |£|20{ ¢¢ + Ofwe. Then following the same argument of (5.65), we
derive

1€1P110520f e (t, 2))|
< [€]1Pn2105 720 pe (¢, 2)| + €70 |95 20 we (¢, )|

(€192 + || Pr)eNelemin(L50Re(1 4, (2)) for £=0,1, and B3 =2, (5.66)
<< (g2 4 \ﬂﬁh)e*)"g‘e_min(l’%)Reszl for £ =0,1, and 83 = 3,
(|€]1P1=2 4 |¢|Pn)e el emmin(L5IRe 2 (1 gy (2) 4 Bp(2)) for £ =2, and B3 = 2.

Finally from (5.65) and (5.66) we conclude (2.40) and (2.41).
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Step 6: Estimate (3), pressure estimates and (2.42). We next turn to the pressure. Taking
the divergence to (1.13) and using (1.14), we deduce
3

—Ap = Z OpUm O Uy (5.67)
fm=1

We obtain the boundary condition of p by reading the third component of (1.13), and then using
(1.14) and (1.15),
O3p = knoAug = KknNodzd3usz = —kKnpd103u1 — KND203u2

= —£np01 (w2 + O1u3) — kNOa(—w1 + Gouz) (5.68)

= —knpOiwa + kMpOaw for x3 = 0,
where wy = Ohuz — d3us and wy = —0 uz + O3u;.

In the Fourier side we read the problem as
3

(117 = 03)pe(t, 3) = ge(t, x3) := Y (OptumOmue)e(t, x3) for x3 € Ry,

Cme1 (5.69)

O3pe(t,0) = —irmo€1we 2(t, 0) + ikno&awe 1 (2, 0).

A representation of pe(t, x3) is given by
T3 oo 1
tag) = — (el g, () — / R [ SV

peltan) == [ 5 " sy~ [ g 0 (v)dy

[ e~ €l (y+z3) d (5.70)
9¢\y)ay .
/o 2] )

— me ‘f|~"/‘3(—mn0§1w&2(t, 0) + irnobawe,1(t,0)),

which is valid for all £ # 0. When ¢ = 0, by integrating (5.69) and by using the boundary conditions
O3po(t,0) =0, u(t,xzp,0) = 0 and the divergence free condition V - u = 0, we first obtain

93po(t, x3) e / //2 Z Oyt O ugdapdys
T

— _W //EQ(U - Vus)(t, xp, z3)dzy, (5.71)

= _(272r)2 //1T2(U333U3)(t797h=x3)dxh’

where we have used the integration by parts and V -« = 0 at the last step.
Observe that d3py decays exponentially in x3, and in particular fooo |O5po(t, x3)|dzs < oo. The
integration yields

T3 9
po(t,z3) = po(t,0) —/ (@2 // (u303u3)(t, zn, y3)dzpdys.
0

Since py(t,0) is a free constant in .’IJ3, we fix po(t, x3) by choosing

t 0 2 / ﬂ U383U3 t xh,yg)dxhdyg < 00,
71'

po(t,x3) = (2727)2 /g: //T2 (u303u3)(t, x,y3)dzydys. (5.72)
7

such that



The pressure p is then recovered by

p(t, xn,x3) = po(t,x3) + Z pe(t, x3)e™ s, (5.73)
|€1>1,6€22

where po(t, 3) and pe(t, x3) are given in (5.72) and (5.70).
Now the pressure estimate follows readily from the velocity and vorticity estimates. To show (2.43),
we first note from (2.39) and (2.40) |po(t, x3)| < |us(t, )| [q |03us(t, z)|dz < 1 and from Lemma 8

2
19¢] S e MDY ([10iun % + 1€ Oius oo a1CO5uil00.1)
=1

Se ST IVl + Y IVl [ Y IViwlin + ICwnllson | | 5
0<|8I<1 1<|81<L2 0<|B8IL1

from which we deduce |p(t, x5, 73)| < 1. The estimation of 9;p and 9?p follows analogously.
For the decay estimates (2.44), we start with £ = 0 and = 0. Due to our choice of py(t,x3) in
(5.72), using (2.39) and (2.40), we have the spatial decay for po(t, x3):

lpo(t, z3)| S / //2(1 + <Z>,.;(y3))efmin(l’%)ygdxhdyg < k2o min(1,5)7s
T3 T

For £ # 0, we use another estimate for |g¢| and Lemma 8

3 _
ge@)| S Y0 3T e Nelemminh V(1 1 g ()| (Bmue)y (v)]
bm=inert (5.74)

3
< wmre Ml K7 N A Ghnug) (y)].
{m=1necZ2
from which we deduce that |pe(t,z3)| S k2~ min(15)7s Hence (2.44) holds for ¢ = 0 and 5 = 0.
For the pressure gradient estimate when |3| = 1, from (5.71) and (2.40) we first note

|03po(t, 23)| S SUPQ(\U?)Hasu:sD S (1 + ¢(3))e min2)es,
zpeT

For £ # 0, by (5.74) it is easy to see that |{p¢(t,z3)| S k- ze~min(L$)T3 Note that O3pe(t, x3) has
a similar integral form as |{|p¢(t,23) and the estimate follows in the same way, which results in
|03pe(t, x3)| S k~2e~min(15)7s This finishes (2.44) for £ = 0 and |B] = 1. The remaining cases for
¢ =1 and |5| = 0,1 can be treated in the same way.

For the decay estimate of 92p, we take into account the initial layer which occurs at 92w and Vo u.

First using (2.39), (2.40) and (2.41) we have

‘atng(t, .1“3)’ 5

S (1 + ¢ (z3) + %t(xg))e* min(l,%)z37
73

/ //z(usasatzu:«; + 0Puzdsuz + 20,u3930,u3)(t, T, y3)drsdys
x3 T



while for || # 0 we have

3 —
07ge)| S Y D e MeTlem m D (1 4 6 (1)) (D) (v)]

£m=1neZ?

— 3 ;
Smre MWlemmnUDU T RN A0y (v)],

2
i=1 £,;m=1nez?

from which we deduce (2.45).

The last estimate for 0fu for £ = 1,2 follows from the equation: dyu = knoAu — u - Vu — Vp and

0?u = kmoAdyu — u - VOu — Oyu - Vu — V.
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APPENDIX A. SOBOLEV EMBEDDING IN 1D

Often we have used a standard 1D embedding: For T > 0,

T T
()2 <r /0 lg(s)?ds + /0 1¢/(s)[2ds for t € [0,T].

A proof is based on an equality:

For 0 <t <T/2,

(2lao) +21s— 1l [ 1/(r)Par)ds
t

2 t+T/2 9 2 t-‘rT/Q s
— s ds—l—/ s—t/ '(7)2drds
5 ) laPast s [ s [T
t+T/2 t+T/2
[ leers e [ g o

t t

T T
<7 / lg(s)|2ds + / 19/(s)2ds.

For T/2 <t < T, using

IA
@‘ —
)
ﬁ

Jr
~
~
[\

IN

o0 =75 [ (o= [ o mrar)as
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we derive that

IN

\@\Ms\

/ 2]g (s)]? +2‘/ ds
T/2
t
/ s)]| ds+T/ g’ (5)|*ds
T/2 t—T/2

T
s)| ds+/ g’ (5)|ds.
0
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