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ABSTRACT. We address the Mach limit problem for the Euler equations in an exterior domain with analytic boundary.
We first prove the existence of tangential analytic vector fields for the exterior domain with constant analyticity radii, and
introduce an analytic norm in which we distinguish derivatives taken from different directions. Then we prove the uniform
boundedness of the solutions in the analytic space on a time interval independent of the Mach number, and Mach limit
holds in the analytic norm. The results extends more generally to Gevrey initial data with convergence in a Gevrey norm.
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1. Introduction

In this paper, we consider the Mach number limit for the compressible Euler equations for non-isentropic fluids
with initial data and domains in an analytic or a Gevrey class. We address the problem of convergence in these
strong norms under general assumptions on the data and the domain.

The incompressible limit concerns the passage from compressible fluids to incompressible fluids as the Mach
number tends to zero. The first rigorous result on this singular limit problem can be traced back to Klainerman and
Majda [KM1] (see also Ebin [E]), with a great deal of activity and progress in recent decades [A1, A3, A2, D1, D2,
DG, DM, F, FN, H, LMa, M, As, FKM, I, Is1, Is2, Is3, KM2, MS, S1, S2, U]. A general approach to this problem
is to first prove the existence of solutions on some time interval independent of the Mach number and then to show
the convergence to solutions of the limiting equations when the Mach number tends to zero. A key ingredient in
establishing a uniform time interval is a uniform upper bound, while in showing the convergence, the most critical
issue is the vanishing of the acoustic waves. It is well-known that the analysis depends on various settings such as
isentropic vs. non-isentropic, inviscid vs. viscous, well-prepared data vs. general data, or the whole space vs. domain
with a boundary.

For the non-isentropic problem with general data, the non-isentropic Euler flows feature intriguing wave-
transport structure, and the coefficients of governing equations (for instance, see E in (2.4) and (2.5)) depend on the
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dependent variables, which makes the low Mach number limit a difficult problem. Métivier and Schochet in [MS]
gave the first satisfactory answer by making use of the microlocal defect measure, and Alazard in [A1] extended the
existence result to the case of domains with boundary and the convergence result for exterior domains. Both results
were obtained in Sobolev spaces. In a recent work [JKL], we studied the non-isentropic problem with general
analytic or Gevrey initial data in R3 and proved that the convergence holds in these strong norms.

The goal of this paper is to extend our previous results on analytic/Gevrey convergence in the zero Mach limit
from [JKL] to the more difficult case of the domain with boundary. We adopt the configuration of an exterior
domain since it is the domain where the Mach limit was established with convergence holding in Sobolev spaces
(cf. [A1]). Some of the results in this paper, in particular the uniform bounds, however hold also for a bounded
domain. One of the main difficulties in our approach is the existence of a complete family of analytic vector
fields which respect to the boundary condition vε · ν|∂Ω = 0. In Theorem 3.1 below, we construct a family of
tangential analytic vector fields for the exterior domain with constant analyticity radii. The existence of a family of
complete tangential analytic vector fields was established by Komatsu in [K] for the case of a bounded domain. The
completeness refers to the fact that the vector fields span the tangential space in the closure of the domain. In our
proof of analytic boundedness, we require for the tangential fields to span only in a neighborhood of the boundary. In
order to construct the necessary tangential fields, we use interior analytic hypoellipticity for the Dirichlet problem
(cf. [LM]) and analytic regularization by the heat kernel. As an additional benefit, we obtain a low number of
tangential vector fields (three) needed for the construction. In order to obtain uniform boundedness in analytic
spaces, we first establish boundedness of the entropy, divergence, followed by then normal and tangential derivative
reduction schemes for the velocity. The normal and tangential derivatives can be reduced by using elliptic regularity,
which leads to the estimates of divergence component, curl component, pure time derivatives, commutators, and
lower-order terms associated to the boundary. In order to obtain that the Mach limit holds, we need to change the
approach from [JKL, Section 7] since the interpolation inequality used there results in boundary terms which cannot
be handled. Instead, we use a simpler interpolation inequality (8.1) and a discrete dominated convergence theorem.
As a byproduct of the Mach convergence, we obtain the analyticity of solutions of the stratified incompressible Euler
equation in an exterior (or bounded) domain. For the unstratified version of the Euler equations, the analyticity was
proven in [KV2] using different methods.

The paper is organized as follows. In Section 2, we recall from [MS, A1] symmetrization of the compressible
Euler equations. In Section 3, we construct the tangential vector fields for the exterior domain and state the main
results. The a priori estimate needed for the uniform analytic boundedness, stated in Lemma 3.5, is given at the
end of Section 6 and relies on the bounds on entropy and the velocity given in previous sections. The proof of the
second main theorem is given in Section 8. We emphasize that the construction of the system of analytic tangential
fields also applies to the case of a bounded domain; only when proving the Mach limit convergence, we rely on the
fact that the domain is external. All considerations also apply in the Gevrey norm, or more generally to the spaces
used in the book by Lions and Magenes [LM]. The approach in this paper benefits from ideas in [CKV]. For other
approaches to analyticity, we refer to [B, BB, Bi, BF, BGK, BoGK, DE, DL, FT, G, GK, KV1, KP, LO, OT].

2. The setting and notation

We address the incompressible limit for classical solutions of the compressible Euler equations for non-isentropic
fluids in an exterior domain Ω ⊆ R3 with analytic boundary ∂Ω. More specifically, we consider the compressible
Euler equations for an inviscid, non-isentropic fluid

∂tρ+ v · ∇ρ+ ρ∇ · v = 0, (2.1)

ρ (∂tv + v · ∇v) +∇P = 0, (2.2)

∂tS + v · ∇S = 0, (2.3)

where ρ : Ω× [0, T )→ R+ is the density, v : Ω× [0, T )→ R3 is the velocity, P : Ω× [0, T )→ R+ is the pressure,
and S : Ω× [0, T )→ R is the entropy of the fluid. To close the system (2.1)–(2.3), we assume the equation of state

P = P (ρ, S).
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For instance, in the case of ideal gas the equation of state reads

P (ρ, S) = ργeS ,

where γ > 1 is the adiabatic exponent. After some rescalings and a change of variables (cf. [MS, A1]), we consider
the symmetrized version of the compressible Euler equations for non-isentropic fluids

E(S, εu)(∂tu+ v · ∇u) +
1

ε
L(∂x)u = 0, (2.4)

∂tS + v · ∇S = 0, (2.5)

where u = (p, v)T and

E(S, εu) =

(
a(S, εu) 0

0 r(S, εu)I3

)
, L(∂x) =

(
0 div
∇ 0

)
.

The parameter ε > 0 represents the Mach number. In agreement with the equation of state of the ideal gas, we adopt
the assumption

a(S, εu) = f1(S)g1(εu)

and

r(S, εu) = f2(S)g2(εu),

where f1, f2, g1, and g2 are positive entire real-analytic functions. We impose the impermeability boundary condi-
tion

v · ν|∂Ω = 0. (2.6)

Due to presence of the boundary, we also require some compatibility conditions. Since the matrix E(S, εu) is
invertible, we obtain

∂tv = −v · ∇v +
1

εr
∇p. (2.7)

Differentiating (2.7) with respect to time recursively, we get

∂kt v(0) = Ak(u(0), S(0)),

for some functions Ak, where k ∈ N0. We say that the initial data satisfy the compatibility condition of all orders if

ν ·Ak(u(0), S(0))|∂Ω = 0, k ∈ N0.

One may readily check that the above condition is satisfied in the smooth or non-analytic Gevrey case for initial data
(pε0, v

ε
0, S

ε
0) vanishing in a neighborhood of the boundary ∂Ω.

3. Analytic vector field in an exterior domain and the main results

Assume that Ω ⊆ R3 is an exterior domain, located on one side of its nonempty, compact, and analytic bound-
ary ∂Ω. Denote by d = d(x) the signed distance function to the boundary ∂Ω, taking positive values inside Ω and
negative values outside Ω. Since ∂Ω is smooth, we have

∇d = −ν(x) on ∂Ω, (3.1)

where ν is the unit outward normal vector. Moreover, the signed distance function is a real-analytic function in a
neighborhood of the boundary ∂Ω. Namely, we may extend ν with the formula (3.1) to a neighborhood

Ωδ0 = {x ∈ Ω: d(x) < δ0}

of the boundary ∂Ω such that
∞∑
l=0

∑
|α|=l

ηl

(l − 3)!
‖∂αν‖L∞(Ωδ0 ) . 1, (3.2)

for some constants δ0, η > 0.
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3.1. Analytic vector fields. A vector field X is tangential to ∂Ω if Xd = 0 on ∂Ω. Such X may be restricted
to ∂Ω by Xf = (Xf̃)|∂Ω for f ∈ C∞(∂Ω), where f̃ ∈ C∞(Ω̄) is an arbitrary extension of f . In fact, if f̃ vanishes
on ∂Ω, then there exists g̃ ∈ C∞(Ω̄) such that f̃ = g̃d near ∂Ω.

Existence of global analytic vector fields in a bounded domain in R3 has been proven in Komatsu [K]. Here we
construct a family of tangential fields for an exterior domain Ω ⊆ R3. An additional benefit from the construction
is that we only need three tangential vector fields (which is the minimum possible by the hairy ball theorem).

THEOREM 3.1. There exist analytic vector fields X0, T1, T2, T3 defined globally on Ω̄ with the following prop-
erties.

1. The fields T1, T2, T3 are tangential to ∂Ω, with

Tj =
3∑
i=1

bij(x)∂i, 1 ≤ j ≤ 3, (3.3)

where the coefficients bij(x) are real-analytic functions with constant analyticity radii, i.e.,

|∂αbij(x)| . C |α||α|!, x ∈ Ω̄, α ∈ N3
0,

for 1 ≤ i, j ≤ 3.
2. There exists η0 > 0, such that the partial derivatives may be expressed as

∂

∂xk
= ξk(x)X0 +

3∑
j=1

ηjk(x)Tj , 1 ≤ k ≤ 3 (3.4)

on Ω̄η0 , for some analytic coefficients ξk(x) and ηjk(x), with 1 ≤ j, k ≤ 3.

The same proof works in all space dimensions, with a change in the number of vector fields. If the dimension
is n, then the number of tangential fields becomes n(n− 1)/2.

In the proof of the above proposition, we also need the following statement, which follows from [LM, Theo-
rem 8.1.3].

LEMMA 3.2. (Local analytic hypoellipticity) Let Ω be an exterior domain in R3 with analytic boundary, and
let R0 > 0 be such that

BR0/2 ⊇ ∂Ω.

Assume that f satisfies

|∂αf(x)| ≤MR|α||α|!, α ∈ N3
0, x ∈ B2R0

∩ Ω̄, (3.5)

for some constants M,R > 0, and suppose that ψ solves

(−∆ + 1)ψ = f in Ω (3.6)

ψ = 0 on ∂Ω. (3.7)

Then we have

|∂αψ(x)| ≤ C(M + ‖ψ‖L2(B2R0
∩Ω))(CR)|α||α|!, α ∈ N3

0, (3.8)

for x ∈ BR0 ∩ Ω̄, where C depends on ∂Ω and R0.

This statement also applies to the case Ω = R3, in which case we refer to it as the interior hypoellipticity. It
follows directly from [LM, Theorem 8.1.3].

We say that ψ : Ω̄→ R is a globally defining function if ψ ∈ C1 and

ψ|∂Ω = 0 and ∇ψ|∂Ω 6= 0.
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PROOF OF THEOREM 3.1. First we construct globally defining functions which have constant analyticity radii.
Let R0 ≥ 4 be a radius such that Ωc b BR0/2. We pick an arbitrary globally defining function d0 ∈ C∞(R3) which
is compactly supported in BR0

and it satisfies

∇d0|∂Ω 6= 0. (3.9)

For ε ∈ (0, 1], we define dε : R3 → R by

dε(x) =

∫
R3

H(x− y, ε)d0(y)dy, x ∈ R3, (3.10)

where H : R3 × R→ R is the heat kernel. Consider the Dirichlet problem (3.6)–(3.7) with f = fε = (−∆ + 1)dε.
Since fε satisfies (3.5), it follows from Lemma 3.2 that the solution ψε of (3.6)–(3.7) satisfies (3.8) for x ∈ BR0 ∩ Ω̄;
note that ‖ψε‖L2(Ω) is uniformly bounded in ε ∈ (0, 1]. In order to obtain (3.8) for remaining x, we consider (3.6)–
(3.7) with fε = (−∆ + 1)dε and the version of Lemma 3.2 with Ω = R3. Fix any y ∈ R3 \BR0

. Since fε satisfies
(3.5) in B2(y), Lemma 3.2 implies that the solution ψε of (3.6) satisfies (3.8) for all x ∈ B1(y). Thus, we obtain

|∂αψε(x)| ≤ CM(CR)|α||α|!, α ∈ N3
0, x ∈ Ω̄. (3.11)

By (3.9)–(3.10) and continuity, we infer that

∇ψε|∂Ω 6= 0,

for sufficiently small ε > 0, which implies that ψε is a globally defining function.
Next, we pick an arbitrary globally defining function ψ satisfying (3.11). Choose η0 > 0 so that ∇ψ 6= 0

on Ω̄η0 . For 1 ≤ j, k ≤ 3, we set

X0 =
3∑
i=1

∂ψ

∂xi

∂

∂xi
and Tjk =

∂ψ

∂xj

∂

∂xk
− ∂ψ

∂xk

∂

∂xj
. (3.12)

Since ψ ∈ C∞(Ω̄) vanishes on ∂Ω, there exists some g̃ ∈ C∞(Ω̄) such that ψ = g̃d near ∂Ω. For 1 ≤ j, k ≤ 3, we
compute

Tjkd =
∂(g̃d)

∂xj

∂d

∂xk
− ∂(g̃d)

∂xk

∂d

∂xj

= d

(
∂g̃

∂xj

∂d

∂xk
− ∂g̃

∂xk

∂d

∂xj

)
+ g̃

(
∂d

∂xj

∂d

∂xk
− ∂d

∂xk

∂d

∂xj

)
= 0, on ∂Ω,

which implies that Tjk are tangential vector fields, and thus (3.3) is proven. From (3.12), we have

∂ψ

∂xk
X0 +

3∑
j=1

∂ψ

∂xj
Tjk = |∇ψ|2 ∂

∂xk
,

for 1 ≤ k ≤ 3. Thus (3.4) follows since ∇ψ 6= 0 on Ω̄η0 . To show that one may choose only three rather than nine
tangential fields, note that Tjk = −Tkj for 1 ≤ j, k ≤ 3, and thus also T11 = T22 = T33 = 0. �

3.2. Main results. Let Ω ⊆ R3 be an exterior domain with an analytic boundary ∂Ω. We assume that the
initial data (pε0, v

ε
0, S

ε
0) satisfies

‖(pε0, vε0, Sε0)‖H5(Ω) ≤M0 (3.13)

and
∞∑
j=0

τ
(j−3)+
0

(j − 3)!
‖∂jx(pε0, v

ε
0, S

ε
0)‖L2(Ω) ≤M0, (3.14)
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for some fixed constants τ0,M0 > 0. It can be shown, analogously to Lemma 4.7 below, that (3.14) implies
∞∑
j=0

∞∑
k=0

τ̄
(j+k−3)+
0

(j + k − 3)!
‖∂jxTk(pε0, v

ε
0, S

ε
0)‖L2(Ω) ≤ Q(M0), (3.15)

for some function Q and some constant τ̄0 > 0. In (3.14)–(3.15) and below, we use T = (T1, T2, T3) to denote the
tangential vector fields from Theorem 3.1, and use ∂x = (∂1, ∂2, ∂3) to denote the gradient. We adopt the following
agreement for the iterative derivatives Tk and ∂jx. The symbol Tk is understood in the tensorial sense, i.e., Tk

stands for the list of all possible operators Tβ1
· · ·Tβk , where βi ∈ {1, 2, 3} for 1 ≤ i ≤ k. We also adopt the same

agreement for ∂jx.
For τ > 0, we define the mixed weighted analytic space

A(τ) = {u ∈ C∞(Ω): ‖u‖A(τ) <∞},

where

‖u‖A(τ) =
∑

(j,k,i)∈N3
0

κ(j−1)+ κ̄kτ(t)(j+k+i−3)+

(j + k + i− 3)!
‖∂jxTk(ε∂t)

iu‖L2(Ω); (3.16)

here τ ∈ (0, 1] represents the mixed space-time analyticity radius, while κ and κ̄, where 0 < κ ≤ κ̄ ≤ 1 are
parameters which represent the balances of radii in different directions. In (3.16) and below we use the convention
n! = 1 for n ∈ −N. We show in Section 7 that (3.15) implies, regardless of the choices of κ ∈ (0, 1] and κ̄ ∈ (0, 1],
that we have

‖(p0, v0, S0)‖A(τ̃0) ≤ Q(M0),

for some function Q, where τ̃0 = τ̄0/Q(M0) represents the mixed space-time analyticity radius. Note that the time
derivatives of the initial data are defined iteratively by differentiating the equations (2.4)–(2.5) and then evaluating
at t = 0. The analyticity radius function is defined as

τ(t) = τ(0)−Kt, (3.17)

where τ(0) ≤ min{1, τ̃0} is a sufficiently small parameter (different from τ̃0), and K ≥ 1 is a sufficiently large
parameter, both to be determined below.

Our first main theorem provides a uniform in ε boundedness of the analytic norm on a time interval independent
of ε.

THEOREM 3.3. Let Ω ⊆ R3 be an exterior domain with analytic boundary ∂Ω. We assume that the initial data
(pε0, v

ε
0, S

ε
0) satisfies (3.13)–(3.14) for some fixed constants M0, τ0 > 0. Also, suppose that (pε0, v

ε
0, S

ε
0) satisfies

compatibility condition of all orders. Then there exist sufficiently small constants κ, κ̄, τ(0), ε0, T0 > 0, depending
on M0, such that

‖(pε, vε, Sε)(t)‖A(τ) ≤M, 0 < ε ≤ ε0, t ∈ [0, T0],

where τ is as in (3.17) and K and M are sufficiently large constants depending on M0.

We note that the same statement and the proof apply to the case of a bounded domain.
The second main result states that the solutions of (2.4)–(2.5) converge to the solution of the stratified incom-

pressible Euler equations

r(S, 0)(∂tv + v · ∇v) +∇π = 0, (3.18)

div v = 0, (3.19)

∂tS + v · ∇S = 0, (3.20)

as ε→ 0. We define the spatial analytic space

X(δ) = {u ∈ C∞(Ω): ‖u‖X(δ) <∞},
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where

‖u‖X(δ) =
∞∑
j=0

δ(j−3)+

(j − 3)!
‖∂jxu‖L2(Ω),

for some constant δ > 0.

THEOREM 3.4. Let Ω ⊆ R3 be an exterior domain with an analytic boundary. Assume that the initial data
(pε0, v

ε
0, S

ε
0) satisfy (3.13)–(3.14) uniformly for fixed τ0,M0 > 0 and the compatibility condition of all orders. Also,

suppose that (vε0, S
ε
0) converge to (v0, S0) in H3(Ω), with Sε0 decaying in the sense of

|Sε0(x)| . |x|−1−ζ , and |∇Sε0(x)| . |x|−2−ζ ,

for 0 < ε ≤ ε0 and some constant ζ > 0. Then (vε, pε, Sε) converges to (v(inc), 0, S(inc)) ∈ L∞([0, T0], X(δ))

in L2([0, T0], X(δ)), where δ ∈ (0, τ0] is a sufficiently small constant and (v(inc), S(inc)) is the solution to (3.18)–
(3.20) with the initial data (w0, S0), and w0 is the unique solution of

divw0 = 0,

curl(r0w0) = curl(r0v0),

with r0 = r(S0, 0).

In the rest of the paper, we omit the superscript ε, and write S, u, and v for Sε, uε, and vε. The constant C
and the function Q denote a generic constant and a positive increasing function, respectively, which depend only on
M0, τ0, and the exterior domain Ω; they may vary from an inequality to an inequality. The domain of dependence
in the norms is understood to be Ω unless stated otherwise. We write a . b if there exists a constant C > 0 such
that a ≤ Cb.

In order to prove Theorem 3.3, we establish analytic a priori estimates of the entropy S and the (modified)
velocity u. The a priori estimate needed to prove Theorem 3.3 is the following.

LEMMA 3.5. Let M0, τ0 > 0. For sufficiently small parameters κ and κ̄ satisfying 0 < κ ≤ κ̄ ≤ 1, there exist
constants τ1, ε0, T0 > 0, and a nonnegative continuous function Q such that for all ε ∈ (0, ε0], the norm

Mε,κ,κ̄(T ) = sup
t∈[0,T ]

(‖S(t)‖A(τ(t)) + ‖u(t)‖A(τ(t)))

satisfies the estimate

Mε,κ,κ̄(t) . 1 + (t+ κ+ κ̄+ ε+ τ(0))Q(Mε,κ,κ̄(t)),

for t ∈ (0, T0] and τ(0) ∈ (0, τ1], provided

K ≥ Q(Mε,κ,κ̄(T0)) (3.21)

holds, where τ and K are as in (3.17).

The constant K in (3.21) depends on M , which implies that K eventually depends on M0. In the rest of the
paper, we work on an interval of time such that

T0 ≤
τ(0)

2K
. (3.22)

Thus from (3.17) we have τ(0)/2 ≤ τ(t) ≤ τ(0) for t ∈ [0, T0].
For the proof of Theorem 3.3 given Lemma 3.5, cf. [JKL]. Sections 4–6 are devoted to the proof of Lemma 3.5,

thus completing the proof of Theorem 3.3.
By [A1, Theorem 1.1] the H5 norm of (p, v, S) can be estimated by a constant on a time interval [0, T0], where

T0 only depends on the H5 norm of the initial data. Thus we may assume

sup
(j,k,i)∈N3

0,0≤j+k+i≤5

‖∂jxTk(ε∂t)
i(p, v, S)(t)‖L2 . 1, t ∈ [0, T0], ε ∈ (0, 1]. (3.23)
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In particular, if F is a smooth function of u and S, then there exists a constant C > 0 depending on the function F
such that

‖F (εu(t), S(t))‖L∞ . 1, t ∈ [0, T0], ε ∈ (0, 1].

In the rest of the paper, we work on the time interval [0, T ] where 0 < T ≤ T0.

4. Derivative reductions for the velocity

Here we introduce the normal and tangential derivative reduction schemes for the velocity. Throughout this
section, we assume that Ω is an exterior domain with analytic boundary and the vector field v satisfies

v · ν|∂Ω = 0, (4.1)

where ν is the unit outward normal vector to the boundary ∂Ω.

4.1. Normal derivative reduction. We start with the normal derivative reduction.

LEMMA 4.1. For j ≥ 2, we have

‖∂jxTk(ε∂t)
iv‖L2 . ‖∂j−1

x Tk(ε∂t)
i div v‖L2 + ‖∂j−1

x Tk(ε∂t)
i curl v‖L2 + ‖∂j−2

x Tk+1(ε∂t)
iv‖H1

+ ‖∂j−2
x Tk(ε∂t)

iv‖L2 + ‖∂j−1
x [Tk, div](ε∂t)

iv‖L2

+ ‖∂j−1
x [Tk, curl](ε∂t)

iv‖L2 + ‖[T, ∂j−2
x ]Tk(ε∂t)

iv‖H1 .

(4.2)

For j = 1 and k = 0, we have

‖∂x(ε∂t)
iv‖L2 . ‖(ε∂t)i div v‖L2 + ‖(ε∂t)i curl v‖L2 + ‖(ε∂t)iv‖L2 . (4.3)

In order to prove this statement, we use a form of H2 regularity for the Laplacian.

LEMMA 4.2. Let Ω be an exterior domain in R3 with a smooth boundary ∂Ω. Then

‖v‖H2(Ω) . ‖∆v‖L2(Ω) + ‖Tv‖H1(Ω) + ‖v‖L2(Ω), (4.4)

for all v ∈ H2(Ω).

In the proof of Lemma 4.1, we also need the following classical div-curl estimate due to Bourguignon and
Brezis.

LEMMA 4.3. ([BoB]) Let Ω be an exterior domain in R3 with analytic boundary ∂Ω and outward unit normal
vector ν. Then there exists a constant C > 0 such that

‖∇v‖L2(Ω) . ‖ div v‖L2(Ω) + ‖ curl v‖L2(Ω) + ‖v · ν‖H1/2(∂Ω) + ‖v‖L2(Ω), (4.5)

for all v ∈ H1(Ω).

PROOF OF LEMMA 4.2. Using the H2 regularity for the Laplace equation

‖v‖H2(Ω) . ‖∆v‖L2(Ω) + ‖v‖H3/2(∂Ω),

combined with the trace theorem, we arrive at

‖v‖H2(Ω) . ‖∆v‖L2(Ω) + ‖Tv‖H1(Ω) + ‖v‖L2(Ω),

concluding the proof of (4.4). �

PROOF OF LEMMA 4.1. Let j ≥ 2. Appealing to the H2 regularity (4.4), we obtain

‖∂jxTk(ε∂t)
iv‖L2(Ω) . ‖∆∂j−2

x Tk(ε∂t)
iv‖L2(Ω) + ‖T∂j−2

x Tk(ε∂t)
iv‖H1(Ω) + ‖∂j−2

x Tk(ε∂t)
iv‖L2(Ω),
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from where we obtain by using the vector calculus identity ∆v = ∇ div v − curl curl v the inequality

‖∂jxTk(ε∂t)
iv‖L2(Ω) . ‖ div ∂j−2

x Tk(ε∂t)
iv‖Ḣ1(Ω) + ‖ curl ∂j−2

x Tk(ε∂t)
iv‖Ḣ1(Ω)

+ ‖T∂j−2
x Tk(ε∂t)

iv‖H1(Ω) + ‖∂j−2
x Tk(ε∂t)

iv‖L2(Ω)

. ‖∂j−2
x Tk(ε∂t)

i div v‖Ḣ1(Ω) + ‖∂j−2
x Tk(ε∂t)

i curl v‖Ḣ1(Ω)

+ ‖∂j−2
x Tk+1(ε∂t)

iv‖H1(Ω) + ‖∂j−2
x Tk(ε∂t)

iv‖L2(Ω)

+ ‖∂j−1
x [Tk, div](ε∂t)

iv‖L2(Ω) + ‖∂j−1
x [Tk, curl](ε∂t)

iv‖L2(Ω)

+ ‖[T, ∂j−2
x ]Tk(ε∂t)

iv‖H1(Ω),

and (4.2) follows. On the other hand, the inequality (4.3) follows from the elliptic regularity (4.5) and the boundary
condition (4.1). �

4.2. Tangential derivative reduction. The following lemma allows us to reduce the number of tangential
derivatives.

LEMMA 4.4. For j = 1 and k ≥ 1, we have

‖∂xTk(ε∂t)
iv‖L2(Ω) . ‖Tk(ε∂t)

i div v‖L2(Ω) + ‖Tk(ε∂t)
i curl v‖L2(Ω) + ‖Tk(ε∂t)

iv‖L2(Ω)

+
k∑
l=1

(
k

l

)(
‖∂xTk−l(ε∂t)

iv‖L2(Ω)‖Tlν‖L∞(Ωδ0 )

+ ‖Tk−l(ε∂t)
iv‖L2(Ω)‖∂xTlν‖L∞(Ωδ0 ) + ‖Tk−l(ε∂t)

iv‖L2(Ω)‖Tlν‖L∞(Ωδ0 )

)
+ ‖[Tk, div](ε∂t)

iv‖L2(Ω) + ‖[Tk, curl](ε∂t)
iv‖L2(Ω).

(4.6)

Note that when j = 0 and k ≥ 1, we may simply use

‖Tk(ε∂t)
iv‖L2(Ω) . ‖∂xTk−1(ε∂t)

iv‖L2(Ω) (4.7)

and apply (4.6) with the reduced k.

PROOF OF LEMMA 4.4. For j = 1 and k ≥ 1, we appeal to (4.5) and obtain

‖∂xTk(ε∂t)
iv‖L2(Ω) . ‖ divTk(ε∂t)

iv‖L2(Ω) + ‖ curlTk(ε∂t)
iv‖L2(Ω)

+ ‖Tk(ε∂t)
iv · ν‖H1/2(∂Ω) + ‖Tk(ε∂t)

iv‖L2(Ω).
(4.8)

Now, note that

Tk(ε∂t)
iv · ν = Tk(ε∂t)

i(v · ν)−
k∑
l=1

(
k

l

)
Tk−l(ε∂t)

iv ·Tlν,

with the first term on the right side vanishing by (4.1). Thus we get

‖Tk(ε∂t)
iv · ν‖H1/2(∂Ω) ≤

k∑
l=1

(
k

l

)
‖Tk−l(ε∂t)

iv ·Tlν‖H1/2(∂Ω).

Extending the unit normal vector to Ωδ0 as in Section 3, and using the trace theorem, we obtain

‖Tk−l(ε∂t)
iv ·Tlν‖H1/2(∂Ω) . ‖Tk−l(ε∂t)

iv ·Tlν‖H1(Ωδ0 ).

By the Leibniz rule and Hölder’s inequality, we conclude that

‖Tk−j(ε∂t)
iv ·Tjν‖H1(Ωδ0 )

≤ ‖∂xTk−j(ε∂t)
iv‖L2(Ω)‖Tjν‖L∞(Ωδ0 ) + ‖Tk−j(ε∂t)

iv‖L2(Ω)‖∂xTjν‖L∞(Ωδ0 )

+ ‖Tk−j(ε∂t)
iv‖L2(Ω)‖Tjν‖L∞(Ωδ0 ).

(4.9)
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Combining (4.8)–(4.9), we then obtain (4.6). �

4.3. Commutator estimates. Here we recall a Leibniz formula for k-folded commutators. Given two linear
differential operators Y , Z, the adjoint operator ad Y (Z) is defined as

adY (Z) = [Y,Z] = Y Z − ZY.

Recall a Leibniz-type formula

[Tk, Z] =
k∑

m=1

(
k

m

)
((adT)m(Z))Tk−m, k ∈ N (4.10)

from [CKV, Lemma 3.4], which holds for any differential operator Z. From [K, Lemma 5.3], we also recall an
analytic estimate for the adjoint operator.

LEMMA 4.5 ([K]). Let Y1, . . . , Ym and Y0 be analytic vector fields defined on Ω ⊆ R3 such that

Yn =
3∑
i=1

ain∂i, n = 0, 1, . . . ,m,

where

max
|α|=k

|∂αain| . k!Kk
1 , i = 1, 2, 3, n = 0, 1, . . . ,m, k ∈ N0,

for some K1 ≥ 1. Then there exists K̄1, K̄2 ≥ 1 such that

(adYm . . . adY1)(Y0) =

3∑
i=1

bim∂i,

where

max
|α|=k

|∂αbim| . (k +m)!K̄k
1 K̄

m
2 ,

for i = 1, 2, 3 and k ∈ N0.

In the following lemma, we derive commutator estimates for various spatial derivative operators.

LEMMA 4.6. There exists a constant K̄ ≥ 1 such that

‖∂jx[Tk, div](ε∂t)
iv‖L2 .

k∑
k′=1

j∑
j′=0

(
k

k′

)(
j

j′

)
(j′ + k′)!K̄j′+k′‖∂j−j

′+1
x Tk−k′(ε∂t)

iv‖L2 , (4.11)

‖∂jx[Tk,∇](ε∂t)
iv‖L2 .

k∑
k′=1

j∑
j′=0

(
k

k′

)(
j

j′

)
(j′ + k′)!K̄j′+k′‖∂j−j

′+1
x Tk−k′(ε∂t)

iv‖L2 , (4.12)

‖∂jx[Tk, curl](ε∂t)
iv‖L2 .

k∑
k′=1

j∑
j′=0

(
k

k′

)(
j

j′

)
(j′ + k′)!K̄j′+k′‖∂j−j

′+1
x Tk−k′(ε∂t)

iv‖L2 , (4.13)

‖∂jx[∂kx ,T]Tl(ε∂t)
iv‖L2 .

k∑
k′=1

j∑
j′=0

(
k

k′

)(
j

j′

)
(j′ + k′)!K̄j′+k′‖∂k−k

′+j−j′+1
x Tl(ε∂t)

iv‖L2 , (4.14)

for i, j, l ∈ N0 and k ∈ N.

PROOF OF LEMMA 4.6. By (4.10), we have the expansion

[Tk, div]v =
3∑
s=1

[Tk, ∂s]vs =
3∑
s=1

k∑
k′=1

(
k

k′

)
((adT)k

′
(∂s))T

k−k′vs.
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Using Theorem 3.1 and Lemma 4.5, we obtain

(adT)k
′
(∂s) =

3∑
l=1

blk′,s∂l, k′ ∈ N, s ∈ {1, 2, 3}, (4.15)

where

max
|β|=k

|∂βblk′,s| . (k + k′)!K̄k
1 K̄

k′

2 , k ∈ N0, k′ ∈ N, s, l ∈ {1, 2, 3}, (4.16)

for some constants K̄1, K̄2 ≥ 1. From the expression (4.15) and the Leibniz rule, we arrive at

∂jx[Tk, div](ε∂t)
iv = ∂jx

3∑
s=1

k∑
k′=1

3∑
l=1

(
k

k′

)
blk′,s∂lT

k−k′(ε∂t)
ivs

=
3∑
s=1

k∑
k′=1

3∑
l=1

j∑
j′=0

(
k

k′

)(
j

j′

)
∂j
′

x b
l
k′,s∂

j−j′
x ∂lT

k−k′(ε∂t)
ivs.

Using (4.16), we obtain

‖∂jx[Tk, div](ε∂t)
iv‖L2 .

3∑
s=1

k∑
k′=1

j∑
j′=0

3∑
l=1

(
k

k′

)(
j

j′

)
‖∂j

′

x b
l
k′,s∂

j−j′+1
x T k−k

′
(ε∂t)

ivs‖L2

.
k∑

k′=1

j∑
j′=0

(
k

k′

)(
j

j′

)
(j′ + k′)!K̄j′

1 K̄
k′

2 ‖∂j−j
′+1

x T k−k
′
(ε∂t)

iv‖L2 ,

and (4.11) follows by setting K̄ ≥ max(K̄1, K̄2).
The proofs of (4.12)–(4.14) are analogous. �

The next lemma provides an analytic estimate for the unit normal vector to the boundary.

LEMMA 4.7. There exists a constant η̃ > 0 such that

∞∑
j=0

∞∑
k=0

η̃j+k

(j + k − 3)!
‖∂jxTkν‖L∞(Ωδ0 ) . 1, (4.17)

where ν is the unit normal vector to the boundary satisfying (3.2).

PROOF OF LEMMA 4.7. We claim that there exists a constant η̄ > 0, such that for all k ∈ N0, we have

∞∑
j=0

η̄j+k

(j + k − 3)!
‖∂jxTkν‖L∞(Ωδ0 ) ≤ Ck+1

0 , (4.18)

for some constant C0 ≥ 1. In (4.18), we then choose η̃ = η̄/2C0 to get

∞∑
j=0

∞∑
k=0

η̃j+k

(j + k − 3)!
‖∂jxTkν‖L∞(Ωδ0 ) ≤

∞∑
j=0

∞∑
k=0

η̄j+k

2kCk0 (j + k − 3)!
‖∂jxTkν‖L∞(Ωδ0 ) . 1,

obtaining (4.17). In the remainder of the proof, we proceed by induction to prove (4.18) for all k ∈ N0.
Firstly, we use (3.2) to obtain (4.18) for k = 0 by taking η̄ = η. Now we assume that (4.18) holds for some

k ∈ N0 and aim to show that it also holds for k+ 1. Using (3.3), the Leibniz rule, and Hölder’s inequality, we arrive
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at
∞∑
j=0

η̄j+k+1

(j + k − 2)!
‖∂jxTk+1ν‖L∞(Ωδ0 )

≤ C
3∑
i=1

3∑
l=1

∞∑
j=0

j∑
j′=0

(
j

j′

)
η̄j+k+1

(j + k − 2)!
‖∂j

′

x bil‖L∞(Ωδ0 )‖∂j−j
′+1

x Tkν‖L∞(Ωδ0 )

≤ C
∞∑
j=0

j∑
j′=0

η̄j
′
Cj
′ j!(j − j′ + k − 2)!

(j − j′)!(j + k − 2)!
×

(
η̄j−j

′+k+1

(j − j′ + k − 2)!
‖∂j−j

′+1
x Tkν‖L∞(Ωδ0 )

)

≤ C
∞∑

j′′=1

η̄j
′′+k

(j′′ + k − 3)!
‖∂j

′′

x Tkν‖L∞(Ωδ0 ) ×
∞∑

j=j′′−1

(C1η̄)j+1−j′′ j!(j′′ + k − 3)!

(j′′ − 1)!(j + k − 2)!
,

(4.19)

where C1 ≥ 1 is a constant. Note that the sum in j is dominated by a constant C uniformly for all j′′, k ∈ N0, by
taking η̄ ≤ 1/2C1. Thus from (4.19) and the induction hypothesis for k, we have

∞∑
j=0

η̄j+k+1

(j + k − 2)!
‖∂jxTk+1ν‖L∞(Ωδ0 ) ≤ CCk+1

0 ,

concluding the proof of (4.18) for k + 1 by simply taking C0 ≥ C. �

5. Analytic estimate of the entropy

The following lemma provides an analytic estimate for the entropy S.

LEMMA 5.1. Let M0 > 0. For any κ, κ̄ ∈ (0, 1], there exists τ1 ∈ (0, 1] such that if 0 < τ(0) ≤ τ1, then

‖S(t)‖A(τ(t)) . 1 + tQ(Mε,κ,κ̄(t)), t ∈ (0, T0], (5.1)

for all ε ∈ (0, 1], provided K in (3.17) satisfies

K ≥ Q(Mε,κ,κ̄(T0)),

where T0 > 0 is a sufficiently small constant depending on M0.

PROOF OF LEMMA 5.1. Let

τ1 = κ4. (5.2)

Now, we fix (j, k, i) ∈ N3
0, apply ∂jxT

k(ε∂t)
i to the equation (2.5), and take theL2-inner product with ∂jxT

k(ε∂t)
iS,

obtaining

1

2

d

dt
‖∂jxTk(ε∂t)

iS‖2L2 +
〈
v · ∇∂jxTk(ε∂t)

iS, ∂jxT
k(ε∂t)

iS
〉

=
〈
[v · ∇, ∂jxTk(ε∂t)

i]S, ∂jxT
k(ε∂t)

iS
〉
,

where 〈·, ·〉 denotes the scalar product in L2. Using the Cauchy-Schwarz inequality and the boundary condition
(2.6), we obtain

d

dt
‖∂jxTk(ε∂t)

iS‖L2 . ‖∇v‖L∞x ‖∂
j
xT

k(ε∂t)
iS‖L2 + ‖[v · ∇, ∂jxTk(ε∂t)

i]S‖L2 . (5.3)

Using the notation (3.16) and

‖u‖Ã(τ) =
∑

j+k+i≥4

‖∂jxTk(ε∂t)
iu‖L2

κ(j−1)+ κ̄k(j + k + i− 3)τ(t)j+k+i−4

(j + k + i− 3)!
,
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the estimate (5.3) implies

d

dt
‖S‖A(τ) = τ̇(t)‖S‖Ã(τ) +

∑
(j,k,i)∈N3

0

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!

d

dt
‖∂jxTk(ε∂t)

iS‖L2

. τ̇(t)‖S‖Ã(τ) + ‖∇v‖L∞x ‖S‖A(τ) +
∑

(j,k,i)∈N3
0

∑
(j′,k′,i′)≤(j,k,i)
j′+k′+i′≥1

Cj,k,i,j′,k′,i′

+ ‖v‖L∞x
∑

(j,k,i)∈N3
0

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2 ,

(5.4)

where

Cj,k,i,j′,k′,i′ =
κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!

(
j

j′

)(
k

k′

)(
i

i′

)
‖∂j

′

x T
k′(ε∂t)

i′v · ∂j−j
′

x Tk−k′(ε∂t)
i−i′∇S‖L2 .

We split the third term on the far right side of (5.4) according to the low and high values of j′ + k′ + i′. We claim
that there exists a constant C > 0 such that

I1 =
∑

0≤j+k+i≤4

∑
(j′,k′,i′)≤(j,k,i)
j′+k′+i′≥1

Cj,k,i,j′,k′,i′ . 1, (5.5)

I2 =
∑

j+k+i≥5

∑
(j′,k′,i′)≤(j,k,i)

1≤j′+k′+i′≤[(j+k+i)/2]

Cj,k,i,j′,k′,i′ . ‖v‖A(τ)‖S‖Ã(τ) + ‖v‖A(τ), (5.6)

I3 =
∑

j+k+i≥5

∑
(j′,k′,i′)≤(j,k,i)

[(j+k+i)/2]+1≤j′+k′+i′≤j+k+i−3

Cj,k,i,j′,k′,i′ . ‖v‖A(τ)‖S‖Ã(τ) + ‖v‖A(τ), (5.7)

I4 =
∑

j+k+i≥5

∑
(j′,k′,i′)≤(j,k,i)

j+k+i−2≤j′+k′+i′

Cj,k,i,j′,k′,i′ . ‖v‖A(τ), (5.8)

I5 =
∑

(j,k,i)∈N3
0

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2 . 1 + ‖S‖Ã(τ). (5.9)

The proofs of (5.5)–(5.8) are analogous to those in Section 4 in [JKL]. Here we only outline necessary modifi-
cations.

Proof of (5.5): We apply Hölder and Sobolev inequalities on the factor ‖∂j′x Tk′(ε∂t)
i′v·∂j−j′x Tk−k′(ε∂t)

i−i′∇S‖L2

and then use (4.12) to estimate ‖∂jxTk(ε∂t)
i∇S‖L2 . Then (5.5) follows by appealing to (3.23).

Proof of (5.6): Using Hölder and Sobolev inequalities, we obtain

Cj,k,i,j′,k′,i′1{j+k+i≥5}1{1≤j′+k′+i′≤[(j+k+i)/2]}

.

(
κj
′+1κ̄k

′
τ (j′+k′+i′−1)+

(j′ + k′ + i′ − 1)!
‖∂j

′+2
x Tk′(ε∂t)

i′v‖L2

)3/4

×

(
κ(j′−1)+ κ̄k

′
τ (j′+k′+i′−3)+

(j′ + k′ + i′ − 3)!
‖∂j

′

x T
k′(ε∂t)

i′v‖L2

)1/4

×

(
κj−j

′
κ̄k−k

′
τ (j+k+i−j′−k′−i′−3)+

(j + k + i− j′ − k′ − i′ − 3)!
‖∂j−j

′

x Tk−k′(ε∂t)
i−i′∇S‖L2

)
.

(5.10)

In (5.10), we bounded the rest of the powers of κ, κ̄, and τ by C, which is possible by (5.2), and bounded the rest
of the factors involving combinatorial symbols by C since j′ + k′ + i′ ≤ [(j + k + i)/2]. From (5.10), we use the
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discrete Hölder and Young inequalities to get

I2 . ‖v‖A(τ)‖S‖Ã(τ) + ‖v‖A(τ)

∑
j+k+i≥3

κj κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2 . (5.11)

Appealing to (4.12), the sum in the second term on the right side of above may be estimated by

∑
j+k+i≥3

k∑
k′=1

j∑
j′=0

(
k

k′

)(
j

j′

)
κj κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
(j′ + k′)!K̄j′+k′‖∂j−j

′+1
x Tk−k′(ε∂t)

iS‖L2

.
∑

j+k+i≥3

k∑
k′=1

j∑
j′=0

(κK̄)j
′
(κ̄K̄)k

′
1{i≥3}

×

(
κj−j

′
κ̄k−k

′
τ (j+k+i−j′−k′−3)+

(j + k + i− j′ − k′ − 3)!
‖∂j−j

′+1
x Tk−k′(ε∂t)

iS‖L2

)
Aj,k,i,j′,k′

+
∑

j+k+i≥3

k∑
k′=1

j∑
j′=0

(κK̄)j
′
(κ̄K̄)k

′
1{0≤i≤2}

×

(
κj−j

′
κ̄k−k

′
τ (j+k+i−j′−k′−3)+

(j + k + i− j′ − k′ − 3)!
‖∂j−j

′+1
x Tk−k′(ε∂t)

iS‖L2

)
Bj,k,i,j′,k′ .

(5.12)

In (5.12), we denote

Aj,k,i,j′,k′ =

(
k

k′

)(
j

j′

)
(j + k + i− j′ − k′ − 3)!(j′ + k′)!

(j + k + i− 3)!
1{i≥3} (5.13)

and

Bj,k,i,j′,k′ =

(
k

k′

)(
j

j′

)
(j + k + i− j′ − k′ − 3)!(j′ + k′)!

(j + k + i− 3)!
1{0≤i≤2}.

Applying the combinatorial inequality (
k

k′

)(
j

j′

)
≤
(
k + j

k′ + j′

)
to (5.13), we obtain

Aj,k,i,j′,k′ .
(j + k + i− j′ − k′ − 3)!(j + k)!

(j + k + i− 3)!(j + k − j′ − k′)!
. 1, (5.14)

since i ≥ 3. Similarly,

Bj,k,i,j′,k′ .
(j + k + i− j′ − k′ − 3)!(j + k)!

(j + k + i− 3)!(j + k − j′ − k′)!
1{0≤i≤2}.

If j′ + k′ ≥ [(j + k)/2] + 1, then there exists a constant C ≥ 1 such that

Bj,k,i,j′,k′ . Cj
′+k′ ,

uniformly for all i ∈ {0, 1, 2}; if 1 ≤ j′ + k′ ≤ [(j + k)/2], then we have

Bj,k,i,j′,k′ . 1, (5.15)
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uniformly for all i ∈ {0, 1, 2}. Combining (5.12), (5.14)–(5.15), and switching indices from j − j′ to j′′ and k− k′
to k′′, we obtain ∑

j+k+i≥3

κj κ̄kτ j+k+i−3

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2

.
∞∑

j′′=0

∞∑
k′′=0

∞∑
i=3

(
κj
′′
κ̄k
′′
τ (j′′+k′′+i−3)+

(j′′ + k′′ + i− 3)!
‖∂j

′′+1
x Tk′′(ε∂t)

iS‖L2

)

×
∞∑
j=j′′

∞∑
k=k′′+1

(κK̄)j−j
′′
(κ̄K̄)k−k

′′

+
∞∑

j′′=0

∞∑
k′′=0

2∑
i=0

(
κj
′′
κ̄k
′′
τ (j′′+k′′+i−3)+

(j′′ + k′′ + i− 3)!
‖∂j

′′+1
x Tk′′(ε∂t)

iS‖L2

)

×
∞∑
j=j′′

∞∑
k=k′′+1

(CκK̄)j−j
′′
(Cκ̄K̄)k−k

′′
.

(5.16)

Note that the sums in j and k in (5.16) are bounded by C for κ ≤ 1/CK̄ and κ̄ ≤ 1/CK̄, uniformly for all
j′, k′, i ∈ N0. Therefore, by (5.11) and (5.16) we conclude

I2 . ‖v‖A(τ)‖S‖Ã(τ) + ‖v‖A(τ)

∑
1≤j+k+i≤3

‖∂jxTk(ε∂t)
iS‖L2 . ‖v‖A(τ)‖S‖Ã(τ) + ‖v‖A(τ),

where the last inequality follows from (3.23).
Proof of (5.7): Using Hölder and Sobolev inequalities, we obtain

Cj,k,i,j′,k′,i′1{j+k+i≥5}1{[(j+k+i)/2]+1≤j′+k′+i′≤j+k+i−3}

.

(
κ(j′−1)+ κ̄k

′
τ (j′+k′+i′−3)+

(j′ + k′ + i′ − 3)!
‖∂j

′

x T
k′(ε∂t)

i′v‖L2

)

×

(
κj−j

′+2κ̄k−k
′
τ (j+k+i−j′−k′−i′−1)+

(j + k + i− j′ − k′ − i′)!
‖∂j−j

′+2
x Tk−k′(ε∂t)

i−i′∇S‖L2

)3/4

×

(
κj−j

′
κ̄k−k

′
τ (j+k+i−j′−k′−i′−3)+

(j + k + i− j′ − k′ − i′ − 3)!
‖∂j−j

′

x Tk−k′(ε∂t)
i−i′∇S‖L2

)1/4

.

(5.17)

Similarly to (5.10), by (5.2), the remaining factors of κ, κ̄, and τ are bounded by C; the product of factors involving
combinatorial symbols may be bounded by C since j′ + k′ + i′ ≥ [(j + k+ i)/2] + 1. By (5.17), using the discrete
Hölder and the discrete Young inequalities we arrive at

I3 . ‖v‖A(τ)‖S‖Ã(τ) + ‖v‖A(τ)

∑
j+k+i≥3

κj κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2 .

Proceeding as in (5.12)–(5.16), we obtain (5.7).
Proof of (5.8): Using Hölder and Sobolev inequality, we obtain

I4 .
∑

j+k+i≥5

∑
(j′,k′,i′)≤(j,k,i)

j+k+i−2≤j′+k′+i′

(
κ(j′−1)+ κ̄k

′
τ j
′+k′+i′−3

(j′ + k′ + i′ − 3)!
‖∂j

′

x T
k′(ε∂t)

i′v‖L2

)

× ‖∂j−j
′

x Tk−k′(ε∂t)
i−i′∇S‖H2

. ‖v‖A(τ),

where the last inequality follows from (3.23).
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Proof of (5.9): For low values of j + k + i, from (3.23) and (4.12), we obtain∑
0≤j+k+i≤4

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2 . 1. (5.18)

For high values of j + k + i, by (4.12), we have∑
j+k+i≥5

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2

.
∑

j+k+i≥5

k∑
k′=1

j∑
j′=0

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!

(
k

k′

)(
j

j′

)
(j′ + k′)!K̄j′+k′‖∂j−j

′+1
x Tk−k′(ε∂t)

iS‖L2

.
∑

j+k+i≥5

k∑
k′=1

j∑
j′=0

(j + k)!(j + k + i− j′ − k′ − 3)!

(j + k − j′ − k′)!(j + k + i− 3)!
(κK̄)j

′+k′

×

(
κj−j

′
κ̄k−k

′
τ (j+k+i−j′−k′−3)+

(j + k + i− j′ − k′ − 3)!
‖∂j−j

′+1
x Tk−k′(ε∂t)

iS‖L2

)
,

where the last inequality follows from (5.2). We then proceed as in (5.12)–(5.16) to obtain∑
j+k+i≥5

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jx[Tk,∇](ε∂t)

iS‖L2 . 1 + ‖S‖Ã(τ). (5.19)

Thus (5.9) follows from (5.18) and (5.19).
Combining (5.4) and (5.5)–(5.9), we obtain

d

dt
‖S‖A(τ) . ‖S‖Ã(τ)

(
τ̇(t) + ‖v‖A(τ) + 1

)
+ ‖S‖A(τ) + ‖v‖A(τ) + 1, (5.20)

where we used (3.23) to bound ‖∇v‖L∞x and ‖v‖L∞x . Now, we chooseK in (3.17) to be sufficiently large so that the
term next to ‖S‖Ã(τ) is less than or equal to 0. The lemma then follows by integrating (5.20) on [0, T0] and using
the Gronwall lemma. �

6. Velocity estimates

In this section, we use derivative reductions for the divergence, curl, and pure time derivative components of
the velocity. First, we split ‖v‖A(τ) as

‖v‖A(τ) =
5∑
l=1

∑
Jl

κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂jxTk(ε∂t)

iv‖L2 =
5∑
l=1

Ul, (6.1)

where

Ul =
∑
Jl

κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂jxTk(ε∂t)

iv‖L2 , l = 1, . . . , 5,

and

J1 = {(j, k, i) ∈ N3
0 : j ≥ 2}, J2 = {(j, k, i) ∈ N3

0 : j = 1, k ≥ 1},
J3 = {(j, k, i) ∈ N3

0 : j = 1, k = 0}, J4 = {(j, k, i) ∈ N3
0 : j = 0, k ≥ 1},

J5 = {(j, k, i) ∈ N3
0 : j = 0, k = 0}.

For simplicity of notation, we abbreviate, for (j, k, i) ∈ N3
0,

Uj,k,i =
κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂jxTk(ε∂t)

iv‖L2
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for the velocity coefficients arising in expansions below. Similarly, we denote E = {(j, k, i) ∈ N3
0 : j ≥ 1}, and we

write

Dj,k,i =
κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂j−1
x Tk(ε∂t)

i div v‖L2

for the coefficients containing the divergence and

Cj,k,i =
κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂j−1
x Tk(ε∂t)

i curl v‖L2 ,

for those with the curl.
The term U1: First we estimate the sum U1. By (4.2), we have

U1 .
κ

κ̄
U1 + κU1 +

∑
E

Dj,k,i +
∑
E

Cj,k,i

+
∑
J1

κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂j−1
x [Tk, div](ε∂t)

iv‖L2

+
∑
J1

κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂j−1
x [Tk, curl](ε∂t)

iv‖L2

+
∑
J1

κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖[T, ∂j−2

x ]Tk(ε∂t)
iv‖L2

+
∑
J1

κ(j−1)+ κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂x[T, ∂j−2

x ]Tk(ε∂t)
iv‖L2

= I11 + I12 + I13 + I14 + I15 + I16 + I17 + I18.

(6.2)

For the term I15, we use (4.11) to write

I15 .
∑
J1

k∑
k′=1

j−1∑
j′=0

(
k

k′

)(
j − 1

j′

)
κj−1κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!

× (j′ + k′)!K̄j′+k′‖∂j−j
′

x Tk−k′(ε∂t)
iv‖L2

.
∞∑
i=0

∞∑
k′′=0

∞∑
j′′=0

κj
′′
κ̄k
′′
τ (i+j′′+k′′−2)+

(i+ j′′ + k′′ − 2)!
‖∂j

′′+1
x Tk′′(ε∂t)

iv‖L2

×
∞∑

j=j′′+1

∞∑
k=k′′+1

(k + j − 1)!(i+ j′′ + k′′ − 2)!

(j′′ + k′′)!(i+ j + k − 3)!
κj−j

′′−1κ̄k−k
′′
K̄k−k′′+j−j′′−1.

(6.3)

Note that the sum in j, k is dominated by

κ̄K̄

∞∑
j=j′′+1

∞∑
k=k′′+1

(k + j − 1)!(i+ j′′ + k′′ − 2)!

(j′′ + k′′)!(i+ j + k − 3)!
κj−j

′′−1κ̄k−k
′′−1K̄k−k′′+j−j′′−2 . κ̄, (6.4)

uniformly for all i, k′′, j′′ ∈ N0, by taking κ̄ ≤ 1/CK. Thus, from (6.3)–(6.4) we obtain

I15 . κ̄U1 + κ̄U2 + κ̄U3. (6.5)

The term I16 can be treated analogously as I15. Namely, using (4.13), we get

I16 . κ̄U1 + κ̄U2 + κ̄U3. (6.6)
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For the term I17, we appeal to (4.14) obtaining

I17 .
∑
J1

j−2∑
j′=1

(
j − 2

j′

)
j′!K̄j′ κ

j−1κ̄kτ (i+j+k−3)+

(i+ j + k − 3)!
‖∂j−j

′−1
x Tk(ε∂t)

iv‖L2

.
∞∑
i=0

∞∑
k=0

∞∑
j′′=0

(
κj
′′
κ̄kτ (i+j′′+k−2)+

(i+ j′′ + k − 2)!
‖∂j

′′+1
x Tk(ε∂t)

iv‖L2

)

×
∞∑

j=j′′+3

(i+ j′′ + k − 2)!(j − 2)!

(i+ j + k − 3)!j′′!
κj−j

′′−1K̄j−j′′−2.

(6.7)

Note that the sum in j is dominated by

κ
∞∑

j=j′′+3

(i+ j′′ + k − 2)!(j − 2)!

(i+ j + k − 3)!j′′!
κj−j

′′−2K̄j−j′′−2 . κ, (6.8)

uniformly for all i, k, j′′ ∈ N0, by taking κ ≤ 1/CK̄. From (6.7)–(6.8), we obtain

I17 . κU1 + κU2 + κU3. (6.9)

The term I18 can be estimated analogously as I17, and we arrive at

I18 . κU1 + κU2 + κU3. (6.10)

Collecting the estimates (6.2), (6.5)–(6.6), and (6.9)–(6.10), we obtain

U1 .
(κ
κ̄

+ κ+ κ̄
)
U1 + (κ+ κ̄)U2 + (κ+ κ̄)U3 +

∑
E

Dj,k,i +
∑
E

Cj,k,i. (6.11)

The term U2: Next, we estimate the sum U2. By (4.6), we have

U2 .
∑
E

Dj,k,i +
∑
E

Cj,k,i + U4 +
∞∑
k=1

∞∑
i=0

k∑
l=1

(
k

l

)
κ̄kτ (k+i−2)+

(k + i− 2)!
‖∂xTk−l(ε∂t)

iv‖L2‖Tlν‖L∞(Ωδ0 )

+
∞∑
k=1

∞∑
i=0

k∑
l=1

(
k

l

)
κ̄kτ (k+i−2)+

(k + i− 2)!
‖Tk−l(ε∂t)

iv‖L2‖∂xTlν‖L∞(Ωδ0 )

+

∞∑
k=1

∞∑
i=0

k∑
l=1

(
k

l

)
κ̄kτ (k+i−2)+

(k + i− 2)!
‖Tk−l(ε∂t)

iv‖L2‖Tlν‖L∞(Ωδ0 )

+
∞∑
k=1

∞∑
i=0

κ̄kτ (k+i−2)+

(k + i− 2)!
‖[Tk, div](ε∂t)

iv‖L2

+
∞∑
k=1

∞∑
i=0

κ̄kτ (k+i−2)+

(k + i− 2)!
‖[Tk, curl](ε∂t)

iv‖L2

= I21 + I22 + I23 + I24 + I25 + I26 + I27 + I28.

(6.12)
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We split the sum I24 according to the values of k and i, obtaining

I24 =
∞∑
k=1

∞∑
i=2

k∑
l=1

(
k

l

)
κ̄kτ (k+i−2)+

(k + i− 2)!
‖∂xTk−l(ε∂t)

iv‖L2‖Tlν‖L∞(Ωδ0 )

+
∞∑
k=2

k∑
l=1

(
k

l

)
κ̄kτ (k−2)+

(k − 2)!
‖∂xTk−lv‖L2‖Tlν‖L∞(Ωδ0 )

+
∞∑
k=2

k∑
l=1

(
k

l

)
κ̄kτ (k−1)+

(k − 1)!
‖∂xTk−l(ε∂t)v‖L2‖Tlν‖L∞(Ωδ0 )

+
1∑
i=0

κ̄τ (i−1)+

(i− 1)!
‖∂x(ε∂t)

iv‖L2‖Tν‖L∞(Ωδ0 )

= I241 + I242 + I243 + I244.

For the term I241, we estimate

I241 .
∞∑
k=1

∞∑
i=2

k∑
l=1

κ̄lτ l

η̃l

(
κ̄k−lτ (k+i−l−2)+

(k + i− l − 2)!
‖∂xTk−l(ε∂t)

iv‖L2

)(
η̃l

(l − 3)!
‖Tlν‖L∞(Ωδ0 )

)
× k!(k + i− l − 2)!(l − 3)!

l!(k − l)!(k + i− 2)!

. κ̄
∞∑
k=1

∞∑
i=2

k∑
l=1

κ̄l−1

η̃l−1

(
κ̄k−lτ (k+i−l−2)+

(k + i− l − 2)!
‖∂xTk−l(ε∂t)

iv‖L2

)(
η̃l

(l − 3)!
‖Tlν‖L∞(Ωδ0 )

)
.

We choose κ̄ ≤ η̃ and use (4.17) to get

I241 . κ̄U2 + κ̄U3.

The terms I242, I243, and I244 can be estimated analogously to I241. Thus we arrive at

I24 . κ̄U2 + κ̄U3. (6.13)

Similarly, the terms I25 and I26 are treated analogously to I24, obtaining

I25 + I26 . κ̄U2 + κ̄U3. (6.14)

For the term I27, we use (4.11) and obtain

I27 .
∞∑
k=1

∞∑
i=0

k∑
k′=1

(
k

k′

)
κ̄kτ (i+k−2)+

(k + i− 2)!
k′!K̄k′‖∂xTk−k′(ε∂t)

iv‖L2

.
∞∑
i=0

∞∑
k′′=0

κ̄k
′′
τ (i+k′′−2)+

(i+ k′′ − 2)!
‖∂xTk′′(ε∂t)

iv‖L2 ×
∞∑

k=k′′+1

k!(i+ k′′ − 2)!

k′′!(k + i− 2)!
κ̄k−k

′′
K̄k−k′′ .

(6.15)

Note that the sum in k is bounded by

κ̄K̄

∞∑
k=k′′+1

k!(i+ k′′ − 2)!

k′′!(k + i− 2)!
κ̄k−k

′′−1K̄k−k′′−1 . κ̄, (6.16)

uniformly for all k′′, i ∈ N, by taking κ̄ ≤ 1/CK. Thus from (6.15)–(6.16) we estimate

I27 . κ̄U2 + κ̄U3. (6.17)

The term I28 can be estimated analogously as I27 by using (4.13), and we arrive at

I28 . κ̄U2 + κ̄U3. (6.18)
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Collecting the estimates (6.12), (6.13)–(6.14), and (6.17)–(6.18), we conclude

U2 . κ̄U2 + κ̄U3 + U4 +
∑
E

Dj,k,i +
∑
E

Cj,k,i,

from where we arrive at

U2 . κ̄U3 + U4 +
∑
E

Dj,k,i +
∑
E

Cj,k,i, (6.19)

by taking κ̄ ≤ 1/C.
The terms U3 and U4: For U3, we have by (4.3),

U3 .
∑
E

Dj,k,i +
∑
E

Cj,k,i + U5. (6.20)

For U4, we have by (4.7),

U4 . κ̄
∞∑
k=1

∞∑
i=0

κ̄k−1τ (k+i−3)+

(k + i− 3)!
‖∂xTk−1(ε∂t)

iv‖L2 = κ̄U2 + κ̄U3.

The term U5: We claim that there exists t0 > 0 sufficiently small depending only on M0 and ε1 > 0 sufficiently
small depending on Mε,κ,κ̄(T ), such that

∞∑
i=0

τ (i−3)+

(i− 3)!
‖(ε∂t)i(p, v)‖L2 . 1 + tQ(Mε,κ,κ̄(t)), (6.21)

for all ε ∈ (0, ε1). The proof of (6.21) relies on the energy estimate of the partially linearized equation as in the
case Ω = R3, cf. [JKL, Lemma 6.2]. Here we only outline the modification needed for the presence of boundary.
Instead of using the elliptic regularity, we appeal to Lemma 4.3 to estimate the dissipative term. Namely, we have

‖(ε∂t)i∇v‖L2 . ‖(ε∂t)i div v‖L2 + ‖(ε∂t)i curl v‖L2 + ‖(ε∂t)iv · ν‖H1/2(∂Ω) + ‖(ε∂t)iv‖L2

. ‖(ε∂t)i div v‖L2 + ‖(ε∂t)i curl v‖L2 + ‖(ε∂t)iv‖L2 ,

since v · ν = 0 on ∂Ω. Then we may proceed as in [JKL, Lemma 6.2] since the term ‖(ε∂t)iv‖L2 can be absorbed
in the A norm. It then follows from (6.21) that

U5 . 1 + tQ(Mε,κ,κ̄(t)), t ∈ (0, t0), (6.22)

6.1. Nonhomogeneous transport equation. As shown in [JKL] and [A1], the curl component of the velocity
satisfies the non-homogeneous transport equation. Thus, we consider

∂tS̃ + v · ∇S̃ = G,

where S̃ = S̃(t, x), v = v(t, x) and G = G(t, x). Denote

‖u‖B(τ) =
∑

(j,k,i)∈N3
0

κj κ̄kτ (j+k+i−2)+

(j + k + i− 2)!
‖∂jxTk(ε∂t)

iu‖L2 ,

with the corresponding dissipative analytic norm

‖u‖B̃(τ) =
∑

j+k+i≥3

κj κ̄k(j + k + i− 2)τ j+k+i−3

(j + k + i− 2)!
‖∂jxTk(ε∂t)

iu‖L2 .

LEMMA 6.1. For any κ, κ̄ ∈ (0, 1], there exists τ1 ∈ (0, 1] such that if 0 < τ(0) ≤ τ1, then

‖S̃(t)‖A(τ) . ‖S̃(0)‖A(τ) +

∫ t

0

(
‖G(s)‖A(τ) + ‖v(s)‖A(τ)

)
+ t,

for some constant C > 0 and sufficiently small T0 > 0, provided K in (3.17) satisfies

K ≥ C‖v‖A(τ), t ∈ [0, T0], (6.23)
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where C ≥ 1 is a sufficiently large constant, and T0 is chosen so that (3.22) holds. Similarly, for any κ, κ̄ ∈ (0, 1],
there exists τ1 ∈ (0, 1] such that if 0 < τ(0) ≤ τ1, then

‖S̃(t)‖B(τ) . ‖S̃(0)‖B(τ) +

∫ t

0

(
‖G(s)‖B(τ) + ‖v(s)‖B(τ)

)
+ t,

for some constant C > 0 and sufficiently small T0 > 0, provided K in (3.17) satisfies

K ≥ C‖v‖B(τ), t ∈ [0, T0], (6.24)

for C ≥ 1 sufficiently large and where T0 is chosen so that (3.22) holds.

Note that ‖v‖A(τ) ≥ ‖v‖B(τ) for all v, and thus (6.23) implies (6.24).

6.2. Product rule. In this section, we introduce the product rule which is needed in the estimates of divergence,
curl, and pure time derivative components of the velocity. We denote

‖u‖Y = sup
(j,k,i)∈N3

0,0≤j+k+i≤4

‖∂jxTk(ε∂t)
iu‖L2 .

The following lemma provides a product rule for the analytic B-norm.

LEMMA 6.2. Let k ∈ {2, 3, . . .} and τ > 0. For f1, . . . , fk ∈ B(τ), and any κ, κ̄ ∈ (0, 1], there exists
τ1 ∈ (0, 1] and T0 > 0 such that if 0 < τ(0) ≤ τ1, then

‖
k∏
i=1

fi‖B(τ) ≤ Ck
k∑
i=1

(
‖fi‖B(τ)

∏
1≤j≤k;j 6=i

(
‖fj‖B(τ) + ‖fj‖Y

))
.

The next statement provides an analytic estimate for composition of functions.

LEMMA 6.3. Assume that f is an entire real-analytic function. Then for τ > 0 and w ∈ A(τ), we have

‖f(w)‖A(τ) . Q(‖w‖A(τ) + ‖w‖Y )

and

‖f(w)‖B(τ) . Q(‖w‖B(τ) + ‖w‖Y ),

for some function Q.

Recall that E is assumed to be the product of two entire real-analytic functions. Suppose that ẽ is one of the
components of the matrix E. Thus,

ẽ(S, εu) = f(S)g(εu). (6.25)

In the next statement, we provide an analytic estimates of ẽ.

LEMMA 6.4. Let M0 > 0 and assume that ẽ satisfies (6.25). Then

‖∂tẽ‖B(τ) . Q(‖u‖A(τ) + ‖u‖Y , ‖S‖A(τ) + ‖S‖Y ), ε ∈ (0, 1]

and

‖ẽ‖A(τ) . Q(‖u‖A(τ) + ‖u‖Y , ‖S‖A(τ) + ‖S‖Y ), ε ∈ (0, 1],

where Q is a function.

The proofs of Lemmas 6.1, 6.2, 6.3, and 6.4 are analogous to Lemmas 4.2, 5.1, 5.2, and 5.3 in [JKL]. Thus we
simply state them and refer to [JKL] for details.
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6.3. The divergence components. In this section, we estimate the sum of terms involving the divergence of
the velocity. First, we rewrite the equation (2.4) as

L(∂x)u = −E(S, εu)(ε∂tu+ εv · ∇u). (6.26)

For j ≥ 2 and k, i ∈ N0, we commute ∂j−1
x Tk(ε∂t)

i with (6.26), obtaining

‖∂j−1
x Tk(ε∂t)

iL(∂x)u‖L2

.
j−1∑
j′=0

k∑
k′=0

i∑
i′=0

(
j − 1

j′

)(
k

k′

)(
i

i′

)
‖∂j

′

x T
k′(ε∂t)

i′E∂j−1−j′
x Tk−k′(ε∂t)

i−i′+1u‖L2

+ ε‖Ev‖L∞‖∂j−1
x Tk(ε∂t)

i∇u‖L2

+ ε

j−1∑
j′=0

k∑
k′=0

i∑
i′=0

(
j − 1

j′

)(
k

k′

)(
i

i′

)
‖∂j

′

x T
k′(ε∂t)

i′(Ev)∂j−1−j′
x Tk−k′(ε∂t)

i−i′∇u‖L2 .

(6.27)

Multiplying the above estimate with appropriate weights and following the arguments from [JKL, Lemma 6.3],
which is justified since we have Lemmas 6.2, 6.3, and 6.4, we obtain

∞∑
j=2

∞∑
k=0

∞∑
i=0

Dj,k,i . (κ+ ε)Q(Mε,κ,κ̄(t)). (6.28)

For j = 1, k = 0, and i ∈ N0, we proceed as in [JKL, Lemma 6.3] to get
∞∑
i=0

D1,0,i . 1 + (t+ ε)Q(Mε,κ,κ̄(t)). (6.29)

For j = 1, k ∈ N, and i ∈ N0, from (4.7), we have

‖Tk(ε∂t)
iL(∂x)u‖L2 . ‖∂xTk−1(ε∂t)

iL(∂x)u‖L2 ,

from where we proceed as in (6.27)–(6.28) to obtain
∞∑
k=1

∞∑
i=0

D1,k,i . (κ̄+ ε)Q(Mε,κ,κ̄(t)). (6.30)

Combining (6.28)–(6.29) and (6.30), we arrive at∑
E

Dj,k,i, . 1 + (κ+ κ̄+ t+ ε)Q(Mε,κ,κ̄(t)). (6.31)

6.4. The curl components. As in [JKL, Section 6.1], we use Lemmas 6.2, 6.3, and 6.4 to obtain∑
E

Cj,k,i . 1 + (t+ τ)Q(Mε,κ,κ̄(t)), (6.32)

for all t ∈ [0, T0],

6.5. The pressure estimates. The analytic norm of the pressure can be recovered by the mixed space-time
derivatives and pure time derivatives. Namely, for j ∈ N and k ∈ N0, we have

‖∂jxTk(ε∂t)
ip‖L2 . ‖∂j−1

x Tk(ε∂t)
iL(∂x)u‖L2 + ‖∂j−1

x [Tk,∇](ε∂t)
ip‖L2 . (6.33)

The first term on the right side is estimated in Section 6.3, while the second term is estimated analogously to (5.9).
Thus, we arrive at

∞∑
j=1

∞∑
k=0

∞∑
i=0

κ(j−1)+ κ̄kτ (j+k+i−3)+

(j + k + i− 3)!
‖∂jxTk(ε∂t)

ip‖L2 . 1 + (κ+ κ̄+ t+ ε)Q(Mε,κ,κ̄(t)). (6.34)
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For j = 0 and k ∈ N, we may use (4.7) and (6.33)–(6.34) to get
∞∑
k=1

∞∑
i=0

κ̄kτ (k+i−3)+

(k + i− 3)!
‖Tk(ε∂t)

ip‖L2 .
∞∑
k=1

∞∑
i=0

κ̄kτ (k+i−3)+

(k + i− 3)!
‖∂xTk−1(ε∂t)

ip‖L2

. 1 + (κ+ κ̄+ t+ ε)Q(Mε,κ,κ̄(t)).

(6.35)

Combining (6.34)–(6.35) with the pure time derivative estimates of the pressure obtained in (6.21), we arrive at

‖p‖A(τ) . 1 + (κ+ κ̄+ t+ ε)Q(Mε,κ,κ̄(t)). (6.36)

6.6. Proof of the main lemma. Here we combine the results of the previous section to prove Lemma 3.5.

PROOF OF LEMMA 3.5. Combining the estimates (6.1), (6.11), (6.19), (6.20)–(6.22), and (6.31)–(6.32), we
arrive at

‖v‖A(τ) . 1 + (t+ κ+ ε+ τ(0) + κ̄)Q(Mε,κ,κ̄(t)), (6.37)

by taking κ̄ ≤ 1/C and κ ≤ κ̄/C. Thus Lemma 3.5 follows by combining (6.36)–(6.37) with (5.1). �

7. Analyticity assumptions on the initial data

In this section, we assume the initial data satisfies (3.14), and show that for low values of i,
3∑
i=0

∞∑
j,k=0

‖∂jxTk(ε∂t)
iu(0)‖L2

τ
(j+k+i−3)+
0

(j + k + i− 3)!
≤ Γ, (7.1)

and
3∑
i=0

∞∑
j,k=0

‖∂jxTk(ε∂t)
iS(0)‖L2

τ
(j+k+i−3)+
0

(j + k + i− 3)!
≤ Γ, (7.2)

where Γ > 0 is a sufficiently large constant depending on M0; for high values of i, there exists a sufficiently large
constant C > 1 such that for all n ≥ 4 we have

n∑
i=4

∞∑
j,k=0

‖∂jxTk(ε∂t)
iu(0)‖L2

τ j+k+i−3
0

Ci−3(j + k + i− 3)!
≤ 1, (7.3)

and
n∑
i=4

∞∑
j,k=0

‖∂jxTk(ε∂t)
iS(0)‖L2

τ j+k+i−3
0

Ci−3(j + k + i− 3)!
≤ 1. (7.4)

In (7.3) and (7.4) we then choose τ̃0 = τ0/C and using (7.1)–(7.2), we obtain

‖(p0, v0, S0)‖A(τ̃0) ≤
∑

(j,k,i)∈N3
0

‖∂jxTk(ε∂t)
i(u, S)(0)‖L2

τ̃
(j+k+i−3)+
0

(j + k + i− 3)!

≤
3∑
i=0

∞∑
j,k=0

‖∂jxTk(ε∂t)
iS(0)‖L2

τ
(j+k+i−3)+
0

(j + k + i− 3)!

+

∞∑
i=4

∞∑
j,k=0

‖∂jxTk(ε∂t)
iS(0)‖L2

τ j+k+i−3
0

Ci−3(j + k + i− 3)!

≤ Γ + 1,

and we conclude as in [JKL, Section 8]. The proofs of (7.1)–(7.4) are analogous to those in [JKL, Section 8] by
using the commutator estimate (4.12), and thus we omit the details.
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8. Proof of the convergence theorem

The following lemma is needed in the proof of the Theorem 3.4.

LEMMA 8.1. There exists a constant C1 > 1 such that for any α ∈ N3
0 with |α| = j where j ∈ N0, we have

‖∂jxu‖L2 ≤ Cj1‖u‖
1/(j+1)
L2 ‖∂j+1

x u‖j/(j+1)
L2 , (8.1)

for all u ∈ Hj+1(Ω).

We emphasize that C1 is j-independent.

PROOF OF LEMMA 8.1. We proceed by induction on j ∈ N0. The case j = 0 is clear. Now we assume that
(8.1) holds for some j ∈ N0 and aim to prove it for the case j+1. Let α ∈ N3

0 be any multiindex with |α| = j+1. We
choose a multiindex α− ∈ N3

0 such that there exists ξ ∈ N3
0 for which α−+ ξ = α and |ξ| = 1. Let α+ = 2α−α−.

Using integration by parts, we obtain

‖∂αu‖2L2 =

∫
∂Ω

∂α−u · ∂αuνi dσ −
∫

Ω

∂α−u · ∂α+u dx = I1 + I2, (8.2)

for some i ∈ {1, 2, 3}. For the term I1, we use the Cauchy-Schwarz inequality to get

I1 ≤
(∫

∂Ω

|∂α−u|2 dσ
)1/2(∫

∂Ω

|∂αu|2 dσ
)1/2

≤ C‖∂α−u‖1/2L2 ‖∇∂α−u‖1/2L2 ‖∂αu‖1/2L2 ‖∇∂αu‖1/2L2 ,

(8.3)

where the last inequality follows from the trace theorem. For the term I2, using the Cauchy-Schwarz inequality, we
arrive at

I2 ≤ ‖∂α−u‖L2‖∂α+u‖L2 . (8.4)

Summing (8.2) over |α| = j + 1 and using (8.3)–(8.4), we obtain

‖∂j+1
x u‖2L2 ≤ C

∑
|α|=j+1

‖∂α−u‖1/2L2 ‖∇∂α−u‖1/2L2 ‖∂αu‖1/2L2 ‖∇∂αu‖1/2L2 +
∑
|α|=j+1

‖∂α−u‖L2‖∂α+u‖L2

≤ C‖∂jxu‖
1/2
L2 ‖∂j+1

x u‖L2‖∂j+2
x u‖1/2L2 + C‖∂jxu‖L2‖∂j+2

x u‖L2 .

Using the Cauchy-Schwarz inequality to absorb ‖∂j+1
x u‖L2 from the first factor and then using the induction hy-

pothesis for the case j, we obtain

‖∂j+1
x u‖2L2 ≤ C‖∂jxu‖L2‖∂j+2

x u‖L2 ≤ CCj1‖u‖
1/(j+1)
L2 ‖∂j+1

x u‖j/(j+1)
L2 ‖∂j+2

x u‖L2 ,

from where we arrive at

‖∂j+1
x u‖L2 ≤ C(j+1)/(j+2)C

j(j+1)/(j+2)
1 ‖u‖1/(j+2)

L2 ‖∂j+2
x u‖(j+1)/(j+2)

L2

≤ Cj+1
1 ‖u‖1/(j+2)

L2 ‖∂j+2
x u‖(j+1)/(j+2)

L2 ,

by taking C1 ≥ C. Therefore, (8.1) is proven for j + 1 for some sufficiently large constant C1 > 1. �

Next we prove the second main result on convergence of the Mach limit.

PROOF OF THEOREM 3.4. Denote the spatial analyticity radius

δ =
κτ(0)

C0
,

where τ(0), κ ∈ (0, 1] are fixed constants as in Theorem 3.3 and C0 ≥ 2 is a sufficiently large constant to be
determined below. It is proved in Theorem 3.3 that if the initial data (pε0, v

ε
0, S

ε
0) satisfies (3.13)–(3.14) for some

constants M0, τ0 > 0, as well as the compatibility condition of all orders, then

‖(pε, vε, Sε)(t)‖X(δ) .Mκ−2, ε ∈ (0, ε0], t ∈ [0, T0],



MACH LIMITS IN ANALYTIC SPACES ON EXTERIOR DOMAINS 25

for some parameters κ, τ(0), ε0, and T0 > 0.
We proceed differently than in [JKL, Section 7]. For the sake of contradiction, we assume that (vε, pε, Sε)

does not converge to (v(inc), 0, S(inc)) in L2([0, T ], X(δ)). Then there exists a sequence {εn} → 0 such that
{(vεn , pεn , Sεn)} does not converge to (v(inc), 0, S(inc)) in L2([0, T ], X(δ)). Recall from [A1, Theorem 1.2] that
(vεn , pεn , Sεn) converges to (v(inc), 0, S(inc)) in L2([0, T ], L2(Ω)) as εn → 0. We define vkn(t) = vεk(t)− vεn(t),
for k, n ∈ N. Using Lemma 8.1, we obtain

φkn(t) =
∞∑
m=4

∑
|α|=m

δm−3

(m− 3)!
‖∂αvkn‖L2

x
≤
∞∑
m=4

Cm1 δ
m−3

(m− 3)!
‖vkn‖1/(m+1)

L2
x

‖∂m+1
x vkn‖m/(m+1)

L2
x

, (8.5)

and thus, using the Minkowski and Hölder inequalities

‖φkn(t)‖L2
t
.
∞∑
m=4

Cm1 δ
m−3

(m− 3)!
‖vkn‖1/(m+1)

L2
x,t

‖∂m+1
x vkn‖m/(m+1)

L2
x,t

, (8.6)

where the space and time domains are understood to be Ω and [0, T ], respectively. To show convergence to zero,
we shall apply the discrete dominated convergence theorem. To get a uniform bound, we use the discrete Young
inequality, we get

∞∑
m=4

(C1δ)
m−3

(m− 3)!
‖∂m+1
x vkn‖m/(m+1)

L2
x,t

=
∞∑
m=4

(
(C1δ)

m−3

(m− 3)!
‖∂m+1
x vkn‖L2

x,t

)m/(m+1)(
(C1δ)

m−3

(m− 3)!

)1/(m+1)

≤
∞∑
m=4

m(C1δ)
m−3

(m+ 1)(m− 3)!
‖∂m+1
x vkn‖L2

x,t
+

∞∑
m=4

(C1δ)
m−3

(m+ 1)(m− 3)!
.

Now, choose δ = κτ(0)/C1C2, where C1 is the constant from Lemma 8.1 and C2 ≥ 1. We obtain
∞∑
m=4

(C1δ)
m−3

(m− 3)!
‖∂m+1
x vkn‖m/(m+1)

L2
x,t

≤ CMκ−2δ−1C−1
1 + C. (8.7)

Thus the discrete dominated convergence theorem applies, and it thus follows from (8.5)–(8.7) that
∞∑
m=4

∑
|α|=m

δ(m−3)+

(m− 3)!
‖∂αvkn‖L2

x,t
→ 0 as k, n→∞ (8.8)

since ‖vkn(t)‖L2
x,t
→ 0 as k, n→∞. Note that from (3.23) we have

‖vkn‖2L2
tH

3 ≤ C‖vkn‖3/2H4 ‖vkn‖1/2L2
x,t

+ C‖vkn‖2L2
x,t
≤ C‖vkn‖1/2L2

x,t
+ C‖vkn‖2L2

x,t
→ 0 as k, n→∞. (8.9)

From (8.8)–(8.9) and analogous inequalities for pkn and Skn, we infer that the sequence {(vεn , pεn , Sεn)} is Cauchy
in L2([0, T0], X(δ)), which along with (vε, pε, Sε) → (v(inc), 0, S(inc)) in L2([0, T ], L2(Ω)) leads to a contradic-
tion. Therefore, {(vε, pε, Sε)} is convergent and thus goes to (v(inc), 0, S(inc)) in L2([0, T0], X(δ)) as ε→ 0. �
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