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Abstract. In this paper, we study fermion ground states of the relativistic

Vlasov-Poisson system arising in the semiclassical limit from relativistic quan-

tum theory of white dwarfs. We show that fermion ground states of the three
dimensional relativistic Vlasov-Poisson system exist for subcritical mass, the

mass density of such fermion ground states satisfies the Chandrasekhar equa-

tion for white dwarfs, and that they are orbitally stable as long as solutions
exist.

1. Introduction. White dwarfs are compact stars with high mean density sup-
ported by the pressure of degenerate electron gas and they are considered to be the
final stage in the evolution of stars of which mass is not so large, while the more
massive stars are expected to become neutron stars or black holes [14]. Given their
physical importance, white dwarfs have been studied across different disciplines for
the last century [1, 2, 14, 20, 22, 24, 25]. Notably, using the theory of special
relativity and the Pauli exclusion principle for fermions from quantum mechanics,
Chandrasekhar [1] in 1931 derived the equation of state for white dwarfs

P (ρ) = Cf( 3
√
ρ/D), f(x) =

∫ x

0

u4

√
1 + u2

du, C,D : const. (1)

The equation of gravitational hydrostatic equilibrium

1

r2

d

dr

(
r2

ρ

dP

dr

)
= −4πGρ (2)

together with (1) leads to the Chandrasekhar’s white dwarf equation. Among oth-
ers, Chandrasekhar showed the existence of the critical mass mc > 0, the so-called
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Chandrasekhar limit, predicting the gravitational collapse: the solutions having fi-
nite density and compact support with the prescribed mass m to (2) with (1) exist
only if m < mc, and as m → mc, the mean density tends to infinity and the star
radius tends to 0.

It is evident that quantum mechanics is important in the theory of white dwarfs.
In particular, Lieb-Yau in [22] showed that starting with a relativistic linear N -body
Schrödinger Hamiltonian HN for neutral gravitating fermions, the Chandrasekhar
equation (2) with (1) for white dwarfs is obtained as the semiclassical limit when

the particle number N →∞ and the gravitational constant G→ 0 with GN
2
3 fixed,

and that any solution of the Chandrasekhar equation with finite mean density is a
global minimizer for the semiclassical energy functional.

Moreover, approximating the time evolution of N -body Schrödinger equation
described by the unitary group {e−itHN } by Slater determinants ψ1(t) ∧ ψ2(t) ∧
· · · ∧ ψN (t), one is led to the Hartree-Fock equations (cf. [4]),

i∂tψk =
√
−∆ +m2ψk −

N∑
l=1

(
1

|x|
∗ |ψl|2)ψk +

N∑
l=1

ψl(
1

|x|
∗ {ψ̄lψk}), k = 1, . . . , N

with the energy functional

E(Ψ) =

N∑
k=1

〈ψk,
√
−∆ +m2ψk〉 −

1

2

∫∫
R6

ρΨ(x)ρΨ(y)− |ρΨ(x, y)|2

|x− y|
dxdy (HF)

where Ψ = {ψk}Nk=1 and ρΨ denotes the particle density
∑N
k=1 |ψk(x)|2. Then, in

this regime, white dwarfs are described as a minimizer of the Hartree-Fock energy
E(Ψ) subject to the given mass

∫
R3 ρΨ(x) dx = M .

Having the connections between quantum N -body problem and Chandrasekhar
theory, it is natural to ask if other connections and descriptions of white dwarfs
are possible at different hierarchies. In this paper, we are interested in the kinetic
formulation of white dwarfs standing between the relativistic mean-field quantum
theory and the Chandrasekhar theory. As we shall see in Section 1.1, starting from
the Hatree-Fock energy functional in relativistic quantum theory, the minimization
problem for fermion ground states for the relativistic Vlasov-Poisson system (cf.
(3)) naturally emerges via the semiclassical limit. The goal of this paper is to prove
the existence of such fermion ground states to the relativistic Vlasov-Poisson system
featuring the critical mass phenomenon analogous to the Chandrasekhar limit, to
show that the associated mass density satisfies the Chandrasekhar’s white dwarf
equation, and to study their orbital stability for general perturbations.

Before we introduce the kinetic equation and main results, we briefly discuss a
formal connection (semiclassical limit) between Hatree-Fock energy functional and
the semiclassical energy functional of the relativistic Vlasov-Poisson system.

1.1. From relativistic quantum theory to relativistic kinetic theory. We
begin with the equivalent operator version of Hartree-Fock energy [20]

E(γ) := Tr(Tγ)− 1

2

∫∫
R6

1

|x− y|
ργ(x)ργ(y) dxdy +

1

2

∫∫
R6

1

|x− y|
|γ(x, y)|2 dxdy

(HF)
where T := (

√
−∆ + 1 − 1) is a relativistic kinetic operator and γ is a nonnega-

tive compact self-adjoint operator acting on L2(R3) with the kernel representation
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γ(x, y), i.e.,

γ(φ)(x) =

∫
R3

γ(x, y)φ(y) dy, φ ∈ L2.

We define the density function ργ of γ by ργ(x) := γ(x, x). In relativistic quantum
theory, white dwarfs are understood as a minimizer γ0 of the following minimization
problem

min
{
E(γ) | γ ∈ O1, γ = γ∗, 0 ≤ γ ≤ I,Tr(γ) = m

}
where O1 denotes the space of trace class operators,

O1 :=
{
γ : L2 → L2 | Tr(|γ|) <∞

}
.

In particular, the density function ργ of γ is interpreted as the mass density of a
white dwarf star.

To derive a semi-classical formulation, we introduce the Planck constant ~ in
Hartree-Fock energy functional as follows

E~(γ) :=

Tr~(T ~γ)− 1

2

∫∫
R6

1

|x− y|
ρ~γ(x)ρ~γ(y) dxdy +

1

2

∫∫
R6

1

|x− y|
|(2π~3)γ(x, y)|2 dxdy

where

T ~ =
√
−~2∆ + 1− 1, Tr~ = (2π~)3Tr, ρ~γ = (2π~)3ργ .

This is obtained by replacing T and γ with T ~ and (2π~)3γ respectively.

Define the Töplitz quantization OPT~ by

OpT~ [f ] :=
1

(2π~)3

∫∫
R6

|ϕ~
(q,p)〉〈ϕ

~
(q,p)|f(q, p) dqdp

where f is a distribution function defined on the phase space R6 and

ϕ~
(q,p)(x) :=

1

(π~)
3
4

e−
|x−q|2

2~ e
ip·x
~ .

Then one has the following semiclassical convergences:

(i) (Mass) Tr~(OpT~ [f ]) = ‖f‖L1(R6)

(ii) (Kinetic energy) If f, |p|f ∈ L1(R6), then

lim
~→0

Tr~(
√
−~2∆ + 1OpT~ [f ]) =

∫∫
R6

(
√
|p|2 + 1)f(q, p) dqdp

(iii) (Potential energy) If ρf =
∫
R3 f dp ∈ L6/5(R3), then

lim
~→0

∫∫
R6

ρ~
OPT~ [f ]

(x)ρ~
OPT~ [f ]

(y)

|x− y|
dxdy →

∫∫
R6

ρf (x)ρf (y)

|x− y|
dxdy.

Dropping the exchange term which is negligible in the classical regime, we for-
mally obtain the semiclassical kinetic formulation for the variational problem:

min

{
H(f) | f ∈ L1(R6), 0 ≤ f ≤ 1,

∫
f(q, p) dqdp = m

}
where

H(f) =

∫∫
R6

(
√
|p|2 + 1− 1)f(q, p) dqdp− 1

2

∫∫
R6

ρf (x)ρf (y)

|x− y|
dxdy.

More details for semiclassical and mean-field limits including the Töplitz quan-
tization can be found in [6].
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1.2. Relativistic gravitational Vlasov-Poisson system and main results.
The dynamics of a stellar system subject to self-gravitation is commonly described
by the Vlasov-Poisson system [27]. When high velocities occur, however, special
relativistic corrections should be introduced [28], and more accurate model is given
by the relativistic gravitational Vlasov-Poisson system:∂tf +

v√
1 + |v|2

· ∇xf −∇xΦf · ∇vf = 0, (t, x, v) ∈ R+ × R3 × R3

∆Φf = 4πρf (t, x)
(3)

where f ≥ 0 is the density distribution function in the phase space, the mass density
ρf (t, x) =

∫
R3 f(t, x, v) dv, the speed of light and the gravitational constant have

been normalized to unity. The system (3) is Hamiltonian and sufficiently regular
solutions enjoy the conservation of all Lq norms. In particular, the total mass and
total energy are conserved as long as solutions exist:

M(f) =

∫
R3

ρf (t, x) dx =

∫∫
R6

f(t, x, v) dvdx (Mass)

H(f) =

∫∫
R6

(
√

1 + |v|2 − 1)f(t, x, v) dxdv − 1

2

∫∫
R6

ρf (t, x)ρf (t, y)

|x− y|
dxdy.

(Energy)
While for the non-relativistic Vlasov-Poisson system the Cauchy problem is glob-

ally well-posed both for the classical solutions and for weak solutions [23, 26], the
relativistic problem is critical in the energy space and in fact there exists a critical
threshold for global existence and finite time blowup for solutions to (3). Glassey-
Schaeffer in [5] showed that radially symmetric classical solutions to (3) with neg-

ative total energy
∫∫ √

1 + |v|2fdxdv − 1
2‖Φf‖

2
L2 blow up in finite time (see also

Kiessling-Tahvildar-Zadeh [13]). In [18], Lemou-Méhats-Raphaël gave a detailed
description of a stable self similar blow up dynamics. In a recent work [15], Körner-
Rein proved the existence and uniqueness of strong Lagrangian solutions to (3)
which preserve all the conserved quantities and allow initial data to be discontinu-
ous under radial symmetry assumption. Up to our best knowledge, global existence
question for the Cauchy problem with general initial data without symmetry is still
open; we refer to [15] for more details on the existence theories.

In this paper, inspired by the relativistic quantum theory described in Section
1.1, we consider the following constrained minimization problem

Ẽ = min
f∈A

H(f) (K)

where

A =
{
f ∈ L1(R6) | M(f) = m, 0 ≤ f ≤ 1, supp(f) is bdd

}
.

The point-wise constraint 0 ≤ f ≤ 1 inherits the quantum feature of fermions (quan-
tum white dwarfs) in contrast to the energy-Casimir functional approach closely
related to bosons [17]. In Section 2, we will prove the existence of the minimizer in
the form of

f0(x, v) = χ{√
1+|v|2−1+Φf0≤E0

} (4)

for some E0 < 0 by adapting Guo’s variational method [7]. In Section 3, the
connection to white dwarfs will be given at the level of the mass density ρf0(x) =∫
f0(x, v) dv which enjoys the minimization problem for the Chandrasekhar theory
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of white dwarfs. In particular, the equation of state for white dwarfs (1) will be
directly obtained through the reduction from (4):∫∫

R6

(
√

1 + |v|2 − 1)f0(x, v) dxdv =

∫
R3

A(ρf0) dx

where A(ρ) is related to P (ρ) in (1) through A′′(ρ) = P ′(ρ)
ρ (cf. Section 3). More

generally, we will prove that for any distribution function f ∈ A,∫∫
R6

(
√

1 + |v|2−1)f(x, v) dxdv ≥
∫∫

R6

(
√

1 + |v|2−1)Gf (x, v) dxdv =

∫
R3

A(ρf0) dx

where Gf is the so-called Gibbs state of f defined by Gf (x, v) := χ{|v|≤( 3
4π ρf (x))1/3}.

For these reasons, we call such a minimizer f0 fermion ground states or kinetic white
dwarfs. Lastly in Section 4, based on the reduction method [12, 27] we will show
an orbital stability of fermion ground states (4) for general perturbations as long
as solutions exist. We will see that the topology of stability reflects the reduction
from the fermion ground state to the Chandrasekhar theory of white dwarfs, which
is known to be (conditionally) orbitally stable under the Euler-Poisson dynamics
[24]. More precisely, the measure of distance for stability consists of two parts; one
measures the distance between a distribution function f and its Gibbs state Gf ,
the other measures the relative distance of mass densities ρf for f and ρ0 for the
white dwarf.

There exist other interesting ground states obtained by minimizing the energy-
Casimir functionals. We refer to [7, 8, 9, 10, 11, 16, 17, 19, 27] and references therein
for the existence and orbital stability for the relativistic and non-relativistic Vlasov-
Poisson system. We also mention that the variational problem with the point-wise
constraint 0 ≤ f ≤ 1 has been considered for the non-relativistic Vlasov-Poisson
system, for instance in [3, 16]. The ground state in [3] is obtained by applying
the symmetric rearrangement technique so that the corresponding orbital stability
result appears to be rather restrictive. And the stability result for the fermion type
ground state in [16] is absent because of the lack of compactness of minimizing
sequences in L1 ∩ L∞. It is worth pointing out that in our analysis, we bypass
this difficulty by taking into account the reduction process from the fermion ground
state to the Chandrasekhar theory of white dwarfs.

2. Existence of Fermion Ground States. The aim of this section is to show the
existence of a minimizer of the variational problem (K) as well as the critical mass
phenomenon. The critical mass will be obtained via the interpolation estimate.
Consider the energy space

E := {f ∈ L1(R6) | f ≥ 0, ‖f‖L1 + ‖f‖L∞ + ‖|v|f‖L1 <∞}. (5)

Lemma 2.1. For any f ∈ E, there exists C > 0 independent of f such that

‖∇Φf‖2L2 ≤ C‖|v|f‖L1‖f‖
2
3

L1‖f‖
1
3

L∞ . (6)

Proof. Let f ∈ E be given. First note

ρ(t, x) =

∫
|v|≤R

f(t, x, v)dv +

∫
|v|≥R

f(t, x, v)dv

≤ ‖f‖∞
4π

3
R3 +

1

R

∫
R3

|v|fdv
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for any R > 0. By optimizing R, we obtain

ρ(t, x) ≤ C1(

∫
R3

|v|fdv)
3
4 ‖f‖

1
4

L∞

for some constant C1 so that

‖ρ‖ 4
3
≤ C1‖|v|f‖

3
4

L1‖f‖
1
4

L∞ . (7)

On the other hand, Hardy-Littlewood-Sobolev inequality leads to

‖I2ρ‖12 =

∥∥∥∥∫
R3

ρ(y)

|x− y|
dy

∥∥∥∥
12

≤ C2‖ρ‖ 4
3
. (8)

By (7) and (8) and using the interpolation inequality

‖∇Φf‖22 ≤ ‖ρ‖ 12
11
‖I2ρ‖12 . ‖ρ‖

2
3
1 ‖ρ‖

1
3
4
3

‖ρ‖ 4
3
. ‖|v|f‖L1‖f‖

2
3

L1‖f‖
1
3

L∞ .

Let

K := inf
f∈E\{0}

‖|v|f‖L1‖f‖
2
3

L1‖f‖
1
3

L∞

‖∇Φf‖2L2

. (9)

Then by Lemma 2.1, 0 < K <∞.

Lemma 2.2. Let m > 0 satisfy the following

m
2
3 < 2K. (10)

Let Ẽ be the infimum of H(f):

Ẽ = Ẽ(m) = inf
f∈A

H(f). (11)

Then we have

−∞ < Ẽ < 0 (12)

and there holds the nondichotomy condition: for all 0 < α < 1,

Ẽ(αm) + Ẽ((1− α)m) > Ẽ(m). (13)

Proof. We first show that the infimum is negatively finite. Since f ∈ A, f ∈ E with
‖f‖L1 = m, ‖f‖L∞ ≤ 1. Now using the definition of K,

H(f) =

∫∫
R6

(
√

1 + |v|2 − 1)fdxdv − 1

2
‖∇Φf‖2L2

≥
∫∫

R6

(
√

1 + |v|2 − 1)fdxdv − 1

2K
‖|v|f‖L1m

2
3

≥
∫∫

R6

(
√

1 + |v|2 − 1− |v|)fdxdv ≥ −
∫∫

R6

fdxdv = −m

which shows that Ẽ(m) is bounded from below. A standard rescaling argument
shows that for fλ(x, v) := f(xλ , λv),

H(fλ) =
1

λ

∫∫
R6

|v|2f√
λ2 + |v|2 + λ

dxdv − 1

2λ
‖∇Φf‖2L2

and the second term dominates as λ→ +∞. Hence the infimum should be negative.
We next claim that for all 0 < α ≤ 1

Ẽ(αm) ≥ α 5
3 Ẽ(m). (14)
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To this end, take any f ∈ A(αm) such that ‖f‖L1 = αm and 0 ≤ f ≤ 1, and let

f̃(x, v) = f(α
1
3x, v) so that ‖f̃‖L1 = m and 0 ≤ f̃ ≤ 1. Then

Ẽ(m) ≤ H(f̃) = α−1

∫∫
R6

(
√

1 + |v|2 − 1)fdxdv − α− 5
3

1

2
‖∇Φf‖2L2 ≤ α−

5
3H(f)

where we have used α−1 ≤ α− 5
3 since 0 < α ≤ 1. Therefore, (14) follows.

Applying (14) with α and 1− α for 0 < α < 1, we first see

Ẽ(αm) + Ẽ((1− α)m) ≥ (α
5
3 + (1− α)

5
3 )Ẽ(m). (15)

Since 0 < α < 1, α
5
3 + (1−α)

5
3 < 1 and moreover since Ẽ(m) < 0, (13) follows.

Remark 2.3. We remark that if m
2
3 > 2K, Ẽ(m) = −∞. In fact, the condition

(10) prevents the total energy (
∫∫

R6

√
1 + |v|2dxdv− 1

2‖Φf‖
2
L2) from being negative,

while we know that smooth radial data solutions with negative energy blow up in
finite time by Glassey-Schaeffer [5].

Lemma 2.4 (Radial mass density). Let the mass m > 0 satisfy the bound (10).
There exists a minimizing sequence {fj}j∈N ∈ A of the energy functional H so that
for any j ∈ N, the mass density ρj(x) =

∫
R3 fj(x, v)dv is a radial non-increasing

function.

Proof. Let {fj}j∈N ∈ A be any minimizing sequence of H. Let f∗xj be the non-
increasing symmetric rearrangement of fj with respect to the variable x. Then
f∗xj ∈ A and moreover by Riesz’s rearrangement inequality (cf. Theorem 3.7 of

[21]), ‖∇Φfj‖2L2 ≤ ‖∇Φf∗xj ‖
2
L2 and hence f∗xj is a minimizing sequence whose mass

density is a radial non-increasing function.

Lemma 2.5 (Splitting estimate). Let f ∈ A with radial mass density ρf . For given
R > 0, let

m− λ =

∫
|x|<R

∫
f(x, v)dvdx

for some λ ∈ [0,m]. Then

H(f)− Ẽ(m) ≥ −

(
5

3

Ẽ(m)

m2
+

1

4πR

)
(m− λ)λ. (16)

Proof. The proof follows from the splitting argument of Guo [7]. We split the
potential function Φf = Φ1 + Φ2 so that

∆Φ1 =

∫
R3

χBR(x)f(x, v)dv, ∆Φ2 =

∫
R3

(1− χBR(x))f(x, v)dv.

Then it is easy to see that

H(f) = H(χBRf) +H((1− χBR)f)−
∫
R3

∇Φ1 · ∇Φ2dx

≥ Ẽ(m− λ) + Ẽ(λ) +

∫
R3

Φ2∆Φ1dx.

By (15),

H(f)− Ẽ(m) ≥

[(
1− λ

m

) 5
3

+

(
λ

m

) 5
3

− 1

]
Ẽ(m) +

∫
R3

Φ2∆Φ1dx.
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Now (16) follows from (1− x)
5
3 + x

5
3 − 1 ≤ − 5

3x(1− x) for x ∈ [0, 1], and∣∣∣∣∫
R3

Φ2∆Φ1dx

∣∣∣∣ ≤ max |Φ2| (m− λ) ≤ λ

4πR
(m− λ)

where we have used the fact that Ẽ(m) < 0 and Φ2 is radially symmetric:

max |Φ2| = |Φ2(0)| ≤ 1

4π

∫
R3

1

|y|

∫
R3

(1− χBR(y))f(y, v)dvdy ≤ λ

4πR
.

Proposition 2.6 (Existence of minimizers). Let the mass m > 0 satisfy the bound
(10). Then

(i) Every minimizing sequence with radial non-increasing mass density of the vari-
ational problem (11), up to a subsequence, converges to a minimizer f0 ∈ A
such that Ẽ = H(f0) and suppf0 ⊂ BR0 × R3 where R0 = 3m2

20π|Ẽ(m)| .

(ii) There exists E0 < 0 such that a minimizer f0 takes the following form

f0(x, v) = χ{√
1+|v|2−1+Φf0≤E0

}. (17)

Proof. Proof of (i). We first claim that any minimizing sequence with radial non-
increasing mass density does not vanish:

lim sup
j→∞

∫
|x|≥R1

∫
R3

fjdvdx = 0 (18)

for any R1 > R0 = 3m2

20π|Ẽ(m)| . If not, there exist λ ∈ (0,m] and a subsequence

denoting fj again such that limj→∞
∫
|x|≥R1

∫
R3 fjdvdx = λ. Choose R(j) > R1

such that λ
2 =

∫
|x|≥R(j)

∫
R3 fjdvdx. Applying Lemma 2.5,

H(fj)− Ẽ(m) ≥ −

(
5

3

Ẽ(m)

m2
+

1

4πR1

)
(m− λ

2
)
λ

2
> 0

which is a contradiction to the assumption that fj is a minimizing sequence. Hence,
we deduce that

lim
j→∞

∫
BR0

∫
R3

fjdvdx = m. (19)

We next show that ‖∇Φfj −∇Φf0‖L2 → 0. For any R > 0 we have∫
R3

|∇Φfj −∇Φf0 |2dx ≤
∫
BR

|∇Φfj −∇Φf0 |2dx+
m2

2πR

where we have used the radial symmetry for the second bound. In the same spirit of
Theorem 1 and Lemma 2 of [7], we now the compactness theorem for Sobolev spaces
and regularity of radial potential functions to deduce that ‖∇Φfj −∇Φf0‖L2(BR) →
0. By choosing R sufficiently large, we obtain ‖∇Φfj − ∇Φf0‖L2 → 0 up to a
subsequence.

Since fj is a minimizing sequence, this also shows that
∫∫

R6(
√

1 + |v|2−1)fj dxdv
is bounded above. Thus one has∫

BcR

∫
R3

Rfj dxdv

≤
∫
BcR

∫
R3

(
√

1 + |R|2 − 1)fj dxdv ≤
∫∫

R6

(
√

1 + |v|2 − 1)fj dxdv < C
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which implies that ∫
BcR

∫
R3

fj dxdv ≤
C

R
.

Moreover, since fj is bounded in L1(R6) and L∞(R6), {fj} satisfies the hypothesis
of the Dunford-Pettis theorem and therefore, there exists a function f0 ∈ L1(R6)
and a weakly convergent subsequence in L1(R6) such that ‖f0‖L1 = m and f0 ≥ 0
a.e. as a weak limit of nonnegative functions. Moreover, {fj} converges to f0

(weak* L∞ topology) up to a subsequence so that ‖f0‖L∞ ≤ 1. Hence f0 ∈ A and
suppf0 ⊂ BR0 × R3. The weak convergence in L1 implies∫∫

R6

(
√

1 + |v|2 − 1)fdxdv ≤ lim inf
n→∞

∫∫
R6

(
√

1 + |v|2 − 1)fjdxdv

from which we deduce that H(f0) = Ẽ(m).
Proof of (ii). First we show that ‖f0‖L∞ = 1. Suppose not: ‖f0‖L∞ = 1

α < 1.

Consider f̃(x, v) = αf0(α
2
3x, α−

1
3 v) so that ‖f̃‖L1 = m, ‖f̃‖L∞ = 1 so that f̃ ∈ A.

However, since α > 1 and Ẽ < 0,

H(f̃) = α
2
3

∫∫
R6

|v|2√
1 + |α 1

3 v|2 + 1
f0(x, v)dxdv − 1

2
‖∇Φf0‖2L2


≤ α 2

3H(f0) = α
2
3 Ẽ < Ẽ

which is a contradiction to the fact that f0 is a minimizer.
Next we show that f0 = 1 on suppf0 based on the Euler-Lagrange multiplier

method. To this end, let ε ∈ (0, 1) be arbitrarily given and consider the set

Sε = {(x, v) : ε ≤ f0(x, v) ≤ 1− ε}.

We want to show that Sε has a set of measure 0 for any ε > 0. Consider a test
function g ∈ L1(R6) ∪ L∞(R6) such that g ≥ 0 a.e. in R6 \ suppf0 with compact
support contained inside (suppf0 \ Sε)c = (R6 \ suppf0) ∪ Sε. Let

g(t) = m
tg + f0

‖tg + f0‖L1

, t ∈
[
0,

mε

(m‖g‖L∞ + ‖g‖L1)

]
.

One can readily check that g(t) ∈ A for t ∈
[
0, mε

(m‖g‖L∞+‖g‖L1 )

]
and g(0) = f0.

Note that g is smooth in t from the right. In fact,

g′(t) =
mg

‖tg + f0‖L1

−m
(tg + f0)

∫∫
R6 gdxdv

‖tg + f0‖2L1

g′′(t) = −2m
g
∫∫

R6 gdxdv

‖tg + f0‖2L1

+ 2m
(tg + f0)(

∫∫
R6 gdxdv)2

‖tg + f0‖3L1

and hence

g(t)− f0 = g′(0)t+
g′′(t∗)t

2

2
=

(
g −

∫∫
R6 gdxdv

m
f0

)
t+

g′′(t∗)t
2

2
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for some t∗ ∈ (0, t) and |g′′(t∗)| . |f0| + |g|. Now let h(t) := H(g(t)) − H(f0) so
that

h(t) =

∫∫
R6

(
√

1 + |v|2 − 1)(g(t)− f0)dxdv − 1

2

∫
R3

(|∇Φg(t)|2 − |∇Φf0 |2)dx

=

∫∫
R6

(
√

1 + |v|2 − 1)(g(t)− f0)dxdv

+

∫∫
R6

Φf0(g(t)− f0)dxdv − 1

2

∫
R3

|∇Φg(t) −∇Φf0 |2dx.

Therefore, we have

h(t) = t

∫∫
R6

(√
1 + |v|2 − 1 + Φf0

)(
g −

∫∫
gdxdv

m
f0

)
dxdv

− 1

2

∫
R3

|∇Φg(t) −∇Φf0 |2dx+O(t2)

= t

∫∫
R6

(√
1 + |v|2 − 1 + Φf0 −

Ẽ(m)

m

)
gdxdv

− 1

2

∫
R3

|∇Φg(t) −∇Φf0 |2dx+O(t2).

Since f0 minimizes H(f) on A, h(t) ≥ 0 for all t ∈
[
0, mε

(m‖g‖L∞+‖g‖L1 )

]
, and in turn

we have ∫∫
R6

(√
1 + |v|2 − 1 + Φf0 −

Ẽ(m)

m

)
gdxdv ≥ 0

for all g specified above and ε. Since g ≥ 0 in R6\suppf0, we deduce that
√

1 + |v|2−
1 + Φf0 ≥

Ẽ(m)
m for all (x, v) ∈ R6 \ suppf0, and hence{

(x, v) :
√

1 + |v|2 − 1 + Φf0 ≤
Ẽ(m)

m

}
⊂ suppf0.

On the other hand, g doesn’t have a definite sign on Sε, and thus
√

1 + |v|2 − 1 +

Φf0 = Ẽ(m)
m for all (x, v) ∈ Sε ∩ suppf0. The Lebesgue measure in R6 of the set

satisfying this identity is zero and so is the measure of Sε. Since ε is arbitrary, we

deduce f0 = 1 on suppf0 and suppf0 =
{

(x, v) :
√

1 + |v|2 − 1 + Φf0 ≤
Ẽ(m)
m

}
.

Remark 2.7. A minimizer f0 given in (17) is a steady state of the relativistic
Vlasov-Poisson system (in a weak sense). Also, it is unique with radial mass density.
In fact, we will see in Section 3 that ρf0 is a minimizer of the variational problem
(F ) in Proposition 3.2, which is proved to be unique in the class of radial mass
density [24]. Then the form (17) satisfied by f0 says that a minimizer f0 is also
unique in the radial class with respect to x.

Remark 2.8. One may apply the general concentration compactness principle to
general minimizing sequences without radial assumption on mass density. As in
[16] one can show that there exists shift vectors aj in R3 such that fj(x + aj , v),
up to a subsequence, converges to f weakly in L1 and L∞ weak* sense but without
strong compactness. This lack of strong compactness at the level of f motivates us
to adopt the reduction process via the mass density ρf to obtain an orbital stability
result for white dwarfs in Section 4.
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3. Reduction and white dwarfs. In this section, we show that the mass density
ρ0 associated with our original variational problem (11) is a minimizer of the reduced
variational problem for ρ and that it gives a variational description of the equilibrium
white dwarf star.

Define A(ρ) as

A(ρ) =

∫ ρ

0

√(
3

4π
u

) 2
3

+ 1− 1 du. (20)

It is then easy to check that

(A′+)−1(x) =
4π

3
((x+ 1)2 − 1)

3
2
+. (21)

Lemma 3.1. Let f0 be a minimizer obtained in Proposition 2.6. Then ρ0(x) =∫
f0(x, v)dv and Φρ0 = −| · |−1 ∗ ρ0 satisfy

ρ0(x) = (A′+)−1(E0 − Φρ0(x)). (22)

Moreover,
f0(x, v) = χ{

|v|≤( 3
4π ρ0(x))

1
3

}. (23)

Proof. We note that for x such that (E0 + 1− Φf0(x))2 − 1 ≥ 0

ρ0(x) =

∫
R3

f0(x, v)dv =

∫
R3

χ{√
1+|v|2−1+Φf0≤E0

} dv
=

∫ √(E0+1−Φf0 (x))2−1

0

4πr2 dr =
4π

3
((E0 + 1− Φρ0(x))2 − 1)

3
2

so that

ρ0(x) =
4π

3

(
(E0 + 1− Φρ0(x))2 − 1

) 3
2

+
.

With A(ρ) given in (20), it is easy to see

ρ0(x) = (A′+)−1(E0 − Φρ0(x)).

Since (E0 + 1− Φρ0(x))2 − 1 = ( 3
4πρ0(x))

2
3 , the assertion (23) easily follows.

Proposition 3.2. Let f0 be a minimizer obtained in Proposition 2.6. Then ρ0(x) =∫
f0(x, v)dv is a minimizer of the variational problem

(F) min
ρ∈B

{∫
R3

A(ρ) dx− 1

2

∫∫
R6

ρ(x)ρ(y)

|x− y|
dxdy

}
where

B =

{
ρ ∈ L1(R3) ∩ L 4

3 (R3)

∣∣∣∣ ∫
R3

ρ = m, ρ ≥ 0, supp(ρ) is bdd

}
.

And the associated Euler-Lagrange equation is given by (22).

Proof. Let ρ ∈ L1(R3) ∩ L 4
3 (R3) be a nonnegative function so that ‖ρ‖L1 = m.

Define

fρ(x, v) =

{
1, if |v| ≤ ( 3

4πρ(x))
1
3

0, otherwise
.

Note that fρ ∈ A. Since f0 minimizes H on A and f0 takes the form of (23), f0

also minimizes the problem

min {H(fρ) : ρ ∈ B} . (24)
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Direct computations show that∫
R3

(
√

1 + |v|2 − 1)fρdv =

∫
|v|≤( 3

4π ρ(x))
1
3

√
1 + |v|2 − 1dv

=

∫ ( 3
4π ρ(x))

1
3

0

(
√

1 + r2 − 1)4πr2dr

=

∫ ρ(x)

0

√(
3

4π
u

) 2
3

+ 1− 1du = A(ρ(x))

and ‖∇Φfρ‖L2 = ‖∇Φρ‖L2 . Therefore, the variational problem (24) can be refor-
mulated as

min
ρ∈B
{F (ρ) : ρ ∈ B} (25)

where

F (ρ) =

∫
R3

A(ρ) dx− 1

2

∫∫
R6

ρ(x)ρ(y)

|x− y|
dxdy. (26)

The mass density ρ0 of f0 is a minimizer of (25) and therefore, it satisfies the Euler-
Lagrange equations: A′(ρ0) + Φρ0(x) − µ = E0 where E0 is a Lagrange multiplier
associated with the constraint ‖ρ‖L1 = m and µ = 0 if ρ0(x) > 0 and µ ≥ 0 if
ρ0(x) = 0. Therefore, we obtain (22).

From (20), we have

A′′(ρ) =
1

2
(

3

4π
)

2
3

1

ρ
1
3

√(
3

4πρ
) 2

3 + 1

. (27)

Thus A(ρ) is a pressure energy for white dwarfs (cf. (1)) so that

A′′(ρ) =
P ′(ρ)

ρ
, P (ρ) = Cf( 3

√
ρ/D), f(x) =

∫ x

0

u4

√
1 + u2

du, C,D : const.

and also we see that the mass density ρ0 of the fermion ground state f0 is a radial
steady state of the Euler-Poisson system with the pressure law of white dwarfs. The
above Proposition shows that the white dwarf equilibrium stars have the variational
characterization through reduction from fermion ground states of the relativistic
Vlasov-Poisson system.

4. Orbital stability of white dwarfs. In this section, we study orbital stability
of kinetic white dwarf solutions constructed in the previous sections. We begin with
the following compactness result whose proof can be found in [24].

Proposition 4.1. Let ρ0 ∈ B and {ρn} ⊂ B be a minimizer and a minimizing
sequence of the variational problem (25) respectively. Then there exists a sequence
{xn} ⊂ R3 such that

lim
n→∞

‖∇Φρn −∇Φρ0(·−xn)‖L2(R3) = 0.

Proposition 4.2. For any given ρ0 ∈ B, one has∫
R3

A(ρ0) dx = min

{∫∫
R6

(
√

1 + |v|2 − 1)f(x, v) dxdv | f ∈ A, ρf = ρ0

}
.
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Moreover, the unique minimizer is given by

f0(x, v) = χ{√
1+|v|2−1≤λ(ρ0(x))

}, λ(ρ) =

√(
3

4π
ρ

) 2
3

+ 1− 1

and equivalently

f0(x, v) = χ{
|v|≤( 3

4π ρ0(x))
1
3

}.
Proof. Consider the minimization problem

min

{∫
R3

(
√

1 + |v|2 − 1)g(v) dv
∣∣∣ 0 ≤ g ≤ 1,

∫
R3

g(v) dv = ρ0

}
where ρ0 is a given positive real number. By following arguments of proof of Propo-
sition 2.6, we see that the problem admits a minimizer g0(v) = χ{√

1+|v|2−1≤λ
} for

some λ = λ(ρ0) ∈ R. From the assumption
∫
g(v) = ρ0, λ(ρ0) should be determined

by λ(ρ0) =

√(
3

4πρ0

) 2
3 + 1− 1. Also one has from direct computation

A(ρ0) =

∫
R3

(
√

1 + |v|2 − 1)g0(v) dv.

Then integrating with respect to x, we see that the proposition holds true.

For given f ∈ A, we define a Gibbs state Gf of f by

Gf (x, v) := χ{
|v|≤( 3

4π ρf (x))
1
3

}.
Since ρGf = ρf , Proposition 4.2 implies that for any f ∈ A,∫

R3

A(ρf ) dx =

∫∫
R6

(
√

1 + |v|2 − 1)Gf (x, v) dxdv. (28)

We next introduce a distance function which measures the difference between f
and its Gibbs state Gf :

δ(f,G(f)) =

∫∫
R6

(
√
|v|2 + 1− 1)(f −Gf ) dxdv

and a relative distance function which measures the difference between the mass
density ρf of f and the mass density ρ0 for the white dwarf star:

d(ρ, ρ0) =

∫
R3

A(ρ)−A(ρ0) + Φρ0(ρ− ρ0) dx.

The following lemma asserts that they are distance functions.

Lemma 4.3. For any f ∈ A, one has

(i) δ(f,G(f)) ≥ 0 and δ(f,G(f)) = 0 if and only if f = Gf
(ii) d(ρf , ρ0) ≥ 0 and d(ρf , ρ0) = 0 if and only if ρf = ρ0 where ρ0 ∈ B is a

minimizer of the variational problem (25).

Proof. The statement (i) follows from Proposition 4.2, while the statement (ii) is a
consequence of Proposition 3.2 and the convexity of A(ρ) (cf. (27)).

Proposition 4.4. Let ρ0 ∈ B be a minimizer of the variational problem (25). For
f ∈ A, there holds

H(f)− F (ρ0) = δ(f,G(f)) + d(ρf , ρ0)− 1

8π
‖∇Φρf −∇Φρ0‖2L2(R3).
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Proof. Observe from (28) that

H(f)− F (ρ0)

= H(f)−H(Gf ) +H(Gf )− F (ρ0)

= δ(f,Gf ) +

∫
R3

A(ρf )−A(ρ0) dx+
1

2

∫
R3

Φρf ρf − Φρ0ρ0 dx

= δ(f,Gf ) + d(ρf , ρ0) +

∫
R3

Φρ0(ρ0 − ρf ) dx+
1

2

∫
R3

Φρf ρf − Φρ0ρ0 dx

= δ(f,Gf ) + d(ρf , ρ0) +
1

2

∫
R3

Φρf ρf − 2Φρ0ρf + Φρ0ρ0 dx

= δ(f,Gf ) + d(ρf , ρ0) +
1

2

∫
R3

(Φρf − Φρ0)(ρf − ρ0) dx

= δ(f,Gf ) + d(ρf , ρ0)− 1

8π
‖∇Φρf −∇Φρ0‖2L2(R3).

Theorem 4.5. Let f0 be a minimizer of the variational problem (11). For any
ε > 0, there exists some δ > 0 such that if f ∈ A satisfies

δ(f,G(f)) + d(ρf , ρf0) +
1

8π
‖∇Φρf −∇Φρf0 ‖

2
L2(R3) < δ,

then there exists {x(t)} ⊂ R3 such that the global solution f(t) of IVP (3) with
initial data f preserving the total mass, energy and L∞ norm, provided it exists,
satisfies

δ(f(t), G(f(t))) + d(ρf(t), ρf0(· − x(t))) +
1

8π
‖∇Φρf(t) −∇Φρf0 (·−x(t))‖2L2(R3) < ε

for all t ≥ 0.

Proof. To the contrary, suppose not. Then there are ε0 > 0 and sequences {fn} ⊂ A
and {tn} ⊂ R+ such that

δ(fn, G(fn)) + d(ρfn , ρf0) +
1

8π
‖∇Φρfn −∇Φρf0 ‖

2
L2(R3) <

1

n
(29)

but the global solution fn(t) of IVP (3) with initial data f satisfies

δ(fn(tn), G(fn(tn)))+d(ρfn(tn), ρf0(·−x))+
1

8π
‖∇Φρfn(tn)

−∇Φρf0 (·−x)‖2L2(R3) ≥ ε0

(30)
for any n ∈ N and x ∈ R3. Since ρf0 coincides with ρ0, a minimizer of the variational
problem (25), Proposition 4.4 combined with (29) and conservation of Hamiltonian
under the flow of (3) says that H(fn)→ F (ρ0) as →∞. Since the flow of (3) also
preserves the total mass and L∞ norm, we see from Proposition 4.2 that {ρfn(tn)}
is a minimizing sequence of the problem (25). Then we may apply Proposition 4.1
to see that there exists a sequence {xn} ⊂ R3 such that

lim
n→∞

∥∥∇Φρfn(tn)
−∇Φρ0(·−xn)

∥∥
L2(R3)

= 0.

Then we again invoke Proposition 4.4 to conclude that as n→∞

δ(fn(tn), G(fn(tn)))+d(ρfn(tn), ρf0(·−xn))+
1

8π
‖∇Φρfn(tn)

−∇Φρf0 (·−xn)‖2L2(R3) → 0,

which makes a contradiction to (30). This completes the proof.
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Remark 4.6. In Theorem 4.5, perturbations f need not to be spherically symmet-
ric, while the existence of global solutions preserving the total mass, energy and L∞

norm is assumed, in which sense our stability result is a conditional one. On the
other hand, radially symmetric perturbations are dynamically accessible thanks to
the existence theory of strong Lagrangian solutions [15] which allows discontinuous
initial data such as fermion ground states f0.
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[16] M. Lemou, F. Méhats and P. Raphaël, On the orbital stability of the ground states and the

singularity formation for the gravitational Vlasov-Poisson system, Arch. Rat. Mech. Anal.,
189 (2008), no.3, 425–468.
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