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ABSTRACT. In this paper, we study fermion ground states of the relativistic
Vlasov-Poisson system arising in the semiclassical limit from relativistic quan-
tum theory of white dwarfs. We show that fermion ground states of the three
dimensional relativistic Vlasov-Poisson system exist for subcritical mass, the
mass density of such fermion ground states satisfies the Chandrasekhar equa-
tion for white dwarfs, and that they are orbitally stable as long as solutions
exist.

1. Introduction. White dwarfs are compact stars with high mean density sup-
ported by the pressure of degenerate electron gas and they are considered to be the
final stage in the evolution of stars of which mass is not so large, while the more
massive stars are expected to become neutron stars or black holes [14]. Given their
physical importance, white dwarfs have been studied across different disciplines for
the last century [1, 2, 14, 20, 22, 24, 25]. Notably, using the theory of special
relativity and the Pauli exclusion principle for fermions from quantum mechanics,
Chandrasekhar [1] in 1931 derived the equation of state for white dwarfs

T U4
P(p) = Cf(/p/D), f(rc)=/0 NiEwr

The equation of gravitational hydrostatic equilibrium

1d (r?dP

—_ (- = ~4AnG 2

r2 dr ( P dr) P (2)
together with (1) leads to the Chandrasekhar’s white dwarf equation. Among oth-
ers, Chandrasekhar showed the existence of the critical mass m. > 0, the so-called

du, C,D : const. (1)
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Chandrasekhar limit, predicting the gravitational collapse: the solutions having fi-
nite density and compact support with the prescribed mass m to (2) with (1) exist
only if m < m¢, and as m — m,, the mean density tends to infinity and the star
radius tends to 0.

It is evident that quantum mechanics is important in the theory of white dwarfs.
In particular, Lieb-Yau in [22] showed that starting with a relativistic linear N-body
Schréodinger Hamiltonian Hy for neutral gravitating fermions, the Chandrasekhar
equation (2) with (1) for white dwarfs is obtained as the semiclassical limit when
the particle number N — oo and the gravitational constant G — 0 with GN 3 fixed,
and that any solution of the Chandrasekhar equation with finite mean density is a
global minimizer for the semiclassical energy functional.

Moreover, approximating the time evolution of N-body Schrédinger equation
described by the unitary group {e~ "~} by Slater determinants vy () A ¥2(¢) A
-+« AN (t), one is led to the Hartree-Fock equations (cf. [4]),

N N
Oy = V—A+mPy — Z(% * [ wn + Zdn(ﬁ «{hin}), k=1,....N
=1 1=1
with the energy functional
S L ([ pu(@)pw(y) ~ lpu(x.y)
E(W) = (tp, V=A+ m2¢y) — 5//]1@ Fgm dzdy (HF)
k=1

where ¥ = {1, }1_, and py denotes the particle density Z,ivzl |Yr(x)|>. Then, in
this regime, white dwarfs are described as a minimizer of the Hartree-Fock energy
E(W) subject to the given mass ;5 pu(z)de = M.

Having the connections between quantum N-body problem and Chandrasekhar
theory, it is natural to ask if other connections and descriptions of white dwarfs
are possible at different hierarchies. In this paper, we are interested in the kinetic
formulation of white dwarfs standing between the relativistic mean-field quantum
theory and the Chandrasekhar theory. As we shall see in Section 1.1, starting from
the Hatree-Fock energy functional in relativistic quantum theory, the minimization
problem for fermion ground states for the relativistic Vlasov-Poisson system (cf.
(3)) naturally emerges via the semiclassical limit. The goal of this paper is to prove
the existence of such fermion ground states to the relativistic Vlasov-Poisson system
featuring the critical mass phenomenon analogous to the Chandrasekhar limit, to
show that the associated mass density satisfies the Chandrasekhar’s white dwarf
equation, and to study their orbital stability for general perturbations.

Before we introduce the kinetic equation and main results, we briefly discuss a
formal connection (semiclassical limit) between Hatree-Fock energy functional and
the semiclassical energy functional of the relativistic Vlasov-Poisson system.

1.1. From relativistic quantum theory to relativistic kinetic theory. We
begin with the equivalent operator version of Hartree-Fock energy [20]

1 1 1 1
E(y) ="Te(T) - *// T P+(2)py(y) dudy + *// ——|y(x, y)? dady
2 ) oo T =P 2 oo Ty
(HF)
where T := (v/—A+ 1 — 1) is a relativistic kinetic operator and = is a nonnega-
tive compact self-adjoint operator acting on L?(IR?) with the kernel representation
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’Y(x7 y)7 i'e'7
V(¢)(z) = /3 Yz, y)ely)dy, e L
R
We define the density function p, of v by py(z) == v(z, ). In relativistic quantum
theory, white dwarfs are understood as a minimizer g of the following minimization
problem
min {€(7) |y € O, v =7*, 0 <~y < I, Tr(y) = m}
where O denotes the space of trace class operators,
O' ={y:L* = L* | Tr(|y]) < oo} .
In particular, the density function p, of v is interpreted as the mass density of a
white dwarf star.

To derive a semi-classical formulation, we introduce the Planck constant & in
Hartree-Fock energy functional as follows

&) =
hyy— L / / L i a)ph(y) dady + / / L |(2nh?) (e, y)|? dady
2 [ Jge |v—y| 2 J Jre |z =y ’

Th=V-mA+1-1, T"=(2rh)>Tr, ol = (27h)%p,

This is obtained by replacing T and ~ with 7" and (27h)37 respectively.
Define the Toplitz quantization OP% by

1
Opy, [f] = k) / g |00y ) (Pl | £ (@) dadp

where f is a distribution function defined on the phase space R® and

where

1 _lz—q? ipe=

cp?q’p)(:v) = me hoe h o,

Then one has the following semiclassical convergences:

(i) (Mass) Te"(Opy, [f]) = [ f]l 2 ey
(ii) (Kinetic energy) If f,|p|f € L*(RS), then

Jim T (V128 <100 171) = [ (VI +T) 0. p) dady

(i4i) (Potential energy) If py = o4 fdp € LS/5(R?), then

lim / / Porgin (@Poryin da:d o / / Pr@orw) o
h—0 J Jre |z — | RS Ix—yI

Dropping the exchange term which is negligible in the classical regime, we for-
mally obtain the semiclassical kinetic formulation for the variational problem:

min{H(f) | feL'(R%),0< f<1, /f(q,p)dqdpzm}

// VIpl? +1=1)f(q,p) dgdp — // Ps@)ps(y) dxdy
RS \x—y|

More details for semiclassical and mean-field limits including the Toplitz quan-
tization can be found in [6].

where



4 JUHI JANG AND JINMYOUNG SEOK

1.2. Relativistic gravitational Vlasov-Poisson system and main results.
The dynamics of a stellar system subject to self-gravitation is commonly described
by the Vlasov-Poisson system [27]. When high velocities occur, however, special
relativistic corrections should be introduced [28], and more accurate model is given
by the relativistic gravitational Vlasov-Poisson system:

Ouf + —ee Vof — Vol - Vof =0, (t,2,0) € Ry x R? x R3

\/W x x b ) ) (3)

Al =4dmp;(t, )

where f > 0 is the density distribution function in the phase space, the mass density
pr(t, ) fRS f(t,z,v) dv, the speed of light and the gravitational constant have
been normalized to unity. The system (3) is Hamiltonian and sufficiently regular
solutions enjoy the conservation of all L4 norms. In particular, the total mass and
total energy are conserved as long as solutions exist:

M(f) = /}RS pr(t,z)de = /RG ft,x,v) dvde (Mass)
_ 5 2 0) dady — pftxpfty)
(Energy)

While for the non-relativistic Vlasov-Poisson system the Cauchy problem is glob-
ally well-posed both for the classical solutions and for weak solutions [23, 26], the
relativistic problem is critical in the energy space and in fact there exists a critical
threshold for global existence and finite time blowup for solutions to (3). Glassey-
Schaeffer in [5] showed that radially symmetric classical solutions to (3) with neg-
ative total energy [[ \/1+ [v[2fdzdv — 1||®||2, blow up in finite time (see also
Kiessling-Tahvildar-Zadeh [13]). In [18], Lemou-Méhats-Raphaél gave a detailed
description of a stable self similar blow up dynamics. In a recent work [15], Kérner-
Rein proved the existence and uniqueness of strong Lagrangian solutions to (3)
which preserve all the conserved quantities and allow initial data to be discontinu-
ous under radial symmetry assumption. Up to our best knowledge, global existence
question for the Cauchy problem with general initial data without symmetry is still
open; we refer to [15] for more details on the existence theories.

In this paper, inspired by the relativistic quantum theory described in Section
1.1, we consider the following constrained minimization problem

E = min H(f) (K)

where
A={feL'(R® | M(f)=m,0< f<1,supp(f)is bdd}.

The point-wise constraint 0 < f < 1 inherits the quantum feature of fermions (quan-
tum white dwarfs) in contrast to the energy-Casimir functional approach closely
related to bosons [17]. In Section 2, we will prove the existence of the minimizer in
the form of

fola,v) = XM VTR~ 14®5, <Bo } (4)
for some Ey < 0 by adapting Guo’s variational method [7]. In Section 3, the

connection to white dwarfs will be given at the level of the mass density py, (x) =
| fo(z,v) dv which enjoys the minimization problem for the Chandrasekhar theory
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of white dwarfs. In particular, the equation of state for white dwarfs (1) will be
directly obtained through the reduction from (4):

L WVTFRP = Dpste o) dado = [ AGpg)da

where A(p) is related to P(p) in (1) through A”(p) = @ (cf. Section 3). More
generally, we will prove that for any distribution function f € A,

//RG( 1+ [v]?=1)f(x,v) dedv > //Ra( 1+ WP—1)G(x,v) dedy = /R3 Alpy,) da

where G is the so-called Gibbs state of f defined by G(x,v) = X{[v]< (2 py (2))1/3} -
For these reasons, we call such a minimizer fy fermion ground states or kinetic white
dwarfs. Lastly in Section 4, based on the reduction method [12, 27] we will show
an orbital stability of fermion ground states (4) for general perturbations as long
as solutions exist. We will see that the topology of stability reflects the reduction
from the fermion ground state to the Chandrasekhar theory of white dwarfs, which
is known to be (conditionally) orbitally stable under the Euler-Poisson dynamics
[24]. More precisely, the measure of distance for stability consists of two parts; one
measures the distance between a distribution function f and its Gibbs state G,
the other measures the relative distance of mass densities py for f and pg for the
white dwarf.

There exist other interesting ground states obtained by minimizing the energy-
Casimir functionals. We refer to [7, 8, 9, 10, 11, 16, 17, 19, 27] and references therein
for the existence and orbital stability for the relativistic and non-relativistic Vlasov-
Poisson system. We also mention that the variational problem with the point-wise
constraint 0 < f < 1 has been considered for the non-relativistic Vlasov-Poisson
system, for instance in [3, 16]. The ground state in [3] is obtained by applying
the symmetric rearrangement technique so that the corresponding orbital stability
result appears to be rather restrictive. And the stability result for the fermion type
ground state in [16] is absent because of the lack of compactness of minimizing
sequences in L' N L. It is worth pointing out that in our analysis, we bypass
this difficulty by taking into account the reduction process from the fermion ground
state to the Chandrasekhar theory of white dwarfs.

2. Existence of Fermion Ground States. The aim of this section is to show the
existence of a minimizer of the variational problem (K) as well as the critical mass
phenomenon. The critical mass will be obtained via the interpolation estimate.
Consider the energy space

E={feL'®) [ f20, [fle + I fllz= + lv|fllzs < oo}. (5)
Lemma 2.1. For any f € &, there exists C > 0 independent of f such that
V@512 < Clllolf e 15 111 e (6)

Proof. Let f € £ be given. First note

o) = [ S /Mf“’x’”)d”
1

47
Il B+ [ polpde
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for any R > 0. By optimizing R, we obtain

3 1
plti) < Ca( [ ol san) 11
for some constant C7 so that

3 1
lolls < CulllolfIE I~ (7)
On the other hand, Hardy-Littlewood-Sobolev inequality leads to

Ik

By (7) and (8) and using the interpolation inequality

2.1 2 o1
IV@s[I5 < llpllz [ T2plhe < el ol liolls < el F e LA 2 1A e

[22p][12 = < Callplls- (8)

12

O
Let , )
FIE 3
ke e NI o)
Fe€\{o} [V®s]7.
Then by Lemma 2.1, 0 < K < oo.
Lemma 2.2. Let m > 0 satisfy the following
ms < 2K. (10)
Let E be the infimum of H(f):
E = E(m) = inf H(f). 11
(m) = inf H(f) (11)
Then we have }
—oco< E<O0 (12)
and there holds the nondichotomy condition: for all 0 < a < 1,
E(am) + E((1 — a)m) > E(m). (13)

Proof. We first show that the infimum is negatively finite. Since f € A, f € £ with
IfllLy =m, ||fllze < 1. Now using the definition of K,

1) = [ VTFTP = 1) dado = 51903,
Z/AG(\/1+|U|2—1)fdxdv—%H|v|f||ym%
v 21— |o|)fdedv > — dwdy = —
> [ WTFRP =1~ b pdodo = = [ pazdo = —m

which shows that E (m) is bounded from below. A standard rescaling argument
shows that for fi(z,v) := f(§, \v),

1 vl f 1 2
H = - dxdv — V|72
(5 A//Rs VA2 + 24+ A ax IVl

and the second term dominates as A — 4o00. Hence the infimum should be negative.
We next claim that for all 0 < o < 1

E(am) > a3 E(m). (14)
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To this end, take any f € A(am) such that ||f||z: = am and 0 < f < 1, and let
f(z,v) = f(aFz,v) so that || f||;r =m and 0 < f < 1. Then

- - 1
B(m) < H(f) = o™ [[ (VIFTE = Dfdedv ~ 0”398 < a V()
R6
where we have used a~! < a3 since 0 < a < 1. Therefore, (14) follows.
Applying (14) with o and 1 — « for 0 < o < 1, we first see

E(am) + E((1 — a)m) > (a3 + (1 — a)3)E(m). (15)
Since 0 < v < 1, a3 4 (1 —a)? < 1 and moreover since E(m) < 0, (13) follows. [

Remark 2.3. We remark that if m3 > 2K, E(m) = —oo. In fact, the condition
(10) prevents the total energy ([ [gs /1 + [v[2dzdv— || ®]|2.) from being negative,
while we know that smooth radial data solutions with negative energy blow up in
finite time by Glassey-Schaeffer [5].

Lemma 2.4 (Radial mass density). Let the mass m > 0 satisfy the bound (10).
There exists a minimizing sequence {f;};en € A of the energy functional H so that
for any j € N, the mass density p;(z) = fR3 fi(z,v)dv is a radial non-increasing
function.

Proof. Let {f;}jen € A be any minimizing sequence of H. Let f;* be the non-
increasing symmetric rearrangement of f; with respect to the variable . Then
[;® € A and moreover by Riesz’s rearrangement inequality (cf. Theorem 3.7 of
21]), [V®y, |32 < [V se |7. and hence f* is a minimizing sequence whose mass
density is a radial non-increasing function. O

Lemma 2.5 (Splitting estimate). Let f € A with radial mass density py. For given

R >0, let
m—A\= / /f(m,v)dvdx
|lz|<R

for some A € [0,m]. Then

Hf) - B(m) > — (g E;T) 4 4;R> (m — M)A (16)

Proof. The proof follows from the splitting argument of Guo [7]. We split the
potential function ®; = ®; + ®, so that

Acbl = /]Rs XBr (;[;)f(!E,’U)dU, A(I)Q = /]1{3(1 - XBR(i))f(‘TJ})dVU
Then it is easy to see that
H(f) = B )+ H(1 = xp,)f) = [ 901 Toado

> E(m—\) + E\) + / Dy AD, d.
R3

R3

=
=
|
el
g
\%
1
/N
[t
|
3>
SN—
wolon
+
N
3>
N——
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Now (16) follows from (1 — 2)3 4+ 23 —1 < —22(1 - z) for z € [0,1], and

/ @2 Aq)ld:c
R3

where we have used the fact that E(m) < 0 and ®, is radially symmetric:

1 1 A
Oyl = |D < — — 1-— < —.
e @] = 020 < - [ [ (1= (0) vy < o

A
< max |Pa] (m — A) < T(mf A)

O
Proposition 2.6 (Existence of minimizers). Let the mass m > 0 satisfy the bound
(10). Then

(i) Every minimizing sequence with radial non-increasing mass density of the vari-
ational problem (11), up to a subsequence, converges to a minimizer fo € A

such that E = H(fo) and suppfo C Bgr, x R3 where Ry = Wim)l.
(ii) There exists Ey < 0 such that a minimizer fy takes the following form

Jol@v) = X¢ ATRR-1ra,,<m) (17)

Proof. Proof of (i). We first claim that any minimizing sequence with radial non-
increasing mass density does not vanish:

lim sup/ fidvdx =0 (18)
j—oo J|z|>Ry; JR3
for any Ry > Ry = ﬁén”. If not, there exist A € (0,m] and a subsequence

denoting f; again such that lim;_ flx|>R1 Jgs fidvdz = X. Choose R(j) > Ry

such that § = flw\ZR(j) Jgs fidvdz. Applying Lemma 2.5,

H(f;)—E(m) > - <5E(m) 4t )(m—;); >0

3 m2 47TR1

which is a contradiction to the assumption that f; is a minimizing sequence. Hence,
we deduce that

_lim/ fidvdz = m. (19)
J—ro0 Br, R3

We next show that [|[V®; — V&g ||z> — 0. For any R > 0 we have

2
/ VD), — Vb, [2dz < / VO, = Vs, Pdo + 5 —
R3 Br TR
where we have used the radial symmetry for the second bound. In the same spirit of
Theorem 1 and Lemma 2 of [7], we now the compactness theorem for Sobolev spaces
and regularity of radial potential functions to deduce that V@ —V®y |[12(5,) —
0. By choosing R sufficiently large, we obtain ||[V®; — V®y {2 — 0 up to a
subsequence.
Since f; is a minimizing sequence, this also shows that ff]R6( 14 |v]2-1)f; dedv
is bounded above. Thus one has

/ Rf; dxdv

B, JR?

S/ /(x/1+|Rl2—1)fjdardv§// (V142 =1)f;dedv < C
B¢ JR3 R6

c
R
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J

Moreover, since f; is bounded in L'(R®) and L>°(R®), {f;} satisfies the hypothesis
of the Dunford-Pettis theorem and therefore, there exists a function fo € L!(R%)
and a weakly convergent subsequence in L'(R%) such that || fo||z: = m and fo > 0
a.e. as a weak limit of nonnegative functions. Moreover, {f;} converges to fj
(weak* L topology) up to a subsequence so that ||folr~ < 1. Hence fy € A and
suppfo C Bgr, X R3. The weak convergence in L! implies

// (V14 ]2 =1)fdedv < 1iminf// (V14 v]?2 =1)f;dxdv
R6 n—00 RS

from which we deduce that H(fy) = E(m).

Proof of (ii). First we show that || fol[r~ = 1. Suppose not: || follr~ =1 < 1.
Consider f(z,v) = afo(aiz, a3v) so that || f||,1 = m, ||fllz~ =1 so that f € A.
However, since a > 1 and E < 0,

which implies that

fijdxdv < %

c 3
% IR

W

_ 2
1(f) =at | [ e fute ohdodo ~ 5V

V14 lazv]24+1

gagH(fO):a%E<E

which is a contradiction to the fact that fy is a minimizer.
Next we show that fy = 1 on suppfy based on the Euler-Lagrange multiplier
method. To this end, let € € (0,1) be arbitrarily given and consider the set

Se ={(z,v) 1 e < fo(z,v) <1 —¢€}.

We want to show that S, has a set of measure 0 for any € > 0. Consider a test
function g € L'(R%) U L>°(R®) such that g > 0 a.e. in RS\ suppfy with compact
support contained inside (suppfy \ S¢)¢ = (R® \ suppfy) U S.. Let

tg + fo

g(t) =m—"—"——, € {07 me ] .
Itg + follt (mllgllze + llgllz)

One can readily check that g(t) € A for t € [0, m] and g(0) = fo.
Note that g is smooth in ¢ from the right. In fact,

J(t) = mg B m(tg + fo) [[ge gdadv
tg + follr: tg + foll3.
§"(t) = —2m Jfzs gdl”zdv o (g4 Jo) ([ s gdaﬁdv)2
Itg + foll7. tg + foll7.

and hence

g" (t.)t? _ (g B ff]Rﬁ gdxdv fo) - g (t)t2

m 2
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for some t,. € (0,¢) and |g”(t+)] < |fol + |lg|- Now let h(t) := H(g(t)) — H(fo) so
that

h(t) = //RG(W— 1)(g(t) — fo)dadv — %/RJ'V‘%F Ve
B //Re(\/m_ D(g(t) — fo)dzdv
+ ‘//]RG (I)fo(g(t) - fo)divdv — %/}Rg |VcI)g(t) _ vq,fo‘de.

Therefore, we have

_t// 1+|v|2—1+<1>f0)( Wfo)dxdv

—5/ V@) — V&y, [2dz + O(t?)

—t// < 1—|—|U|2—1+‘I>f0—E7(ZL)>gdzdv

75/ IV, — V@, |2dx + O(t?).

and in turn

Since fo minimizes H(f) on A, h(t) > 0 for all ¢ € {0

we have

me
> (mligllLee+llgll 1) |°

// ( 1+|v|2—1+<1>f0—E7(nm)>gdxdv>O

for all g specified above and e. Since g > 0in RS\supp fo, we deduce that /1 + |v]2—
1+ @4 > % for all (x,v) € R%\ suppfy, and hence

{(x,v) A1+ —-140, < Einm)} C suppfo-

On the other hand, g doesn’t have a definite sign on S., and thus /14 |[v]? — 1 +

O %m) for all (x,v) € Sc Nsuppfy. The Lebesgue measure in RS of the set
satisfying this identity is zero and so is the measure of S.. Since € is arbitrary, we

deduce fo = 1 on suppfy and suppfy = {(z,v) W1+ 2 —-14 8y < %} O

Remark 2.7. A minimizer fy given in (17) is a steady state of the relativistic
Vlasov-Poisson system (in a weak sense). Also, it is unique with radial mass density.
In fact, we will see in Section 3 that py, is a minimizer of the variational problem
(F) in Proposition 3.2, which is proved to be unique in the class of radial mass
density [24]. Then the form (17) satisfied by fy says that a minimizer fy is also
unique in the radial class with respect to x.

Remark 2.8. One may apply the general concentration compactness principle to
general minimizing sequences without radial assumption on mass density. As in
[16] one can show that there exists shift vectors a; in R? such that f;(z + a;,v),
up to a subsequence, converges to f weakly in L' and L weak* sense but without
strong compactness. This lack of strong compactness at the level of f motivates us
to adopt the reduction process via the mass density p; to obtain an orbital stability
result for white dwarfs in Section 4.
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3. Reduction and white dwarfs. In this section, we show that the mass density

po associated with our original variational problem (11) is a minimizer of the reduced
variational problem for p and that it gives a variational description of the equilibrium

white dwarf star.
2
A = ’ 3 ’ 1-1d 20
o= [ () +1-10u (20)

Define A(p) as
It is then easy to check that

B 47 3

(47 @) = T +1? - D (1)
Lemma 3.1. Let fo be a minimizer obtained in Proposition 2.6. Then po(z) =

[ fo(z,v)dv and ®,, = —|-|~! * py satisfy
po(@) = (A}) 7 (Eo — Dy, (). (22)

Moreover,

= ) 23
Jol@:0) = X101 potan}} (23)

Proof. We note that for x such that (Ey+1— ®4,(z))? —1>0

po(w) = [ fol v)dv = / VTPt 40, <m0} P

(Bot1—®5, (z))2—1 4
_ / ’ 4mr? dr = = (Bo+1 = @, (2))* = 1)}
0

so that A
T 3
po(x) = = (Bo+1—@y(2))% — l)j_ :

With A(p) given in (20), it is easy to see
po(x) = (A) ™ (Eo — Dy, ().
Since (Ep+1—®,,(z))? — 1= (%po(x))%, the assertion (23) easily follows. O

Proposition 3.2. Let fy be a minimizer obtained in Proposition 2.6. Then po(x) =
[ fo(z,v)dv is a minimizer of the variational problem

B= {p € L'(R?) ﬂL%(R?’) ‘ / p=m, p>0, supp(p) is bdd}.
R3

And the associated Euler-Lagrange equation is given by (22).

where

Proof. Let p € L*(R3) N L (R3) be a nonnegative function so that [|pl|,1 = m.

Define
i el < (Ep(@)s
fp(:z:,v){()’ otherwise '

Note that f, € A. Since fy minimizes H on A and fy takes the form of (23), fy
also minimizes the problem

min{H(f,) : p € B}. (24)
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Direct computations show that

/ (\/1+|v|2—1)fpdv:/ V14 []? = 1dv
R® ol <(& p(a))}

(&p (ﬂﬂ))3
*/ 1+7‘2—147T7’d

/(I)\/ —u +1— 1du = A(p(x))

and |[V®; |12 = |[V®,[|z2. Therefore, the variational problem (24) can be refor-
mulated as

min {F(p) : p € B} (25)

where

The mass density pg of fo is a minimizer of (25) and therefore, it satisfies the Euler-
Lagrange equations: A’(pg) + @, (z) — p = Eo where Fy is a Lagrange multiplier
associated with the constraint ||p||p1 = m and pu = 0 if pg(z) > 0 and p > 0 if
po(x) = 0. Therefore, we obtain (22). O

From (20), we have
1

p% (47r ) + 1
Thus A(p) is a pressure energy for white dwarfs (cf. (1)) so that
P'(p)

o) =Z8 pio) = crlom). s - [

and also we see that the mass density pg of the fermion ground state fy is a radial
steady state of the Euler-Poisson system with the pressure law of white dwarfs. The
above Proposition shows that the white dwarf equilibrium stars have the variational
characterization through reduction from fermion ground states of the relativistic
Vlasov-Poisson system.

o
—~
[N}
-3
~

Alp) = 5(5)

du, C,D : const.

4. Orbital stability of white dwarfs. In this section, we study orbital stability
of kinetic white dwarf solutions constructed in the previous sections. We begin with
the following compactness result whose proof can be found in [24].

Proposition 4.1. Let pg € B and {p,} C B be a minimizer and a minimizing
sequence of the variational problem (25) respectively. Then there exists a sequence
{z,} C R3 such that

nlggo IV®,, = VP (—z,)

|L2(R3) == O

Proposition 4.2. For any given py € B, one has

Alpoyds = min{ [ (VIFTE - 7o) dsdv | £ € A py =}

R3
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Moreover, the unique minimizer is given by

3 \3
fol,v) = X120 (2)) Alp) = (47rp) =
and equivalently
Jol@: ) = X101 potend )

Proof. Consider the minimization problem

win{ [ (VIFTF = Dgtw)do [0< g <1, [ g0)do =po}

where pg is a given positive real number. By following arguments of proof of Propo-
sition 2.6, we see that the problem admits a minimizer go(v) = X{m—1<>\} for

some A = A(pg) € R. From the assumption [ g(v) = po, A(po) should be determined

by Apo) = \/ (%po)% +1 — 1. Also one has from direct computation
Alpo) = [ (VIFTF = Dgofe) do
R

Then integrating with respect to x, we see that the proposition holds true. O

For given f € A, we define a Gibbs state Gy of f by

Cr@:0) = X< py et}

Since pa; = py, Proposition 4.2 implies that for any f € A,

/ A(py) da = // (V14 ]2 = 1)Gf(x,v) dzdv. (28)
R3 R6

We next introduce a distance function which measures the difference between f
and its Gibbs state G:

5.6 = [ (VIPFT =1 = Gy dode

and a relative distance function which measures the difference between the mass
density py of f and the mass density pg for the white dwarf star:

d(p, po) = /R A(p) — Alpo) + @y, (0~ po) .

The following lemma asserts that they are distance functions.

Lemma 4.3. For any f € A, one has

(i) 3(f,G(f)) = 0 and 6(£,G(f)) = 0 if and only if f = G,
(i1) d(ps,po) > 0 and d(py,po) = 0 if and only if py = po where py € B is a
minimizer of the variational problem (25).

Proof. The statement (¢) follows from Proposition 4.2, while the statement (i) is a
consequence of Proposition 3.2 and the convexity of A(p) (cf. (27)). O

Proposition 4.4. Let py € B be a minimizer of the variational problem (25). For
f €A, there holds

H(S) = F(po) = 8(£,G()) + d(pgspo) = 5= IV®,, = T4, 3.
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Proof. Observe from (28) that
H(f) = F(po)
= H(f) — H(Gy) + H(Gy) = F(po)
1
= 60,6+ [ Aoy = Alp)de+ 5 [ ®00— Bppmds
R3 R3
1
=06(f,Gr) +d(ps,po) + /W ©po(po = pr)de + 5 /R3 Ppspp = Ppopodu

1
= 5(f7 Gf) + d(PfaPO) + 5 /]R3 (I)pfpf - 2(I)popf + q)PopO dz

= 8(1.Gy) + dlpg ) + 5 [ (@ =)o = po)da

1
= 0(f,G5) + dlpy, p0) = IV, = Vpol[T2ss).
O

Theorem 4.5. Let fo be a minimizer of the variational problem (11). For any
e > 0, there exists some & > 0 such that if f € A satisfies

1
6(f7G(f)) + d(pfvpfo) + g”v(bpf - vq)ﬁfo H%?(R?’) < 5;

then there exists {z(t)} C R3 such that the global solution f(t) of IVP (3) with
initial data f preserving the total mass, energy and L norm, provided it exists,
satisfies

1
S(f(O), GF @) + dpsry, pro (- — (1)) + oIV Py, — VO, (—atnllizms <&
for allt > 0.

Proof. To the contrary, suppose not. Then there are £y > 0 and sequences {f,} C A
and {t,} C Ry such that

1 1
O(fns G(fn)) + d(psos pso) + - IV, = VO [72gey < — (29)

but the global solution f,,(¢) of IVP (3) with initial data f satisfies

1

5(faltn), G(fn(tn))) +d(pfn(tn)v Pfo (—z))+ Sn ||V®pfn(t,n) - vq)pfo (-—=) ”%2(]1&3) 2 €0
(30)
for any n € Nand z € R3. Since py, coincides with pg, a minimizer of the variational
problem (25), Proposition 4.4 combined with (29) and conservation of Hamiltonian
under the flow of (3) says that H(f,) — F(po) as — co. Since the flow of (3) also
preserves the total mass and L norm, we see from Proposition 4.2 that {py, )}
is a minimizing sequence of the problem (25). Then we may apply Proposition 4.1

to see that there exists a sequence {z, } C R? such that
lim [|[V® — Vo,

n—oo

0.

Pfn(tn) —n) HLz(RS) =

Then we again invoke Proposition 4.4 to conclude that as n — oo

1
6(fn(tn), G(fn(tn)))"‘d(pfn(tn)? pfo('_xn))"‘gr qu)pfn(tn) _V(I)pfo(-—fcn) ”%2(]1{3) —0,

which makes a contradiction to (30). This completes the proof. O
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Remark 4.6. In Theorem 4.5, perturbations f need not to be spherically symmet-
ric, while the existence of global solutions preserving the total mass, energy and L
norm is assumed, in which sense our stability result is a conditional one. On the
other hand, radially symmetric perturbations are dynamically accessible thanks to
the existence theory of strong Lagrangian solutions [15] which allows discontinuous
initial data such as fermion ground states fp.
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