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1 Introduction

In astrophysical fluid dynamics, stars are considered as isolated fluid masses subject
to self-gravity and a fundamental hydrodynamic model describing the dynamics of
Newtonian stars is given by the Euler-Poisson system

dip+V-(pu)=0,

(EP) pdiu + p(u - Vyu + V(Kp?) = —pVO, (1.0.1)
AD = 4mp,

Juhi Jang

Department of Mathematics
University of Southern California
Los Angeles, CA 90089 USA
E-mail: juhijang@usc.edu

Jinmyoung Seok
Department of Mathematics
Kyonggi University

Suwon 16227, South Korea
E-mail: jmseok@kgu.ac.kr



2 Juhi Jang, Jinmyoung Seok

where p(x, t) > 0 is the density of fluids at position x € R® and time ¢ > 0, u(x, t) € R®
the velocity, and @(x, t) € R the gravitational potential. We have taken the equation
of states as the polytropic law p = Kp? for 1 < y < 2. On the other hand, galaxies
containing billions of stars or globular clusters are described by the Vlasov-Poisson
system of the kinetic theory:

Of +0-Vif =V, @-V,f =0,
wpy 2SO Vef =V Vof (1.0.2)
AD = 4mpy,

where pf(x, t) = _ﬂRS f(x,v,t)dv. Here f(x,v,t) > 0is the density distribution function
of particles in the phase space (x,v) € R®> X R? at time ¢ > 0. In this article, we are
concerned with the dynamics of rotating binary stars and binary galaxies with small
uniform angular velocity, located far away from each other, governed by (EP) and
(VP) respectively.

Stellar rotation is a classical subject in celestial mechanics, astrophysics and
mathematics going back to Newton. The study of rotating stars has been of a great
interest in both mathematics and physics communities. Early developments can
be tracked back to Maclaurin, Jacobi, Poincaré, Liapounov et al., who studied in-
compressible stars with homogenous or almost homogenous density; more general
cases including compressible stars were considered by Lichtenstein [33] and Chan-
drasekhar [9]. See [10,26] for a historical account of the topic. In the case of gas-like
fluids or distribution of a large number of stars, the inhomogeneity of the density
has to be taken into account, and a lot of progress has been made for a single ro-
tating star problem. As for the existence of rotating stars, two modern approaches
are available: one is based on variational methods [2,3,6,11,32] and the other is a
perturbative approach relying on the implicit function theorem around non-rotating
Lane-Emden stars [24,25,27,46,47]. Nonlinear dynamical stability of rotating stars
were shown in [38,39] based on variational approach, while nonlinear stability
theory for non-rotating stars can be found in [12,23,42]. For rotating galaxies, a
single rotating galaxy was constructed in [45,46] in the spirit of Lichtenstein and
Heilig [27,33], while there is a vast literature on non-rotating galaxies: see [4,5,18,43]
and references therein. The orbital stability of stationary solutions has seen a great
deal of activity and progress over the last two decades [14-17,19,20,28-31, 43, 49].
See also a recent work [21] for the study of linearly oscillating galaxies.

If we consider more than one stellar object such as binary stars and galaxies or
more generally N distinct stars and galaxies, there are fewer mathematical works
available. The construction of rotating binary stars can be tracked back to Lichten-
stein [33]. In [40] McCann constructed binary stars whose supports are separated
and determined by the Kepler problem by formulating a minimization problem with
given mass ratio. In [7] Campos, del Pino and Dolbeault constructed N-body rotat-
ing galaxies by making the connection to the relative equilibria in N-body dynamics
with small uniform angular velocity and by perturbing radial equilibria. To the best
of our knowledge, the stability question of these multi-body stellar configurations
has not been addressed yet. The goal of this article is to study the asymptotic pro-
files, uniqueness and orbital stability of uniformly rotating binary stars governed
by the Euler-Poisson system (1.0.1) for 3 < y < 2 and the corresponding rotating
binary galaxies modeled by the Vlasov-Poisson system (1.0.2).

One special feature exhibited by McCann’s binary solution is while it has a
variational characterization as a Hamiltonian minimizer under some conservative
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constraint, it can also be understood as a perturbation of simpler objects, for example,
the non-rotating Lane-Emden star and the relative equilibria for point masses (cf.
Section 3.2). This characterization plays a crucial role for our uniqueness and stability
analysis. On the other hand, we remark that N-body rotating solutions by Campos
et al [7] are perturbative in nature and the framework is not best suited for stability
analysis. Furthermore, when N > 3, uniformly rotating N-body stellar objects do
not retain a variational characterization analogous to the binary case and they are
not expected to be stable in general.

In what follows, we discuss the main results and methodologies of the paper.
For the rest of the paper, we fix the range of y to 5 <y < 2.

1.1 Uniqueness and orbital stability of McCann'’s binary stars

We first briefly discuss McCann’s construction of binary star solutions by a con-
strained minimization method [40]. Specifically, McCann introduced the following

effective Hamiltonian for density p,
ff POWY) 1y, (1.1.1)
RoxR® X — Yl

Ky
E] ::f — L g
() 71

where | > 0 is the total angular momentum of the system and I(p) denotes the
second moment of inertia:

I(p) := f(x% +x3)p(x) dx

For each m* € (0,1) such thatm*+m~ = 1, E/(p) is minimized subject to the constraint

W = {p =p +ptel’(R%|p =0, fp* =m", fp‘ =m", spt(p™) C Qt},

where Q* ¢ R? are separated closed balls whose centers lie in the plane x3 = 0
with radii and separation of scale J*. By careful analysis based on the separation of
Q* determined by the Kepler problem for two body masses m* and m~, McCann
proved that for sufficiently large J, there exists a minimizer p/ continuous on R?
such that ]

(p(t, %), it %)) = (P (Row0), @(=22,%1,0)), @ = 1)

(1.1.2)
gives a uniformly rotating binary star solution to (EP). Here Rg is a rotation map
about x3 axis (cf. (2.0.1)). He also showed that the minimizer p/ is a local minimizer
of E/ with respect to the Wasserstein L* metric, which indicates a structural stability
of p/ to some extent.

The first aim of this paper is to show the uniqueness of the minimizer p/ (up to
a translation and a rotation) by determining the asymptotic profiles and asymptotic
positions of p/. Since (* are separated as scale J?, we see that I(p) ~ J* so that
J?/1(p) = O(J72). This shows as | — oo, E/(p) in (1.1.1) formally converges to

oy Ky 1 P)p(y)
E*(p) = fle 7/_1()3’(x)dx 5 ffn@xmﬁ =] dxdy,
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whose minimizer p;; on the constraint

{peU”(lR3)|p20,fp=m}

yields a non-rotating star as a solution to (EP), so-called the Lane-Emden star [42].
Therefore, it is naturally to expect that §%, is an asymptotic profile for (5/)*.

In order to determine the asymptotic relative position between two stars (p/)*
and (p/)", we further expand the Hamiltonian E/ in terms of J. At the next order
O(J7?) of (1.1.1), the kinetic energy due to uniform rotation J>/I(p) and the tidal
energy due to two-body interaction — f f p*(x)p~(y)/Ix—yldxdy emerge: both energies
are O(J72) because of the separation scale J?, and the balance of these energies
brings in the Hamiltonian for two-body relative equilibria, which will determine
the asymptotic relative position between two stars. In Section 3, we will show that
for p = p~ + p* € W; with spt(p*) C B(0,R),

1{, %" X(p7)
TZ(H ( [T

1
P

where %(p) = f xp dx denotes the center of mass for a density p and

El(p) = E*(p*) + E¥(p7) +

)+O( )) as | — oo,

1 mtm”
2mrm~|G - G |G =Gl

is the effect Hamiltonian for two-body relative equilibria whose critical point pro-
vides the positions of the circular binary stars of point masses (cf. Section 3.2).

The expansion for E/ suggests that the (J72x((p/)*), ] 2%((p’)")) should minimize
H™ as | — oo. Since, by Proposition 3.2.1, the global minimizers of H™ are charac-
terized as (C1, Cp) with | — Go| = (m*m‘)_z, we are ready to describe our first main
results.

Hre(CL CZ) =

Result A. Let p/ be the density for McCann's binary stars, that is, a minimizer of E/ subject
to the constraint Wy and let Py be the Lane-Emden star with mass m*. Then one has the
following:

(i) (asymptotic profile for (p))*) after taking suitable translations,
lim [(p)* = pilli= = 0;

(i) (asymptotic relative position for (p/)*)

i Ix((p")*") — =((p")")

2
Jooo ]2 ’

= ()"

We note that the variations of E/ at p/ yield a system of equations satisfied by (p/)*:

~T\+ Y= 1 Vlj ]2 2 2 ]/~ 1%1 . +
() = (—) (—~(x +x3) — @y — Co(p)) in Q%, (1.1.3)
Ky AR T2 p .

where C/, is the cut-off chemical potential levels determined by a minimizer p/ as
Lagrange multipliers. Relying on asymptotic properties in Result A, we shall prove
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the following uniqueness result for p/.

Result B. Let {p/ = (p/)™ + (p)*} € W be a family of solutions to (1.1.3) satisfying
asymptotic properties (i) and (ii) in Result A and

5y -6
i ] ~] — 00 ¢ ~00
]lggci(p) —4_3yE (™)

Then for large ], the family {p'} is unique up to a rigid motion.
As a consequence of Result B, we also obtain the following;:

Result B’ The density p/ of McCann's binary stars is unique up to a rigid motion. Moreover,
if the masses of constituent stars are equal (m* = m~), then the shapes of two stars are the
same.

We provide mathematically rigorous statements of Result A, B and B’ in Section 2.

The second aim of the paper is to study the dynamical stability of the McCann's
binary stars (1.1.2) with respect to the flows of the Euler-Poisson system (1.0.1).
We will see that the uniqueness of p/ in Result B’ plays a fundamental role to this
study. Inspired by stability results of steady solutions of (EP) by Rein [42], Luo and
Smoller [39] (see also Cazenave and Lions [8] for the orbital stability of standing
waves in nonlinear Schrédinger equations and Guo and Rein [16-19] for the stability
of galaxy solutions of (VP)), we will show orbital stability of McCann'’s binary stars
by exploiting the variational structure and the uniqueness result above: if the initial
data of (EP) is close to McCann’s binary star solution in some topology, then the
solution of (EP) stays close, up to a rigid motion, to the binary star solution in the
same topology, as long as the solution exists and the support of the solution stays
bounded. The following three properties are the key ingredients in proving such
results [8,39,42]:

(i) Relative compactness of any minimizing sequence up to symmetries of E/
(ii) Uniqueness of a minimizer up to symmetries of E/
(iii) Admissibility of the solution of (EP) along the dynamics so that any time-
dependent solution (p(t), u(t)) such that (p(0), u(0)) ~ (p, i) belongs to ‘W,

The property (i) is obtained in the spirit of Lions” concentration compactness
principle, as shown in the construction of the binary star solution [40]. The unique-
ness result B’ in the above ensures the property (ii). And the property (iii) is achieved
by making use of the variational structure and the uniqueness of McCann’s solution
and the boundedness of the support of the solutions. With these properties in hand,
we show the following conditional stability result with respect to some distance
functionals naturally arising at the level of the energy space:

Result C. The McCann’s solution of binary stars (p(t, x), 1i(x)) is orbitally stable for a class
of small perturbation (po, uo) of (p/, i) that there exists a global weak solution (p(t), u(t))
with the initial data (po, uo) and the support of p(t) does not unboundedly spread as t — oo.

Rigorous statement and the proof of Result C are given in Section 6.
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1.2 Rein’s reduction and binary galaxies

The third aim of the paper is to study the existence and stability of rotating binary
galaxy solutions. To this end, we adapt Rein’s reduction method [42, 43] to lift
McCann'’s binary star solutions and our framework described above to the study of
binary galaxies. To explain more in detail, we consider the constrained minimization
problem of free energy for (VP):

fieny{] Ff), F(f) = Eve(f) +C(f) (1.2.1)

where the energy functional is

Eve(f) = Kve(f) + Gve(f) = fju; %IZJIZf(x, v) dxdv — ffl;& %%{Uy(ly) dxdy,

and Casimir functional is

C(f) = ff]RG B(f(x,v))dxdv = ffw %Kz—l(f(x, 0))! dxdo,

whereg > 5/3and «; = fol 4m(1-s) 7 V25 ds. Here the constraint A 7 is characterized
by requiring the mean density pr € W; and prescribing total angular momentum
for (VP) by J (cf. Section 7). As a key step for the reduction, we will show that for
fedA

Kvp(Gf) + C(Gf) < Kvp(f) + C(f)

where Gy is the local Gibbs state associated with f involving only the mean density
ps and the mean velocity uy (cf. Definition 7.1.2), the equality holds iff f = G¢, and

moreover f]w A(ps)dx+ f]RS %qulzpf dx = Kyp(Gf)+C(Gy) where A(p) = gz_:;pig—j .The
constrained minimization problem is then reduced to the binary star problem (py, 1¢)
with the prescribed angular momentum | introduced in the previous subsection.
By lifting McCann’s binary star solutions, we obtain the existence of rotating binary
galaxy solutions:

Result D. For any m* > 0 and sufficiently large ], there exists a minimizer f € A of the
problem (1.2.1) such that f(R_qx, R_wrv — (0,0, @) X (R_ex)) solves (VP) and (p ol f-) is
the McCann's binary star solution.

As in the non-rotating star problem [42], the stability analysis of binary galaxies
can be reduced to the analysis of binary stars through Rein’s reduction scheme. In
addition to the distances used for Result C, we introduce another distance functional
measuring the difference between f and its local Gibbs state G(f) (cf. Definition 7.2.1)
to fully measure the deviation of the perturbation f from f. Our final result is on
orbital stability of rotating binary galaxies with small uniform angular velocity:

Result E. The binary galaxy solution obtained in Result D is orbitally stable for a class of
small perturbation fy of f that there exists a global weak solution f(t) with the initial data
fo and the support of the mean density p¢(t) does not unboundedly spread as t — oo.

Rigorous statements and proofs of Result D and Result E can be found in Section 7.
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The paper proceeds as follows. In Section 2, we formulate uniformly rotating
2-body problem and give new results including the crucial uniqueness on McCann'’s
binary stars. In Section 3, we prove Result A: the convergence results of E/, p/ and
detailed asymptotic behaviors of minimizers including relative positions. Section
4 is devoted to the proof of the uniqueness result B. In Section 5, we show the
symmetry of binary star solutions with equal masses. In Section 6, we prove Result
C: orbital stability of McCann'’s binary star solutions. In Section 7, we show Result
D and result E on rotating binary galaxy solutions.

2 Binary galaxies and stars: uniformly rotating 2-body solutions for (VP) and
(EP)

We start with basic notations to be used throughout the paper.

Definition 2.0.1 Notations

(i) Three dimensional open ball: B(a,R) := {x € R® | |x — a| < R} for given a € R®.
(i) k dimensional open ball: Bi(a,R) := {x € R¥ | [x —a| < R} for given a € R
(ii) The projection operator of x to the x1x; plane: P(x) = P(x1, X2, x3) := (x1,x2,0).

(iv) Rotation map:
cos(0) —sin(0) 0
Rg :=| sin(0) cos(0) 0
0 0 1
(v) Transformation by rigid motions: for 6 € R, v € R3,
T9%x := Rox + v, p%(x) := p(T?"x), fO%(x,v) == f(Tx,v).

We denote the velocity u and gradients of functions by column vectors.

2.1 Uniformly rotating N-body solutions

We start with the following ansatz for rotating N-body solutions to the Euler-Poisson
system (1.0.1):

p(t,y) = pRewy), ut,y) = w(-y2,y1,0)", @(t,y) = ODR_wiy),

where w > 0 is angular velocity, p is a nonnegative density function with compact
support.

Inserting this ansatz to (1.0.1), we see the first and third equations are automati-
cally satisfied and the second equation becomes

_wZ,O(R—wty)Py + KVP}’% (R—u)ty)RT(A,t(Vp)(R—a)ty) + p(R—(uty)Riwt(V(D)(R—mt]/) = 0/

where P denotes the projection operator of y to yi1y, plane, ie., P(y1,y2,¥3) =
(111, y2,0). Then by the change of variable x = R_,;y, we get

~@’p(x)Px + Kyp(x) " (Vp)(x) + p(x)(VP)(x) = 0
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We denote
N
p=Y.p pi20
i=1

such that spt(p;) is connected for every i € 1,...,N and mutually disjoint. Then
dividing by p;, one has

V(—%a)2|Px|2 + K%piy_1 + @) =0, Vxespt(p).

Therefore (1.0.1) reduces to

1 2 2 y-1 .
— —w”|Px|* + K—— + O =-C; inspt(p)),
2 - 1p1 Pi(p) @2.1.1)

AD =4mp

for some positive constants C;, i = 1,..., N. We note that (2.1.1) is written w.r.t. @

1
~1

1
A =141 (5) T (3P - @ - C)T, inspt(p), (212)
0, inR*\UY spt(p;).

Uniformly rotating binary star solutions when N = 2 were constructed by Mc-
Cann [40] for sufficiently small w, namely sufficiently large angular momentum, by
solving a constrained minimization problem associated with (2.1.1), while uniformly
rotating N-body solutions in the context of galaxies were constructed by Campos
et. al. [7] for sufficiently small w by solving (2.1.2) based on a finite dimensional
reduction.

In this paper, we take McCann’s approach for the existence of binary star so-
lutions that retain both variational and perturbative structures. For the rest of the
paper, we take N = 2.

2.2 McCann’s construction of binary stars

In this subsection, we review McCann’s binary star solutions [40] for y € (2, 2). For
a sake of convenience, we introduce a slightly different setting of construction from
the McCann'’s one but they are essentially the same.

We first record the energy, the center of mass, the total angular momentum, and
the moment of inertia.

Energy of (EP):
_ 1 2 p)p(y)
E(p,u) = fle A(p(x)) dx + 5 IRS [u(x)]"p(x) dx — f T — dxdy, (2.2.1)

where A(p) = %py,y € (%, 2).
The center of mass for p:
B f]RS xp(x)dx B f]R3 xip(x) dx

=", Xip)= i:1/2/3'
Jes PO dx Jes p() dx



On uniformly rotating binary stars and galaxies 9

The total angular momentum J:

o= [ (r=sto) x wp(

We denote by J,, the x3-component ofJ, i.e., Jv,(p, 1) := &, -J(p, u), where &, = (0,0, 1).
The moment of inertia I(p) is given by

1) = [ 1Pt p)Ppo .
]R3
Define an admissible class for p and u by
R:= {p e LY(R?) ' p=0, fA(p) < 00, spt(p) is bdd}, V.= {u 'R® - R*|uis measurable}.

Definition 2.2.1 For any given my,myp > 0, let

_mptm
(mimy)?’

Fix two values r1,v, such that 0 < ry < mpL/(my + my) = 1/(m%m2) and 0 < rpy <
myL/(my + my) = 1/(mym3). By denoting

1 ! 1 T
X1 = 2—,0,0 X2=(——2,0,0)
m1m2 mlmz
so that
X1 =Xzl =L and myxy +myxp =0
we define

T

{p =p1+p2€ ‘R| fpl =1m, fpz =my, spt(p1) C B(J*x1, J*r1), spt(p2) C B(fzxz,fzi’z)}

and

(Vl/,]mm2 = {p eR | 30,v € R® such that p%" € W{m,mz}

Let
Shum = (1) € Wiy XV [ Ty (p,u) = ]}

Fix two arbitrary masses my,m, > 0. For | > 0, consider the following minimization
problem
El = inf E(p,u). (2.2.2)

min
(PAESh, my

The following lemma obtained by McCann in [40] shows that the velocity dis-
tribution minimizing the kinetic energy is given by uniform rotation.
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Lemma 2.2.2 For given | > 0 and p € R, consider the minimization problem

Then the minimum value T{n i (p) is uniquely attained by

u(x) = ﬁe X (x - (p)). (223)

so that
T (o) =
711111 p I(p)
For | > 0, we insert the ansatz (2.2.3) into (2.2.1) to get the reduced energy

El(p) = fR Alp()dx + > = 5 ffw P|(;C)Py|

Consider the following reduced minimization problem:

El = inf E(p) (2.2.4)

PEWh

It is clear from the construction that E{n o = E{n . of (22.2).

Theorem 2.2.3 (Existence of a minimizer [40]) For any | > 0, the variational problem
(2.2.4) admits a minimizer p € (M/}]ﬂl,mz‘ Moreover, any minimizer p € "Wilm satisfies the
following self-consistent equations:

2
- S~ R A ) + @y = ~Coinlpi>0) .
2 - Va4
- G PG RO + A )+ 0y 2 =G i (1 B o),
(2.2.5)

forany 6 € R, v € R such that p%" € W, I particular,

my,my*

pi = (A 555 IP(x — 2(p))I* - cDﬁ—ci) in (T"Y YB(?x;, J?ri)), i = 1,2. (2.2.6)

e
21(p)?
Remark 2.2.4 We note that (p, e,c3 X (x — x(p))) gives a minimizer of (2.2.2).
Theorem 2.2.5 (Properties of a minimizer [40]) For sufficiently large | > 0, every min-
imizer p = Y, pi € fWLI,mZ of (2.2.4) enjoys the following properties:

(i) p is continuous on R®.
(i) There exists a constant R > 0 independent of | such that spt(p;) is contained in a ball
with radius R.

Moreover, as | — oo, p satisfies
<L i=12 (22.7)

Remark 2.2.6 By (i), we see that (5(R_qi(x — X(p))), ﬁe}g X (x — X(p))) solves (EP) for
sufficiently large J.
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2.3 Asymptotic positions, uniqueness and symmetry of binary stars

We introduce the notation of normalized densities.

Definition 2.3.1
(i) Wesayp € (W{Vllzmz is normalized if

#(p)=0, %i(p1) >0 and X(p1) = X2(p2) =0.

(i) We say p is a normalization of p if p is normalized and p = p%" for some O € R and

s =5/
v € R3. Note that for any p € ‘VVLWZ, a normalization p € W, .

is unique.

always exists and

The statement (i7) and (2.2.7) of Theorem 2.2.5 indicate that for any minimizer

pE ’W,]n1 m, Of (2.2.4), its normalization p is contained in ‘W, . . Since the reduced
energy functional E/ is invariant under a rigid motion, we see that j is still a

minimizer of (2.2.4). This shows that considering minimizers of (2.2.4), we may only

take into account normalized minimizers in “M/m s
]

3.3.1thatifp € Wm ., 18 anormalized minimizer for (2.2.4), then one automatically
has x3(p1) = %3(p1) = 0.
We are now ready to state our first result of this paper.

. We will also see in Proposition

-/ . Lo .y
Theorem 2.3.2 Let p € W, . be a normalized minimizer of the variational problem

(2.2.4). Then it satisfies the following:
(i) (Relative position of the binary stars):

. x1(p1) — X1(p2) . x1(p1) 1 . x1(p2) 1
lim S0PV P2y - .
lg?o J? ]1—>n([>lo J? m2my ]Lrlglo J? mym

(ii) (Uniqueness): p € W{nl,mz is unique.

(iii) (Rotation symmetry for equal mass): If my = my and r1 = 1o, then p1(x) = Pa(Ryx).

We shall prove Theorem 2.3.2 throughout Section 3-5. The following corollary is a
direct consequence of Theorem 2.3.2.

Corollary 2.3.3 Let p € (Vl/,]ﬂm12 be a minimizer of the variational problem (2.2.4). Then it
satisfies the following:

(i) (Relative position of the binary stars):

L EE) — Hp)l
m-——2=
J—oo ]2

(if) (Uniqueness): it has the form

L,

px) = pRe(x —v)), u(x) = %e}_g X(x—v) forsomeOelR, ve R3,

where p is a unique normalized minimizer of (2.2.4) in W, ..

(iii) (Rotation symmetry for equal mass): If my = my and r1 = 1y, then

P1(x) = P2(Rr(x — X(D))).
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3 Convergence results for a family of normalized minimizers

3.1 Non-rotating star

E°°(p)=f (p(x)) dx __ffR6 |x Piﬁ)

and consider a minimization problem

Define

Ey =inf{E*(p) | p € Ru(R%)}, 3.1.1)
where
Ru(R3) := {p e L’(R%) | p>0, fp =m, spt(p)is bdd}
We denote by p;r a minimizer of the problem (3.1.1), i.e.,
EN=E¥(m),  pn € Ru(R),
whose existence and properties are listed in the theorem below.

Theorem 3.1.1 For any m > 0, the minimum energy level E5y is negative and there exists
a minimizer pg; of the minimization problem (3.1.1) satisfying the following properties:
(1) py is radially symmetric up to a translation and strictly decreasing in the radial
direction on its support;
(i) pg € WH2(R%) N C(R3);
(iii) py; solves the self-consistent equation

1
P =B, (m * P — cm) in R® (3.1.2)
+

where B, = (72}/1)%1 and C;; > 0is a Lagrange-multiplier, which is exactly determined

by the ground energy level as mC;; = Z’”;yE‘”

(iv) py is unique up to a translation;
(v) Let L™ be a linearized operator of (3.1.2) at p;;, i.e.,

B, (1 =
-EOO — _ Y (_* oo_Coo)_ — 1.
== =g g P =), g

Then ker(£L>) := {n € LA(R®) | L*[n] = 0} is given by

span {d1py;, d2pp, O30} -

Proof For proofs of negativity of £y and (i)—(iii), we refer to a comprehensive review
article by Rein [43] and references therein. Proofs of (iv) and (v) can be found in [13],
where the statement is given in terms of U}, = ﬁ * P

Lemma 3.1.2 Let 11 € ker(L*) satisfy fle xn =0. Thenn = 0.

Proof By Theorem 3.1.1.(v), we may write ] = 1015y + 20205 +¢393p5 forc; € R, i =
1,2, 3. Since f]R3 dipxjdx =0,1# j,and fRS dipx;dx = —m, we see that

0= f xndx = —m(cy, ¢z, C3)
R3

sothatcy =c, =¢c3=0.
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3.2 Relative equilibria

A system of two body circular orbits x1(t) = Roi(E1 — %(£),0), x2(t) = Roi(E2 — %(E),0)
satisfies Newton’s equation if and only if & = (&1, &) € R? X IR? satisfies
my (&2 — &)
&2 — &P

my (&L — &2)

& — 22p + w*(&? - x(&)) = 0. (3.2.1)

+ (& - %(&) =0,

Here we denote by %(&), the center of mass of two IR? vectors &1, &2, ie., X(&) :=
%. A pair of R? vectors (&1, &2) is called a relative equilibrium for two body
problem if it solves the system of equations (3.2.1) for some angular velocity w.

For any fixed angular momentum | > 0, the effective Hamiltonian for (3.2.1) is

given by

2
HeEl &) = J Iy
T ) = T R OP v e R OP) B -

__Pmitm)  mamy
2mymo|E! - &2 & - &2
By a direct computation, we see that any critical point of H® is a relative equilibrium.
More precisely, it is a solution to (3.2.1) with the angular velocity

_ J
CmlE = O + mal2 — T(E)P

(3.2.2)

It is worth pointing out that H® enjoys some nice scaling and invariance prop-
erties. If we set C = £/J?, then

H;e(éll 52) = ]_zHre(Cll CZ)/ (323)

where .
mq + nip nmqnip
H™((4, = - . 3.24
(&) 2mimy|Cy — G2 |G = ol ( )

Also, the effective Hamiltonian H™ (as well as H}?) is invariant with respect to a
rigid motion. In other word, for any (3, ;) such that C; # (p,

H™(C) = H®((“01,¢90) +(C°, %), YOeR, " eR

Consequently, the set of relative equilibria is invariant with respect to a rigid motion.
Indeed, it has a simple variational characterization.

Proposition 3.2.1 (Characterization of relative equilibria for H™) There holds the fol-
lowing:

(i) The effective Hamiltonian H™ admits the global minimum value
Hy;, == min {Hre(CL Q)10 GeER, G # Cz}

as a unique critical value and it is attained by (Cq, Cp) if and only if |C; — Ca| = L where
L is defined in Definition 2.2.1.
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(i) Let(Cy, Co) beaglobal minimum point for H, i.e.,|C;—Co| = L. Thenker VZH™(Cy, (o)
is spanned by

{((1,0), (1,0)), ((0,1), (0,1)), ((0,1), (0, -1))}.

We note that these kernel elements come from the invariance of H™ with respect to the
rigid motions.

Proof The assertion (i) is immediate from the exact form of H™. Let (¢1,¢2) be a
kernel element of V2ZH™((y, (3). We directly compute the Hessian of H™ to get

21 re ‘Pl e 1I‘Ire(cll CZ) aClCzHre Cl/ Cz)) ¢1)
VH G, @)((P) ( P, o) 2 oG, o) ) T G2

where
97, H*(1, &) = 32, H™(C1, &) = =07  H™(C1, &) = =07 H*(C1, &)
and 8%]C1 H™(Cy, Co) is given by for ¢ € R?,

P H*(C1, 8)p = Mﬁﬁ 4 MC” ?C-to)

minpd 3mimy(C1 - &) - ¢
L3 L3

(Cl _CZ)/

where M = mymy/(my + my). Since a global minimum point &, &) is unique up
to a rigid motion, we may assume (; = (1/m3my,0) and & = (=1/mym3,0), the
normalized one. Then by denoting ¢; = ((¢i)1, (¢i)2), i = 1,2, we obtain the following
two equations from (3.2.5),

G (<P2)1 4L2((p1)1 — (P2)) mlmz((¢1)1 —(¢2)1) 3mima L (1)1 — (P2)1)

MIL* MLS I3 [5 =0
_(P1)2 = (§2)2 N mimy((P1)2 — (P2)2) 0
ML L3 e

Solving this, we see that

kerV2H™(Cy, &) = {(<P1, $2) € R* X R? | (1)1 = (<P2)1}
=span{((1,0), (1,0)), ((0,1), (0,1)), ((0,1), (0,=1))}.
We are now ready to establish the expansion of E/ in 4 which identifies the

leading order asymptotics as E* and the next order correction with H™. We recall
from Definition 2.2.1 that

1 ' 1 T
xi = [2—,0,0] x; = (——2,0,0)
mlmZ m1m2

and rq, 1, are two fixed numbers satisfying 0 < r; < |x;|, i = 1, 2.
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Proposition 3.2.2 (Asymptotic expansion for E/) Fix some R > 0 and let p1,p2 € R
and (C1, C) € Ba(xq, r1) X Ba(xo, 12) satisfy

X(pi) =0, spt(pi) € B(O,R) fori=1,2 and pl(-—(]zél,O))+p2('—(]2C2,0)) € Wiu,mz'

Then one has
E (,01(' - (J*G1,0)) + pa- — (IZCZ/O))) Em(Pl)+E°°(Pz)+ (H™(C1, C2) + R(p1, p2,C1, C2)),

where

|m(plr P2, Cl/ CZ)' < C]72
for some constant C > 0 depending only on R, my,my, 11, 12.
Proof Since

mia + mob

fora,b e R?,
mi + my

x(p1(- —a) + p2(- = b)) =
we have
I(p1(- —a) + p2(- = D))

2
=fP(x+a—mla+m2b ’ p1dx+f| x+b_M)‘ pa dx

my + my my + 1y
f|Px|2p dx + fpz dx

fpldx+f|Px|2p dx +|———

_ mimiy 2
=1(p0) +1(p2) + - == IP(a = D)F.

zPa—
mi + my

m1P(a — b)
mi + my

Also, we note that the distance between two balls By(x1, 71) and Ba(xy, 1) is strictly
positive. In other words,

min{|C1 — Gl | G € B, 1), G € Ba(xa, 1) | = il = 11 + ol = 72> 0.

Then for sufficiently large | > 0, p1(- — (J*C1,0)) and p2(- — (J2(2,0)) have disjoint
supports for all {; € By(xy,71), G2 € Ba(xz, 12) since %(p;) = 0, spt(p;) € B(0,R) fori =
1,2. By briefly denoting pi(x) := pi(x — (J>C;,0)), i = 1,2, one then has

[ @@+ pacoytax= [ (1) + o) ™ d
R3 spt(p1)Uspt(p2)

= f (ﬁl(x) + ﬁz(x))7/—1 dx + f (ﬁl(x) + ﬁz(x));f—l dx
spt(p1) spt(pa)
= f 7 () dx + f pr () dx
spt f’l) Spt(pz)
~y-1 - 1
f (x)dx + f X,
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which shows

E¥(h + ) = fm A + o) 3 fw (pr(x )+pz(|x))(py1|(y)+pz(y)) dxdy

:LaA(pl)dx+L3A(ﬁ2)dx

1 p1()p1(y) 1 f p2(x)p2(y) f p1(x)p2(y)
- = ——dxdy - = — " dxdy — ———"dxdy,
2fR6 lx =yl ey 2 JJrs Ix=yl xay Re X =l ey

_ oo = pl(X)pz(y)
=E (pl +E fjl;e |x ]/|

Then we see that

El(p1 + p2))

T S
B+ B )+ o P ) o = PG o) ) e y+12<c1 c2,0)|d"dy

1 1 *
=E%(p1) +E¥(p2) + 5 | 5 I+ ﬂ erpel) —7 4xdy
Plamei - op+ i) JJ | - ,00+ 5

so that
ER(Plx PZ/ Cl/ CZ)

= 1 f f prx pz(y
|y - P 4 A0 \cl C,0)

1 ﬂ p1(x)p2(y) My
= - dxdy— .
B gy - o + M) 2’“1""|c1 GP { (€ -0 G -Gl

my+my my+1my

dxdy - H"(C1,6)

By denoting ¢ := |[x1| — 71 + [x2| — 72, we have seen |(; — (| > ¢, from which we have

1 1
2| g 4 KOl 2y, g
_ I(Pl) +1(p2) < R%(my + my)
JH 2|y — G (R — G+ HRAE) T (T

and for J? > 4R/c,

ff PI(X)PZ dXd]/ _ mimy
(@ - 0,0+ & =Gl
I 1
< —_
G - Cz, +5 -Gl
Zleﬂ’ZQ

lx—yl
pr@pa(y) dxdy < :
ff Pl - Gl - 15| 16 - Gl PE

This proves the lemma.

p1(x)pa(y) dxdy
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Remark 3.2.3 The asymptotic expansion of the energy in Proposition 3.2.2 reveals that (i)
the energy for the binary system with angular momentum | converges to the energqy E®
of non-rotating Lane-Emden stars as | — oo, (ii) the effective Hamiltonian H™® introduced
in (3.2.4) naturally emerges at the next order O(J2) of the expansion. In fact, the kinetic
energy due to uniform rotation J?/I(p) and the tidal energy due to two-body interaction
- f f pr()p~(y)/Ix — yldxdy are both of O(J~2) because of the separation scale J*, and the
balance of these energies brings in the effective Hamiltonian for two-body relative equilibria.
While the enerqy convergence result to the one by non-rotating stars is shown in [40],
the energy expansion with a second order correction using the effect Hamiltonian is new.
This new characterization of the Hamiltonian suggests that the asymptotic relative position
vector of two stars minimizes the effective Hamiltonian since binary star solutions minimize
the full Hamiltonian (cf. Lemma 3.3.6) and such an asymptotic convergence result will be
important in the uniqueness result in Section 4 (cf. Theorem 4.0.4).

3.3 Uniform estimates and convergences of minimizers

This subsection is devoted to the proof of several asymptotic behaviors of normal-
ized minimizers of (2.2.4). In particular the assertion (i) of Theorem 2.3.2 is proved
in the proposition below.

Proposition 3.3.1 Let {p/} C Wﬁhm be a family of normalized minimizers of (2.2.4) and
P be a unique minimizer of the limit variational problem (3.1.1) with m = m; such that
%(py;) = 0. Then the following properties hold true:

0
P _ 1 ) 1

BOD =5y =0, fim == = (5, 0,0, im == = ~( o,
1

(id)
lim |5 + %(p))) = oyl +1C] = Ci =0, i=1.2,

where {Cl[} and {C;; } are the Lagrange multipliers in (2.2.5) and (3.1.2) with m = m;
respectively.

Remark 3.3.2 It is proved in [40] a weaker version of Proposition 3.3.1 saying that every
minimizer pl € W), . of (2.2.4) satisfies

(i) limjoe0 E""(ﬁ{) =Ey, limje E”(ﬁé) =Ey  (Proposition 6.4),
(if) C3 < liminfj e C/ (Lemma 6.5),

(AN
w <L (Proposition 6.8).

(iii) & <limje
Remark 3.3.3 The convergence results of Proposition 3.3.1 are in fact consequences of
the fact that the binary star system is a local minimizer, not a global minimizer of the
Hamiltonian. Thanks to the local minimizing property of the binary star solutions with
respect to the Wasserstein L metric, two stars become separated away from one another
in the scale of O(J?) as the angular momentum | goes to co, and each star asymptotically
resembles the associated non-rotating Lane-Emden star with the same mass. As noted in [40],
the chemical potential C/ needs not to be constant throughout the binary star system, but
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each star as a local minimizer has its own chemical potential C{, i = 1,2. The result of

Proposition 3.3.1 shows that these C{ also converge to the chemical potential of non-rotating
Lane-Emden stars of the same mass.

We begin with the proof of Proposition 3.3.1 by stating a slightly different form of
(ii) of Theorem 2.2.5. Throughout Lemma 3.3.4-Lemma 3.3.10, {/} denotes a family
normalized minimizer of (2.2.4).

Lemma 3.3.4 Thereexistsaconstant R > 0 independent of | such thatspt(p ) C B(x (p ),R)
foranyi=1,2and large J.

Proof Theorem 2.2.5.(ii) says the existence of a constant Ry > 0 such that spt(ﬁ{ )

is contained in a ball with radius Ry. We note that J_C(ﬁ{ ) belongs to the same ball
because a ball is convex. Then taking R = 2Ry, one can see the lemma holds true.

Lemma 3.3.5 There holds that
%3(p)) = %3(p)) =

Proof Asisasserted in the proof of Theorem 6.2 of in [40], a minimizer p/ is symmetric
with respect to a plane x3 = ¢ by the strict rearrangement inequality (Theorem 3.9
in [34]) and Fubini’s theorem. Since %(p/) = 0, we see that ¢ = 0. In other words, p/
is even with respect to the axis x3. We recall the equation (2.2.6),

2
pl =N 21(]pf)2 IPx — @y — C{) in B(J*x;, [*r;), i = 1,2.

Then the lemma follows from the fact that (A’);? (%Ipxl2 - Oy - C{ ) is even with
respect to the x3 direction.

Next we show that the relative position of the centers of mass of two stars
divided by square angular momentum is inversely proportional to the product of
masses.

Lemma 3.3.6 There holds that

] =)

_X(py) 1 . X(p, 1
1 = - (—
[ J? (m m

Proof Let us define

m<wmw

i=1,2.
J? '

pl=ple+x(p)), =

Then recalling the fact that X3(p] )=0,i=1,2 (Lemma 3.3.5), we have from Propo-
sition 3.2.2 that

MM=W(HW%H]W&QHWﬂawem (3.3.1)
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Choose any (Ci1, C2) € Ba(xq,71) X Ba(xa, 12). By Lemma 3.3.4, if | is sufficiently large,
B(J*C1, R) and B(J?Cy, R) are included in B(J?xy, J*r1) and Ba(J?x2, J*r2) respectively.
Then one has

Bl = Bl = (PG, 0) + L = (26, 0)) € Wy,

so that

1
Elp) <Elpl, ) = E™(p}) + E=(p}) + PH GG (™) as] - co.

Combining this with (3.3.1), we get

lim SUPHre(C{,Cé) < H™(G, &), Y (C1, C2) € Ba(x1,71) X Ba(x, 12).

Jooo

Note that since (C/ , Ci) € By(x1,11) X Ba(xp,12), after choosing a subsequence, it

converges to some point (CN"", CN;’) € Ba(x1,71) X Ba(xo, 12) as | = oo. Then one has

HIG(C(;O, C;O) < Hre(Cl/ CZ)I A4 (Clr CZ) € BZ(xll rl) X BZ(XZI 7’2)1

which says that (Cf’, CNE") achieves a global minimum of H™. Since ﬁ] is normalized,
one must have

(€)1 =()»2=0 and m(C ) +m(C) = 0.

Then, using Proposition 3.2.1, we also see (C‘l"’)l - (Z;")l = L. Therefore we can

determine

oo 1 o 1
& =(—5—,00), & =-(—00.
mlmz m1m2

Now, we show the convergence of the following continuum limits:

lim {} = Y, lim o=

Jooo

to end the proof. Arguing indirectly, suppose not. Then there is a positive number
€0 > 0 and a sequence {Ji} — oo such that without loss of generality,

Ik~ T¢I > e, VkeN. (3.3.2)

By the same reasoning, after choosing a subsequence, {(C{k , Cék)} converges to some
point (CA‘l"’, C;"), which is a global minimum point of H™. Then as above, (C;"’, é;") is
uniquely determined as (C‘l"’, ZZ" ) but this gives a contradiction to (3.3.2).

In the following lemma we show that the energy level of the binary star solutions
is negative.

Lemma 3.3.7 For any sufficiently large | > 0, one has

El =F@)<o.

min
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Proof Since p’ S (Wm1 m,» there exists a constant c1,co,c3 > 0 independent of |
satisfying c1J> < |Px| < coJ? for x € B(J*x;, J*r;),i = 1,2 and c3J> < |x — y] for
x € B(J*xi, J*1i), y € B(J*xj, J*r)), i # j. Then we see from this and Remark 3.3.2 that

k)
B0 = £+ o+ gt - [[ B _pzyﬁ’

<E, +E°°

My

+o(1) +O(J72)

as | — co. Then the lemma follow from the fact that E°° <0,i=1,2. (See Theorem
3.1.1)

We now discuss the uniform regularity of the density profiles.
Lemma 3.3.8 There holds that

lim sup IIﬁfllwl,w(RS) < 00,

J—ooo
In particular, p/ is Lipschitz continuous uniformly for |, i.e.,
i @ -l _
imsup sup —————
Jooo xyeR3 lx — yl

X£Y

Proof Since p/ is a normalized minimizer, it satisfies by (2.2.6)

2
p~1! =(A)! (21(];31)2 IPx* - Dy — C{) in B(J?x;, J?r;), i=1,2 (3.3.3)

and ﬁ{ = 0 outside B(Jx;, J*r;). Using the fact that (X—Y), < |X|for X € Rand Y >0,
one has forany g > 1,

1
-1

‘]

(B(?xi,J?1:)) T (B(?xi,J?11))

L
-1

5 J
”pz[”m(u{s) < C(V) U'ﬂ( |Px|2
for some constant C(y) > 0 depending only on y. Recall that since p/ € 44/”11 -
there exist constant c1, ¢, ¢ > 0 independent of | satisfying ¢1J> < [Px| < ¢J* for

x € B(J*x;, J*ri) and c3]* < |x — y| for x € B(J*x;, J*ri), y € B>, J*rj), i # j. In
particular, this shows that as ] — oo,

” P SH— n LI
p X S — X pll L £ (5 )1) 7
200N | ey 26K0m +mg)2 2 PR ek Gy + )22 3
s,
=0( 7 ),
Dy o < ”CD-/H 0 + ‘ D ()]
” ! H ~H (BUPxi,J?ri) PllL 7T (B, J2ry)) Pj Ll(B(]in,]Zri)) J
-1
6,3y
<l
< ”(DP{HL)’%(]I@) c ]2( ] ) 7

<clpll s +o(*T

i q.
L30-D+2q (IRg
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where we used the Hardy-Littlewood-Sobolev inequality in the last line. This implies
thatas | — oo,
5 5|7 e
1P ey < C [l 77, +0gT). (3:34)

L 3(y-1+2q (]RS)

Observe that g - -2 <0forg>3since4/3 <y <2.

We now claim that there exists p > 3/2 such that

lim sup ||p/ ]l (rey < co.

Jooo

We divide the proof into the cases that (i): y > 3/2 and (ii): 4/3 < y < 3/2. We
first assume (i). In this case, each p/ belongs to L”, where y > 3/2. For the uniform
estimate, observe that

2
f]Ra APy dx = —#ﬁ])z —fRS Dy dx + EN(p)).

As we have seen earlier, there holds that J2/1(p/)> = O(J72). Then by Lemma 3.3.7
and the Hardy-Littlewood-Sobolev inequality again, we get

1 y )
mllﬁf IV, s < 0(1) + ClIP'IIZ (3.3.5)

LY(R3) L6/5(IR3)

for some constant C > 0 independent of |]. We now apply Holder inequality to

J(@)3dx
[t = (@it < ( | (ﬁ’)”dx)w ( | ﬁfdx)

~T12 ~] 3”’]71) 5(5y-6)
19/ ey < | | (P7)ddx (my +mp) 307D . (3.3.6)

57-6
5y-5

and thus

Now if y > %, ﬁ < 1. So by Young's inequality, the last term of (3.3.5) is bounded

by
ClP sy < KNP, gy + Coomoms

We now fix k = ﬁ and then from (3.3.5), we deduce that

lim sup ||p~]”LV(]R3) < 00.

Jooo
Next, assume (ii). By the same reasoning, we also have

lim sup IIﬁIIIL,»(]Ra) < 00

Jooo

forany 1 <9’ <y. We take g > 3 in (3.3.4) as follows:

3q ~ y ify <3/2,
3 -1 +27  |24/19(<3/2)ify = 3/2.



22 Juhi Jang, Jinmyoung Seok

Then it is easy to see that g > 4 for any 4/3 < y < 3/2. This with (3.3.4) proves (ii) of
the claim.

The next step is to obtain the uniform L™ estimate of @ and p/. The former is
immediate from the following estimate:

1 1
o= [ s [ way
% % (33.7)

0l + my + mo.
0-D(B(x,1))

x|
Note that since p > 3/2, the Holder conjugate p/(p — 1) < 3 so that

lim sup [|Dplr~ < oco.
J—ooo

Then for any x € R® and for sufficiently large Jo > 0 and ] > Jo, we use the increasing
property of (A’)™! to see

plx) < sup{(A)71 (1) 1 £ € [0, PIPxP/E() - Dy ()]}
<sup {(A)71(t) |t € [0, 1 +lim sup ||~}
Jooo

= (A);'(1 + lim sup 1D yillLs),
Jooo

which shows the latter

lim sup ||[5]||L°° < oo.

J—o0

Now, we are ready to obtain the uniform gradient estimate for p/. By denoting f(t) =
(A");1(t), note that B is continuously differentiable and g’ (t) is strictly increasing on
t > 0. We again use the equation (3.3.3) to get

VALl < /(1 + limsup @1V Dyl

J—=o0

for sufficiently large J. Thus to end the whole proof of the lemma, it remains to show
the uniform L™ estimate for V@ . Arguing similarly with the estimate (3.3.7), we
see that

1

B(x 1)C |x _ y|2 ﬁ](.‘/) dy

1
V@ (x)| = o/ (y) dy +
Vo= [l

1

19!l + my + ma.
LY(B(x,1))

This completes the proof.
With the uniform bound and continuity result of the density profiles, we are

now ready to prove that the asymptotic profile of the density of the binary stars is
given by the density of non-rotating Lane-Emden stars.
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Lemma 3.3.9 Define ﬁ[ = ﬁlj.(~ + x(ﬁ{)). Then for all i = 1,2, one has

1
}H{}o (Ilﬁf = Pl + 1Py = Py, ||H1(]R3)) =0.

In particular,

]lim f A(plydx = f A(pyydx  and ]lim f cDﬁ;ﬁf dx = f Dy P, dx.

Proof We invoke Proposition 6.4 in [40] (See also Remark 3.3.2) which asserts that
as ] — oo,
E®(p)) = E*(p) = E®(p%), i=1,2.

Then {ﬁ{ } is a minimizing sequence of the limit variational problem (3.1.1) with
m = m;. By Lemma 3.3.4, we see that spt(ﬁ{ ) C Bg for large J. Then by following
the proof of Theorem 3.1 and Lemma 3.2 in [43], after choosing a subsequence, {p{ }
weakly converges in L7 (R?) to a minimizer p{° of the limit variational problem (3.1.1)
with m = m; and {® p[} strongly converges to ®p~ in HY(R%) as ] — oo.

We see from Lemma 3.3.8 that {p/} is equicontinuous and has a uniform L®
bound. Then the Arzela-Ascoli theorem says after choosing a subsequence, {p/}
strongly converges in L™ to p;°. (L™ convergent limit of {p;} must be pl] because L
convergence implies L” weak convergence on a bounded domain.)

Also, observe from the L* convergence of ﬁl] that up to a subsequence,

0=x(p)) = lf xpldx — if xpS dx = T(pT) as ] — oo.
mi Jpg mi Jpg

This shows that p:° is the same with g, by the uniqueness of a minimizer of the

problem (3.1.1) up to a translation.

Finally, it remains to upgrade the above subsequential convergence to the contin-
uum convergence for J. As in the proof of Lemma 3.3.6, this can be done by taking
advantage of the uniqueness of p;;. Suppose that there exists a positive number
&0 > 0 and a sequence {Ji} — oo such that

lpl - pioll > €0, VkeN. (3.3.8)

Since { ﬁ{k } is still a minimizing sequence of the problem (3.1.1) and has a uniform
W'> bound, we can apply the exactly same reasoning to see that after choosing a
subsequence, {p{k} converges in L* to a minimizer §%° of the problem (3.1.1) satisfying
X(ﬁf") = 0. However this is a contradiction to the uniqueness of g, and (3.3.8).

The contradiction argument above shows lim;_, IIﬁ{ - pmllce = 0. Combining
this with the Gagliardo-Nirenberg inequality and the Hardy-Littlewood-Sobolev
inequality, we also see

[hj?o ||ch5!; = Ppz llgp ey = 0.
This completes the proof.

We finish the proof of Proposition 3.3.1 by proving the following lemma.
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Lemma 3.3.10 Forany i = 1,2, there holds that

lim C/ = Cyy.

Jooo

Proof Multiplying the first equation in (2.2.5) by ﬁf and integrating, we get

2
f[ | _21(]p/)2 IPxPp) + A'(p))p] + @y p) dx = —miC). (3.3.9)
p:>0

We have already seen that as | — oo,

f{"’ " 21(] ])2|le2 +(D~/ﬁ]dx—o(1) i # ]
pi>

Then combining (3.3.9) and Lemma 3.3.9, we see that

-miCl =y f A(pim) dx + Dy e dx + o(1)
= —-m;C;, +o(1),

which ends the proof.

4 Uniqueness result

In this section, we prove some uniqueness result (Theorem 4.0.4) a bit more general
than Theorem 2.3.2.(if). We will see that Theorem 4.0.4 also play an important role
to prove Theorem 2.3.2.(iii). To this end, we first give the expression of Lagrange
multipliers Cl{ in terms of ﬁ{ and p~£ fori=1,2.

Define

y—6 - 8 -5y J?
o= yE (¢)+2(4—3y g ) P

=y T

for ¢, 1 € L” with compact support.

(4.0.1)

Lemma 4.0.1 Let {p/} € (M/ml "
problem (2.2.4). Then one has

be a family of normalized minimizers of the minimization

mCl = F(pl,pl) and myCl = F(pl, p]).

Proof Fora given p, wedenoteby p'a famlly of functions % p(3). By Lemmas 3.3.4and

3.3.6, we see that (pl)t o , belongs to W fort~1sothat & Ll El((p )t + pz) =
To compute this, observe that

™y, My

() + ma%(pl)
my + mp

x((p)) +ph) =
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and then

mtx p +mzxp) 1txp)+m2x(p)
1(p)) +p)) = flP(tx— 1+m )2 ]dx+f|P( ml +m :

Thus one has

)P}, dx.

d - .
=)' + )

mlf(ﬁ{)

)
mx(p;) N
s U4 " mz)p£ dx

=2 [ Pte-5(p) - Ple- Sl e 2 [ pla- 5(pT) - P-

= 2f|Px|2ﬁ{ dx

where we used the properties %(p/) = 0 and mlf(p{) + mﬂ(ﬁé) = 0. This shows that

m +m

d
0= EhzlEI((ﬁ{)t + ﬁé)
=3(1-y) f p))dx — I ~])2 f |Px*p) dx (4.0.2)

ffpl( )P, () dxd +ff(x v) - x~] oLy dxdy.

Multiplying the first equation of (2.2.5) by ﬁl, integrating and combining with (4.0.2),
we next get
m1C]
T (A
pl (y) J? f - f P15 (Y)

f )d +f v+ 2 |Px|*p; dx + —_ " dxdy
- 25 206-y) X\ o
=G5y—-6) | Alp )dx + ~] |Px|"p, dx + T y| YD p1()p5(y) dxdy

and using (4.0.2) again, one also has

f A(p)) dx

. gy 1 (x—y)x -
pre L U 3yf =P prx )Pz(y)dxdy+(4 3 fIPxI dx.

Therefore, we finally see that mlC] (ﬁl, ﬁz)' By changing the role of ‘51 and ﬁz, it

is straightforward to check mzC] F (pé, ﬁ{)

Remark 4.0.2 The integral representation of C{ in Lemma 4.0.1 plays a crucial role in
its quantitative C* convergence result to the limiting potential Cyy. (cf Lemma 4.2.1). This
convergence result will be importantly used to prove the uniqueness result (cf. Theorem
4.0.4). Indeed, a solution to the variational problem (2.2.4) satisfies the self-consistent
equations (2.2.5) which involve the chemical potential C{ on each connected component, and
thus the quantitative control of the convergence of C{ as in Lemma 4.2.1 will be useful to
analyze the perturbed equations around the asymptotic Lane-Emden profiles.



26 Juhi Jang, Jinmyoung Seok

Lemma 4.0.3 Let {p/} W
(2.2.4). Then it solves

mym, D€ @ normalized minimizers to the variational problem

L
-1

1 J? . L
p{(x) =B (2 I(f])])Z |Pxf? + (m * pf)(x) - —F(pl,p]) Vx € B(J?x;, J?ri), i =1,2, J#1,

. I(p')? i ) .
mi%;(p}) = p ff( 1) +1|x1 yyép{( ph(y)dxdy, T(p)) =0, i=1,2,

1
1

where B), = (Ky )7 and F is given in (4.0.1).

Proof By Lemma 3.3.5 and Lemma 4.0.1, it only remains to show

)2
mi%1(p)) = (p ) f (- 1)’*1 i ylép{(x)pg(y)dxdy, i=1,2.

From a direct computatlon we see that for j # i,

Jy72
mx1(p )] ﬂ_ )1+1 X1 — y;p{(x)%(y)dxdy
I
:fa (21( f)z ])p]dx

J>
fax] p)—ﬂ( ])2x2+(D/+C])p]dx

:faxl(Dp{pidXZfaxl(Dp{ACDpI(dXZO.

This ends the proof.

xlpfdx f&xl(l‘) 10; | dx,

Now we state the following uniqueness theorem which implies (ii) of Theorem
2.32.

Theorem 4.04 Let {p/} C (M/ml m, be a family of normalized solutions to (4.0.3). Suppose
that there exists a constant R > 0 independent of | such that

spi(p)) € B(x(p)), R),  spt(pl) c B(x(p}), R)

and there hold the following convergences:

limn [|p - + %(p1)) = i = + o3 + %(p) = Pl = 0,
] =)

. X(py) 1 . X(py) 1

1 = ,0,0), 1 =—(——, 0, 0),

Igg J? (m%mz ) ]1—>r£lo J? (mlmg )
Fo' ol Fo! o

lim (pr, P2) =G, lim (P2 1) =Cy.

Joeo M Joo 1y

Then such a family {p’} is unique for sufficiently large | > 0.

The proof of Theorem 4.0.4 involves several steps and technical details. We first
give a brief overview of the proof in Section 4.1 and the full proof in Section 4.2.
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4.1 Overview of the proof

The purpose of this subsection is to deliver fundamental ideas and abstract settings
employed in the proof of Theorem 4.0.4. We first encode the system of equations
(4.0.3) into a functional equation

u=N() (4.1.1)

for some nonlinear map N/ : X — Y, where X and Y are Banach spaces such that X
is continuously embedded in Y. The second step of the proof (Lemma 4.2.1-Lemma
4.2.5)is to obtain the various regularity estimates for N/ including the equicontinuity
of N/ and VN’ and their uniform convergence to a limit map N*. Then our task will
be to show that for sufficiently large |, a family of solutions {u;} to (4.1.1) is unique
whenever it converges in a suitable sense to a limit #., € X which is a solution of
the limit equation u = N*(u).

The main idea of the proof is as follows. Denoting u; = v + ., and using Taylor
expansion, one can see that the equation (4.1.1) is equivalent to

v — VN (ue)[0] = R (v)) + N (1) = N¥ (1), (4.1.2)

where R/(v)) is the super-linear remainder term in Taylor expansion. The key ingre-
dient of our argument is the following non-degenerate estimate (Lemma 4.2.6)

liminf inf |l — VN (ueo)[¢]lly > 0. (4.1.3)
Jooo igllx=1

The proof of the estimate (4.1.3) strongly relies on the aforementioned regularity
estimates on N/ and non-degeneracy of the limit map N* (Theorem 3.1.1.(v) and
Proposition 3.2.1.(ii)). With this estimate in hand, suppose that (4.1.2) admits two
different families of solutions {ZJ}} and {v%}. Then it follows that

(0] —v}) = VN (uw)[v] — v7] = R (v])) = R (v)).

The non-degenerate estimate implies that for large J, there exists a universal constant
¢ > 0 such that

dllo} = 2llx < @} — 03) = VN (o) 0} = 221l

while it is possible to obtain the estimate (Lemma 4.2.7)
c
IR o)) = RI@Dlly < Flloj = o]llx

due to the convergence ||v} - ZJ%H x — 0 and the super-linearity of the term R/. Then
we get a contradiction and the uniqueness is proved.
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4.2 Proof of Theorem 4.0.4
Let us denote Br := B(0, R). Define the function space
L2(Br) = {p € L*(Br) | %(p) = 0}

and intervals

1 1 1 1
h=(—-n —5—+n), Lh=(—F5-n-——>+n).
mlmz mlffIz mlmz m1m2

Let us denote (; = X1(p;)/ ] and redefine as p;(x) — pi(x — ]zcie_’xl). Then for any

normalized solution p € ’VV of (4.0.3), we may write

mm=m@—ﬂaao+mu—ﬂgax

where (3 € I1, (; € I and py,p2 € LS(BR). With this transformation, the equations
(4.0.3) transforms into

(p1,p2,C1,C)" = N(p1, p2,C1, o),
where (p1, p2, (1, () € L2(Br) X L2(BR) X I; x L and N := (N], NJ, NJ, N))T such that

N{(Pl; P2, Cl/ CZ)

=B,

2IP(x + PGiE)P %
J2IP(x + J2C42,)l ) +(i pl)(x)+(ﬁ*pz)(x+]2(C1—C2)6x1)—milF{

2(I(pr) + I(po) + Loy A1

Ni(Pll p2,C1, C2)

=B,

2P + JPCaé, )P g
J2P(x + 208, ) +(i*P2)(x)+(ﬁ *pl)(x+]2(C2—C1)€x1)—mi2F£

2(Ipy) + I(po) + Loty A1

](Pl, p2,C1,C2)

mmumn”%&wﬁﬂﬂ — 1+ JA(G - G)
Ix -y

] TG - Qe P!

Ni(Pl,Pz, G, 0)

p1(x)p2(y) dxdy,

Jrmamy(G—Go)? )2

_I(p) + Ip2) + 555 ff —y1+ 20 - (o)
lx—y

myJ* + J2(G - G)éy,

|391(X)pz(y) dxdy.

Here F{ and F£ are given by

Fl(p1, p2, 01, G) = F(pr(x = PGy, pa(x = JPGa)), w2
El(p1, p2, C1, ) = Flpa(x = o), pr(x — JPCaéy,). h
Let us define

Xo = L3(Br) X L3(Br) x Rx R, X :=L*(Bg)x L*(Bg) x RX R

~
R

+

L
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so that the standard inclusionmap I : X, — X is well defined. For & = (p1, p2, C1, () €
X, we denote

€l = max { llpallz, llpalzz, 1Cal, 182l .
For Banach spaces X, Y and a linear operator A from X to Y, we denote by [|A|lx-y,
the operator norm of A. If A is from ¥, to X, then we just denote ||A||x,—x by [IAll.
Lemma 4.2.1 Fori = 1,2, the functional F{ given in (4.2.1) is C* on L§(Br)XL3(Br)XI1 XI.
Moreover, if we define

sl =F©) - —E°°<p> &= (p1, p2,C1, ),

then Sl[ is C? and there exists a constant C depending only on R, 11,12, m1,my and y such
that

SN+ IVS] @l + IV} (E)lxpex -k < 3 Sa+ ). (422)
In particular, F{ (&) converges to ZK—;}?E""(pi) in C2 topology.
Proof By the symmetry, we may assume i = 1. It is clear that E®(p;) is C'. We note
that S{ is given by
8—5y  J*(Ilpy) +J*C [ p1dx)
2(4-3y) (pr) + I(po) + Lot )

my+miy

x—y+ G - Q)éy) - (x + JPGéy)
4 3V ff lx—y+ J2(Cq - Cz)é;l|3 p1(x)p2(y) dxdy

ff P1()p2(y) dxdy.

e =y + JA(G = G|

It is easy to see that for any p € L*(Bg), there exists a constant C(R) depending only
on R such that

] —
51 =

(L . p) () < =B lplliz for all x € R, (4.2.3)
[-] 1+ |x|
Since spt(p;) € B, G| < s+ 11, |Gl < s+ and |G =Gl 2 L5 —71 =12 > 0, we

see from (4.2.3) that the estimate (4.2.2) holds true for k = 0. To obtam the estimates
(4.2.2) for k = 1,2, we need to show

C
[VSI(p1, p2, C1, o), 12,271, 22)| < R+ 1l + o2l 72, 21, 22)Il,

C
|< (P1,pz,C1,C Y, 02,21, 22), (771,772,21,22)>’ I (1+||,01|| + o2 21, 12, 21, 221

This can be done by computing

d
di"t =0 1(P1 + i, p2 + 12, Gy + 121, G + 122),

42

T t:OS{(pl + i, p2 + tn2, C1 + 21, O + t22)

and applying the similar arguments. Since the computations are similar and tedious,
we omit them.
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We define fori=1,2,

] —
Xl‘ (pl/ P2, Cl/ CZ) i
PIP(x + JGés,)P 1 1 " L
i (ﬂ . pi) ) + (m . p]-) (G- C)Ey), £
2(lpn) + Lpa) + PHEEEEEE)
Arguing similarly with the previous lemma, we can also see there hold the following
two lemmas, the proofs of which are omitted.

Lemma 4.2.2 The map Xl] is C? from L3(Bg) x L3(Bg) x I X I to L*(BR). Moreover, if we
denote

X)) = (|| pi) + QO = (pup2 0L D),

then there exists a constant C > 0 depending only on R, 11,12, m1, mp and y such that
IIQ (ElL=Be) + IIVQ (ONMxyor=(Br) + IIVZQ (EMxoxzyoL=Br) < I (1 +[1&D).

In particular, X{ (&) converges to (ﬁ * pi) in C2 topology.

Remark 4.2.3 From Lemma 4.2.1-4.2.2, we see that as | — oo, the limit map ofN{ is

5y -6
N2(E) = (1 1=

1

r-1
— % p; —E%(p; i=1,2.
b4 | K | "'Pz ml 4 37/ (Pz))+ ’ 1 7

Lemma 4.2.4 Fori = 3,4, the map N{ is C% from L(z)(BR) X Lg(BR) x I X I to R. Moreover,
if we denote

N{(E) -0) fpl dxfpzdx-FV](E) & =(p1,p2,C1,C2),

then there exists a constant C > 0 depending only on R, r1,r2,m1, my and y such that for
i=3,4,

(mi_a)(my + ma)? 2)("11 + my)?

C
VIl +IVV(E)llxor + V2V (E)lltoxx,or < ﬁ(l +11EIP).

In particular, Nl,] (&) converges to the limit map
0oy - mim 2
N(&) = (ml 2)(m1 ) - () fpl dxfpz dx, i=3,4
in C? topology.
Now, we are ready to prove the uniform C! estimate for N/.

Lemma 4.2.5 The map N/ is C' from L3(Br) x L3(Bg) x I X I, to X. Moreover, there exists
a constant C independent of &, & such that

lir]n sup ([N + [VN @) < c (1 + ||g||2)%“,

tim sup [VN1(€) - NI < € (1 + iei? + 1E17) " (1€ - 1+ e - 1)

Jooo

for & & € L2(Br) X LA(Bg) X I; X I.
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Proof We only prove the second estimate because the first one is easier to obtain. By

denoting f(t) = Byt}r/(y_l), one has for ¢ € X

VN/(©)[¢] = f(X] - )X - F)©IgD), i=12

2-y
Since |f'(t) — f'(s)] < Clt —s|"T, we see from Lemmas 4.2.1 and 4.2.2 combined
with the mean value theorem that fori=1,2,

IVN](©)[¢] - VN[l
<P (x) = F)©@) = £(X] = F)YENllspolVX] = FYEIII
+ (X = FYE @IV = EEIP] - V(X] = F)@)IlI

< C(1 + IEIR + AR e = EIF gl + CQ1 + IEIR + AR e = ENl .
Thus this implies
IVNJ(E) = TNl rzmg < C(1+ 6P + BEIR) ™ (16 = &+ g - 1) i=1,2

Finally, as for VN. é and VN i, we invoke Lemma 4.2.4 and the mean value theorem
again to get
IVN/(©) = VN]@)llz,-r < C(1+lI€IP + IEI7) lle = &Il i =3,4.

This completes the proof.

To prove Theorem 4.0.4, we need to show that a solution of the equation

(p1,p2,C1,C)" =N (p1, p2, G, &2, fm =m, fpz =1y (4.24)

near (5, Poms ﬁ, —mllmé) is unique for sufficiently large | > 0. We note that the

limit map N* = (N;°,N;°,N7°,N;°) given in Remark 4.2.3 and Lemma 4.2.4 has

oo oo 1 1 : :
(O 7 Pty T ) as a solution. Then, by denoting

oo e 1 1 .
= rPm,r — > 71— 7 ’ 7 7 = + 7 7 7
E” = (Pmys Pomy s mlmg) (p1,p2,C1, C2) = &7 + (M, M2, 21, 22)
and
Al .= VN/(&™)

I NJ(E®) -+ I N|(E®)

I NL(E®) -+ I, N(E™)

the equation (4.2.4) is equivalent to

(I = AN, m2,21,22)" = NI(E¥) = N®(E®) + RN (1, 2, 21, 22), fm = fﬂz =0,
where

RI(m, M2, 21,22) := N(p1, p2, C1, &) = NI(E®) — Al (1, 2, 21, 22)
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Lemma 4.2.6 There holds

imintin {10 - A1 | = 0, 2170 € 10 =1, [ = [ =0} >0

Proof We see from Lemma 4.2.5, the equation (3.1.2) satisfied by pj; and the fact

%E;’j = mC;; (Theorem 3.1.1) that

]lim AT — A= = 0,

where
A%(m,M2,21,22) =
FGE=pm)=Co)(hm+Cx [m) 0 0
0 FEpm) - C?)('l*' 1+ Cx, [ ) 0
m?mzfm ) 2 i
_@ Jm _#mg I —%

Itis easy to see that A* is a compact operator. Moreover, observe that for an arbitrary
kernel element (11,12, z1,22) € Xo of I — A* with f m= f 12 = 0, one has

R SR e |
m =f(m*Pm1_le)m*771/

P ST |
Usz(m*sz_sz)m*’?Z/

1 1 27’)’12 21’?12
z1 = — mdx + —— N2 dx + Z1 — Zn,
) mimy my + 1My my + mp

1 1 27]’11 2m1
=" 1 dx — 3 N2 dx — 71 + 22,
mymy myn my + 1y my + my

so that 11 = 1 = 0 by Theorem 3.1.1.(v) and consequently z; = z, = 0.

Now, we are ready to end the proof. Arguing indirectly, suppose that there exist
sequences {Ji} — oo and ¢r = (M1k, N2k, Z14, 22k) € Xo With f Mk = f N2k = 0 such
that |||l = 1 and (I - A]k)qf)k =0(1) in X as k — oo. Since

P = Al + 0(1) = (A = A®)Py + AV + 0(1), (4.2.5)

we see from the convergence of Al to A®, compactness of A* and closedness of X
in X that ¢, converges in X to some ¢, € Xy with [|¢l| = 1, up to a subsequence.
Then we use (4.2.5) again to see that ¢ = (117,115,277, 25°) € Xp is a nontrivial kernel

element of I — A® with f 1y’ = 15 = 0, which is a contradiction. This proves the
lemma.

Let B; be the 6-ball in the space Xy, i.e.,

By i={ ¢ =(n,m21,22) € Xo | Il <6 .

0
0

_ 2mpzp
my+my
2myzo

My +niy
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Lemma 4.2.7 For any € > 0, there exists 0y > 0 such that if 0 < 0 < o, then
tim sup [IR'(®) ~ R@)| < ellg ~ | for any 9. € 5.
Proof Observe that
R (@) - R ()

o o 1 1
:N](pml+ﬂ1,pm2+ﬂ2,2—+21,— 2+22)
mlmz m1m2

o0 ~ o0 ~ 1
— N (o, + 111, oy + 120 —
my

1 -
+2,- +2) - Al(p -
O 2) — AP - @)

1
o 0 1 -1 -
= f VN(pie, + m(5), Py + 12(8), —— + 21(5), — +22(5)) — Al ds (¢ — ),
0 mlﬂ’lz mlmz
where 1;(s) := sn; + (1 = s)fj;, zi(s) = sz; + (1 — 5)Z;, i = 1,2. Thus we see from Lemma
4.2.5 that for any ¢ > 0, there exist 1 > 0 such that if ||(11(s), n2(s), z1(s), z2(S)I| < 61,
lim sup [R(¢) — R/ ()]
J—o00

+22(8)) = Alll ds llp — Gl

+21 (S)/

1
st[IWNWmZ+WK%P%+”ﬂ$
0

< el -l
By taking 69 = 61/2, this completes the proof.

m2my

2
1 myim,

Proof (Completion of proof of Theorem 4.0.4) By the convergence,
lim 195+ #(py) = P = + 175+ %(73)) = Pl = 0,

it is sufficient to show that the equation for ¢ = (11,12, C1, C2)

(I-A)p =R(¢), f m= f =0 (4.2.6)

has a uniq}le solution on a small ball 85 when ] is large.

Let ¢, ¢ € B;s be two solutions of (4.2.6) for some 6 to be chosen later. Then, we
see from Lemma 4.2.6 that there exists a constant ¢ > 0 independent of large | such
that

clip — Pl < I = AN — P)I.

Invoking Lemma 4.2.7, we take a suitable 6 > 0 satisfying
. ~ C ~
timsup [R(¢) ~R'@)] < 3]l¢ - 9]}
This implies that for any sufficiently large J,

clie = Bl < Sl — P,

from which we see that ¢ = ¢.
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5 Symmetry for the equal mass case

In this section, we prove (iii) of Theorem 2.3.2. The strategy is to construct a family
of symmetric solutions to the system of equations (4.0.3) satisfying the assumptions
of Theorem 4.0.4. Then by Theorem 4.0.4, it should coincide with the normalized
minimizer of the minimization problem (2.2.4) so that (iii) of Theorem 2.3.2 is proved.

Proposition 5.0.1 Assumem; = m, = mandry = ro = r. Then for sufficiently large | > 0,

there exists a normalized family of solutions p/ = p{ + p£ € W,]ﬂm to (4.0.3) satisfying
pL(x) = Ph(R=x), x € B(Pxa, 'r)
and the following: there exists a constant R > 0 independent of | such that

spt(p]) € B(x(p)), R), spt(p)) < B(x(p)), R)

and there hold the following convergences:

lim [lo} - + 2(p])) = Pl + llpg+ %(p3)) = il = 0,
—o] ]
. Xpp) 1 . X(p,) 1
]h_)n;lo 7o ($, 0, 0), ]lgg EoC —(ﬁ, 0, 0), (5.0.1)
E ], ] E ], ]
lim M =C,,, lim M =C,,.
Jooo m Jooo m

Proof In order to obtain a solution to (4.0.3) symmetric with respect to 7 rotation Ry,
we consider the following minimization problem

2l = min{ Ep)|pe Wﬁw, p1(x) = p2(Rex) ace. x € B(J?xy, J?r) } (5.0.2)

min, sym

Similarly with the original problem, any minimizing sequence {p} to (5.0.2) admits
a subsequence, still denoted by {px} such that {p} weakly converges in L”(IR®) to
some ﬁiym and {®, } strongly converges to Qﬁﬁlym in H(IR%). In particular, {(px)1}
and {(px)2} weakly converge respectively to (ﬁiym)l and (ﬁiym)z in LY(B(J?xy, J*r) and
LY (B(J?xy, J?r). This shows that ﬁiym € W{n,m and E/ (piym) <E . Moreover, for

min, sym
any test function ¢ € CZ(B(J?xy, J*r), we have

[ e = [ (@R
B(J%x1,J?7)

B(J%x,J%1)
= lim (POOR-rdx =l [ (pa(Rox)o) d
koo Jp(2xy, 2r) koo Jp(2xy 21
“tim [ (pouwewdi= [ (@@,
7 JIB(Px1,J?7) B(J%xq,J%1)

which implies (p”éym)l(x) = (ﬁgym)z(Rnx) a.e. x € B(J?xy, J*r), and therefore a mini-

mizer ﬁiym exists.
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Then, by following the variational argument by Auchmuty-Beals (proof of The-
orem A in [3]), we see that for each i = 1,2, (ﬁiym)i is continuous on B(J?x;, J?r;) and
there exists some constants Ci ymi such that

]2 = =] i ] . ~]
- 2I( ~£ym 2 P X(psym))|2 + A (Pym)i) + ®ﬁ£ym - _Csym,i in {(fsym)i > O},
(5.03)
]2 . 2 10 =] . ] . 2 2.
_ —ZI(ﬁSym)Z |P(X - x(psym))| +A ((psym)t) + Q)fjéym > _Csym,i n B(] Xz/] 7‘,). (504)

By the 7t rotating symmetry of ﬁiym, there automatically holds that J?i(ﬁiym) =
P ~ N

0,i=1,2,ie, PX(psym) = 0.
We first claim that

lim E¥((Phym)) = B, i=1,2 (5.05)
Indeed, from the inequality

El(plym) < E (o = Px1) + pio( = PPx2)),

where p;; is the unique minimizer of the limit variational (3.1.1) with %(p;;) = 0, one
has,as | = o

E®((Plym)1) + E((Blym)2) < E¥(p5) + EX(p) + 0(1).

Since E*(py,) < E¥((Psym)i), i = 1,2, we deduce that the claim holds true. In partic-
ular, we also note that E{n insym <0 for sufficiently large | > 0.

Secondly, we claim that the constants Ci i i = 1,2 are positive for every suffi-
ciently large | > 0. To the contrary, suppose the converse, i.e., there exists a sequence
{Jx} = oo such that Ciky mi S 0. The energy convergence (5.0.5) says (ﬁg,m)i is a mini-
mizing sequence of the limit variational problem (3.1.1). Then by Theorem 3.1 in [43],
there exists a sequence of translation vectors {t} C R3 such that after choosing a

subsequence, {(ﬁikym)i(- — tr)} weakly converges in L” to p;; and {® @ i rk)} strongly
o)

converges in H' to @« as k — oo. In particular, {® } strongly converges in L°

(PLm)i(—t0)
to @, by the Gagliardo-Nirenberg inequality. Then, extracting a subsequence again

if necessary, we may assume that {® } almost everywhere converges to @ .

(psym)l(‘_tk)

Moreover, the energy convergence (5.0.5) and H! convergence of {® ol i tk)} imply
com)i

that

B (15 m)i (- = )l = llp e

Since the Banach space L” satisfies the Kadec-Klee property, saying that the weak
topology coincides with the norm topology on the unit sphere, we can conclude
that (ﬁi’g,m i(- — tx) strongly converges in L7 and consequently almost everywhere

to to p;;. We now pick a point xy € spt(p;;) such that both of {(ﬁi@,m)i(xg - t)} and
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(o — tk)}) converge. Then taking lim sup to the both sides

i

{(D(ﬁﬁfvm)x-—tk)(xf))} (: {(D(psym»
of the inequality (5.0.4), we obtain
0> C2 = A'(p3(x0)) + Dy (%0) = limsup(—-Cl_ ) >0,

sym,i
k—o0

which is a contradiction and the second claim follows.
Then we now can apply the arguments of proof of Lemma 3.3.8 without modi-
fication to obtain the bound

lm sup [|5ym|lwigs) < oo
J—oo
This let us to follows the arguments for the proof of Proposition 6.6. in [40] (it
requires only uniform L* bound for ﬁiym) to deduce the existence of a constant
Reym > 0 independent of | such that for large | > 0,

spt((Plym)i) € BE(Plym)), Reym) i=1,2. (5.0.6)

We finally consider the normalization of ﬁiym still denoted by ﬁiym. We note that ﬁiym

is contained in W;,m by (5.0.6) and still satisfies the 7t rotation symmetry because it is
obtained by a rotation with respect to x;x, plane and a translation with respect to x3
direction. Thus ﬁgym is a normalized minimizer of the minimization problem (5.0.2)
so that we may follow the proof of Lemmas 3.3.5,4.0.1 and 4.0.3 to see ﬁﬁym solves the
system of equations (4.0.3). For obtaining the convergences (5.0.1), we may follow
the remaining procedures of the proof of Proposition 3.3.1 without modification.
This ends the whole proof of Proposition 5.0.1.

6 Orbital stability for binary stars

In this section, we show the orbital stability of binary stars. To this end, we first
introduce the notion of a weak solution to Euler-Poisson equations (1.0.1) for per-
turbations.

Definition 6.0.1 Let the triple (p,u, @) : R? X [0, T] = R0 X R® x R where p, pu, pu ®
u, pVO € L=([0, T];Llloc(]R3)) be given. Consider the Cauchy problem for (1.0.1) with
the initial data (p(x,0),u(x,0)) = (po(x), uo(x)). We say that (p,u, @) : R® x [0,T] —
Rso X R3 X R is a weak solution of the Cauchy problem of Euler-Poisson equations (1.0.1)
if for each t € [0, T) and for any test functions b, W = (U1, 2, P3) € CX(R® x [0, T)), the
following hold:

t
fo jﬂ;3 (p0sy + pu - V) dxdt = jﬂ;s p(x, HY(x, t)ydx — fw po(x)(x,0)dx  (6.0.1)
t
f f (pu- 0¥ +pu®u-V¥ — pVO - W) dxdt (6.0.2)
0 Jre

= p(x, Hu(x, t) - P(x, t)dx — f po(X)up(x) - ¥(x,0)dx
R3 R3
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Remark 6.0.2 By taking suitable test functions, one can easily see that the total mass and
and the total angular momentum in x3—direction are preserved for those weak solutions:

p(x, t)dx = f po(x)dx, t>0
R3 R3

f (x1u2(x, t) = xouy(x, 1)) p(x, )dx = f (1102 (x) — xoup1 (X)) po(x)dx, t=0.
R3 R3

In the absence of shock waves, the total energy is also preserved [48] but in general it is
non-increasing due to the entropy condition from the second law of thermodynamics. We
will not address the existence of global weak solutions of the Euler-Poisson, which is out of
scope of this article, but we refer to [37,39] for further discussion on weak solutions, entropy
weak solutions and stability.

Next we introduce various distances to be used for stability result.

6.1 Notion of distances for nonlinear stability

Definition 6.1.1 Let p € "Wﬂmmz be a minimizer of (2.2.4) and p € ‘W,Llrmz. If there exist
0 € R, v € R® such that p°, p?" € W]

my,my/

then we define a distance function

2

J
21(p)*

e )= [ 3A<p>—A<p~)—( |P<x—fc<ﬁ))|2—cbﬁ)<p—ﬁ>dx.

Otherwise we define do(p, p) = oo.

In the following, by using a strict convexity of A, we show that d is positive and
is zero if and only if p = p.

Lemma 6.1.2 For any p € (W,Ll,mZ and any minimizer p € (Wf,,]lmz of (2.2.4), one has
do(p, p) = 0. Moreover, do(p, p) = 0 if and only if p = p.

Proof We may only consider the case that there exist 0 € R, v € R® such that
p%, po € WI We see from Theorem 2.2.3 that

my,my*

2
do(p, p) = f Alp) = A(P) - | 5= IP(x — (PP = D, — Ci | (p — p) dx
o(p. ) Z; i oy PV AP = | PG = K - 0 =i (o= )
2

> [ AG) - 4@ - Ap)Np - po
i—1 spt(pi)
Since A(p) is strictly convex w.r.t p, A(p) —A(p;) —A’(pi)(p— pi) = 0,and A(p) —A(p;)—
A’(pi)(p — pi) = 0if and only if p; = p;. This proves the lemma.

We next define a distance function taking into account the difference of the center
of masses.

Definition 6.1.3 For p and p described in Definition 6.1.1, define

P (n  m)lPE) -~ GDR(U(p) = 1)
o p)i=dlppr 3 (P )
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The next one measures the deviation of velocity fields.

Definition 6.1.4 For (p,u) € S{“],mz, define

do(u, il,) = fR 3 %Iu(x) ~ 1,(0)Pp(x) dx,

where il, is the uniform rotating velocity vector with respect to X(p) with angular velocity

J(p), ie.,

/

i, = @eé X (x = x(p)).

We now show that the distance functions d;(p, p) and da(u, i,) naturally appear
when measuring the energy deviation of (p, u) from the minimizer (p, i,).

Lemma 6.1.5 Lef p be a minimizer of the variational problem (2.2.4). For (p,u) € Sﬂﬁrmz,
there holds

- N N 1
E(p,1) = E(p) = di(p, p) + dau, 1) = 5= IV D, = Vpll

whenever there exist 0 € R, v € R® such that p, p%" € 47/[

my,my*

Proof We decompose as

Ep,u) = Ej(p) = E(p, u) - E; (@) + E; (@) — E;(p)
& I

(L T AR A _
‘ﬁuwaﬂwﬁL“mA@”2m>ﬂ@

(A) (B)
1 p()p(y) ([ P@)
2 (f -yl f -y Y )

©

Then, direct computations show

2
(A) = j};@ Iulzpdx—ZT]p)E’z-L3((x—a?(p))xu)pdx+ 1)

= |u|2pdx—2f(u~ﬁp)pdx+f |ﬁp|2pdx
R3 R3 R3

= J};{S [ — iipPpdx = do(u, il,y),



On uniformly rotating binary stars and galaxies 39

where we used 7, = IL X (x = x(p)).

5 ]2 . - ]2 ]2
(B) = do(p, p) + f ( ~zll’(x—x(p))lz—<Da)<P—P)d’“+zl(p)‘21(;5)

re \21(P)
_ s L _ Ip)-1(p) 1 1
=do(p, p) + 5 (W (f(IP(x - x(P)P* = IP(x — x(p))I*)p dx) + G + o~ Tﬁ))

—f Dplp — p)dx
R3

) P ((m + m)IPG(p) ~ 3E)E (I(p) - 1(5))? )
= dolp:p ”‘( 107 * TIo)ipr )‘f Polp = p)ax

=di(p, p) - fm Gp(p — p)dx

and
© = f p|(;C)—py| ff & )pyl ety
f (P |xp<;>)p dxdy ffp(x)(P PV iy — 2 fR Dylp - petx
ff |x Py(ly) P) dxdy—2L3®ﬁ(p—ﬁ)dx

= 190, - Vo -2 [ @yl pix
R®

Combining (A), (B) and (C), we can complete the proof.

Remark 6.1.6 From Lemma 6.1.5 we see that the positive part of the energy deviation from
the minimal energy is quantitatively given by the distance function dy + dy at the expense
of the negative potential energy, and thus the minimizing energy alone is not suﬁﬁ‘cient for
stability. Nevertheless, Lemma 6.1.5 indicates that if E(p, u) — E;(p) and |[VO, -~ VD, ||L2 ®)
can be made small, the distance function dq + dy stays small. In fact for our orbital stability
result (cf. Theorem 6.4.1), we work with dy+d, +||[V P, -V P ||Lz R 35 the total measurement
and together with Lemma 6.1.5 we resort to the energy conservatzon or dissipation property
of dynamical solutions and the strong convergence of the potential energy which follows
from the compactness result on minimizing sequences (cf. Lemma 6.4.3).

6.2 Dynamical assumptions for nonlinear stability

(D) There exist Tj € (0, o] and a nonempty class of initial data Z; C S,Imm2 with the
following property: for any (po, tg) € I}, there exists a weak solution (p, 1) of
(EP) with the initial data (po, 1o) such that

@@ (p(-,t),u(-, 1)) exists up to the time interval [0, T;] and

spt(p1(, 1)) € B(X(p1(, 1)), J*ro),  spt(pa(, 1)) € B(E(pa(-, 1)), J*ro)

for some 0 < rg < min{ry,r2}/4 and all ¢ € [0, T}];
(i) E(p(-,t),u(-, 1)) < E(po, ug) for any t € [0, T;];
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6.3 Remarks on instability in Lyapunov sense

Lemma 6.3.1 Let (po,vo) € It and (p,v) be a solution of (EP) with the initial datum
(po, o). Then one has

%(p(, 1) = %(po) + ¢ fR aupodr.

Proof We differentiate Mx(p(-, t)) twice with respect to f to get

az d d
ﬁMx(p(-, ) = T fRS xdip dx = T N xV - (pv)dx = j11;3 d¢(pv) dx
= —f V- (pv)vdx — f p(@-V)v + V(Kp”) + pVDdx
R3 R3
= —f V- (0®0) + V(Kp?) — 4nADVD dx = 0.
R3

Therefore we can see

%(p(-, 1) = %(po) + ¢ fR anpod.

Remark 6.3.2 Let X; = X(p;(-, t)) be the center of mass for p;, and let @; be the gravitational
potential corresponding to p; so that @ = Zil @; and AD; = 4np;. The same calculation
using the evolution equations for (p;, v;) in the proof of Lemma 6.3.1 reveals

dZ
—m;X(pi(-, 1)) = —f NOdx = — NVOidx
—ami(p N Y . oo

k#i
==Y [ [ ot 2= trtuas
o VR IR - yP ’

which shows that the dynamics of the center of mass for one body is determined by the tidal
force due to the other body.

Lemma 6.3.1 shows instability can occur by a translation of center of mass.

6.4 Orbital stability for binary stars
We now state the main result of this section.

Theorem 6.4.1 Let p € ’W,LW,Z be a minimizer to (2.2.4). Assume (D). For any € > 0,
there exists a 6 > 0 such that if an initial data (po, uo) € I satisfies

d1(po, P) + da(uo, ilp,) + [IVDp, — VO4lli2gey <6,

then there exist O(t) € R, v(t) € R® such that for every t € [0,T;], the solution (p,u) to
Cauchy problem of (EP) with initial data (po, uo) satisfies

di(p®OVO(, 1), p) + do(u(-, 1), (. py) + VD oo,y — Vpllws) < €.

v
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Remark 6.4.2 Theorem 6.4.1 shows that under suitable assumptions on admissible per-
turbed solutions, McCann'’s binary star is orbitally stable: if initial data measured using d,
dy and the potential energy is close enough to the binary star solution, the deviation with
respect to the same distance stays small up to a rigid motion as long as the solutions exist
and the support of the solutions stays bounded. The necessary spatial shifts and rotations
appearing in the statement reflect the symmetry and invariance of the system.

We firstly prove two auxiliary lemmas. The first one is the compactness result
on minimizing sequences to the minimization problem (2.2.4).

Lemma 6.4.3 There holds the following:

(1) Any normalized minimizing sequence {p,} C Wﬁhm of (2.2.4) weakly converges to

a normalized minimizer p € Wmlm of (2.2.4) in LY and V®,, strongly converges to

V@, in L?, after choosing a subsequence.
(i) For any minimizing sequence {p,} C (Wr]nl,mzr there exists {0,} C R and {v,} c R®

such that {pf""’”} C W] weakly converges to a minimizer p € Wﬁh,mz of (2.2.4)

my,my

in LV and V@ o, strongly converges to VD in L?, after choosing a subsequence.

Proof We first point out that any minimizing sequence {p,} C W of (2.2.4)

my np
. el .
weakly converges to a minimizer § € W,, .. of (2.2.4) in L7 and V®,, strongly

converges to V@, in L?, after choosing a subsequence. This is due to the fact that
spt(pn) € B(J?x1,J?r1) U B(J*xa, J*r2) so that Lemma 3.2 in [43] applies. Then the
assertions (i) and (ii) are just corollaries of this. For (i), we note that the center of
mass ¥(p,) should converge to %(p) by the weak convergence in L”. For (ii), we
just use the definition of the admissible (W{Vlllmz and invariance of E/ under a rigid
motion.

We next show that the solution for the Cauchy problem belongs the admissible
class along the evolution.

Lemma 6.4.4 There exists 69 > 0 such that if an initial data (po, uo) € I satisfies
dl(PO/ ﬁ) + dZ(MO/ ﬁpo) + ”V®p0 - V®ﬁ|lL2(R3) < 60/

then the solution (p(-, t), u(-, t)) to Cauchy problem of (EP) with initial data (po, uo) belongs
to S{nl,mz for every t € [0, T)].

Proof We may assume p is normalized, i.e., ¥(p) = 0, %1(p1) > 0 and %»(p1) = %2(p2) =
0. The other minimizers can be dealt in the analogous way. For p, we define p(x) :=
p(Rox + x(p)), where 0 is chosen so that p(x) is normalized.

To the contrary suppose not. Then there exist {t,} c [0,T;] and a sequence of
initial data {pg,, 10,»} C I such that

~ - 1
d1(pou, P) + d2(tou, flp,,) + IV@p,, — VO;sllr2mrsy < - (6.4.1)

and for the solution (p,, u,) to Cauchy problem of (EP) with initial data (po, uo), p»n

firstly leaves the admissible class Wml o, at time £,
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We claim that the leaving time ¢, must be positive. Since (po,, 4o,.) € I}, one has

spt((pon)1 € Bx((po,n), J2r0),  spt((pon)2) € B(x((pou)2), J*ro)-

Also, combining Theorem 2.2.5.(ii) and Theorem 2.3.2.(i), we see that

spt(p1) € B(*(xi +0(1)),R),  spt(p2) C B(*(x2 +0(1)), R).

Then the contradiction hypothesis (6.4.1) says po,. € W{nl,mz' Since the solution p,,

has the finite propagation speed for the center of masses, this shows by Assumption
(D).(@) the first leaving time ¢, is strictly positive.

By the definition of t,, spt((6.)1) € B(J>x1, J?r1), spt((0n)2) € B(J>x1, J?r2) and ei-
ther spt((pn)1) or spt((P»)2) touches the boundary at t,,. We just may assume spt((p,)1)
touches the boundary. Then Assumption (D).(i) implies that

3
FPa 1) = Pxa| > 3. (6.4.2)

Now, we take a smaller time than ¢,, still denote by ¢, such that spt((9,)1) and

spt((pn)2) are contained in interior of their domains so that p, € W but (6.4.2)

mq,m
still holds true. o
Lemma 6.1.5 implies E(poy, o) — Ej(f) as n — oo. One has from Lemma
2.2.2, Assumption (D).(ii) and the invariace of E; under the group of rigid motions
[T |0 € R, v € R%)} that

Ej(pu(, tn)) = Ef(pu(-, tn)) < E(pu(, t), tn(:, t0)) < E(pno, ttno) = Ef(p),  (6.4.3)

which means that f,(, f,) is a normalized minimizing sequence for the variational
problem (2.2.4).

Then Lemma 6.4.3 says {p.(:,t,)} weakly converges to the unique normalized
minimizer p in LV and

}gl; ”V(Dﬁn(‘/fn) - V(DP||L2(]R3) = 0

This however makes a contradiction because spt(p) N spt(p,) = O for large n by
Theorem 2.2.5.(ii) and (6.4.2).

We are now ready to finish the proof of Theorem 6.4.1.

Proof (Completion of Proof of Theorem 6.4.1) The proof follows the similar lines with

the proof of Lemma 6.4.4. We also may assume a minimizer ¢ belongs to W{”hmz.

Arguing indirectly, suppose Theorem 6.4.1 does not hold. Then there exist ¢y > 0,
{t,} € [0, T] and a sequence of initial data {pg, 140,} C T such that

~ ~ 1

di(pon, P) + da(tton, fpy,) +IVDyy, = VO;slli2rs) < -
but the solution (p,, 1,,) to Cauchy problem of (EP) with initial data (po, uo) satisfies
dy(p%" (), P) + ot ) o) +IVD s, = VDpllzgeny 2 €0 (64.4)

forevery 0 € R, v € R?® and n € N.
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Lemma 6.1.5 implies E(po,, tto,) = Ej(p) as 1 — 0. One has from Lemma 2.2.2
and Assumption (D).(if) that

E[(pn('r tn)) < E(pn('r tn)r un('/ tn)) < E(Pn,o, un,O) i El(,ﬁ) (645)

so that p, (-, t,) is aminimizing sequence for the variational problem (2.2.4) by Lemma
6.4.4.
Then Lemma 6.4.3 says there exists {(0,,v,)} € R x R3 such that after choosing

a subsequence, {p2""" (-, ,)} weakly converges to f in L’ and

i [IVD o, ) = VPpllizey = 0. (6.4.6)

n—oo

Let us denote p,(x) = p((T%")~1x). It is straightforward to see that g, is a
minimizer of (2.2.4) since (mem and Ej is invariant under the group of rigid
motions {T% | 6 € R, v € R%}. Now, we again use Lemma 6.1.5 to get

E(pu(:, tn), tn(, 1))

= Ey(pu) + d1(puCc ), ) + daitnC ), fp, 1) — ||chp,, i = V5

= Ej(p) + di(pg" (., ta), ) + do(uin (-, ta), flp, .1,)) — ||V<D oy~ VOl ey
This yields d; (pg" (s tn), P) + Ao (e, t), Tlp, (1)) = 0@s n — oo by (6.4.5) and (6.4.6)
but this makes a contradiction with (6.4.4).
7 Applications to binary galaxies

We first introduce various quantities.
Hamiltonian for (VP):

Evp(f) = Kvp(f) + Gvp(f) = ff |v|2f (x,v) dxdv — ff 1 Pf|(;)P;(|]/) dxdy,
]Ra

where p(x) = fRs f(x,v)dv.

Entropy(Casimir) functional:

- - 14 q
C(f) ffm()ﬁ(f(x,v))dxdv jﬂ;ﬁ qKq (f(x, v))! dxdo,

where q > 5/3 and x; = E 47(1 - s)ﬂ%l V2s ds.

Free energy for (VP):
F(f) = Eve(f) + C(f)-

Total mass for (VP):

Mvp(f)=fR3 Pf(x)dx=f]R6f(x,v)dxdv
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Total angular momentum for (VP):

Jve(f) = jﬁ;ﬁ((x — X(py)) X 0)f(x,v) dxdv = jﬂ;s((x — X(ps)) X ug))py(x) dx,

where ¥(py) is the center of mass of py, i.e., X(ps) = f]RS xpf(x) dx/Myp(f) and uy is
the mean velocity field of f, i.e.,

i f]Rvi(x,v)dx
uf = —pf(x) .

Moment of inertia:

Io(f) = fm PG~ S(p )P 05, 0) dxdo = I(py).

Admissible class:
A= {f(x,0) e LR | f(x,0) 20, Kyp(f) +C(f) < oo, spt(f)isbdd}

and
Ao = {f €Al pp € Wi & Tvr(f) =]}

7.1 Reduction from (VP) energy to (EP) energy

Recall

E(p,u) = f}R Alp(o)dx + % f}R 3 |u(x)|2p(x)dx—% f f P |(;C)_p;y|) dxdy,

where A(p) = %p)’. Here we take K = % so that A(p) = %pV

In the following Proposition, we show that the minimal level of the kinetic
energy-Casimir functional Kyp(f) + C(f) for the Vlasov-Poisson system with the
given mean density and mean velocity is given by the associated energy for the

Euler-Poisson system for the constraints.

Proposition 7.1.1 For any given (po, o) € R(R®) X V(IR®) such that f]R3 [1o[>po dx < oo,
one has

1 .
f A(po) dx + f §|u0|2p0 dx = mm{KVp(f) +C(f) I f €A, pr=po, us= uo},
R3 R3

5¢-3
where we take A(p) = ;Z—:;p#l Moreover the minimum level is uniquely attained by

o) = )7 (Mpoe) - 310 - 0P,

where A(p) is the Lagrange multiplier determined by A(p) = A’(p) = p%, and is also the
inverse function of

pA) = fRz(ﬁ’)Il(A - %Ivlz) do = A%
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Proof From an algebraic manipulation,

1
fR . §|”f(X)Izpf(X)dx+ f fR 6 %lv—uf(x)|2f(x,v)dxdv
([ Lep o |
_ff]RG 2Ivl f(x,v)dxalv+j]l;3 [u ()" pr(x) dx ffRé up(x) - vf (x, v) dxdo

:ff]rzé %|v|2f(x,v) dXdU+L3 |uf(x)|2pf(x) dx — f}RS up(x) - up(x)ps(x) dx

:fjﬂ;é %|v|2f(x, v) dxdo,

we deduce that the equivalent variational problem is

| Atpo) = min { ][ 310wt s+ pescc,naio] £ € A, py = po s = uo}.

Note that the above problem is naturally reduced to finding a minimizer of

. 1
mm{f}R3 Sl - uol’g(0) + B(g(v)) do | L3 g(v)dv = po, ﬁzs vg(v)do = uopo} (7.1.1)

for any given constant value py > 0 and vector 1y € R®. We claim that the minimiza-
tion problem (7.1.1) has a unique minimizer

$0(0) = ()7 A(p) - 1o = o),

which satisfies
1
AP = [ 3o wPga(0) + Blga(o) o
R3

If this is the case, we deduce the proposition from this by integrating with respect
to x variable.

To prove the claim, we take a change of variable v = v + u so that the mini-
mization problem (7.1.1) transforms to

. 1
min {jﬂ; §|U|2g(v) +B(g()) do | f}RS g(v)dv = po, jﬂ;g vg(v)do = O}. (7.1.2)

One can see from Section 2.2 in [43] that the minimum value of (7.1.2) without the
constraint f]R3 vg(v)dv = 0is A(p) which is attained by

20(0) = o0 + 10) = (B (A(p) = 31oP)

Since $o(v) satisfies the constraint ﬁRS vg(v) dv = 0, we can conclude that §y(v) is also
a minimizer to the minimization problem (7.1.2) itself. This implies the claim holds
true.

Motivated by Proposition 7.1.1 we introduce the local Gibbs state which gives
rise to the minimal energy level:
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Definition 7.1.2 We define the local Gibbs state G associated with f € A by

Ge,0) 1= (B3 (1p7@) - 310 - nF).

The corollary below immediately follows from Proposition 7.1.1.
Corollary 7.1.3 Forany f € A,

Kvp(Gy) + C(Gy) < Kvp(f) + C(f)
and the the equality is attained if and only if f = G(f). Moreover, one has

1
f A(pg)dx + f §|uf|2pf dx = Kyp(Gy) + C(Gy).
R3 RR3

From the above discussion, we finally arrive at the existence of a family of
variationally constructed binary galaxy solutions to (VP).

Theorem 7.1.4 (Existence and properties of a minimizer) Consider a minimization prob-
lem

Fin :=  inf T(f) (7.1.3)

feA, iy

For any my, my > 0 and any sufficiently large ], there exists a minimizer f € ﬂ{mmz of the
problem (7.1.3) which satisfies the following:

(i) (Self-consistent equations): f satisfies:

B (. 0) = w(xror=2201) 5o~ By, (9)-Ci, ¥(x,0) € [(p s > OXRY, i =1,2,

where w = —L— is the angular velocity and C; > 0 is a cut-off energy level determined

Ivp(f)
by a Lagrange multiplier.

(ii) (Time dependent solution): f (R_wX, R0 — (0,0, w)T X (R_q1x)) solves (VP).
(iii) (Reduction to (EP)): (p ol f~) is a minimizer of the variational problem (2.2.2) described
in Theorem 2.3.2.

Proof The assertions (i) and (i) follow from direct computations. The assertion (ii)
is a consequence of Proposition 7.1.1.

7.2 Orbital stability for binary galaxies
In addition to distances d; and d, defined in Section 6, we need one more notion of

distance d3 measuring the difference between a distribution function f and its local
Gibbs state G(f).

Definition 7.2.1 For f € A, .., define

(£, G = [[ B0 =BG+ 3lo- P - Gy s,

where G(f) is the local Gibbs state given by f, i.e.,

G = @3 (a4p) - 3l - P

The distance function ds measures the difference between f and its Gibbs state Gy.
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The following lemma shows that d; makes sense as a distance function.
Lemma 7.2.2 For f € ﬂ,’mmZ, ds(f, G(f)) = 0and ds(f, G(f)) = 0 if and only if f = G(f).

Proof Observe that as above
ds(f, G(f) = ffw B(f) — B(G(f)) + %h} —upP(f - G(f)) dodx
= [[[ 802~ B GO = G + Mpy)(f = (1) o
:Iﬁfq*ﬁ@U»—KGUMf—aﬁme

from which we deduce the lemma follows since f is strictly convex.

The following lemma is analogous to Lemma 6.1.5. This is needed for the proof
of orbital stability of a minimizer f to (7.1.3).

Lemma 7.2.3 Let p be a minimizer of the variational problem (2.2.4). For f € ﬂ{ﬂl,mz, there
holds

EVP(f) - E](ﬁ) = dl(P/ ﬁ) + dZ(u/ ﬁp) + d3(f/ G(f)) - %”V@p - V(Dﬁ”%Z(]RS)

whenever there exist 0 € R, v € R® such that ﬁ?”, p?’v € W]

my,myp
Proof We decompose as

Eve(f) — Ej(p) = Eve(f) — E(py, us) + E(pg, us) — Ef(p),

from which and Lemma 6.1.5, we see that we may only concern the term Evyp(f) —
E(pf, us). Observe that

f.f]Rs %|1,1f(x)|2pf(x)dx+f]]l;6 %|v—uf(x)|2f(x,v) dxdv
:fjﬂ;6 %|v|2f(x,v)dxolv+j]l;3 qu(x)lzpf(x)alx—I[]l;6 up(x) - vf(x, v) dxdo
:fjl;é %|v|2f(x,v)dxdv+j]l;3 qu(x)lzpf(x)dx—fj]l;3 up(x) - up(x)ps(x) dx

:ff %|v|2f(x,v)dxdv.
RS

This shows

Eve(f) — E(py, uy)
— 1 2 _ 1 ’ B
_ILJWW”+WWWW@\LQMWWMW‘mema
:ffw B(f(x,v)) + %Iv — up(x)]* f(x, v) dxdo — fbe B(Gf(x,v)) + %Iv — up()PG(x, v) dudv
= da(f/ Gf)~
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We introduce the notion of a weak solution for the Vlasov-Poisson system.

Definition 7.2.4 Let f : R x R® % [0, T] — R be given. Consider the Cauchy problem for
(1.0.2) with the initial data f(x,v,0) = fo(x,v). We say that f € C([0, T]; L' NL*) is a weak
solution of the Cauchy problem of the Vlasov-Poisson system (1.0.2) if for each t € [0, T]
and for any test functions P € CZ(R® x R® x [0, T1), the following holds:

[ se v v vy
= f f]R - f(x, v, H(x, v, Hdxdo — f f]R - fo(x, v)Y(x, v, 0)dxdov

Remark 7.2.5 For any fy € L' N L™ with compact support, there exists a unique weak
solution f(x,v,t) for all t > O such that its (x,v)—support is bounded for any finite time
interval, and moreover, the total enerqy Evp(f) is preserved [50]. For other notions of global
weak solutions satisfying Eyp(f)(t) < Evp(f)(0) but without uniqueness, we refer to [1,22].
For classical solutions and propagation of moments and regularity, see [36,41,44].

The dynamical assumption (D)’ for (VP) corresponding to (D) is as follows.

(D) There exist T} € (0, 0] and a nonempty class of initial data J } C ﬂ{ﬂl,mz with the
following property: for any fo € 77, there exists a weak solution f of (VP) with

the initial data f; such that
(i) f(-,t) exists up to the time interval [0, T}] and

spt((p (1) C BE(pph (1), Pro),  spt(pp)a(-,t) € BE(pp)a(- 1), JPro)
for some 0 < 79 < min{rq, 7} and all t € [0, T}];
(i1) Eve(f(-,1)) < Evp(fo) for any ¢ € [0, T}];

With (D) and Lemma 7.2.3, we can obtain the following stability result as in
Theorem 6.4.1.

Theorem 7.2.6 Let f be a minimizer to (7.1.3). Assume (D)’. For any € > 0, there exists a
0 > 0 such that if an initial data fo € I satisfies

di(pg, pp) + do(itgy, fip, ) + ds(fo, G(fo)) + IVPp = VPp lliamws) <6,

then there exist O(t) € R, v(t) € R® such that for every t € [0, T}], the solution f to Cauchy
problem of (VP) with initial data f, satisfies

dl (p?(t),v(t)(.’ t), pf)+d2(uf(~, i’), aﬂf(-,t))+d3(f(', i’), G(f(, t)))+||V(I)p6(t),v(f)(,/t)—chpf,”LZ(]Rj) < €.

Proof Since Proposition 7.1.4 says p; = f, where f is a minimizer to (2.2.4), we may
follow each step of the proof of Theorem 6.4.1 without modification. We omit the
details.
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