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Abstract In this paper, we study the asymptotic profiles, uniqueness and orbital
stability of McCann’s uniformly rotating binary stars [40] governed by the Euler-
Poisson system. A new uniqueness result will be importantly used in stability anal-
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1 Introduction

In astrophysical fluid dynamics, stars are considered as isolated fluid masses subject
to self-gravity and a fundamental hydrodynamic model describing the dynamics of
Newtonian stars is given by the Euler-Poisson system

(EP)

∂tρ + ∇ · (ρu) = 0,
ρ∂tu + ρ(u · ∇)u + ∇(Kργ) = −ρ∇Φ,

∆Φ = 4πρ,
(1.0.1)
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where ρ(x, t) ≥ 0 is the density of fluids at position x ∈ R3 and time t ≥ 0, u(x, t) ∈ R3

the velocity, and Φ(x, t) ∈ R the gravitational potential. We have taken the equation
of states as the polytropic law p = Kργ for 1 < γ < 2. On the other hand, galaxies
containing billions of stars or globular clusters are described by the Vlasov-Poisson
system of the kinetic theory:

(VP)
∂t f + v · ∇x f − ∇xΦ · ∇v f = 0,
∆Φ = 4πρ f ,

(1.0.2)

where ρ f (x, t) =
∫
R3 f (x, v, t) dv. Here f (x, v, t) ≥ 0 is the density distribution function

of particles in the phase space (x, v) ∈ R3
× R3 at time t ≥ 0. In this article, we are

concerned with the dynamics of rotating binary stars and binary galaxies with small
uniform angular velocity, located far away from each other, governed by (EP) and
(VP) respectively.

Stellar rotation is a classical subject in celestial mechanics, astrophysics and
mathematics going back to Newton. The study of rotating stars has been of a great
interest in both mathematics and physics communities. Early developments can
be tracked back to Maclaurin, Jacobi, Poincaré, Liapounov et al., who studied in-
compressible stars with homogenous or almost homogenous density; more general
cases including compressible stars were considered by Lichtenstein [33] and Chan-
drasekhar [9]. See [10,26] for a historical account of the topic. In the case of gas-like
fluids or distribution of a large number of stars, the inhomogeneity of the density
has to be taken into account, and a lot of progress has been made for a single ro-
tating star problem. As for the existence of rotating stars, two modern approaches
are available: one is based on variational methods [2, 3, 6, 11, 32] and the other is a
perturbative approach relying on the implicit function theorem around non-rotating
Lane-Emden stars [24, 25, 27, 46, 47]. Nonlinear dynamical stability of rotating stars
were shown in [38, 39] based on variational approach, while nonlinear stability
theory for non-rotating stars can be found in [12, 23, 42]. For rotating galaxies, a
single rotating galaxy was constructed in [45, 46] in the spirit of Lichtenstein and
Heilig [27,33], while there is a vast literature on non-rotating galaxies: see [4,5,18,43]
and references therein. The orbital stability of stationary solutions has seen a great
deal of activity and progress over the last two decades [14–17, 19, 20, 28–31, 43, 49].
See also a recent work [21] for the study of linearly oscillating galaxies.

If we consider more than one stellar object such as binary stars and galaxies or
more generally N distinct stars and galaxies, there are fewer mathematical works
available. The construction of rotating binary stars can be tracked back to Lichten-
stein [33]. In [40] McCann constructed binary stars whose supports are separated
and determined by the Kepler problem by formulating a minimization problem with
given mass ratio. In [7] Campos, del Pino and Dolbeault constructed N-body rotat-
ing galaxies by making the connection to the relative equilibria in N-body dynamics
with small uniform angular velocity and by perturbing radial equilibria. To the best
of our knowledge, the stability question of these multi-body stellar configurations
has not been addressed yet. The goal of this article is to study the asymptotic pro-
files, uniqueness and orbital stability of uniformly rotating binary stars governed
by the Euler-Poisson system (1.0.1) for 4

3 < γ < 2 and the corresponding rotating
binary galaxies modeled by the Vlasov-Poisson system (1.0.2).

One special feature exhibited by McCann’s binary solution is while it has a
variational characterization as a Hamiltonian minimizer under some conservative
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constraint, it can also be understood as a perturbation of simpler objects, for example,
the non-rotating Lane-Emden star and the relative equilibria for point masses (cf.
Section 3.2). This characterization plays a crucial role for our uniqueness and stability
analysis. On the other hand, we remark that N-body rotating solutions by Campos
et al [7] are perturbative in nature and the framework is not best suited for stability
analysis. Furthermore, when N ≥ 3, uniformly rotating N-body stellar objects do
not retain a variational characterization analogous to the binary case and they are
not expected to be stable in general.

In what follows, we discuss the main results and methodologies of the paper.
For the rest of the paper, we fix the range of γ to 4

3 < γ < 2.

1.1 Uniqueness and orbital stability of McCann’s binary stars

We first briefly discuss McCann’s construction of binary star solutions by a con-
strained minimization method [40]. Specifically, McCann introduced the following
effective Hamiltonian for density ρ,

EJ(ρ) B
∫
R3

Kγ
γ − 1

ργ(x) dx +
J2

2I(ρ)
−

1
2

"
R3×R3

ρ(x)ρ(y)
|x − y|

dxdy, (1.1.1)

where J > 0 is the total angular momentum of the system and I(ρ) denotes the
second moment of inertia:

I(ρ) B
∫

(x2
1 + x2

2)ρ(x) dx.

For each m± ∈ (0, 1) such that m++m− = 1, EJ(ρ) is minimized subject to the constraint

WJ B

{
ρ = ρ− + ρ+

∈ Lγ(R3) | ρ ≥ 0,
∫
ρ+ = m+,

∫
ρ− = m−, spt(ρ±) ⊂ Ω±

}
,

where Ω± ⊂ R3 are separated closed balls whose centers lie in the plane x3 = 0
with radii and separation of scale J2. By careful analysis based on the separation of
Ω± determined by the Kepler problem for two body masses m+ and m−, McCann
proved that for sufficiently large J, there exists a minimizer ρ̃J continuous on R3

such that

(ρ̃(t, x), ũ(t, x)) B (ρ̃J(R−ωtx), ω(−x2, x1, 0)), ω =
J

I(ρ̃J)
(1.1.2)

gives a uniformly rotating binary star solution to (EP). Here Rθ is a rotation map
about x3 axis (cf. (2.0.1)). He also showed that the minimizer ρ̃J is a local minimizer
of EJ with respect to the Wasserstein L∞ metric, which indicates a structural stability
of ρ̃J to some extent.

The first aim of this paper is to show the uniqueness of the minimizer ρ̃J (up to
a translation and a rotation) by determining the asymptotic profiles and asymptotic
positions of ρ̃J. Since Ω± are separated as scale J2, we see that I(ρ) ∼ J4 so that
J2/I(ρ) = O(J−2). This shows as J→∞, EJ(ρ) in (1.1.1) formally converges to

E∞(ρ) B
∫
R3

Kγ
γ − 1

ργ(x) dx −
1
2

"
R3×R3

ρ(x)ρ(y)
|x − y|

dxdy,
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whose minimizer ρ̃∞m on the constraint{
ρ ∈ Lγ(R3) | ρ ≥ 0,

∫
ρ = m

}
yields a non-rotating star as a solution to (EP), so-called the Lane-Emden star [42].
Therefore, it is naturally to expect that ρ̃∞m± is an asymptotic profile for (ρ̃J)±.

In order to determine the asymptotic relative position between two stars (ρ̃J)+

and (ρ̃J)−, we further expand the Hamiltonian EJ in terms of J. At the next order
O(J−2) of (1.1.1), the kinetic energy due to uniform rotation J2/I(ρ) and the tidal
energy due to two-body interaction−

!
ρ+(x)ρ−(y)/|x−y|dxdy emerge: both energies

are O(J−2) because of the separation scale J2, and the balance of these energies
brings in the Hamiltonian for two-body relative equilibria, which will determine
the asymptotic relative position between two stars. In Section 3, we will show that
for ρ = ρ− + ρ+

∈ WJ with spt(ρ±) ⊂ B(0,R),

EJ(ρ) = E∞(ρ+) + E∞(ρ−) +
1
J2

(
Hre

(
x̄(ρ+)

J2 ,
x̄(ρ−)

J2

)
+ O(

1
J2 )

)
as J→∞,

where x̄(ρ) B
∫

xρ dx denotes the center of mass for a density ρ and

Hre(ζ1, ζ2) :=
1

2m+m−|ζ1 − ζ2|
2 −

m+m−

|ζ1 − ζ2|

is the effect Hamiltonian for two-body relative equilibria whose critical point pro-
vides the positions of the circular binary stars of point masses (cf. Section 3.2).

The expansion for EJ suggests that the (J−2x̄((ρ̃J)+), J−2x̄((ρ̃J)−)) should minimize
Hre as J → ∞. Since, by Proposition 3.2.1, the global minimizers of Hre are charac-
terized as (ζ1, ζ2) with |ζ1 − ζ2| = (m+m−)−2, we are ready to describe our first main
results.

Result A. Let ρ̃J be the density for McCann’s binary stars, that is, a minimizer of EJ subject
to the constraintWJ and let ρ̃∞m± be the Lane-Emden star with mass m±. Then one has the
following:

(i) (asymptotic profile for (ρ̃J)±) after taking suitable translations,

lim
J→∞
‖(ρ̃J)± − ρ̃∞m±‖L∞ = 0;

(ii) (asymptotic relative position for (ρ̃J)±)

lim
J→∞

|x̄((ρ̃J)+) − x̄((ρ̃J)−)|
J2 = (m+m−)−2.

We note that the variations of EJ at ρ̃J yield a system of equations satisfied by (ρ̃J)±:

(ρ̃J)± =

(
γ − 1
Kγ

) 1
γ−1

(
J2

2I(ρ̃J)2 (x2
1 + x2

2) −Φρ̃J − CJ
±

(ρ̃J)
) 1
γ−1

+

in Ω±, (1.1.3)

where CJ
±

is the cut-off chemical potential levels determined by a minimizer ρ̃J as
Lagrange multipliers. Relying on asymptotic properties in Result A, we shall prove
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the following uniqueness result for ρ̃J.

Result B. Let {ρJ = (ρJ)− + (ρJ)+
} ⊂ WJ be a family of solutions to (1.1.3) satisfying

asymptotic properties (i) and (ii) in Result A and

lim
J→∞

CJ
±

(ρ̃J) =
5γ − 6
4 − 3γ

E∞(ρ̃∞).

Then for large J, the family {ρ̃J
} is unique up to a rigid motion.

As a consequence of Result B, we also obtain the following:

Result B’ The density ρ̃J of McCann’s binary stars is unique up to a rigid motion. Moreover,
if the masses of constituent stars are equal (m+ = m−), then the shapes of two stars are the
same.

We provide mathematically rigorous statements of Result A, B and B’ in Section 2.

The second aim of the paper is to study the dynamical stability of the McCann’s
binary stars (1.1.2) with respect to the flows of the Euler-Poisson system (1.0.1).
We will see that the uniqueness of ρ̃J in Result B’ plays a fundamental role to this
study. Inspired by stability results of steady solutions of (EP) by Rein [42], Luo and
Smoller [39] (see also Cazenave and Lions [8] for the orbital stability of standing
waves in nonlinear Schrödinger equations and Guo and Rein [16–19] for the stability
of galaxy solutions of (VP)), we will show orbital stability of McCann’s binary stars
by exploiting the variational structure and the uniqueness result above: if the initial
data of (EP) is close to McCann’s binary star solution in some topology, then the
solution of (EP) stays close, up to a rigid motion, to the binary star solution in the
same topology, as long as the solution exists and the support of the solution stays
bounded. The following three properties are the key ingredients in proving such
results [8, 39, 42]:

(i) Relative compactness of any minimizing sequence up to symmetries of EJ

(ii) Uniqueness of a minimizer up to symmetries of EJ

(iii) Admissibility of the solution of (EP) along the dynamics so that any time-
dependent solution (ρ(t), u(t)) such that (ρ(0), u(0)) ∼ (ρ̃, ũ) belongs toWJ

The property (i) is obtained in the spirit of Lions’ concentration compactness
principle, as shown in the construction of the binary star solution [40]. The unique-
ness result B’ in the above ensures the property (ii). And the property (iii) is achieved
by making use of the variational structure and the uniqueness of McCann’s solution
and the boundedness of the support of the solutions. With these properties in hand,
we show the following conditional stability result with respect to some distance
functionals naturally arising at the level of the energy space:

Result C. The McCann’s solution of binary stars (ρ̃(t, x), ũ(x)) is orbitally stable for a class
of small perturbation (ρ0,u0) of (ρ̃J, ũ) that there exists a global weak solution (ρ(t), u(t))
with the initial data (ρ0,u0) and the support of ρ(t) does not unboundedly spread as t→∞.

Rigorous statement and the proof of Result C are given in Section 6.
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1.2 Rein’s reduction and binary galaxies

The third aim of the paper is to study the existence and stability of rotating binary
galaxy solutions. To this end, we adapt Rein’s reduction method [42, 43] to lift
McCann’s binary star solutions and our framework described above to the study of
binary galaxies. To explain more in detail, we consider the constrained minimization
problem of free energy for (VP):

inf
f∈AJ

F ( f ), F ( f ) = EVP( f ) + C( f ) (1.2.1)

where the energy functional is

EVP( f ) = KVP( f ) + GVP( f ) =

"
R6

1
2
|v|2 f (x, v) dxdv −

"
R6

1
2
ρ f (x)ρ f (y)
|x − y|

dxdy,

and Casimir functional is

C( f ) =

"
R6
β( f (x, v)) dxdv =

"
R6

1
q
κq−1

q ( f (x, v))q dxdv,

where q > 5/3 and κq =
∫ 1

0 4π(1−s)
1

q−1
√

2s ds. Here the constraintAJ is characterized
by requiring the mean density ρ f ∈ WJ and prescribing total angular momentum
for (VP) by J (cf. Section 7). As a key step for the reduction, we will show that for
f ∈ AJ

KVP(G f ) + C(G f ) ≤ KVP( f ) + C( f )

where G f is the local Gibbs state associated with f involving only the mean density
ρ f and the mean velocity u f (cf. Definition 7.1.2), the equality holds iff f = G f , and

moreover
∫
R3 A(ρ f )dx+

∫
R3

1
2 |u f |

2ρ f dx = KVP(G f )+C(G f ) where A(ρ) =
3q−1
5q−3ρ

5q−3
3q−1 . The

constrained minimization problem is then reduced to the binary star problem (ρ f ,u f )
with the prescribed angular momentum J introduced in the previous subsection.
By lifting McCann’s binary star solutions, we obtain the existence of rotating binary
galaxy solutions:

Result D. For any m± > 0 and sufficiently large J, there exists a minimizer f̃ ∈ AJ of the
problem (1.2.1) such that f̃ (R−ωtx,R−ωtv− (0, 0, ω)T

× (R−ωtx)) solves (VP) and (ρ f̃ ,u f̃ ) is
the McCann’s binary star solution.

As in the non-rotating star problem [42], the stability analysis of binary galaxies
can be reduced to the analysis of binary stars through Rein’s reduction scheme. In
addition to the distances used for Result C, we introduce another distance functional
measuring the difference between f and its local Gibbs state G( f ) (cf. Definition 7.2.1)
to fully measure the deviation of the perturbation f from f̃ . Our final result is on
orbital stability of rotating binary galaxies with small uniform angular velocity:

Result E. The binary galaxy solution obtained in Result D is orbitally stable for a class of
small perturbation f0 of f̃ that there exists a global weak solution f (t) with the initial data
f0 and the support of the mean density ρ f (t) does not unboundedly spread as t→∞.

Rigorous statements and proofs of Result D and Result E can be found in Section 7.
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The paper proceeds as follows. In Section 2, we formulate uniformly rotating
2-body problem and give new results including the crucial uniqueness on McCann’s
binary stars. In Section 3, we prove Result A: the convergence results of EJ, ρ̃J and
detailed asymptotic behaviors of minimizers including relative positions. Section
4 is devoted to the proof of the uniqueness result B. In Section 5, we show the
symmetry of binary star solutions with equal masses. In Section 6, we prove Result
C: orbital stability of McCann’s binary star solutions. In Section 7, we show Result
D and result E on rotating binary galaxy solutions.

2 Binary galaxies and stars: uniformly rotating 2-body solutions for (VP) and
(EP)

We start with basic notations to be used throughout the paper.

Definition 2.0.1 Notations

(i) Three dimensional open ball: B(a,R) := {x ∈ R3
| |x − a| < R} for given a ∈ R3.

(ii) k dimensional open ball: Bk(a,R) := {x ∈ Rk
| |x − a| < R} for given a ∈ Rk.

(iii) The projection operator of x to the x1x2 plane: P(x) = P(x1, x2, x3) := (x1, x2, 0).
(iv) Rotation map:

Rθ :=

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


(v) Transformation by rigid motions: for θ ∈ R, ν ∈ R3,

Tθ,νx := Rθx + ν, ρθ,ν(x) := ρ(Tθ,νx), f θ,ν(x, v) := f (Tθ,νx, v).

We denote the velocity u and gradients of functions by column vectors.

2.1 Uniformly rotating N-body solutions

We start with the following ansatz for rotating N-body solutions to the Euler-Poisson
system (1.0.1):

ρ(t, y) = ρ(R−ωty), u(t, y) = ω(−y2, y1, 0)T, Φ(t, y) = Φ(R−ωty),

where ω > 0 is angular velocity, ρ is a nonnegative density function with compact
support.

Inserting this ansatz to (1.0.1), we see the first and third equations are automati-
cally satisfied and the second equation becomes

−ω2ρ(R−ωty)Py + Kγργ−1(R−ωty)RT
−ωt(∇ρ)(R−ωty) + ρ(R−ωty)RT

−ωt(∇Φ)(R−ωty) = 0,

where P denotes the projection operator of y to y1y2 plane, i.e., P(y1, y2, y3) =
(y1, y2, 0). Then by the change of variable x = R−ωty, we get

−ω2ρ(x)Px + Kγρ(x)γ−1(∇ρ)(x) + ρ(x)(∇Φ)(x) = 0
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We denote

ρ =

N∑
i=1

ρi, ρi ≥ 0

such that spt(ρi) is connected for every i ∈ 1, . . . ,N and mutually disjoint. Then
dividing by ρi, one has

∇(−
1
2
ω2
|Px|2 + K

γ

γ − 1
ργ−1

i +Φ) = 0, ∀x ∈ spt(ρi).

Therefore (1.0.1) reduces to −
1
2
ω2
|Px|2 + K

γ

γ − 1
ργ−1

i +Φ = −Ci in spt(ρi),

∆Φ = 4πρ
(2.1.1)

for some positive constants Ci, i = 1, . . . ,N. We note that (2.1.1) is written w.r.t. Φ

∆Φ =

 4π
(
γ−1
Kγ

) 1
γ−1

(
1
2ω

2
|Px|2 −Φ − Ci

) 1
γ−1 , in spt(ρi),

0, in R3
\ ∪

N
i=1spt(ρi).

(2.1.2)

Uniformly rotating binary star solutions when N = 2 were constructed by Mc-
Cann [40] for sufficiently small ω, namely sufficiently large angular momentum, by
solving a constrained minimization problem associated with (2.1.1), while uniformly
rotating N-body solutions in the context of galaxies were constructed by Campos
et. al. [7] for sufficiently small ω by solving (2.1.2) based on a finite dimensional
reduction.

In this paper, we take McCann’s approach for the existence of binary star so-
lutions that retain both variational and perturbative structures. For the rest of the
paper, we take N = 2.

2.2 McCann’s construction of binary stars

In this subsection, we review McCann’s binary star solutions [40] for γ ∈ ( 4
3 , 2). For

a sake of convenience, we introduce a slightly different setting of construction from
the McCann’s one but they are essentially the same.

We first record the energy, the center of mass, the total angular momentum, and
the moment of inertia.

Energy of (EP):

E(ρ,u) =

∫
R3

A(ρ(x)) dx +
1
2

∫
R3
|u(x)|2ρ(x) dx −

1
2

"
R6

ρ(x)ρ(y)
|x − y|

dxdy, (2.2.1)

where A(ρ) = K
γ−1ρ

γ, γ ∈ ( 4
3 , 2).

The center of mass for ρ:

x̄(ρ) :=

∫
R3 xρ(x) dx∫
R3 ρ(x) dx

, x̄i(ρ) :=

∫
R3 xiρ(x) dx∫
R3 ρ(x) dx

i = 1, 2, 3.



On uniformly rotating binary stars and galaxies 9

The total angular momentum J:

J(ρ, u) :=
∫
R3

((x − x̄(ρ)) × u)ρ(x) dx.

We denote by Jx3 the x3-component of J, i.e., Jx3 (ρ,u) := ~ex3 ·J(ρ, u), where~ex3 = (0, 0, 1).
The moment of inertia I(ρ) is given by

I(ρ) =

∫
R3
|P(x − x̄(ρ))|2ρ(x) dx.

Define an admissible class for ρ and u by

R :=
{
ρ ∈ L1(R3)

∣∣∣∣ ρ ≥ 0,
∫

A(ρ) < ∞, spt(ρ) is bdd
}
, V :=

{
u : R3

→ R3
∣∣∣∣u is measurable

}
.

Definition 2.2.1 For any given m1,m2 > 0, let

L =
m1 + m2

(m1m2)2 .

Fix two values r1, r2 such that 0 < r1 < m2L/(m1 + m2) = 1/(m2
1m2) and 0 < r2 <

m1L/(m1 + m2) = 1/(m1m2
2). By denoting

x1 =

 1
m2

1m2
, 0, 0

T

x2 =

(
−

1
m1m2

2

, 0, 0
)T

so that
|x1 − x2| = L and m1x1 + m2x2 = 0

we define

W
J
m1 ,m2

:={
ρ = ρ1 + ρ2 ∈ R

∣∣∣ ∫
ρ1 = m1,

∫
ρ2 = m2, spt(ρ1) ⊂ B(J2x1, J2r1), spt(ρ2) ⊂ B(J2x2, J2r2)

}
and

W
J
m1 ,m2

:=
{
ρ ∈ R

∣∣∣ ∃θ, ν ∈ R3 such that ρθ,ν ∈ W
J
m1 ,m2

}
.

Let
S

J
m1 ,m2

:=
{
(ρ,u) ∈ WJ

m1 ,m2
×V | Jx3 (ρ,u) = J

}
.

Fix two arbitrary masses m1,m2 > 0. For J > 0, consider the following minimization
problem

EJ
min := inf

(ρ,u)∈SJ
m1 ,m2

E(ρ,u). (2.2.2)

The following lemma obtained by McCann in [40] shows that the velocity dis-
tribution minimizing the kinetic energy is given by uniform rotation.
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Lemma 2.2.2 For given J > 0 and ρ ∈ R, consider the minimization problem

TJ
min(ρ) = inf

u∈V(R3)

{∫
R3
|u(x)|2ρ(x) dx

∣∣∣ Jx3 (ρ,u) = J
}
.

Then the minimum value TJ
min(ρ) is uniquely attained by

u(x) =
J

I(ρ)
~ex3 × (x − x̄(ρ)). (2.2.3)

so that

TJ
min(ρ) =

J2

I(ρ)
.

For J > 0, we insert the ansatz (2.2.3) into (2.2.1) to get the reduced energy

EJ(ρ) =

∫
R3

A(ρ(x)) dx +
J2

2I(ρ)
−

1
2

"
R6

ρ(x)ρ(y)
|x − y|

dxdy.

Consider the following reduced minimization problem:

ẼJ
min := inf

ρ∈WJ
m1 ,m2

EJ(ρ) (2.2.4)

It is clear from the construction that ẼJ
min = EJ

min of (2.2.2).

Theorem 2.2.3 (Existence of a minimizer [40]) For any J > 0, the variational problem
(2.2.4) admits a minimizer ρ̃ ∈ WJ

m1 ,m2
. Moreover, any minimizer ρ̃ ∈ WJ

m1 ,m2
satisfies the

following self-consistent equations:
−

J2

2I(ρ̃)2 |P(x − x̄(ρ̃))|2 + A′(ρ̃i) +Φρ̃ = −Ci in {ρ̃i > 0},

−
J2

2I(ρ̃)2 |P(x − x̄(ρ̃))|2 + A′(ρ̃i) +Φρ̃ ≥ −Ci in (Tθ,ν)−1(B(J2xi, J2ri)),
i = 1, 2,

(2.2.5)

for any θ ∈ R, ν ∈ R3 such that ρ̃θ,ν ∈ W
J
m1 ,m2

. In particular,

ρ̃i = (A′)−1
+

(
J2

2I(ρ̃)2 |P(x − x̄(ρ̃))|2 −Φρ̃ − Ci

)
in (Tθ,ν)−1(B(J2xi, J2ri)), i = 1, 2. (2.2.6)

Remark 2.2.4 We note that
(
ρ̃, J

I(ρ̃)~ex3 × (x − x̄(ρ̃))
)

gives a minimizer of (2.2.2).

Theorem 2.2.5 (Properties of a minimizer [40]) For sufficiently large J > 0, every min-
imizer ρ̃ =

∑2
i=1 ρ̃i ∈ W

J
m1 ,m2

of (2.2.4) enjoys the following properties:

(i) ρ̃ is continuous on R3.
(ii) There exists a constant R > 0 independent of J such that spt(ρ̃i) is contained in a ball

with radius R.

Moreover, as J→∞, ρ̃ satisfies

L
2
≤ lim

J→∞

|x̄(ρ̃1) − x̄(ρ̃2)|
J2 ≤ L, i = 1, 2. (2.2.7)

Remark 2.2.6 By (i), we see that (ρ̃(R−ωt(x − x̄(ρ̃))), J
I(ρ̃)~ex3 × (x − x̄(ρ̃))) solves (EP) for

sufficiently large J.
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2.3 Asymptotic positions, uniqueness and symmetry of binary stars

We introduce the notation of normalized densities.

Definition 2.3.1

(i) We say ρ ∈ WJ
m1 ,m2

is normalized if

x̄(ρ) = 0, x̄1(ρ1) > 0 and x̄2(ρ1) = x̄2(ρ2) = 0.

(ii) We say ρ̂ is a normalization of ρ if ρ̂ is normalized and ρ̂ = ρθ,ν for some θ ∈ R and

ν ∈ R3. Note that for any ρ ∈ WJ
m1 ,m2

, a normalization ρ̂ ∈ W
J
m1 ,m2

always exists and
is unique.

The statement (ii) and (2.2.7) of Theorem 2.2.5 indicate that for any minimizer

ρ̃ ∈ WJ
m1 ,m2

of (2.2.4), its normalization ˆ̃ρ is contained inW
J
m1 ,m2

. Since the reduced
energy functional EJ is invariant under a rigid motion, we see that ˆ̃ρ is still a
minimizer of (2.2.4). This shows that considering minimizers of (2.2.4), we may only

take into account normalized minimizers inW
J
m1 ,m2

. We will also see in Proposition

3.3.1 that if ρ̃ ∈ W
J
m1 ,m2

is a normalized minimizer for (2.2.4), then one automatically
has x̄3(ρ̃1) = x̄3(ρ̃1) = 0.

We are now ready to state our first result of this paper.

Theorem 2.3.2 Let ρ̃ ∈ W
J
m1 ,m2

be a normalized minimizer of the variational problem
(2.2.4). Then it satisfies the following:

(i) (Relative position of the binary stars):

lim
J→∞

x̄1(ρ̃1) − x̄1(ρ̃2)
J2 = L, lim

J→∞

x̄1(ρ̃1)
J2 =

1
m2

1m2
, lim

J→∞

x̄1(ρ̃2)
J2 = −

1
m1m2

2

.

(ii) (Uniqueness): ρ̃ ∈ W
J
m1 ,m2

is unique.
(iii) (Rotation symmetry for equal mass): If m1 = m2 and r1 = r2, then ρ̃1(x) = ρ̃2(Rπx).

We shall prove Theorem 2.3.2 throughout Section 3–5. The following corollary is a
direct consequence of Theorem 2.3.2.

Corollary 2.3.3 Let ρ̃ ∈ WJ
m1 ,m2

be a minimizer of the variational problem (2.2.4). Then it
satisfies the following:

(i) (Relative position of the binary stars):

lim
J→∞

|x̄(ρ̃1) − x̄(ρ̃2)|
J2 = L,

(ii) (Uniqueness): it has the form

ρ̃(x) = ρ̂(Rθ(x − ν)), u(x) =
J

I(ρ̃)
~ex3 × (x − ν) for some θ ∈ R, ν ∈ R3,

where ρ̂ is a unique normalized minimizer of (2.2.4) inW
J
m1 ,m2

.
(iii) (Rotation symmetry for equal mass): If m1 = m2 and r1 = r2, then

ρ̃1(x) = ρ̃2(Rπ(x − x̄(ρ̃))).
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3 Convergence results for a family of normalized minimizers

3.1 Non-rotating star

Define

E∞(ρ) =

∫
R3

A(ρ(x)) dx −
1
2

"
R6

ρ(x)ρ(y)
|x − y|

dxdy

and consider a minimization problem

Ẽ∞m := inf
{
E∞(ρ) | ρ ∈ Rm(R3)

}
, (3.1.1)

where

Rm(R3) :=
{
ρ ∈ Lγ(R3)

∣∣∣∣ ρ ≥ 0,
∫
ρ = m, spt(ρ) is bdd

}
We denote by ρ∞m a minimizer of the problem (3.1.1), i.e.,

Ẽ∞m = E∞(ρ∞m ), ρ∞m ∈ Rm(R3),

whose existence and properties are listed in the theorem below.

Theorem 3.1.1 For any m > 0, the minimum energy level Ẽ∞m is negative and there exists
a minimizer ρ∞m of the minimization problem (3.1.1) satisfying the following properties:

(i) ρ∞m is radially symmetric up to a translation and strictly decreasing in the radial
direction on its support;

(ii) ρ∞m ∈W1,2(R3) ∩ Cc(R3);
(iii) ρ∞m solves the self-consistent equation

ρ∞m = Bγ
( 1
|x|
∗ ρ∞m − C∞m

) 1
γ−1

+

in R3 (3.1.2)

where Bγ = ( γ−1
Kγ )

1
γ−1 and C∞m > 0 is a Lagrange-multiplier, which is exactly determined

by the ground energy level as mC∞m =
5γ−6
4−3γ Ẽ∞m .

(iv) ρ∞m is unique up to a translation;
(v) Let L∞ be a linearized operator of (3.1.2) at ρ∞m , i.e.,

L
∞[η] = η −

Bγ
γ − 1

( 1
|x|
∗ ρ∞m − C∞m

) 2−γ
γ−1

+

1
|x|
∗ η.

Then ker(L∞) := {η ∈ L2(R3) | L∞[η] = 0} is given by

span
{
∂1ρ

∞

m , ∂2ρ
∞

m , ∂3ρ
∞

m
}
.

Proof For proofs of negativity of Ẽ∞m and (i)–(iii), we refer to a comprehensive review
article by Rein [43] and references therein. Proofs of (iv) and (v) can be found in [13],
where the statement is given in terms of U∞m = 1

|·|
∗ ρ∞m .

Lemma 3.1.2 Let η ∈ ker(L∞) satisfy
∫
R3 xη = 0. Then η ≡ 0.

Proof By Theorem 3.1.1.(v), we may write η = c1∂1ρ∞m +c2∂2ρ∞m +c3∂3ρ∞m for ci ∈ R, i =

1, 2, 3. Since
∫
R3 ∂iρx j dx = 0, i , j, and

∫
R3 ∂iρxi dx = −m, we see that

0 =

∫
R3

xη dx = −m(c1, c2, c3)

so that c1 = c2 = c3 = 0.
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3.2 Relative equilibria

A system of two body circular orbits x1(t) = Rωt(ξ1 − x̄(ξ), 0), x2(t) = Rωt(ξ2 − x̄(ξ), 0)
satisfies Newton’s equation if and only if ξ = (ξ1, ξ2) ∈ R2

×R2 satisfies

m2(ξ2
− ξ1)

|ξ2 − ξ1|3
+ ω2(ξ1

− x̄(ξ)) = 0,
m1(ξ1

− ξ2)
|ξ1 − ξ2|3

+ ω2(ξ2
− x̄(ξ)) = 0. (3.2.1)

Here we denote by x̄(ξ), the center of mass of two R2 vectors ξ1, ξ2, i.e., x̄(ξ) :=
m1ξ1+m2ξ2

m1+m2
. A pair of R2 vectors (ξ1, ξ2) is called a relative equilibrium for two body

problem if it solves the system of equations (3.2.1) for some angular velocity ω.
For any fixed angular momentum J > 0, the effective Hamiltonian for (3.2.1) is

given by

Hre
J (ξ1, ξ2) :=

J2

2(m1|ξ1 − x̄(ξ)|2 + m2|ξ2 − x̄(ξ)|2)
−

m1m2

|ξ1 − ξ2|

=
J2(m1 + m2)

2m1m2|ξ1 − ξ2|2
−

m1m2

|ξ1 − ξ2|

(3.2.2)

By a direct computation, we see that any critical point of Hre
J is a relative equilibrium.

More precisely, it is a solution to (3.2.1) with the angular velocity

ω =
J

m1|ξ1 − x̄(ξ)|2 + m2|ξ2 − x̄(ξ)|2
.

It is worth pointing out that Hre
J enjoys some nice scaling and invariance prop-

erties. If we set ζ = ξ/J2, then

Hre
J (ξ1, ξ2) = J−2Hre(ζ1, ζ2), (3.2.3)

where
Hre(ζ1, ζ2) :=

m1 + m2

2m1m2|ζ1 − ζ2|
2 −

m1m2

|ζ1 − ζ2|
. (3.2.4)

Also, the effective Hamiltonian Hre (as well as Hre
J ) is invariant with respect to a

rigid motion. In other word, for any (ζ1, ζ2) such that ζ1 , ζ2,

Hre(ζ) = Hre((eiθζ1, eiθζ2) + (ζ0, ζ0)), ∀θ ∈ R, ζ0
∈ R2.

Consequently, the set of relative equilibria is invariant with respect to a rigid motion.
Indeed, it has a simple variational characterization.

Proposition 3.2.1 (Characterization of relative equilibria for Hre) There holds the fol-
lowing:

(i) The effective Hamiltonian Hre admits the global minimum value

H̃re
min := min

{
Hre(ζ1, ζ2) | ζ1, ζ2 ∈ R

2, ζ1 , ζ2

}
as a unique critical value and it is attained by (ζ1, ζ2) if and only if |ζ1−ζ2| = L where
L is defined in Definition 2.2.1.
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(ii) Let (ζ̃1, ζ̃2) be a global minimum point for Hre, i.e., |ζ̃1−ζ̃2| = L. Then ker∇2Hre(ζ̃1, ζ̃2)
is spanned by

{((1, 0), (1, 0)), ((0, 1), (0, 1)), ((0, 1), (0,−1))} .

We note that these kernel elements come from the invariance of Hre with respect to the
rigid motions.

Proof The assertion (i) is immediate from the exact form of Hre. Let (φ1, φ2) be a
kernel element of ∇2Hre(ζ1, ζ2). We directly compute the Hessian of Hre to get

∇
2Hre(ζ̃1, ζ̃2)

(
φ1
φ2

)
=

(
∂2
ζ1ζ1

Hre(ζ̃1, ζ̃2) ∂2
ζ1ζ2

Hre(ζ̃1, ζ̃2)
∂2
ζ2ζ1

Hre(ζ̃1, ζ̃2) ∂2
ζ2ζ2

Hre(ζ̃1, ζ̃2)

) (
φ1
φ2

)
= 0, (3.2.5)

where

∂2
ζ1ζ1

Hre(ζ̃1, ζ̃2) = ∂2
ζ2ζ2

Hre(ζ̃1, ζ̃2) = −∂2
ζ1ζ2

Hre(ζ̃1, ζ̃2) = −∂2
ζ2ζ1

Hre(ζ̃1, ζ̃2)

and ∂2
ζ1ζ1

Hre(ζ̃1, ζ̃2) is given by for φ ∈ R2,

∂2
ζ1ζ1

Hre(ζ̃1, ζ̃2)φ = −
φ

ML4 +
4(ζ̃1 − ζ̃2) · φ

ML6 (ζ̃1−ζ̃2)+
m1m2φ

L3 −
3m1m2(ζ̃1 − ζ̃2) · φ

L5 (ζ̃1−ζ̃2),

where M = m1m2/(m1 + m2). Since a global minimum point (ζ̃1, ζ̃2) is unique up
to a rigid motion, we may assume ζ̃1 = (1/m2

1m2, 0) and ζ̃2 = (−1/m1m2
2, 0), the

normalized one. Then by denotingφi = ((φi)1, (φi)2), i = 1, 2, we obtain the following
two equations from (3.2.5),
−

(φ1)1 − (φ2)1

ML4 +
4L2((φ1)1 − (φ2)1)

ML6 +
m1m2((φ1)1 − (φ2)1)

L3 −
3m1m2L2((φ1)1 − (φ2)1)

L5 = 0,

−
(φ1)2 − (φ2)2

ML4 +
m1m2((φ1)2 − (φ2)2)

L3 = 0.

Solving this, we see that

ker∇2Hre(ζ̃1, ζ̃2) =
{
(φ1, φ2) ∈ R2

×R2
| (φ1)1 = (φ2)1

}
= span {((1, 0), (1, 0)), ((0, 1), (0, 1)), ((0, 1), (0,−1))} .

We are now ready to establish the expansion of EJ in 1
J2 which identifies the

leading order asymptotics as E∞ and the next order correction with Hre. We recall
from Definition 2.2.1 that

x1 =

 1
m2

1m2
, 0, 0

T

x2 =

(
−

1
m1m2

2

, 0, 0
)T

and r1, r2 are two fixed numbers satisfying 0 < ri < |xi|, i = 1, 2.
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Proposition 3.2.2 (Asymptotic expansion for EJ) Fix some R > 0 and let ρ1, ρ2 ∈ R

and (ζ1, ζ2) ∈ B2(x1, r1) × B2(x2, r2) satisfy

x̄(ρi) = 0, spt(ρi) ⊂ B(0,R) for i = 1, 2 and ρ1(·−(J2ζ1, 0))+ρ2(·−(J2ζ2, 0)) ∈ W
J
m1 ,m2

.

Then one has

EJ
(
ρ1(· − (J2ζ1, 0)) + ρ2(· − (J2ζ2, 0))

)
= E∞(ρ1)+E∞(ρ2)+

1
J2

(
Hre(ζ1, ζ2) +R(ρ1, ρ2, ζ1, ζ2)

)
,

where

|R(ρ1, ρ2, ζ1, ζ2)| ≤ CJ−2

for some constant C > 0 depending only on R,m1,m2, r1, r2.

Proof Since

x̄(ρ1(· − a) + ρ2(· − b)) =
m1a + m2b
m1 + m2

for a, b ∈ R3,

we have

I(ρ1(· − a) + ρ2(· − b))

=

∫ ∣∣∣∣∣∣P
(
x + a −

m1a + m2b
m1 + m2

)∣∣∣∣∣∣2 ρ1 dx +

∫ ∣∣∣∣∣∣P
(
x + b −

m1a + m2b
m1 + m2

)∣∣∣∣∣∣2 ρ2 dx

=

∫
|Px|2ρ1 dx +

∣∣∣∣∣m2P(a − b)
m1 + m2

∣∣∣∣∣2∫ ρ1 dx +

∫
|Px|2ρ2 dx +

∣∣∣∣∣m1P(a − b)
m1 + m2

∣∣∣∣∣2∫ ρ2 dx

= I(ρ1) + I(ρ2) +
m1m2

m1 + m2
|P(a − b)|2.

Also, we note that the distance between two balls B2(x1, r1) and B2(x2, r1) is strictly
positive. In other words,

min
{
|ζ1 − ζ2|

∣∣∣ ζ1 ∈ B2(x1, r1), ζ1 ∈ B2(x1, r1)
}

= |x1| − r1 + |x2| − r2 > 0.

Then for sufficiently large J > 0, ρ1(· − (J2ζ1, 0)) and ρ2(· − (J2ζ2, 0)) have disjoint
supports for all ζ1 ∈ B2(x1, r1), ζ2 ∈ B2(x2, r2) since x̄(ρi) = 0, spt(ρi) ⊂ B(0,R) for i =
1, 2. By briefly denoting ρ̃i(x) B ρi(x − (J2ζi, 0)), i = 1, 2, one then has∫
R3

(
ρ̃1(x) + ρ̃2(x)

)γ−1 dx =

∫
spt(ρ̃1)∪spt(ρ̃2)

(
ρ̃1(x) + ρ̃2(x)

)γ−1 dx

=

∫
spt(ρ̃1)

(
ρ̃1(x) + ρ̃2(x)

)γ−1 dx +

∫
spt(ρ̃2)

(
ρ̃1(x) + ρ̃2(x)

)γ−1 dx

=

∫
spt(ρ̃1)

ρ̃γ−1
1 (x) dx +

∫
spt(ρ̃2)

ρ̃γ−1
2 (x) dx

=

∫
R3
ρ̃γ−1

1 (x) dx +

∫
R3
ρ̃γ−1

2 (x) dx,
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which shows

E∞(ρ̃1 + ρ̃2) =

∫
R3

A(ρ̃1 + ρ̃2) dx −
1
2

"
R6

(ρ̃1(x) + ρ̃2(x))(ρ̃1(y) + ρ̃2(y))
|x − y|

dxdy

=

∫
R3

A(ρ̃1) dx +

∫
R3

A(ρ̃2) dx

−
1
2

"
R6

ρ̃1(x)ρ̃1(y)
|x − y|

dxdy −
1
2

"
R6

ρ̃2(x)ρ̃2(y)
|x − y|

dxdy −
"
R6

ρ̃1(x)ρ̃2(y)
|x − y|

dxdy,

= E∞(ρ̃1) + E∞(ρ̃2) −
"
R6

ρ̃1(x)ρ̃2(y)
|x − y|

dxdy.

Then we see that

EJ (ρ̃1 + ρ̃2)
)

= E∞(ρ1) + E∞(ρ2) +
J2

2I(ρ1(· − (J2ζ1, 0)) + ρ2(· − (J2ζ2, 0)))
−

"
ρ1(x)ρ2(y)

|x − y + J2(ζ1 − ζ2, 0)|
dxdy

= E∞(ρ1) + E∞(ρ2) +
1
J2

 1
2m1m2
m1+m2

|ζ1 − ζ2|
2 +

I(ρ1)+I(ρ2)
J4

−

"
ρ1(x)ρ2(y)∣∣∣∣(ζ1 − ζ2, 0) +

x−y
J2

∣∣∣∣ dxdy


so that

R(ρ1, ρ2, ζ1, ζ2)

=
1

2m1m2
m1+m2

|ζ1 − ζ2|
2 +

I(ρ1)+I(ρ2)
J4

−

"
ρ1(x)ρ2(y)∣∣∣∣(ζ1 − ζ2, 0) +

x−y
J2

∣∣∣∣ dxdy −Hre(ζ1, ζ2)

=
1

2m1m2
m1+m2

|ζ1 − ζ2|
2 +

I(ρ1)+I(ρ2)
J4

−
1

2m1m2
m1+m2

|ζ1 − ζ2|
2
−


"

ρ1(x)ρ2(y)∣∣∣∣(ζ1 − ζ2, 0) +
x−y
J2

∣∣∣∣ dxdy −
m1m2

|ζ1 − ζ2|

 .
By denoting c B |x1| − r1 + |x2| − r2, we have seen |ζ1 − ζ2| ≥ c, from which we have∣∣∣∣∣∣∣∣ 1

2m1m2
m1+m2

|ζ1 − ζ2|
2 +

I(ρ1)+I(ρ2)
J4

−
1

2m1m2
m1+m2

|ζ1 − ζ2|
2

∣∣∣∣∣∣∣∣
=

I(ρ1) + I(ρ2)

J4 2m1m2
m1+m2

|ζ1 − ζ2|
2( 2m1m2

m1+m2
|ζ1 − ζ2|

2 +
I(ρ1)+I(ρ2)

J4 )
≤

R2(m1 + m2)

J4( 2m1m2
m1+m2

)2c4

and for J2 > 4R/c,∣∣∣∣∣∣∣∣∣
"

ρ1(x)ρ2(y)∣∣∣∣(ζ1 − ζ2, 0) +
x−y
J2

∣∣∣∣ dxdy −
m1m2

|ζ1 − ζ2|

∣∣∣∣∣∣∣∣∣
≤

" ∣∣∣∣∣∣∣ 1

|(ζ1 − ζ2, 0) +
x−y
J2 |
−

1
|ζ1 − ζ2|

∣∣∣∣∣∣∣ρ1(x)ρ2(y) dxdy

≤

"
|

|x − y|

J2
∣∣∣∣|ζ1 − ζ2| − |

x−y
J2 |

∣∣∣∣ |ζ1 − ζ2|

ρ1(x)ρ2(y) dxdy ≤
2Rm1m2

J2c2/2
.

This proves the lemma.
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Remark 3.2.3 The asymptotic expansion of the energy in Proposition 3.2.2 reveals that (i)
the energy for the binary system with angular momentum J converges to the energy E∞

of non-rotating Lane-Emden stars as J → ∞, (ii) the effective Hamiltonian Hre introduced
in (3.2.4) naturally emerges at the next order O(J−2) of the expansion. In fact, the kinetic
energy due to uniform rotation J2/I(ρ) and the tidal energy due to two-body interaction
−

!
ρ+(x)ρ−(y)/|x − y|dxdy are both of O(J−2) because of the separation scale J2, and the

balance of these energies brings in the effective Hamiltonian for two-body relative equilibria.
While the energy convergence result to the one by non-rotating stars is shown in [40],
the energy expansion with a second order correction using the effect Hamiltonian is new.
This new characterization of the Hamiltonian suggests that the asymptotic relative position
vector of two stars minimizes the effective Hamiltonian since binary star solutions minimize
the full Hamiltonian (cf. Lemma 3.3.6) and such an asymptotic convergence result will be
important in the uniqueness result in Section 4 (cf. Theorem 4.0.4).

3.3 Uniform estimates and convergences of minimizers

This subsection is devoted to the proof of several asymptotic behaviors of normal-
ized minimizers of (2.2.4). In particular the assertion (i) of Theorem 2.3.2 is proved
in the proposition below.

Proposition 3.3.1 Let {ρ̃J
} ⊂ W

J
m1 ,m2

be a family of normalized minimizers of (2.2.4) and
ρ̃∞mi

be a unique minimizer of the limit variational problem (3.1.1) with m = mi such that
x̄(ρ̃∞mi

) = 0. Then the following properties hold true:

(i)

x̄3(ρ̃J
1) = x̄3(ρ̃J

2) = 0, lim
J→∞

x̄(ρ̃J
1)

J2 = (
1

m2
1m2

, 0, 0), lim
J→∞

x̄(ρ̃J
2)

J2 = −(
1

m1m2
2

, 0, 0).

(ii)
lim
J→∞
‖ρ̃J

i (· + x̄(ρ̃J
i )) − ρ̃

∞

mi
‖L∞ + |CJ

i − C∞mi
| = 0, i = 1, 2,

where {CJ
i } and {C∞mi

} are the Lagrange multipliers in (2.2.5) and (3.1.2) with m = mi
respectively.

Remark 3.3.2 It is proved in [40] a weaker version of Proposition 3.3.1 saying that every
minimizer ρ̃J

∈ W
J
m1 ,m2

of (2.2.4) satisfies

(i) limJ→∞ E∞(ρ̃J
1) = Ẽ∞m1

, limJ→∞ E∞(ρ̃J
2) = Ẽ∞m2

(Proposition 6.4),
(ii) C∞mi

≤ lim infJ→∞ CJ
i (Lemma 6.5),

(iii) L
2 ≤ limJ→∞

|x̄(ρ̃J
1)−x̄(ρ̃J

2)|
J2 ≤ L (Proposition 6.8).

Remark 3.3.3 The convergence results of Proposition 3.3.1 are in fact consequences of
the fact that the binary star system is a local minimizer, not a global minimizer of the
Hamiltonian. Thanks to the local minimizing property of the binary star solutions with
respect to the Wasserstein L∞ metric, two stars become separated away from one another
in the scale of O(J2) as the angular momentum J goes to ∞, and each star asymptotically
resembles the associated non-rotating Lane-Emden star with the same mass. As noted in [40],
the chemical potential CJ needs not to be constant throughout the binary star system, but
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each star as a local minimizer has its own chemical potential CJ
i , i = 1, 2. The result of

Proposition 3.3.1 shows that these CJ
i also converge to the chemical potential of non-rotating

Lane-Emden stars of the same mass.

We begin with the proof of Proposition 3.3.1 by stating a slightly different form of
(ii) of Theorem 2.2.5. Throughout Lemma 3.3.4–Lemma 3.3.10, {ρ̃J

} denotes a family
normalized minimizer of (2.2.4).

Lemma 3.3.4 There exists a constant R > 0 independent of J such that spt(ρ̃J
i ) ⊂ B(x̄(ρ̃J

i ),R)
for any i = 1, 2 and large J.

Proof Theorem 2.2.5.(ii) says the existence of a constant R0 > 0 such that spt(ρ̃J
i )

is contained in a ball with radius R0. We note that x̄(ρ̃J
i ) belongs to the same ball

because a ball is convex. Then taking R = 2R0, one can see the lemma holds true.

Lemma 3.3.5 There holds that

x̄3(ρ̃J
1) = x̄3(ρ̃J

2) = 0.

Proof As is asserted in the proof of Theorem 6.2 of in [40], a minimizer ρ̃J is symmetric
with respect to a plane x3 = c by the strict rearrangement inequality (Theorem 3.9
in [34]) and Fubini’s theorem. Since x̄(ρ̃J) = 0, we see that c = 0. In other words, ρ̃J

is even with respect to the axis x3. We recall the equation (2.2.6),

ρ̃J
i = (A′)−1

+

(
J2

2I(ρ̃J)2 |Px|2 −Φρ̃J − CJ
i

)
in B(J2xi, J2ri), i = 1, 2.

Then the lemma follows from the fact that (A′)−1
+

(
J2

2I(ρ̃J)2 |Px|2 −Φρ̃J − CJ
i

)
is even with

respect to the x3 direction.

Next we show that the relative position of the centers of mass of two stars
divided by square angular momentum is inversely proportional to the product of
masses.

Lemma 3.3.6 There holds that

lim
J→∞

x̄(ρ̃J
1)

J2 = (
1

m2
1m2

, 0, 0), lim
J→∞

x̄(ρ̃J
2)

J2 = −(
1

m1m2
2

, 0, 0).

Proof Let us define

ρ̂J
i B ρ̃J

i (· + x̄(ρ̃J
i )), ζ̃J

i B
(x̄1(ρ̃J

i ), x̄2(ρ̃J
i ))

J2 , i = 1, 2.

Then recalling the fact that x̄3(ρ̃J
i ) = 0, i = 1, 2 (Lemma 3.3.5), we have from Propo-

sition 3.2.2 that

EJ(ρ̃J) = E∞(ρ̂J
1) + E∞(ρ̂J

2) +
1
J2 Hre(ζ̃J

1, ζ̃
J
2) + o(J−2) as J→∞. (3.3.1)
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Choose any (ζ1, ζ2) ∈ B2(x1, r1) × B2(x2, r2). By Lemma 3.3.4, if J is sufficiently large,
B(J2ζ1,R) and B(J2ζ2,R) are included in B(J2x1, J2r1) and B2(J2x2, J2r2) respectively.
Then one has

ρ̂J
ζ1 ,ζ2
B ρ̂J

1(· − (J2ζ1, 0)) + ρ̂J
2(· − (J2ζ2, 0)) ∈ W

J
m1 ,m2

so that

EJ(ρ̃J) ≤ EJ(ρ̂J
ζ1 ,ζ2

) = E∞(ρ̂J
1) + E∞(ρ̂J

2) +
1
J2 Hre(ζ1, ζ2) + o(J−2) as J→∞.

Combining this with (3.3.1), we get

lim sup
J→∞

Hre(ζ̃J
1, ζ̃

J
2) ≤ Hre(ζ1, ζ2), ∀ (ζ1, ζ2) ∈ B2(x1, r1) × B2(x2, r2).

Note that since (ζ̃J
1, ζ̃

J
2) ∈ B2(x1, r1) × B2(x2, r2), after choosing a subsequence, it

converges to some point (ζ̃∞1 , ζ̃
∞

2 ) ∈ B2(x1, r1) × B2(x2, r2) as J→∞. Then one has

Hre(ζ̃∞1 , ζ̃
∞

2 ) ≤ Hre(ζ1, ζ2), ∀ (ζ1, ζ2) ∈ B2(x1, r1) × B2(x2, r2),

which says that (ζ̃∞1 , ζ̃
∞

2 ) achieves a global minimum of Hre. Since ρ̃J is normalized,
one must have

(ζ̃∞1 )2 = (ζ̃∞2 )2 = 0 and m1(ζ̃∞1 )1 + m2(ζ̃∞2 )1 = 0.

Then, using Proposition 3.2.1, we also see (ζ̃∞1 )1 − (ζ̃∞2 )1 = L. Therefore we can
determine

ζ̃∞1 = (
1

m2
1m2

, 0, 0), ζ̃∞2 = −(
1

m1m2
2

, 0, 0).

Now, we show the convergence of the following continuum limits:

lim
J→∞

ζ̃J
1 = ζ̃∞1 , lim

J→∞
ζ̃J

2 = ζ̃∞2

to end the proof. Arguing indirectly, suppose not. Then there is a positive number
ε0 > 0 and a sequence {Jk} → ∞ such that without loss of generality,

|ζ̃Jk
1 − ζ̃

∞

1 | ≥ ε0, ∀k ∈N. (3.3.2)

By the same reasoning, after choosing a subsequence, {(ζ̃Jk
1 , ζ̃

Jk
2 )} converges to some

point (ζ̂∞1 , ζ̂
∞

2 ), which is a global minimum point of Hre. Then as above, (ζ̂∞1 , ζ̂
∞

2 ) is
uniquely determined as (ζ̃∞1 , ζ̃

∞

2 ) but this gives a contradiction to (3.3.2).

In the following lemma we show that the energy level of the binary star solutions
is negative.

Lemma 3.3.7 For any sufficiently large J > 0, one has

ẼJ
min = EJ(ρ̃J) < 0.
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Proof Since ρ̃J
∈ W

J
m1 ,m2

, there exists a constant c1, c2, c3 > 0 independent of J
satisfying c1 J2

≤ |Px| ≤ c2 J2 for x ∈ B(J2xi, J2ri), i = 1, 2 and c3 J2
≤ |x − y| for

x ∈ B(J2xi, J2ri), y ∈ B(J2x j, J2r j), i , j. Then we see from this and Remark 3.3.2 that

EJ(ρ̃J) = E∞(ρ̃J
1) + E∞(ρ̃J

2) +
J2

2I(ρ̃J)
−

"
ρ̃J

1(x)ρ̃J
2(y)

|x − y|
dxdy

≤ Ẽ∞m1
+ Ẽ∞m2

+ o(1) + O(J−2)

as J → ∞. Then the lemma follow from the fact that Ẽ∞mi
< 0, i = 1, 2. (See Theorem

3.1.1.)

We now discuss the uniform regularity of the density profiles.

Lemma 3.3.8 There holds that

lim sup
J→∞

‖ρ̃J
‖W1,∞(R3) < ∞.

In particular, ρ̃J is Lipschitz continuous uniformly for J, i.e.,

lim sup
J→∞

sup
x,y∈R3

x,y

|ρ̃J(x) − ρ̃J(y)|
|x − y|

< ∞.

Proof Since ρ̃J is a normalized minimizer, it satisfies by (2.2.6)

ρ̃J
i = (A′)−1

+

(
J2

2I(ρ̃J)2 |Px|2 −Φρ̃J − CJ
i

)
in B(J2xi, J2ri), i = 1, 2 (3.3.3)

and ρ̃J
i ≡ 0 outside B(J2xi, J2ri). Using the fact that (X−Y)+ ≤ |X| for X ∈ R and Y ≥ 0,

one has for any q ≥ 1,

∥∥∥ρ̃J
i

∥∥∥
Lq(R3)

≤ C(γ)


∥∥∥∥∥∥ J2

2I(ρ̃J)2 |Px|2
∥∥∥∥∥∥

1
γ−1

L
q
γ−1 (B(J2xi ,J2ri))

+
∥∥∥Φρ̃J

∥∥∥ 1
γ−1

L
q
γ−1 (B(J2xi ,J2ri))


for some constant C(γ) > 0 depending only on γ. Recall that since ρ̃J

∈ W
J
m1 ,m2

,
there exist constant c1, c2, c3 > 0 independent of J satisfying c1 J2

≤ |Px| ≤ c2 J2 for
x ∈ B(J2xi, J2ri) and c3 J2

≤ |x − y| for x ∈ B(J2xi, J2ri), y ∈ B(J2x j, J2r j), i , j. In
particular, this shows that as J→∞,∥∥∥∥∥∥ J2

2I(ρ̃J)2 |Px|2
∥∥∥∥∥∥

L
q
γ−1 (B(J2xi ,J2ri))

≤
c2

2

2c4
1(m1 + m2)2 J2

‖χB(J2xi ,J2ri)‖L
q
γ−1
≤

c2
2

2c4
1(m1 + m2)2 J2

(
4π
3

J6r3
i )

γ−1
q

= O(J
6(γ−1)

q −2),∥∥∥Φρ̃J

∥∥∥
L

q
γ−1 (B(J2xi ,J2ri))

≤

∥∥∥∥Φρ̃J
i

∥∥∥∥
L

q
γ−1 (B(J2xi ,J2ri))

+

∥∥∥∥∥Φρ̃J
j

∥∥∥∥∥
L

q
γ−1 (B(J2xi ,J2ri))

(i , j)

≤

∥∥∥∥Φρ̃J
i

∥∥∥∥
L

q
γ−1 (R3)

+
m j

c3 J2 (
4π
3

J6r3
i )

γ−1
q ,

≤ C
∥∥∥ρ̃J

i

∥∥∥
L

3q
3(γ−1)+2q (R3)

+ O(J
6(γ−1)

q −2)
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where we used the Hardy-Littlewood-Sobolev inequality in the last line. This implies
that as J→∞,

‖ρ̃J
‖Lq(R3) ≤ C

∥∥∥ρ̃J
∥∥∥ 1
γ−1

L
3q

3(γ−1)+2q (R3)
+ O(J

6
q−

2
γ−1 ). (3.3.4)

Observe that 6
q −

2
γ−1 < 0 for q ≥ 3 since 4/3 < γ < 2.

We now claim that there exists p > 3/2 such that

lim sup
J→∞

‖ρ̃J
‖Lp(R3) < ∞.

We divide the proof into the cases that (i): γ > 3/2 and (ii): 4/3 < γ ≤ 3/2. We
first assume (i). In this case, each ρ̃J belongs to Lγ, where γ > 3/2. For the uniform
estimate, observe that∫

R3
A(ρ̃J) dx = −

J2

2I(ρ̃J)2 −

∫
R3
Φρ̃J ρ̃J dx + EJ(ρ̃J).

As we have seen earlier, there holds that J2/I(ρ̃J)2 = O(J−2). Then by Lemma 3.3.7
and the Hardy-Littlewood-Sobolev inequality again, we get

1
γ − 1

‖ρ̃J
‖
γ

Lγ(R3) ≤ o(1) + C‖ρ̃J
‖

2
L6/5(R3) (3.3.5)

for some constant C > 0 independent of J. We now apply Hölder inequality to∫
(ρ̃J)

6
5 dx

∫
(ρ̃J)

6
5 dx =

∫
(ρ̃J)

γ
5(γ−1) (ρ̃J)

6
5−

γ
5(γ−1) dx ≤

(∫
(ρ̃J)γdx

) 1
5(γ−1)

(∫
ρ̃Jdx

) 5γ−6
5γ−5

and thus

‖ρ̃J
‖

2
L6/5(R3) ≤

(∫
(ρ̃J)γdx

) 1
3(γ−1)

(m1 + m2)
5(5γ−6)
3(γ−1) . (3.3.6)

Now if γ > 4
3 , 1

3(γ−1) < 1. So by Young’s inequality, the last term of (3.3.5) is bounded
by

C‖ρ̃J
‖

2
L6/5(R3) ≤ κ‖ρ̃

J
‖
γ

Lγ(R3) + Cκ,m1+m2

We now fix κ = 1
2(γ−1) and then from (3.3.5), we deduce that

lim sup
J→∞

‖ρ̃J
‖Lγ(R3) < ∞.

Next, assume (ii). By the same reasoning, we also have

lim sup
J→∞

‖ρ̃J
‖Lγ′ (R3) < ∞

for any 1 ≤ γ′ ≤ γ. We take q ≥ 3 in (3.3.4) as follows:

3q
3(γ − 1) + 2q

=

{
γ if γ < 3/2,

24/19 (< 3/2) if γ = 3/2.
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Then it is easy to see that q ≥ 4 for any 4/3 < γ ≤ 3/2. This with (3.3.4) proves (ii) of
the claim.

The next step is to obtain the uniform L∞ estimate of Φρ̃J and ρ̃J. The former is
immediate from the following estimate:

|Φρ̃J (x)| =
∫

B(x,1)

1
|x − y|

ρ̃J(y) dy +

∫
B(x,1)c

1
|x − y|

ρ̃J(y) dy

≤

∥∥∥∥∥ 1
|x − ·|

∥∥∥∥∥
Lp/(p−1)(B(x,1))

‖ρ̃J
‖Lp + m1 + m2.

(3.3.7)

Note that since p > 3/2, the Hölder conjugate p/(p − 1) < 3 so that

lim sup
J→∞

‖Φρ̃J‖L∞ < ∞.

Then for any x ∈ R3 and for sufficiently large J0 > 0 and J > J0, we use the increasing
property of (A′)−1 to see

ρ̃J
i (x) ≤ sup

{
(A′)−1(t) | t ∈ [0, J2

|Px|2/(2I2(ρ̃J)) −Φρ̃J (x)]
}

≤ sup
{
(A′)−1(t) | t ∈ [0, 1 + lim sup

J→∞
‖Φρ̃J‖L∞ ]

}
= (A′)−1

+ (1 + lim sup
J→∞

‖Φρ̃J‖L∞ ),

which shows the latter

lim sup
J→∞

‖ρ̃J
‖L∞ < ∞.

Now, we are ready to obtain the uniform gradient estimate for ρ̃J. By denoting β(t) =
(A′)−1

+ (t), note that β is continuously differentiable and β′(t) is strictly increasing on
t ≥ 0. We again use the equation (3.3.3) to get

‖∇ρ̃J
i ‖L∞ ≤ β

′(1 + lim sup
J→∞

‖Φρ̃J‖L∞ )‖∇Φρ̃J‖L∞

for sufficiently large J. Thus to end the whole proof of the lemma, it remains to show
the uniform L∞ estimate for ∇Φρ̃J . Arguing similarly with the estimate (3.3.7), we
see that

|∇Φρ̃J (x)| =
∫

B(x,1)

1
|x − y|2

ρ̃J(y) dy +

∫
B(x,1)c

1
|x − y|2

ρ̃J(y) dy

≤

∥∥∥∥∥ 1
|x − ·|2

∥∥∥∥∥
L1(B(x,1))

‖ρ̃J
‖L∞ + m1 + m2.

This completes the proof.

With the uniform bound and continuity result of the density profiles, we are
now ready to prove that the asymptotic profile of the density of the binary stars is
given by the density of non-rotating Lane-Emden stars.
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Lemma 3.3.9 Define ρ̂J
i B ρ̃J

i (· + x̄(ρ̃J
i )). Then for all i = 1, 2, one has

lim
J→∞

(
‖ρ̂J

i − ρ̃
∞

mi
‖L∞(R3) + ‖Φρ̂J

i
−Φρ̃∞mi

‖Ḣ1(R3)

)
= 0.

In particular,

lim
J→∞

∫
A(ρ̂J

i ) dx =

∫
A(ρ̃∞mi

) dx and lim
J→∞

∫
Φρ̂J

i
ρ̂J

i dx =

∫
Φρ̃∞mi

ρ̃∞mi
dx.

Proof We invoke Proposition 6.4 in [40] (See also Remark 3.3.2) which asserts that
as J→∞,

E∞(ρ̂J
i ) = E∞(ρ̃J

i )→ E∞(ρ̃∞mi
), i = 1, 2.

Then {ρ̂J
i } is a minimizing sequence of the limit variational problem (3.1.1) with

m = mi. By Lemma 3.3.4, we see that spt(ρ̂J
i ) ⊂ BR for large J. Then by following

the proof of Theorem 3.1 and Lemma 3.2 in [43], after choosing a subsequence, {ρ̂J
i }

weakly converges in Lγ(R3) to a minimizer ρ̂∞i of the limit variational problem (3.1.1)
with m = mi and {Φρ̂J

i
} strongly converges to Φρ̂∞i

in Ḣ1(R3) as J→∞.

We see from Lemma 3.3.8 that {ρ̂J
} is equicontinuous and has a uniform L∞

bound. Then the Arzela-Ascoli theorem says after choosing a subsequence, {ρ̂J
}

strongly converges in L∞ to ρ̂∞i . (L∞ convergent limit of {ρ̂J
i } must be ρ̂J

i because L∞

convergence implies Lγ weak convergence on a bounded domain.)
Also, observe from the L∞ convergence of ρ̂J

i that up to a subsequence,

0 = x̄(ρ̂J
i ) =

1
mi

∫
BR

xρ̂J
i dx→

1
mi

∫
BR

xρ̂∞i dx = x̄(ρ̂∞i ) as J→∞.

This shows that ρ̂∞i is the same with ρ̃∞mi
by the uniqueness of a minimizer of the

problem (3.1.1) up to a translation.
Finally, it remains to upgrade the above subsequential convergence to the contin-

uum convergence for J. As in the proof of Lemma 3.3.6, this can be done by taking
advantage of the uniqueness of ρ̃∞mi

. Suppose that there exists a positive number
ε0 > 0 and a sequence {Jk} → ∞ such that

‖ρ̂Jk
i − ρ̃

∞

mi
‖ ≥ ε0, ∀k ∈N. (3.3.8)

Since {ρ̂Jk
i } is still a minimizing sequence of the problem (3.1.1) and has a uniform

W1,∞ bound, we can apply the exactly same reasoning to see that after choosing a
subsequence, {ρ̂Jk

i } converges in L∞ to a minimizer ˆ̂ρ∞i of the problem (3.1.1) satisfying
x̄( ˆ̂ρ∞i ) = 0. However this is a contradiction to the uniqueness of ρ̃∞mi

and (3.3.8).
The contradiction argument above shows limJ→∞ ‖ρ̂

J
i − ρ̃

∞
mi
‖L∞ = 0. Combining

this with the Gagliardo-Nirenberg inequality and the Hardy-Littlewood-Sobolev
inequality, we also see

lim
J→∞
‖Φρ̂J

i
−Φρ̃∞mi

‖Ḣ1(R3) = 0.

This completes the proof.

We finish the proof of Proposition 3.3.1 by proving the following lemma.
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Lemma 3.3.10 For any i = 1, 2, there holds that

lim
J→∞

CJ
i = C∞mi

.

Proof Multiplying the first equation in (2.2.5) by ρ̃J
i and integrating, we get∫

{ρ̃J
i>0}
−

J2

2I(ρ̃J)2 |Px|2ρ̃J
i + A′(ρ̃J

i )ρ̃
J
i +Φρ̃J ρ̃J

i dx = −miC
J
i . (3.3.9)

We have already seen that as J→∞,∫
{ρ̃J

i>0}
−

J2

2I(ρ̃J)2 |Px|2ρ̃J
i +Φρ̃J

j
ρ̃J

i dx = o(1), i , j.

Then combining (3.3.9) and Lemma 3.3.9, we see that

−miC
J
i = γ

∫
A(ρ̃∞mi

) dx +Φρ̃∞mi
ρ̃∞mi

dx + o(1)

= −miC∞mi
+ o(1),

which ends the proof.

4 Uniqueness result

In this section, we prove some uniqueness result (Theorem 4.0.4) a bit more general
than Theorem 2.3.2.(ii). We will see that Theorem 4.0.4 also play an important role
to prove Theorem 2.3.2.(iii). To this end, we first give the expression of Lagrange
multipliers CJ

i in terms of ρ̃J
1 and ρ̃J

2 for i = 1, 2.
Define

F(φ,ψ) B
5γ − 6
4 − 3γ

E∞(φ) +
8 − 5γ

2(4 − 3γ)
J2

I(φ + ψ)2

∫
|Px|2φ dx

+
2 − γ

4 − 3γ

"
(x − y) · x
|x − y|3

φ(x)ψ(y) dxdy +

"
φ(x)ψ(y)
|x − y|

dxdy
(4.0.1)

for φ,ψ ∈ Lγ with compact support.

Lemma 4.0.1 Let {ρ̃J
} ∈ W

J
m1 ,m2

be a family of normalized minimizers of the minimization
problem (2.2.4). Then one has

m1CJ
1 = F(ρ̃J

1, ρ̃
J
2) and m2CJ

2 = F(ρ̃J
2, ρ̃

J
1).

Proof For a givenρ, we denote byρt a family of functions 1
t3 ρ( ·t ). By Lemmas 3.3.4 and

3.3.6, we see that (ρ̃J
1)t + ρ̃J

2 belongs toW
J
m1 ,m2

for t ∼ 1 so that d
dt |t=1EJ((ρ̃J

1)t + ρ̃J
2) = 0.

To compute this, observe that

x̄((ρ̃J
1)t + ρ̃J

2) =
m1tx̄(ρ̃J

1) + m2x̄(ρ̃J
2)

m1 + m2
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and then

I((ρ̃J
1)t+ρ̃J

2) =

∫
|P(tx−

m1tx̄(ρ̃J
1) + m2x̄(ρ̃J

2)

m1 + m2
)|2ρ̃J

1 dx+

∫
|P(x−

m1tx̄(ρ̃J
1) + m2x̄(ρ̃J

2)

m1 + m2
)|2ρ̃J

2 dx.

Thus one has

d
dt
|t=1I((ρ̃J

1)t + ρ̃J
2)

= 2
∫

P(x − x̄(ρ̃J)) · P(x −
m1x̄(ρ̃J

1)

m1 + m2
)ρ̃J

1 dx + 2
∫

P(x − x̄(ρ̃J)) · P(−
m1x̄(ρ̃J

1)

m1 + m2
)ρ̃J

2 dx

= 2
∫
|Px|2ρ̃J

1 dx,

where we used the properties x̄(ρ̃J) = 0 and m1x̄(ρ̃J
1) + m2x̄(ρ̃J

2) = 0. This shows that

0 =
d
dt
|t=1EJ((ρ̃J

1)t + ρ̃J
2)

= 3(1 − γ)
∫

A(ρ̃J
1) dx −

J2

I(ρ̃J)2

∫
|Px|2ρ̃J

1 dx

+
1
2

"
ρ̃J

1(x)ρ̃J
1(y)

|x − y|
dxdy +

"
(x − y) · x
|x − y|3

ρ̃J
1(x)ρ̃J

2(y) dxdy.

(4.0.2)

Multiplying the first equation of (2.2.5) by ρ̃J
1, integrating and combining with (4.0.2),

we next get

m1CJ
1

= −γ

∫
A(ρ̃J

1) dx +

"
ρ̃J

1(x)ρ̃J
1(y)

|x − y|
dxdy +

J2

2I(ρ̃J)2

∫
|Px|2ρ̃J

1 dx +

"
ρ̃J

1(x)ρ̃J
2(y)

|x − y|
dxdy

= (5γ − 6)
∫

A(ρ̃J
1) dx +

5J2

2I(ρ̃J)2

∫
|Px|2ρ̃J

1 dx +

" (
1

|x − y|
−

2(x − y) · x
|x − y|3

)
ρ̃J

1(x)ρ̃J
2(y) dxdy

and using (4.0.2) again, one also has∫
A(ρ̃J

1) dx

=
1

4 − 3γ
E∞(ρ̃J

1) −
1

4 − 3γ

"
(x − y) · x
|x − y|3

ρ̃J
1(x)ρ̃J

2(y) dxdy +
J2

(4 − 3γ)I(ρ̃J)2

∫
|Px|2ρ̃J

1 dx.

Therefore, we finally see that m1CJ
1 = F(ρ̃J

1, ρ̃
J
2). By changing the role of ρ̃J

1 and ρ̃J
2, it

is straightforward to check m2CJ
2 = F(ρ̃J

2, ρ̃
J
1).

Remark 4.0.2 The integral representation of CJ
i in Lemma 4.0.1 plays a crucial role in

its quantitative C2 convergence result to the limiting potential C∞mi
(cf Lemma 4.2.1). This

convergence result will be importantly used to prove the uniqueness result (cf. Theorem
4.0.4). Indeed, a solution to the variational problem (2.2.4) satisfies the self-consistent
equations (2.2.5) which involve the chemical potential CJ

i on each connected component, and
thus the quantitative control of the convergence of CJ

i as in Lemma 4.2.1 will be useful to
analyze the perturbed equations around the asymptotic Lane-Emden profiles.
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Lemma 4.0.3 Let {ρ̃J
} ⊂ W

J
m1 ,m2

be a normalized minimizers to the variational problem
(2.2.4). Then it solves
ρJ

i (x) = Bγ

(
1
2

J2

I(ρJ)2 |Px|2 + (
1
| · |
∗ ρJ)(x) −

1
mi

F(ρJ
i , ρ

J
j)
) 1
γ−1

+

∀x ∈ B(J2xi, J2ri), i = 1, 2, j , i,

mix̄1(ρJ
i ) =

I(ρJ)2

J2

"
(−1)i+1 x1 − y1

|x − y|3
ρJ

1(x)ρJ
2(y) dxdy, x̄3(ρJ

i ) = 0, i = 1, 2,

(4.0.3)
where Bγ = ( γ−1

Kγ )
1
γ−1 and F is given in (4.0.1).

Proof By Lemma 3.3.5 and Lemma 4.0.1, it only remains to show

mix̄1(ρJ
i ) =

I(ρJ)2

J2

"
(−1)i+1 x1 − y1

|x − y|3
ρJ

1(x)ρJ
2(y) dxdy, i = 1, 2.

From a direct computation, we see that for j , i,

mix̄1(ρJ
i )J2

I(ρJ)2 −

"
(−1)i+1 x1 − y1

|x − y|3
ρJ

1(x)ρJ
2(y) dxdy

=

∫
J2

I(ρJ)2 x1ρ
J
i dx −

∫
∂x1ΦρJ

j
ρJ

i dx,

=

∫
∂x1 (

J2

2I(ρJ)2 x2
1 −ΦρJ

j
)ρJ

i dx

=

∫
∂x1 (A′(ρJ

i ) −
J2

2I(ρJ)2 x2
2 +ΦρJ

i
+ CJ

i )ρ
J
i dx

=

∫
∂x1ΦρJ

i
ρJ

i dx =

∫
∂x1ΦρJ

i
∆ΦρJ

i
dx = 0.

This ends the proof.

Now we state the following uniqueness theorem which implies (ii) of Theorem
2.3.2.

Theorem 4.0.4 Let {ρJ
} ⊂ W

J
m1 ,m2

be a family of normalized solutions to (4.0.3). Suppose
that there exists a constant R > 0 independent of J such that

spt(ρJ
1) ⊂ B(x̄(ρJ

1), R), spt(ρJ
2) ⊂ B(x̄(ρJ

2), R)

and there hold the following convergences:

lim
J→∞
‖ρJ

1(· + x̄(ρJ
1)) − ρ̃∞m1

‖L∞ + ‖ρJ
2(· + x̄(ρJ

2)) − ρ̃∞m2
‖L∞ = 0,

lim
J→∞

x̄(ρJ
1)

J2 = (
1

m2
1m2

, 0, 0), lim
J→∞

x̄(ρJ
2)

J2 = −(
1

m1m2
2

, 0, 0),

lim
J→∞

F(ρJ
1, ρ

J
2)

m1
= C∞m1

, lim
J→∞

F(ρJ
2, ρ

J
1)

m2
= C∞m2

.

Then such a family {ρJ
} is unique for sufficiently large J > 0.

The proof of Theorem 4.0.4 involves several steps and technical details. We first
give a brief overview of the proof in Section 4.1 and the full proof in Section 4.2.
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4.1 Overview of the proof

The purpose of this subsection is to deliver fundamental ideas and abstract settings
employed in the proof of Theorem 4.0.4. We first encode the system of equations
(4.0.3) into a functional equation

u = NJ(u) (4.1.1)

for some nonlinear map NJ : X→ Y, where X and Y are Banach spaces such that X
is continuously embedded in Y. The second step of the proof (Lemma 4.2.1-Lemma
4.2.5) is to obtain the various regularity estimates for NJ including the equicontinuity
of NJ and ∇NJ and their uniform convergence to a limit map N∞. Then our task will
be to show that for sufficiently large J, a family of solutions {uJ} to (4.1.1) is unique
whenever it converges in a suitable sense to a limit u∞ ∈ X which is a solution of
the limit equation u = N∞(u).

The main idea of the proof is as follows. Denoting uJ = vJ + u∞ and using Taylor
expansion, one can see that the equation (4.1.1) is equivalent to

vJ − ∇NJ(u∞)[vJ] = RJ(vJ) + NJ(u∞) −N∞(u∞), (4.1.2)

where RJ(vJ) is the super-linear remainder term in Taylor expansion. The key ingre-
dient of our argument is the following non-degenerate estimate (Lemma 4.2.6)

lim inf
J→∞

inf
‖φ‖X=1

‖φ − ∇NJ(u∞)[φ]‖Y > 0. (4.1.3)

The proof of the estimate (4.1.3) strongly relies on the aforementioned regularity
estimates on NJ and non-degeneracy of the limit map N∞ (Theorem 3.1.1.(v) and
Proposition 3.2.1.(ii)). With this estimate in hand, suppose that (4.1.2) admits two
different families of solutions {v1

J } and {v2
J }. Then it follows that

(v1
J − v2

J ) − ∇NJ(u∞)[v1
J − v2

J ] = RJ(v1
J ) − RJ(v2

J ).

The non-degenerate estimate implies that for large J, there exists a universal constant
c > 0 such that

c‖v1
J − v2

J ‖X ≤ ‖(v
1
J − v2

J ) − ∇NJ(u∞)[v1
J − v2

J ]‖Y

while it is possible to obtain the estimate (Lemma 4.2.7)

‖R
J(v1

J ) − RJ(v2
J )‖Y ≤

c
2
‖v1

J − v2
J ‖X

due to the convergence ‖v1
J − v2

J ‖X → 0 and the super-linearity of the term RJ. Then
we get a contradiction and the uniqueness is proved.
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4.2 Proof of Theorem 4.0.4

Let us denote BR B B(0,R). Define the function space

L2
0(BR) :=

{
ρ ∈ L2(BR) | x̄(ρ) = 0

}
and intervals

I1 = (
1

m2
1m2
− r1,

1
m2

1m2
+ r1), I2 = (−

1
m1m2

2

− r2, −
1

m1m2
2

+ r2).

Let us denote ζi = x̄1(ρi)/J2 and redefine as ρi(x) 7→ ρi(x − J2ζi~ex1 ). Then for any

normalized solution ρ ∈ W
J
m1 ,m2

of (4.0.3), we may write

ρ(x) = ρ1(x − J2ζ1~ex1 ) + ρ2(x − J2ζ2~ex1 ),

where ζ1 ∈ I1, ζ2 ∈ I2 and ρ1, ρ2 ∈ L2
0(BR). With this transformation, the equations

(4.0.3) transforms into

(ρ1, ρ2, ζ1, ζ2)T = NJ(ρ1, ρ2, ζ1, ζ2),

where (ρ1, ρ2, ζ1, ζ2) ∈ L2
0(BR) × L2

0(BR) × I1 × I2 and NJ := (NJ
1,N

J
2,N

J
3,N

J
4)T such that

NJ
1(ρ1, ρ2, ζ1, ζ2)

B Bγ

 J2
|P(x + J2ζ1~ex1 )|2

2
(
I(ρ1) + I(ρ2) +

J4m1m2(ζ1−ζ2)2

m1+m2

)2 +
( 1
| · |
∗ ρ1

)
(x) +

( 1
| · |
∗ ρ2

)
(x + J2(ζ1 − ζ2)~ex1 ) −

1
m1

FJ
1


1
γ−1

+

,

NJ
2(ρ1, ρ2, ζ1, ζ2)

B Bγ

 J2
|P(x + J2ζ2~ex1 )|2

2
(
I(ρ1) + I(ρ2) +

J4m1m2(ζ1−ζ2)2

m1+m2

)2 +
( 1
| · |
∗ ρ2

)
(x) +

( 1
| · |
∗ ρ1

)
(x + J2(ζ2 − ζ1)~ex1 ) −

1
m2

FJ
2


1
γ−1

+

,

NJ
3(ρ1, ρ2, ζ1, ζ2)

B
(I(ρ1) + I(ρ2) +

J4m1m2(ζ1−ζ2)2

m1+m2
)2

m1 J4

"
x1 − y1 + J2(ζ1 − ζ2)
|x − y + J2(ζ1 − ζ2)~ex1 |

3
ρ1(x)ρ2(y) dxdy,

NJ
4(ρ1, ρ2, ζ1, ζ2)

B −
(I(ρ1) + I(ρ2) +

J4m1m2(ζ1−ζ2)2

m1+m2
)2

m2 J4

"
x1 − y1 + J2(ζ1 − ζ2)
|x − y + J2(ζ1 − ζ2)~ex1 |

3
ρ1(x)ρ2(y) dxdy.

Here FJ
1 and FJ

2 are given by

FJ
1(ρ1, ρ2, ζ1, ζ2) B F(ρ1(x − J2ζ1~ex1 ), ρ2(x − J2ζ2~ex1 )),

FJ
2(ρ1, ρ2, ζ1, ζ2) B F(ρ2(x − J2ζ2~ex1 ), ρ1(x − J2ζ1~ex1 )).

(4.2.1)

Let us define

X0 B L2
0(BR) × L2

0(BR) ×R ×R, X B L2(BR) × L2(BR) ×R ×R
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so that the standard inclusion map I : X0 → X is well defined. For ξ = (ρ1, ρ2, ζ1, ζ2) ∈
X, we denote

‖ξ‖ = max
{
‖ρ1‖L2 , ‖ρ2‖L2 , |ζ1|, |ζ2|

}
.

For Banach spaces X,Y and a linear operator A from X to Y, we denote by ‖A‖X→Y,
the operator norm of A. If A is from X0 to X, then we just denote ‖A‖X0→X by ‖A‖.
Lemma 4.2.1 For i = 1, 2, the functional FJ

i given in (4.2.1) is C1 on L2
0(BR)×L2

0(BR)×I1×I2.
Moreover, if we define

SJ
i (ξ) B FJ

i (ξ) −
5γ − 6
4 − 3γ

E∞(ρi), ξ = (ρ1, ρ2, ζ1, ζ2),

then SJ
i is C2 and there exists a constant C depending only on R, r1, r2,m1,m2 and γ such

that
|SJ

i (ξ)| + ‖∇SJ
i (ξ)‖X0→R + ‖∇2SJ

i (ξ)‖X0×X0→R ≤
C
J2 (1 + ‖ξ‖2). (4.2.2)

In particular, FJ
i (ξ) converges to 5γ−6

4−3γE∞(ρi) in C2 topology.

Proof By the symmetry, we may assume i = 1. It is clear that E∞(ρ1) is C1. We note
that SJ

1 is given by

SJ
1 =

8 − 5γ
2(4 − 3γ)

J2
(
I(ρ1) + J4ζ2

1

∫
ρ1 dx

)
(
I(ρ1) + I(ρ2) +

J4m1m2(ζ1−ζ2)2

m1+m2

)2

+
2 − γ

4 − 3γ

"
(x − y + J2(ζ1 − ζ2)~ex1 ) · (x + J2ζ1~ex1 )

|x − y + J2(ζ1 − ζ2)~ex1 |
3

ρ1(x)ρ2(y) dxdy

+

"
ρ1(x)ρ2(y)

|x − y + J2(ζ1 − ζ2)~ex1 |
dxdy.

It is easy to see that for any ρ ∈ L2(BR), there exists a constant C(R) depending only
on R such that ( 1

| · |
∗ ρ

)
(x) ≤

C(R)
1 + |x|

‖ρ‖L2 for all x ∈ R3. (4.2.3)

Since spt(ρi) ∈ BR, |ζ1| ≤
1

m2
1m2

+r1, |ζ2| ≤
1

m1m2
2
+r2 and |ζ1−ζ2| ≥

m1+m2

m2
1m2

2
−r1−r2 > 0, we

see from (4.2.3) that the estimate (4.2.2) holds true for k = 0. To obtain the estimates
(4.2.2) for k = 1, 2, we need to show∣∣∣∇SJ

1(ρ1, ρ2, ζ1, ζ2)(η1, η2, z1, z2)
∣∣∣ ≤ C

J2 (1 + ‖ρ1‖
2
L2 + ‖ρ2‖

2
L2 )‖(η1, η2, z1, z2)‖,∣∣∣∣〈∇2SJ

1(ρ1, ρ2, ζ1, ζ
2)(η1, η2, z1, z2), (η1, η2, z1, z2)

〉∣∣∣∣ ≤ C
J2 (1 + ‖ρ1‖

2
L2 + ‖ρ2‖

2
L2 )‖(η1, η2, z1, z2)‖2.

This can be done by computing

d
dt

∣∣∣∣
t=0

SJ
1(ρ1 + tη1, ρ2 + tη2, ζ1 + tz1, ζ2 + tz2),

d2

dt2

∣∣∣∣
t=0

SJ
1(ρ1 + tη1, ρ2 + tη2, ζ1 + tz1, ζ2 + tz2)

and applying the similar arguments. Since the computations are similar and tedious,
we omit them.
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We define for i = 1, 2,

XJ
i (ρ1, ρ2, ζ1, ζ2) B

J2
|P(x + J2ζi~ex1 )|2

2
(
I(ρ1) + I(ρ2) +

J4m1m2(ζ1−ζ2)2

m1+m2

)2 +
( 1
| · |
∗ ρi

)
(x) +

( 1
| · |
∗ ρ j

)
(x + J2(ζi − ζ j)~ex1 ), j , i.

Arguing similarly with the previous lemma, we can also see there hold the following
two lemmas, the proofs of which are omitted.

Lemma 4.2.2 The map XJ
i is C2 from L2

0(BR)× L2
0(BR)× I1 × I2 to L∞(BR). Moreover, if we

denote
XJ

i (ξ) =
( 1
| · |
∗ ρi

)
+ QJ

i (ξ), ξ = (ρ1, ρ2, ζ1, ζ2),

then there exists a constant C > 0 depending only on R, r1, r2,m1,m2 and γ such that

‖QJ
i (ξ)‖L∞(BR) + ‖∇QJ

i (ξ)‖X0→L∞(BR) + ‖∇2QJ
i (ξ)‖X0×X0→L∞(BR) ≤

C
J2 (1 + ‖ξ‖).

In particular, XJ
i (ξ) converges to

(
1
|·|
∗ ρi

)
in C2 topology.

Remark 4.2.3 From Lemma 4.2.1–4.2.2, we see that as J→∞, the limit map of NJ
i is

N∞i (ξ) B Bγ

(
1
| · |
∗ ρi −

1
mi

5γ − 6
4 − 3γ

E∞(ρi)
) 1
γ−1

+

, i = 1, 2.

Lemma 4.2.4 For i = 3, 4, the map NJ
i is C2 from L2

0(BR)×L2
0(BR)× I1 × I2 toR. Moreover,

if we denote

NJ
i (ξ) =

m2
1m2

2

(mi−2)(m1 + m2)2 (ζ1 − ζ2)2
∫
ρ1 dx

∫
ρ2 dx + VJ

i (ξ), ξ = (ρ1, ρ2, ζ1, ζ2),

then there exists a constant C > 0 depending only on R, r1, r2,m1,m2 and γ such that for
i = 3, 4,

|VJ
i (ξ)| + ‖∇VJ

i (ξ)‖X0→R + ‖∇2VJ
i (ξ)‖X0×X0→R ≤

C
J2 (1 + ‖ξ‖2).

In particular, NJ
i (ξ) converges to the limit map

N∞i (ξ) B
m2

1m2
2

(mi−2)(m1 + m2)2 (ζ1 − ζ2)2
∫
ρ1 dx

∫
ρ2 dx, i = 3, 4

in C2 topology.

Now, we are ready to prove the uniform C1 estimate for NJ.

Lemma 4.2.5 The map NJ is C1 from L2
0(BR)×L2

0(BR)× I1 × I2 to X. Moreover, there exists
a constant C independent of ξ, ξ̃ such that

lim sup
J→∞

(∥∥∥NJ(ξ)
∥∥∥ +

∥∥∥∇NJ(ξ)
∥∥∥) ≤ C

(
1 + ‖ξ‖2

) 2−γ
γ−1 +1

,

lim sup
J→∞

∥∥∥∇NJ(ξ) − ∇NJ(ξ̃)
∥∥∥ ≤ C

(
1 + ‖ξ‖2 + ‖ξ̃‖2

) 2−γ
γ−1 +1

(
‖ξ − ξ̃‖ + ‖ξ − ξ̃‖

2−γ
γ−1

)
for ξ, ξ̃ ∈ L2

0(BR) × L2
0(BR) × I1 × I2.
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Proof We only prove the second estimate because the first one is easier to obtain. By
denoting f (t) = Bγt1/(γ−1)

+ , one has for φ ∈ X0

∇NJ
i (ξ)[φ] = f ′((XJ

i − FJ
i )(ξ))(∇(XJ

i − FJ
i )(ξ)[φ]), i = 1, 2.

Since | f ′(t) − f ′(s)| ≤ C|t − s|
2−γ
γ−1 , we see from Lemmas 4.2.1 and 4.2.2 combined

with the mean value theorem that for i = 1, 2,

‖∇NJ
i (ξ)[φ] − ∇NJ

i (ξ̃)[φ]‖

≤ ‖ f ′((XJ
i − FJ

i )(ξ)) − f ′((XJ
i − FJ

i )(ξ̃))‖L∞(BR)‖∇(XJ
i − FJ

i )(ξ)[φ]‖

+ ‖ f ′((XJ
i − FJ

i )(ξ̃))‖L∞(BR)‖∇(XJ
i − FJ

i )(ξ)[φ] − ∇(XJ
i − FJ

i )(ξ̃)[φ]‖

≤ C(1 + ‖ξ‖2 + ‖ξ̃‖2)
2−γ
γ−1 +1
‖ξ − ξ̃‖

2−γ
γ−1 ‖φ‖ + C(1 + ‖ξ‖2 + ‖ξ̃‖2)

2−γ
γ−1 +1
‖ξ − ξ̃‖ ‖φ‖.

Thus this implies

‖∇NJ
i (ξ) − ∇NJ

i (ξ̃)‖X0→L2(BR) ≤ C
(
1 + ‖ξ‖2 + ‖ξ̃‖2

) 2−γ
γ−1 +1

(
‖ξ − ξ̃‖ + ‖ξ − ξ̃‖

2−γ
γ−1

)
i = 1, 2.

Finally, as for∇NJ
3 and∇NJ

4, we invoke Lemma 4.2.4 and the mean value theorem
again to get

‖∇NJ
i (ξ) − ∇NJ

i (ξ̃)‖X0→R ≤ C
(
1 + ‖ξ‖2 + ‖ξ̃‖2

)
‖ξ − ξ̃‖ i = 3, 4.

This completes the proof.

To prove Theorem 4.0.4, we need to show that a solution of the equation

(ρ1, ρ2, ζ1, ζ2)T = NJ(ρ1, ρ2, ζ1, ζ2),
∫
ρ1 = m1,

∫
ρ2 = m2 (4.2.4)

near (ρ∞m1
, ρ∞m2

, 1
m2

1m2
,− 1

m1m2
2
) is unique for sufficiently large J > 0. We note that the

limit map N∞ = (N∞1 ,N
∞

2 ,N
∞

3 ,N
∞

4 ) given in Remark 4.2.3 and Lemma 4.2.4 has
(ρ∞m1

, ρ∞m2
, 1

m2
1m2
,− 1

m1m2
2
) as a solution. Then, by denoting

ξ∞ B (ρ∞m1
, ρ∞m2

,
1

m2
1m2

,−
1

m1m2
2

), (ρ1, ρ2, ζ1, ζ2) = ξ∞ + (η1, η2, z1, z2)

and
AJ := ∇NJ(ξ∞)

=


∂ρ1 NJ

1(ξ∞) · · · ∂ζ2 NJ
1(ξ∞)

...
. . .

...
∂ρ1 NJ

4(ξ∞) · · · ∂ζ2 NJ
4(ξ∞)

 ,
the equation (4.2.4) is equivalent to

(I − AJ)(η1, η2, z1, z2)T = NJ(ξ∞) −N∞(ξ∞) + RJ(η1, η2, z1, z2),
∫
η1 =

∫
η2 = 0,

where

R
J(η1, η2, z1, z2) := NJ(ρ1, ρ2, ζ1, ζ2) −NJ(ξ∞) − AJ(η1, η2, z1, z2)T.
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Lemma 4.2.6 There holds

lim inf
J→∞

inf
φ

{
‖(I − AJ)φ‖

∣∣∣∣ φ = (η1, η2, z1, z2) ∈ X0, ‖φ‖ = 1,
∫
η1 =

∫
η2 = 0

}
> 0.

Proof We see from Lemma 4.2.5, the equation (3.1.2) satisfied by ρ∞mi
and the fact

5γ−6
4−3γ Ẽ∞m = mC∞m (Theorem 3.1.1) that

lim
J→∞
‖AJ
− A∞‖ = 0,

where

A∞(η1, η2, z1, z2) B
f ′

(
( 1
|·|
∗ ρ∞m1

) − C∞m1

) (
1
|·|
∗ η1 + C∞m1

∫
η1

)
0 0 0

0 f ′
(
( 1
|·|
∗ ρ∞m2

) − C∞m2

) (
1
|·|
∗ η2 + C∞m2

∫
η2

)
0 0

1
m3

1m2

∫
η1

1
m2

1m2
2

∫
η2

2m2z1
m1+m2

−
2m2z2

m1+m2

−
1

m2
1m2

2

∫
η1 −

1
m1m3

2

∫
η2 −

2m1z1
m1+m2

2m1z2
m1+m2

 .
It is easy to see that A∞ is a compact operator. Moreover, observe that for an arbitrary
kernel element (η1, η2, z1, z2) ∈ X0 of I − A∞ with

∫
η1 =

∫
η2 = 0, one has

η1 = f ′(
1
| · |
∗ ρ∞m1

− C∞m1
)

1
| · |
∗ η1,

η2 = f ′(
1
| · |
∗ ρ∞m2

− C∞m2
)

1
| · |
∗ η2,

z1 =
1

m3
1m2

∫
η1 dx +

1
m2

1m2
2

∫
η2 dx +

2m2

m1 + m2
z1 −

2m2

m1 + m2
z2,

z2 = −
1

m2
1m2

2

∫
η1 dx −

1
m1m3

2

∫
η2 dx −

2m1

m1 + m2
z1 +

2m1

m1 + m2
z2,

so that η1 = η2 = 0 by Theorem 3.1.1.(v) and consequently z1 = z2 = 0.
Now, we are ready to end the proof. Arguing indirectly, suppose that there exist

sequences {Jk} → ∞ and φk = (η1,k, η2,k, z1,k, z2,k) ∈ X0 with
∫
η1,k =

∫
η2,k = 0 such

that ‖φk‖ = 1 and (I − AJk )φk = o(1) in X as k→∞. Since

φk = AJkφk + o(1) = (AJk − A∞)φk + A∞φk + o(1), (4.2.5)

we see from the convergence of AJk to A∞, compactness of A∞ and closedness of X0
in X that φk converges in X to some φ∞ ∈ X0 with ‖φ∞‖ = 1, up to a subsequence.
Then we use (4.2.5) again to see that φ∞ = (η∞1 , η

∞

2 , z
∞

1 , z
∞

2 ) ∈ X0 is a nontrivial kernel
element of I − A∞ with

∫
η∞1 = η∞2 = 0, which is a contradiction. This proves the

lemma.

Let Bδ be the δ-ball in the space X0, i.e.,

Bδ :=
{
φ = (η1, η2, z1, z2) ∈ X0

∣∣∣ ‖φ‖ ≤ δ }
.



On uniformly rotating binary stars and galaxies 33

Lemma 4.2.7 For any ε > 0, there exists δ0 > 0 such that if 0 < δ < δ0, then

lim sup
J→∞

∥∥∥RJ(φ) − RJ(φ̃)
∥∥∥ ≤ ε∥∥∥φ − φ̃∥∥∥ for any φ, φ̃ ∈ Bδ.

Proof Observe that

R
J(φ) − RJ(φ̃)

= NJ(ρ∞m1
+ η1, ρ

∞

m2
+ η2,

1
m2

1m2
+ z1,−

1
m1m2

2

+ z2)

−NJ(ρ∞m1
+ η̃1, ρ

∞

m2
+ η̃2,

1
m2

1m2
+ z̃1,−

1
m1m2

2

+ z̃2) − AJ(φ − φ̃)

=

∫ 1

0
∇N(ρ∞m1

+ η1(s), ρ∞m2
+ η2(s),

1
m2

1m2
+ z1(s),

−1
m1m2

2

+ z2(s)) − AJ ds (φ − φ̃),

where ηi(s) := sηi + (1 − s)η̃i, zi(s) = szi + (1 − s)z̃i, i = 1, 2. Thus we see from Lemma
4.2.5 that for any ε > 0, there exist δ1 > 0 such that if ‖(η1(s), η2(s), z1(s), z2(s)‖ < δ1,

lim sup
J→∞

‖R
J(φ) − RJ(φ̃)‖

≤

∫ 1

0
‖∇NJ(ρ∞m1

+ η1(s), ρ∞m2
+ η2(s),

1
m2

1m2
+ z1(s),

−1
m1m2

2

+ z2(s)) − AJ
‖ ds ‖φ − φ̃‖

≤ ε‖φ − φ̃‖.

By taking δ0 = δ1/2, this completes the proof.

Proof (Completion of proof of Theorem 4.0.4) By the convergence,

lim
J→∞
‖ρ̃J

1(· + x̄(ρ̃J
1)) − ρ∞m1

‖L∞ + ‖ρ̃J
2(· + x̄(ρ̃J

2)) − ρ∞m2
‖L∞ = 0,

it is sufficient to show that the equation for φ = (η1, η2, ζ1, ζ2)

(I − AJ)φ = RJ(φ),
∫
η1 =

∫
η2 = 0 (4.2.6)

has a unique solution on a small ball Bδ when J is large.
Let φ, φ̃ ∈ Bδ be two solutions of (4.2.6) for some δ to be chosen later. Then, we

see from Lemma 4.2.6 that there exists a constant c > 0 independent of large J such
that

c‖φ − φ̃‖ ≤ ‖(I − AJ)(φ − φ̃)‖.

Invoking Lemma 4.2.7, we take a suitable δ > 0 satisfying

lim sup
J→∞

∥∥∥RJ(φ) − RJ(φ̃)
∥∥∥ ≤ c

2

∥∥∥φ − φ̃∥∥∥.
This implies that for any sufficiently large J,

c‖φ − φ̃‖ ≤
c
2
‖φ − φ̃‖,

from which we see that φ = φ̃.
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5 Symmetry for the equal mass case

In this section, we prove (iii) of Theorem 2.3.2. The strategy is to construct a family
of symmetric solutions to the system of equations (4.0.3) satisfying the assumptions
of Theorem 4.0.4. Then by Theorem 4.0.4, it should coincide with the normalized
minimizer of the minimization problem (2.2.4) so that (iii) of Theorem 2.3.2 is proved.

Proposition 5.0.1 Assume m1 = m2 = m and r1 = r2 = r. Then for sufficiently large J > 0,

there exists a normalized family of solutions ρJ = ρJ
1 + ρJ

2 ∈ W
J
m,m to (4.0.3) satisfying

ρJ
1(x) = ρJ

2(Rπx), x ∈ B(J2x1, J2r)

and the following: there exists a constant R > 0 independent of J such that

spt(ρJ
1) ⊂ B(x̄(ρJ

1), R), spt(ρJ
2) ⊂ B(x̄(ρJ

2), R)

and there hold the following convergences:

lim
J→∞
‖ρJ

1(· + x̄(ρJ
1)) − ρ̃∞m ‖L∞ + ‖ρJ

2(· + x̄(ρJ
2)) − ρ̃∞m ‖L∞ = 0,

lim
J→∞

x̄(ρJ
1)

J2 = (
1

m3 , 0, 0), lim
J→∞

x̄(ρJ
2)

J2 = −(
1

m3 , 0, 0),

lim
J→∞

F(ρJ
1, ρ

J
2)

m
= C∞m , lim

J→∞

F(ρJ
2, ρ

J
1)

m
= C∞m .

(5.0.1)

Proof In order to obtain a solution to (4.0.3) symmetric with respect to π rotation Rπ,
we consider the following minimization problem

ẼJ
min, sym B min

{
EJ(ρ)

∣∣∣ ρ ∈ WJ
m,m, ρ1(x) = ρ2(Rπx) a.e. x ∈ B(J2x1, J2r)

}
. (5.0.2)

Similarly with the original problem, any minimizing sequence {ρk} to (5.0.2) admits
a subsequence, still denoted by {ρk} such that {ρk} weakly converges in Lγ(R3) to
some ρ̃J

sym and {Φρk } strongly converges to Φρ̃J
sym

in Ḣ1(R3). In particular, {(ρk)1}

and {(ρk)2}weakly converge respectively to (ρ̃J
sym)1 and (ρ̃J

sym)2 in Lγ(B(J2x1, J2r) and

Lγ(B(J2x2, J2r). This shows that ρ̃J
sym ∈ W

J
m,m and EJ(ρ̃J

sym) ≤ ẼJ
min, sym. Moreover, for

any test function φ ∈ C∞c (B(J2x1, J2r), we have∫
B(J2x1 ,J2r)

(ρ̃J
sym)2(Rπx)φ(x) dx =

∫
B(J2x2 ,J2r)

(ρ̃J
sym)2(x)φ(R−πx) dx

= lim
k→∞

∫
B(J2x2 ,J2r)

(ρk)2(x)φ(R−πx) dx = lim
k→∞

∫
B(J2x1 ,J2r)

(ρk)2(Rπx)φ(x) dx

= lim
k→∞

∫
B(J2x1 ,J2r)

(ρk)1(x)φ(x) dx =

∫
B(J2x1 ,J2r)

(ρ̃J
sym)1(x)φ(x) dx,

which implies (ρ̃J
sym)1(x) = (ρ̃J

sym)2(Rπx) a.e. x ∈ B(J2x1, J2r), and therefore a mini-
mizer ρ̃J

sym exists.
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Then, by following the variational argument by Auchmuty-Beals (proof of The-
orem A in [3]), we see that for each i = 1, 2, (ρ̃J

sym)i is continuous on B(J2xi, J2ri) and
there exists some constants CJ

sym,i such that

−
J2

2I(ρ̃J
sym)2

|P(x − x̄(ρ̃J
sym))|2 + A′((ρ̃J

sym)i) +Φρ̃J
sym

= −CJ
sym,i in {(ρ̃J

sym)i > 0},

(5.0.3)

−
J2

2I(ρ̃J
sym)2

|P(x − x̄(ρ̃J
sym))|2 + A′((ρ̃J

sym)i) +Φρ̃J
sym
≥ −CJ

sym,i in B(J2xi, J2ri). (5.0.4)

By the π rotating symmetry of ρ̃J
sym, there automatically holds that x̄i(ρ̃

J
sym) =

0, i = 1, 2, i.e., Px̄(ρ̃J
sym) = 0.

We first claim that

lim
J→∞

E∞((ρ̃J
sym)i) = Ẽ∞m , i = 1, 2. (5.0.5)

Indeed, from the inequality

EJ(ρ̃J
sym) ≤ EJ(ρ∞m (· − J2x1) + ρ∞m (· − J2x2)),

where ρ∞m is the unique minimizer of the limit variational (3.1.1) with x̄(ρ∞m ) = 0, one
has, as J→∞

E∞((ρ̃J
sym)1) + E∞((ρ̃J

sym)2) ≤ E∞(ρ∞m ) + E∞(ρ∞m ) + o(1).

Since E∞(ρ∞m ) ≤ E∞((ρ̃J
sym)i), i = 1, 2, we deduce that the claim holds true. In partic-

ular, we also note that ẼJ
min,sym < 0 for sufficiently large J > 0.

Secondly, we claim that the constants CJ
sym,i, i = 1, 2 are positive for every suffi-

ciently large J > 0. To the contrary, suppose the converse, i.e., there exists a sequence
{Jk} → ∞ such that CJk

sym,i ≤ 0. The energy convergence (5.0.5) says (ρ̃Jk
sym)i is a mini-

mizing sequence of the limit variational problem (3.1.1). Then by Theorem 3.1 in [43],
there exists a sequence of translation vectors {tk} ⊂ R

3 such that after choosing a
subsequence, {(ρ̃Jk

sym)i(· − tk)}weakly converges in Lγ to ρ∞m and {Φ
(ρ̃

Jk
sym)i(·−tk)

} strongly

converges in Ḣ1 toΦρ∞m as k→∞. In particular, {Φ
(ρ̃

Jk
sym)i(·−tk)

} strongly converges in L6

toΦρ∞m by the Gagliardo-Nirenberg inequality. Then, extracting a subsequence again
if necessary, we may assume that {Φ

(ρ̃
Jk
sym)i(·−tk)

} almost everywhere converges toΦρ∞m .

Moreover, the energy convergence (5.0.5) and Ḣ1 convergence of {Φ
(ρ̃

Jk
sym)i(·−tk)

} imply

that
lim
k→∞
‖(ρ̃Jk

sym)i(· − tk)‖Lγ = ‖ρ∞m ‖Lγ .

Since the Banach space Lγ satisfies the Kadec-Klee property, saying that the weak
topology coincides with the norm topology on the unit sphere, we can conclude
that (ρ̃Jk

sym)i(· − tk) strongly converges in Lγ and consequently almost everywhere
to to ρ∞m . We now pick a point x0 ∈ spt(ρ∞m ) such that both of {(ρ̃Jk

sym)i(x0 − tk)} and
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{Φ
(ρ̃

Jk
sym)i(·−tk)

(x0)}
(
= {Φ

(ρ̃
Jk
sym)i

(x0 − tk)}
)

converge. Then taking lim sup to the both sides

of the inequality (5.0.4), we obtain

0 > C∞m = A′(ρ∞m (x0)) +Φρ∞ (x0) ≥ lim sup
k→∞

(−CJk
sym,i) ≥ 0,

which is a contradiction and the second claim follows.
Then we now can apply the arguments of proof of Lemma 3.3.8 without modi-

fication to obtain the bound

lim sup
J→∞

‖ρ̃J
sym‖W1,∞(R3) < ∞.

This let us to follows the arguments for the proof of Proposition 6.6. in [40] (it
requires only uniform L∞ bound for ρ̃J

sym) to deduce the existence of a constant
Rsym > 0 independent of J such that for large J > 0,

spt((ρ̃J
sym)i) ⊂ B(x̄((ρ̃J

sym)i), Rsym) i = 1, 2. (5.0.6)

We finally consider the normalization of ρ̃J
sym still denoted by ρ̃J

sym. We note that ρ̃J
sym

is contained in W
J
m,m by (5.0.6) and still satisfies theπ rotation symmetry because it is

obtained by a rotation with respect to x1x2 plane and a translation with respect to x3

direction. Thus ρ̃J
sym is a normalized minimizer of the minimization problem (5.0.2)

so that we may follow the proof of Lemmas 3.3.5, 4.0.1 and 4.0.3 to see ρ̃J
sym solves the

system of equations (4.0.3). For obtaining the convergences (5.0.1), we may follow
the remaining procedures of the proof of Proposition 3.3.1 without modification.
This ends the whole proof of Proposition 5.0.1.

6 Orbital stability for binary stars

In this section, we show the orbital stability of binary stars. To this end, we first
introduce the notion of a weak solution to Euler-Poisson equations (1.0.1) for per-
turbations.

Definition 6.0.1 Let the triple (ρ,u, Φ) : R3
× [0,T]→ R≥0 ×R3

×R where ρ, ρu, ρu ⊗
u, ρ∇Φ ∈ L∞([0,T]; L1

loc(R
3)) be given. Consider the Cauchy problem for (1.0.1) with

the initial data (ρ(x, 0),u(x, 0)) = (ρ0(x),u0(x)). We say that (ρ,u, Φ) : R3
× [0,T] →

R≥0 ×R3
×R is a weak solution of the Cauchy problem of Euler-Poisson equations (1.0.1)

if for each t ∈ [0,T] and for any test functions ψ,Ψ = (ψ1, ψ2, ψ3) ∈ C∞c (R3
× [0,T]), the

following hold:∫ t

0

∫
R3

(
ρ∂tψ + ρu · ∇ψ

)
dxdt =

∫
R3
ρ(x, t)ψ(x, t)dx −

∫
R3
ρ0(x)ψ(x, 0)dx (6.0.1)∫ t

0

∫
R3

(
ρu · ∂tΨ + ρu ⊗ u · ∇Ψ − ρ∇Φ ·Ψ

)
dxdt (6.0.2)

=

∫
R3
ρ(x, t)u(x, t) ·Ψ (x, t)dx −

∫
R3
ρ0(x)u0(x) ·Ψ (x, 0)dx
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Remark 6.0.2 By taking suitable test functions, one can easily see that the total mass and
and the total angular momentum in x3−direction are preserved for those weak solutions:∫

R3
ρ(x, t)dx =

∫
R3
ρ0(x)dx, t ≥ 0∫

R3
(x1u2(x, t) − x2u1(x, t))ρ(x, t)dx =

∫
R3

(x1u02(x) − x2u01(x))ρ0(x)dx, t ≥ 0.

In the absence of shock waves, the total energy is also preserved [48] but in general it is
non-increasing due to the entropy condition from the second law of thermodynamics. We
will not address the existence of global weak solutions of the Euler-Poisson, which is out of
scope of this article, but we refer to [37,39] for further discussion on weak solutions, entropy
weak solutions and stability.

Next we introduce various distances to be used for stability result.

6.1 Notion of distances for nonlinear stability

Definition 6.1.1 Let ρ̃ ∈ WJ
m1 ,m2

be a minimizer of (2.2.4) and ρ ∈ WJ
m1 ,m2

. If there exist

θ ∈ R, ν ∈ R3 such that ρ̃θ,ν, ρθ,ν ∈ W
J
m1 ,m2

, then we define a distance function

d0(ρ, ρ̃) :=
∫
R3

A(ρ) − A(ρ̃) −
(

J2

2I(ρ̃)2 |P(x − x̄(ρ̃))|2 −Φρ̃

)
(ρ − ρ̃) dx.

Otherwise we define d0(ρ, ρ̃) = ∞.

In the following, by using a strict convexity of A, we show that d0 is positive and
is zero if and only if ρ = ρ̃.

Lemma 6.1.2 For any ρ ∈ WJ
m1 ,m2

and any minimizer ρ̃ ∈ WJ
m1 ,m2

of (2.2.4), one has
d0(ρ, ρ̃) ≥ 0. Moreover, d0(ρ, ρ̃) = 0 if and only if ρ = ρ̃.

Proof We may only consider the case that there exist θ ∈ R, ν ∈ R3 such that

ρθ,ν, ρ̃θ,ν ∈ W
J
m1 ,m2

. We see from Theorem 2.2.3 that

d0(ρ, ρ̃) =

2∑
i=1

∫
(Tθ,ν)−1(B(J2xi ,J2ri))

A(ρ) − A(ρ̃) −
(

J2

2I(ρ̃)2 |P(x − x̄(ρ̃))|2 −Φρ̃ − Ci

)
(ρ − ρ̃) dx

≥

2∑
i=1

∫
spt(ρ̃i)

A(ρ) − A(ρ̃i) − A′(ρ̃i)(ρ − ρ̃i) dx.

Since A(ρ) is strictly convex w.r.t ρ, A(ρ)−A(ρ̃i)−A′(ρ̃i)(ρ− ρ̃i) ≥ 0, and A(ρ)−A(ρ̃i)−
A′(ρ̃i)(ρ − ρ̃i) = 0 if and only if ρi = ρ̃i. This proves the lemma.

We next define a distance function taking into account the difference of the center
of masses.

Definition 6.1.3 For ρ and ρ̃ described in Definition 6.1.1, define

d1(ρ, ρ̃) := d0(ρ, ρ̃) +
J2

2

(
(m1 + m2)|P(x̄(ρ) − x̄(ρ̃))|2

I(ρ̃)2 +
(I(ρ) − I(ρ̃))2

I(ρ)I(ρ̃)2

)
.
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The next one measures the deviation of velocity fields.

Definition 6.1.4 For (ρ,u) ∈ SJ
m1 ,m2

, define

d2(u, ũρ) :=
∫
R3

1
2
|u(x) − ũρ(x)|2ρ(x) dx,

where ũρ is the uniform rotating velocity vector with respect to x̄(ρ) with angular velocity
J/I(ρ), i.e.,

ũρ =
J

I(ρ)
~ez × (x − x̄(ρ)).

We now show that the distance functions d1(ρ, ρ̃) and d2(u, ũρ) naturally appear
when measuring the energy deviation of (ρ, u) from the minimizer (ρ̃, ũρ).

Lemma 6.1.5 Let ρ̃ be a minimizer of the variational problem (2.2.4). For (ρ,u) ∈ SJ
m1 ,m2

,
there holds

E(ρ, u) − EJ(ρ̃) = d1(ρ, ρ̃) + d2(u, ũρ) −
1

8π
‖∇Φρ − ∇Φρ̃‖

2
L2(R3)

whenever there exist θ ∈ R, ν ∈ R3 such that ρ̃θ,ν, ρθ,ν ∈ W
J
m1 ,m2

.

Proof We decompose as

E(ρ, u) − EJ(ρ̃) = E(ρ,u) − EJ(ũρ) + EJ(ũρ) − EJ(ρ̃)

=

∫
R3

1
2
|u|2ρ dx −

J2

2I(ρ)︸                     ︷︷                     ︸
(A)

+

∫
R3

A(ρ) − A(ρ̃) dx −
J2

2I(ρ)
−

J2

2I(ρ̃)︸                                        ︷︷                                        ︸
(B)

−
1
2

("
ρ(x)ρ(y)
|x − y|

dxdy −
"

ρ̃(x)ρ̃(y)
|x − y|

dxdy
)

︸                                                 ︷︷                                                 ︸
(C)

Then, direct computations show

(A) =

∫
R3
|u|2ρ dx − 2

J
I(ρ)

~ez ·

∫
R3

((x − x̄(ρ)) × u)ρ dx +
J2

I(ρ)

=

∫
R3
|u|2ρ dx − 2

∫
R3

(u · ũρ)ρ dx +

∫
R3
|ũρ|2ρ dx

=

∫
R3
|u − ũρ|2ρ dx = d2(u, ũρ),



On uniformly rotating binary stars and galaxies 39

where we used ũρ = J
I(ρ)~ez × (x − x̄(ρ)).

(B) = d0(ρ, ρ̃) +

∫
R3

(
J2

2I(ρ̃)2 |P(x − x̄(ρ̃))|2 −Φρ̃

)
(ρ − ρ̃) dx +

J2

2I(ρ)
−

J2

2I(ρ̃)

= d0(ρ, ρ̃) +
J2

2

(
1

I(ρ̃)2

(∫
(|P(x − x̄(ρ̃))|2 − |P(x − x̄(ρ))|2)ρ dx

)
+

I(ρ) − I(ρ̃)
I(ρ̃)2 +

1
I(ρ)
−

1
I(ρ̃)

)
−

∫
R3
Φρ̃(ρ − ρ̃) dx

= d0(ρ, ρ̃) +
J2

2

(
(m1 + m2)|P(x̄(ρ) − x̄(ρ̃))|2

I(ρ̃)2 +
(I(ρ) − I(ρ̃))2

I(ρ)I(ρ̃)2

)
−

∫
R3
Φρ̃(ρ − ρ̃) dx

= d1(ρ, ρ̃) −
∫
R3
Φρ̃(ρ − ρ̃) dx

and

(C) =

"
ρ(x)ρ(y)
|x − y|

dxdy −
"

ρ̃(x)ρ̃(y)
|x − y|

dxdy

+

"
(ρ̃(x) − ρ(x))ρ̃(y)

|x − y|
dxdy +

"
ρ̃(x)(ρ̃(x) − ρ(y))

|x − y|
dxdy − 2

∫
R3
Φρ̃(ρ − ρ̃) dx

=

"
(ρ(x) − ρ̃(x))(ρ(y) − ρ̃(y))

|x − y|
dxdy − 2

∫
R3
Φρ̃(ρ − ρ̃) dx

=
1

4π
‖∇Φρ − ∇Φρ̃‖

2
L2 − 2

∫
R3
Φρ̃(ρ − ρ̃) dx.

Combining (A), (B) and (C), we can complete the proof.

Remark 6.1.6 From Lemma 6.1.5 we see that the positive part of the energy deviation from
the minimal energy is quantitatively given by the distance function d1 + d2 at the expense
of the negative potential energy, and thus the minimizing energy alone is not sufficient for
stability. Nevertheless, Lemma 6.1.5 indicates that if E(ρ,u)−EJ(ρ̃) and ‖∇Φρ−∇Φρ̃‖

2
L2(R3)

can be made small, the distance function d1 + d2 stays small. In fact for our orbital stability
result (cf. Theorem 6.4.1), we work with d1+d2+‖∇Φρ−∇Φρ̃‖

2
L2(R3) as the total measurement

and together with Lemma 6.1.5 we resort to the energy conservation or dissipation property
of dynamical solutions and the strong convergence of the potential energy which follows
from the compactness result on minimizing sequences (cf. Lemma 6.4.3).

6.2 Dynamical assumptions for nonlinear stability

(D) There exist TJ ∈ (0,∞] and a nonempty class of initial data IJ ⊂ S
J
m1 ,m2

with the
following property: for any (ρ0,u0) ∈ IJ, there exists a weak solution (ρ, u) of
(EP) with the initial data (ρ0,u0) such that

(i) (ρ(·, t),u(·, t)) exists up to the time interval [0,TJ] and

spt(ρ1(·, t)) ⊂ B(x̄(ρ1(·, t)), J2r0), spt(ρ2(·, t)) ⊂ B(x̄(ρ2(·, t)), J2r0)

for some 0 < r0 < min{r1, r2}/4 and all t ∈ [0,TJ];
(ii) E(ρ(·, t),u(·, t)) ≤ E(ρ0,u0) for any t ∈ [0,TJ];
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6.3 Remarks on instability in Lyapunov sense

Lemma 6.3.1 Let (ρ0, v0) ∈ IT and (ρ, v) be a solution of (EP) with the initial datum
(ρ0, v0). Then one has

x̄(ρ(·, t)) = x̄(ρ0) + t
∫
R3

v0ρ0 dx.

Proof We differentiate Mx̄(ρ(·, t)) twice with respect to t to get

d2

dt2 Mx̄(ρ(·, t)) =
d
dt

∫
R3

x∂tρ dx = −
d
dt

∫
R3

x∇ · (ρv) dx =

∫
R3
∂t(ρv) dx

= −

∫
R3
∇ · (ρv)v dx −

∫
R3
ρ(v · ∇)v + ∇(Kργ) + ρ∇Φ dx

= −

∫
R3
∇ · (v ⊗ v) + ∇(Kργ) − 4π∆Φ∇Φ dx = 0.

Therefore we can see

x̄(ρ(·, t)) = x̄(ρ0) + t
∫
R3

v0ρ0 dx.

Remark 6.3.2 Let x̄i = x̄(ρi(·, t)) be the center of mass for ρi, and letΦi be the gravitational
potential corresponding to ρi so that Φ =

∑2
i=1 Φi and ∆Φi = 4πρi. The same calculation

using the evolution equations for (ρi, vi) in the proof of Lemma 6.3.1 reveals

d2

dt2 mix̄(ρi(·, t)) = −

∫
R3
ρi∇Φdx = −

∑
k,i

∫
R3
ρi∇Φkdx

= −
∑
k,i

∫
R3

∫
R3
ρi(x, t)

x − y
|x − y|3

ρk(y, t)dydx

which shows that the dynamics of the center of mass for one body is determined by the tidal
force due to the other body.

Lemma 6.3.1 shows instability can occur by a translation of center of mass.

6.4 Orbital stability for binary stars

We now state the main result of this section.

Theorem 6.4.1 Let ρ̃ ∈ WJ
m1 ,m2

be a minimizer to (2.2.4). Assume (D). For any ε > 0,
there exists a δ > 0 such that if an initial data (ρ0,u0) ∈ IJ satisfies

d1(ρ0, ρ̃) + d2(u0, ũρ0 ) + ‖∇Φρ0 − ∇Φρ̃‖L2(R3) < δ,

then there exist θ(t) ∈ R, ν(t) ∈ R3 such that for every t ∈ [0,TJ], the solution (ρ,u) to
Cauchy problem of (EP) with initial data (ρ0,u0) satisfies

d1(ρθ(t),ν(t)(·, t), ρ̃) + d2(u(·, t), ũρ(·,t)) + ‖∇Φρθ(t),ν(t)(·,t) − ∇Φρ̃‖L2(R3) < ε.
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Remark 6.4.2 Theorem 6.4.1 shows that under suitable assumptions on admissible per-
turbed solutions, McCann’s binary star is orbitally stable: if initial data measured using d1,
d2 and the potential energy is close enough to the binary star solution, the deviation with
respect to the same distance stays small up to a rigid motion as long as the solutions exist
and the support of the solutions stays bounded. The necessary spatial shifts and rotations
appearing in the statement reflect the symmetry and invariance of the system.

We firstly prove two auxiliary lemmas. The first one is the compactness result
on minimizing sequences to the minimization problem (2.2.4).

Lemma 6.4.3 There holds the following:

(i) Any normalized minimizing sequence {ρn} ⊂ W
J
m1 ,m2

of (2.2.4) weakly converges to

a normalized minimizer ρ̃ ∈ W
J
m1 ,m2

of (2.2.4) in Lγ and ∇Φρn strongly converges to
∇Φρ̃ in L2, after choosing a subsequence.

(ii) For any minimizing sequence {ρn} ⊂ W
J
m1 ,m2

, there exists {θn} ⊂ R and {νn} ⊂ R3

such that {ρθn ,νn
n } ⊂ W

J
m1 ,m2

weakly converges to a minimizer ρ̃ ∈ W
J
m1 ,m2

of (2.2.4)
in Lγ and ∇Φρθn ,νn

n
strongly converges to ∇Φρ̃ in L2, after choosing a subsequence.

Proof We first point out that any minimizing sequence {ρn} ⊂ W
J
m1 ,m2

of (2.2.4)

weakly converges to a minimizer ρ̃ ∈ W
J
m1 ,m2

of (2.2.4) in Lγ and ∇Φρn strongly
converges to ∇Φρ̃ in L2, after choosing a subsequence. This is due to the fact that
spt(ρn) ⊂ B(J2x1, J2r1) ∪ B(J2x2, J2r2) so that Lemma 3.2 in [43] applies. Then the
assertions (i) and (ii) are just corollaries of this. For (i), we note that the center of
mass x̄(ρn) should converge to x̄(ρ̃) by the weak convergence in Lγ. For (ii), we
just use the definition of the admissibleWJ

m1 ,m2
and invariance of EJ under a rigid

motion.

We next show that the solution for the Cauchy problem belongs the admissible
class along the evolution.

Lemma 6.4.4 There exists δ0 > 0 such that if an initial data (ρ0,u0) ∈ IJ satisfies

d1(ρ0, ρ̃) + d2(u0, ũρ0 ) + ‖∇Φρ0 − ∇Φρ̃‖L2(R3) < δ0,

then the solution (ρ(·, t),u(·, t)) to Cauchy problem of (EP) with initial data (ρ0,u0) belongs
to SJ

m1 ,m2
for every t ∈ [0,TJ].

Proof We may assume ρ̃ is normalized, i.e., x̄(ρ̃) = 0, x̄1(ρ̃1) > 0 and x̄2(ρ̃1) = x̄2(ρ̃2) =
0. The other minimizers can be dealt in the analogous way. For ρ, we define ρ̂(x) :=
ρ(Rθx + x̄(ρ)), where θ is chosen so that ρ̂(x) is normalized.

To the contrary suppose not. Then there exist {tn} ⊂ [0,TJ] and a sequence of
initial data {ρ0,n,u0,n} ⊂ IT such that

d1(ρ0,n, ρ̃) + d2(u0,n, ũρ0,n ) + ‖∇Φρ0,n − ∇Φρ̃‖L2(R3) <
1
n

(6.4.1)

and for the solution (ρn,un) to Cauchy problem of (EP) with initial data (ρ0,u0), ρ̂n

firstly leaves the admissible classW
J
m1 ,m2

at time tn.
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We claim that the leaving time tn must be positive. Since (ρ0,n,u0,n) ∈ IJ, one has

spt((ρ0,n)1 ⊂ B(x̄((ρ0,n)1), J2r0), spt((ρ0,n)2) ⊂ B(x̄((ρ0,n)2), J2r0).

Also, combining Theorem 2.2.5.(ii) and Theorem 2.3.2.(i), we see that

spt(ρ̃1) ⊂ B(J2(x1 + o(1)),R), spt(ρ̃2) ⊂ B(J2(x2 + o(1)),R).

Then the contradiction hypothesis (6.4.1) says ρ̂0,n ∈ W
J
m1 ,m2

. Since the solution ρn
has the finite propagation speed for the center of masses, this shows by Assumption
(D).(i) the first leaving time tn is strictly positive.

By the definition of tn, spt((ρ̂n)1) ⊂ B(J2x1, J2r1), spt((ρ̂n)2) ⊂ B(J2x1, J2r2) and ei-
ther spt((ρ̂n)1) or spt((ρ̂n)2) touches the boundary at tn. We just may assume spt((ρ̂n)1)
touches the boundary. Then Assumption (D).(i) implies that∣∣∣x̄((ρ̂n)1(·, tn)) − J2x1

∣∣∣ > 3
4

J2r1. (6.4.2)

Now, we take a smaller time than tn, still denote by tn such that spt((ρ̂n)1) and

spt((ρ̂n)2) are contained in interior of their domains so that ρ̂n ∈ W
J
m1 ,m2

but (6.4.2)
still holds true.

Lemma 6.1.5 implies E(ρ0,n,u0,n) → EJ(ρ̃) as n → ∞. One has from Lemma
2.2.2, Assumption (D).(ii) and the invariace of EJ under the group of rigid motions
{Tθ,ν | θ ∈ R, ν ∈ R3

} that

EJ(ρ̂n(·, tn)) = EJ(ρn(·, tn)) ≤ E(ρn(·, tn),un(·, tn)) ≤ E(ρn,0,un,0)→ EJ(ρ̃), (6.4.3)

which means that ρ̂n(·, tn) is a normalized minimizing sequence for the variational
problem (2.2.4).

Then Lemma 6.4.3 says {ρ̂n(·, tn)} weakly converges to the unique normalized
minimizer ρ̄ in Lγ and

lim
n→∞
‖∇Φρ̂n(·,tn) − ∇Φρ̄‖L2(R3) = 0.

This however makes a contradiction because spt(ρ̃) ∩ spt(ρ̂n) = ∅ for large n by
Theorem 2.2.5.(ii) and (6.4.2).

We are now ready to finish the proof of Theorem 6.4.1.

Proof (Completion of Proof of Theorem 6.4.1) The proof follows the similar lines with

the proof of Lemma 6.4.4. We also may assume a minimizer ρ̃ belongs to W
J
m1 ,m2

.
Arguing indirectly, suppose Theorem 6.4.1 does not hold. Then there exist ε0 > 0,
{tn} ⊂ [0,T] and a sequence of initial data {ρ0,n,u0,n} ⊂ IT such that

d1(ρ0,n, ρ̃) + d2(u0,n, ũρ0,n ) + ‖∇Φρ0,n − ∇Φρ̃‖L2(R3) <
1
n

but the solution (ρn,un) to Cauchy problem of (EP) with initial data (ρ0,u0) satisfies

d1(ρθ,νn (·, tn), ρ̃) + d2(un(·, tn), ũρn(·,tn)) + ‖∇Φρθ,νn (·,tn) − ∇Φρ̃‖L2(R3) ≥ ε0 (6.4.4)

for every θ ∈ R, ν ∈ R3 and n ∈N.
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Lemma 6.1.5 implies E(ρ0,n,u0,n)→ EJ(ρ̃) as n→ ∞. One has from Lemma 2.2.2
and Assumption (D).(ii) that

EJ(ρn(·, tn)) ≤ E(ρn(·, tn),un(·, tn)) ≤ E(ρn,0,un,0)→ EJ(ρ̃) (6.4.5)

so thatρn(·, tn) is a minimizing sequence for the variational problem (2.2.4) by Lemma
6.4.4.

Then Lemma 6.4.3 says there exists {(θn, νn)} ⊂ R × R3 such that after choosing
a subsequence, {ρθn ,νn

n (·, tn)}weakly converges to ρ̃ in Lγ and

lim
n→∞
‖∇Φρθn ,νn

n (·,tn) − ∇Φρ̃‖L2(R3) = 0. (6.4.6)

Let us denote ρ̃n(x) = ρ̃((Tθn ,νn )−1x). It is straightforward to see that ρ̃n is a
minimizer of (2.2.4) since WJ

m1 ,m2
and EJ is invariant under the group of rigid

motions {Tθ,ν | θ ∈ R, ν ∈ R3
}. Now, we again use Lemma 6.1.5 to get

E(ρn(·, tn),un(·, tn))

= EJ(ρ̃n) + d1(ρn(·, tn), ρ̃n) + d2(un(·, tn), ũρn(·,tn)) −
1

8π
‖∇Φρn(·,tn) − ∇Φρ̃n‖

2
L2(R3)

= EJ(ρ̃) + d1(ρθn ,νn
n (·, tn), ρ̃) + d2(un(·, tn), ũρn(·,tn)) −

1
8π
‖∇Φρθn ,νn

n (·,tn) − ∇Φρ̃‖
2
L2(R3).

This yields d1(ρθn ,νn
n (·, tn), ρ̃) + d2(un(·, tn), ũρn(·,tn))→ 0 as n→∞ by (6.4.5) and (6.4.6)

but this makes a contradiction with (6.4.4).

7 Applications to binary galaxies

We first introduce various quantities.
Hamiltonian for (VP):

EVP( f ) = KVP( f ) + GVP( f ) =

"
R6

1
2
|v|2 f (x, v) dxdv −

"
R6

1
2
ρ f (x)ρ f (y)
|x − y|

dxdy,

where ρ f (x) =
∫
R3 f (x, v) dv.

Entropy(Casimir) functional:

C( f ) =

"
R6
β( f (x, v)) dxdv =

∫
R6

1
q
κq−1

q ( f (x, v))q dxdv,

where q > 5/3 and κq =
∫ 1

0 4π(1 − s)
1

q−1
√

2s ds.

Free energy for (VP):
F ( f ) = EVP( f ) + C( f ).

Total mass for (VP):

MVP( f ) =

∫
R3
ρ f (x) dx =

"
R6

f (x, v) dxdv
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Total angular momentum for (VP):

JVP( f ) :=
∫
R6

((x − x̄(ρ f )) × v) f (x, v) dxdv =

∫
R3

((x − x̄(ρ f )) × u f ))ρ f (x) dx,

where x̄(ρ f ) is the center of mass of ρ f , i.e., x̄(ρ f ) =
∫
R3 xρ f (x) dx/MVP( f ) and u f is

the mean velocity field of f , i.e.,

u f =

∫
R3 v f (x, v) dx

ρ f (x)
.

Moment of inertia:

IVP( f ) =

∫
R6
|P(x − x̄(ρ f ))|2 f (x, v) dxdv = I(ρ f ).

Admissible class:

A :=
{

f (x, v) ∈ L1(R6)
∣∣∣ f (x, v) ≥ 0, KVP( f ) + C( f ) < ∞, spt( f ) is bdd

}
and

A
J
m1 ,m2

=
{

f ∈ A
∣∣∣ ρ f ∈ W

J
m1 ,m2

, ~ex3 · JVP( f ) = J
}
.

7.1 Reduction from (VP) energy to (EP) energy

Recall

E(ρ,u) =

∫
R3

A(ρ(x)) dx +
1
2

∫
R3
|u(x)|2ρ(x) dx −

1
2

"
ρ(x)ρ(y)
|x − y|

dxdy,

where A(ρ) = K
γ−1ρ

γ. Here we take K =
γ−1
γ so that A(ρ) = 1

γρ
γ

In the following Proposition, we show that the minimal level of the kinetic
energy-Casimir functional KVP( f ) + C( f ) for the Vlasov-Poisson system with the
given mean density and mean velocity is given by the associated energy for the
Euler-Poisson system for the constraints.

Proposition 7.1.1 For any given (ρ0,u0) ∈ R(R3) ×V(R3) such that
∫
R3 |u0|

2ρ0 dx < ∞,
one has∫

R3
A(ρ0) dx +

∫
R3

1
2
|u0|

2ρ0 dx = min
{
KVP( f ) + C( f ) | f ∈ A, ρ f = ρ0, u f = u0

}
,

where we take A(ρ) =
3q−1
5q−3ρ

5q−3
3q−1 . Moreover the minimum level is uniquely attained by

f0(x, v) = (β′)−1
+

(
λ(ρ0(x)) −

1
2
|v − v0(x)|2

)
,

where λ(ρ) is the Lagrange multiplier determined by λ(ρ) = A′(ρ) = ρ
2(q−1)
3q−1 , and is also the

inverse function of

µ(λ) :=
∫
R3

(β′)−1
+ (λ −

1
2
|v|2) dv = λ

3q−1
2(q−1) .
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Proof From an algebraic manipulation,∫
R3

1
2
|u f (x)|2ρ f (x) dx +

"
R6

1
2
|v − u f (x)|2 f (x, v) dxdv

=

"
R6

1
2
|v|2 f (x, v) dxdv +

∫
R3
|u f (x)|2ρ f (x) dx −

"
R6

u f (x) · v f (x, v) dxdv

=

"
R6

1
2
|v|2 f (x, v) dxdv +

∫
R3
|u f (x)|2ρ f (x) dx −

∫
R3

u f (x) · u f (x)ρ f (x) dx

=

"
R6

1
2
|v|2 f (x, v) dxdv,

we deduce that the equivalent variational problem is∫
R3

A(ρ0) dx = min
{"

R6

1
2
|v − u0(x)|2 f (x, v) + β( f (x, v)) dxdv

∣∣∣ f ∈ A, ρ f = ρ0, u f = u0

}
.

Note that the above problem is naturally reduced to finding a minimizer of

min
{∫
R3

1
2
|v − u0|

2g(v) + β(g(v)) dv
∣∣∣ ∫
R3

g(v) dv = ρ0,

∫
R3

vg(v) dv = u0ρ0

}
(7.1.1)

for any given constant value ρ0 ≥ 0 and vector u0 ∈ R3. We claim that the minimiza-
tion problem (7.1.1) has a unique minimizer

g0(v) = (β′)−1
+ (λ(ρ) −

1
2
|v − u0|

2),

which satisfies

A(ρ) =

∫
R3

1
2
|v − u0|

2g0(v) + β(g0(v)) dv.

If this is the case, we deduce the proposition from this by integrating with respect
to x variable.

To prove the claim, we take a change of variable v 7→ v + u0 so that the mini-
mization problem (7.1.1) transforms to

min
{∫
R3

1
2
|v|2g(v) + β(g(v)) dv

∣∣∣ ∫
R3

g(v) dv = ρ0,

∫
R3

vg(v) dv = 0
}
. (7.1.2)

One can see from Section 2.2 in [43] that the minimum value of (7.1.2) without the
constraint

∫
R3 vg(v) dv = 0 is A(ρ) which is attained by

g̃0(v) B g0(v + u0) = (β′)−1
+ (λ(ρ) −

1
2
|v|2).

Since g̃0(v) satisfies the constraint
∫
R3 vg(v) dv = 0, we can conclude that g̃0(v) is also

a minimizer to the minimization problem (7.1.2) itself. This implies the claim holds
true.

Motivated by Proposition 7.1.1 we introduce the local Gibbs state which gives
rise to the minimal energy level:
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Definition 7.1.2 We define the local Gibbs state G f associated with f ∈ A by

G f (x, v) := (β′)−1
+

(
λ(ρ f (x)) −

1
2
|v − u f (x)|2

)
.

The corollary below immediately follows from Proposition 7.1.1.

Corollary 7.1.3 For any f ∈ A,

KVP(G f ) + C(G f ) ≤ KVP( f ) + C( f )

and the the equality is attained if and only if f = G( f ). Moreover, one has∫
R3

A(ρ f )dx +

∫
R3

1
2
|u f |

2ρ f dx = KVP(G f ) + C(G f ).

From the above discussion, we finally arrive at the existence of a family of
variationally constructed binary galaxy solutions to (VP).

Theorem 7.1.4 (Existence and properties of a minimizer) Consider a minimization prob-
lem

Fmin := inf
f∈AJ

m1 ,m2

F ( f ). (7.1.3)

For any m1,m2 > 0 and any sufficiently large J, there exists a minimizer f̃ ∈ AJ
m1 ,m2

of the
problem (7.1.3) which satisfies the following:

(i) (Self-consistent equations): f̃ satisfies:

β′( f̃ (x, v)) = ω(x1v2−x2v1)−
1
2
|v|2−Φρ f̃

(x)−Ci, ∀(x, v) ∈ {(ρ f̃ )i > 0}×R3, i = 1, 2,

where ω = J
IVP( f̃ )

is the angular velocity and Ci > 0 is a cut-off energy level determined
by a Lagrange multiplier.

(ii) (Time dependent solution): f̃ (R−ωtx,R−ωtv − (0, 0, ω)T
× (R−ωtx)) solves (VP).

(iii) (Reduction to (EP)): (ρ f̃ ,u f̃ ) is a minimizer of the variational problem (2.2.2) described
in Theorem 2.3.2.

Proof The assertions (i) and (ii) follow from direct computations. The assertion (iii)
is a consequence of Proposition 7.1.1.

7.2 Orbital stability for binary galaxies

In addition to distances d1 and d2 defined in Section 6, we need one more notion of
distance d3 measuring the difference between a distribution function f and its local
Gibbs state G( f ).

Definition 7.2.1 For f ∈ AJ
m1 ,m2

, define

d3( f ,G( f )) =

"
R6
β( f ) − β(G( f )) +

1
2
|v − u f |

2( f − G( f )) dvdx,

where G( f ) is the local Gibbs state given by f , i.e.,

G( f ) = (β′)−1
+

(
λ(ρ f ) −

1
2
|v − u f |

2
)
.

The distance function d3 measures the difference between f and its Gibbs state G f .
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The following lemma shows that d3 makes sense as a distance function.

Lemma 7.2.2 For f ∈ AJ
m1 ,m2

, d3( f ,G( f )) ≥ 0 and d3( f ,G( f )) = 0 if and only if f = G( f ).

Proof Observe that as above

d3( f ,G( f )) =

"
R6
β( f ) − β(G( f )) +

1
2
|v − u f |

2( f − G( f )) dvdx

=

"
R6
β( f ) − β(G( f )) − β′(G( f ))( f − G( f )) + λ(ρ f )( f − G( f )) dvdx

=

"
R6
β( f ) − β(G( f )) − β′(G( f ))( f − G( f )) dvdx,

from which we deduce the lemma follows since β is strictly convex.

The following lemma is analogous to Lemma 6.1.5. This is needed for the proof
of orbital stability of a minimizer f̃ to (7.1.3).

Lemma 7.2.3 Let ρ̃ be a minimizer of the variational problem (2.2.4). For f ∈ AJ
m1 ,m2

, there
holds

EVP( f ) − EJ(ρ̃) = d1(ρ, ρ̃) + d2(u, ũρ) + d3( f ,G( f )) −
1

8π
‖∇Φρ − ∇Φρ̃‖

2
L2(R3)

whenever there exist θ ∈ R, ν ∈ R3 such that ρ̃θ,νf , ρ
θ,ν
f ∈ W

J
m1 ,m2

.

Proof We decompose as

EVP( f ) − EJ(ρ̃) = EVP( f ) − E(ρ f ,u f ) + E(ρ f ,u f ) − EJ(ρ̃),

from which and Lemma 6.1.5, we see that we may only concern the term EVP( f ) −
E(ρ f ,u f ). Observe that"

R3

1
2
|u f (x)|2ρ f (x) dx +

"
R6

1
2
|v − u f (x)|2 f (x, v) dxdv

=

"
R6

1
2
|v|2 f (x, v) dxdv +

∫
R3
|u f (x)|2ρ f (x) dx −

"
R6

u f (x) · v f (x, v) dxdv

=

"
R6

1
2
|v|2 f (x, v) dxdv +

∫
R3
|u f (x)|2ρ f (x) dx −

"
R3

u f (x) · u f (x)ρ f (x) dx

=

"
R6

1
2
|v|2 f (x, v) dxdv.

This shows

EVP( f ) − E(ρ f ,u f )

=

"
R6

1
2
|v|2 f (x, v) + β( f (x, v)) dxdv −

∫
R3

1
2
|u f (x)|2ρ f (x) dx −

∫
R3

A(ρ f (x)) dx

=

"
R6
β( f (x, v)) +

1
2
|v − u f (x)|2 f (x, v) dxdv −

"
R6
β(G f (x, v)) +

1
2
|v − u f (x)|2G f (x, v) dxdv

= d3( f ,G f ).



48 Juhi Jang, Jinmyoung Seok

We introduce the notion of a weak solution for the Vlasov-Poisson system.

Definition 7.2.4 Let f : R3
×R3

× [0,T]→ R be given. Consider the Cauchy problem for
(1.0.2) with the initial data f (x, v, 0) = f0(x, v). We say that f ∈ C([0,T]; L1

∩L∞) is a weak
solution of the Cauchy problem of the Vlasov-Poisson system (1.0.2) if for each t ∈ [0,T]
and for any test functions ψ ∈ C∞c (R3

×R3
× [0,T]), the following holds:∫ t

0

"
R3×R3

f
(
∂tψ + v · ∇xψ − ∇xΦ · ∇vψ

)
dxdvdt

=

"
R3×R3

f (x, v, t)ψ(x, v, t)dxdv −
"
R3×R3

f0(x, v)ψ(x, v, 0)dxdv

Remark 7.2.5 For any f0 ∈ L1
∩ L∞ with compact support, there exists a unique weak

solution f (x, v, t) for all t ≥ 0 such that its (x, v)−support is bounded for any finite time
interval, and moreover, the total energy EVP( f ) is preserved [50]. For other notions of global
weak solutions satisfying EVP( f )(t) ≤ EVP( f )(0) but without uniqueness, we refer to [1,22].
For classical solutions and propagation of moments and regularity, see [36, 41, 44].

The dynamical assumption (D)′ for (VP) corresponding to (D) is as follows.

(D)′ There exist T′J ∈ (0,∞] and a nonempty class of initial data I′J ⊂ A
J
m1 ,m2

with the
following property: for any f0 ∈ I′J, there exists a weak solution f of (VP) with
the initial data f0 such that

(i) f (·, t) exists up to the time interval [0,T′J] and

spt((ρ f )1(·, t)) ⊂ B(x̄((ρ f )1(·, t)), J2r0), spt((ρ f )2(·, t)) ⊂ B(x̄((ρ f )2(·, t)), J2r0)

for some 0 < r0 < min{r1, r2} and all t ∈ [0,T′J];
(ii) EVP( f (·, t)) ≤ EVP( f0) for any t ∈ [0,T′J];

With (D)′ and Lemma 7.2.3, we can obtain the following stability result as in
Theorem 6.4.1.

Theorem 7.2.6 Let f̃ be a minimizer to (7.1.3). Assume (D)′. For any ε > 0, there exists a
δ > 0 such that if an initial data f0 ∈ I′J satisfies

d1(ρ f0 , ρ f̃ ) + d2(u f0 , ũρ f0
) + d3( f0,G( f0)) + ‖∇Φρ f0

− ∇Φρ f̃
‖L2(R3) < δ,

then there exist θ(t) ∈ R, ν(t) ∈ R3 such that for every t ∈ [0,T′J], the solution f to Cauchy
problem of (VP) with initial data f0 satisfies

d1(ρθ(t),ν(t)
f (·, t), ρ f̃ )+d2(u f (·, t), ũρ f (·,t))+d3( f (·, t),G( f (·, t)))+‖∇Φρθ(t),ν(t)(·,t)−∇Φρ f̃

‖L2(R3) < ε.

Proof Since Proposition 7.1.4 says ρ f̃ = ρ̃, where ρ̃ is a minimizer to (2.2.4), we may
follow each step of the proof of Theorem 6.4.1 without modification. We omit the
details.
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