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Abstract—Sketchtivity is a stylus-based intelligent tutoring
system that can help instructors automatically provide feedback
to their students, saving them the time and effort of providing
personalized feedback themselves. The system uses a generic
evaluation of perspective, direction, and accuracy to give students
feedback on the quality of their sketches. If instructors want
to personalize the metrics, the system would require them to
provide multiple sets of samples. Therefore, instructors may
use instructional team members such as teaching and graduate
teaching assistants to provide feedback on the required samples.
Compared to that of assistants, the feedback they produce might
vary due to expertise and create noise in the training data. To
address this problem, we implement a deep neural network that
leverages learning to reweight algorithms. The data collected by
the instructor from undergraduate and graduate-level rectilinear
perspectives sketching is considered the validated sample. In this
study, we analyzed the training size requirement for a Multi-
Layer Perceptron (MLP) to accurately predict whether or not a
stroke was a perspective stroke. We observed that the training
data required to predict stroke accuracy is small. In addition, the
performance of the algorithm in terms of accuracy was good even
under extreme conditions such as having highly unbalanced data
and having a small valid set of data. The results from the study
support the use of these types of algorithms for future system
personalizing to support scalable feedback systems in education.

I. INTRODUCTION

Sketching and learning in disciplines such as design, engi-
neering, and creative professions are interconnected. Sketching
is a vital part of the design process and an essential skill for
team communication in design teams [1]. Before technological
tools were widely available, the design was made mainly using
paper and pencil, but with the endless growth of computer
software and new technologies, more software was available
for design. Therefore, in higher education, the use of design
software has replaced in many spaces traditional sketching.
Instructors have moved instruction and assessment from a
paper-pencil space to a computer-aided design (CAD) [2].

Although the use of CAD brings multiple advantages to
the design process, such as accuracy, quality of the proto-
types, and efficiency [3], its use in education is controversial.
Remarkably, some studies have argued that CAD systems in
the early stages of the design process could potentially affect
design skills acquisition for novice engineers. For example, in
a study performed by [4], the authors found that the use of
CAD in the design process for novice engineering designers
affected design efficiency and effectiveness and premature
design fixation, compared to engineers who designed using
freehand sketching.

Multiple researchers addressed the need for intelligent sys-
tems that involve similar mechanics as paper as a pencil but
with the advantages of using technology. From the need for
a system in the middle ground between paper and pencil and
CAD, sketch-based intelligent tutoring systems emerged. One
of the most prominent systems in the literature is Sketchtivity.
Sketchtivity is a web-based system design to provide feed-
back on students’ practice of design sketching fundamentals
[5]. Sketchtivity has proven to be a valuable tool in sketch
education. The system has shown positive effects on students
sketching ability and spatial visualization when studied in a
pre-post scenario [6]. In addition to the potential of this tool
on the increment of both accuracy and speed of the final
sketches [7], Sketchtivity receives constant improvement in
different aspects such as user interface, recognition systems,
and training algorithms, among others.

Personalizing is one aspect that will be considered an
improvement in the following milestones for the system.
Personalization is vital for any intelligence system that wants
to be incorporated into education. In 2020 a research group
dedicated to evaluating the space that Artificial Intelligence
(AI) system may have in education concluded that establishing
collaborative relations between humans and machines is an
essential step for AI educational applications [8]. In terms
of automatic assessment, the confidence of instructors in
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automatic assessment systems may increase when they are
involved in the process. Therefore, there is a need to connect
instructors to the assessment of different abilities offered by
Sketchtivity and other intelligent systems. The ability of an
instructor to personalize the assessment system can help them
trust the tool and be more connected with the assessment
process. In addition, it gives instructors the ability to control
the features assessed for different levels of expertise and
learning.

Although personalization is a vital improvement for intelli-
gent systems, it does come with a cost. For instance, one-way
personalization can be envisioned for the system is by giving
instructors and stakeholders the complete ability to personalize
the assessment by allowing them to provide a sample of
assessed sketches. In that way, their criteria would be the
ones used to train the system. Although this approach brings
flexibility and allows a considerable level of personalization,
the quality, quantity, and balance of the data could be affected
by the training models. It would cause a more complex training
process, starting with the algorithms used in production.

The training algorithms used for the production of assess-
ment in Sketchtivity have varied in complexity [9]. In some
cases, the selection of features collected by the user interface,
the accuracy produced by the hardware, and the quality of
data classification have reduced the complexity of the training
models for some evaluated features. For instance, features such
as perspective accuracy achieved good levels of precision and
recall when using few features and a simple random forest
algorithm [9].

The advantages of giving complete control on the train-
ing to stakeholders may outweigh the move from simple to
more complex training. More complex modeling algorithms
called meta-learning algorithms have the potential to generate
knowledge about learning and therefore present a potential to
predict with fewer valid observations. The learning to reweight
algorithm proposed by Ren et al. [10] is one of the algorithms
of this branch. Ren’s method has proven effective in facial
recognition [11], and it is considered an essential tool in the
Meta-learning Branch of AI [12].

In this research paper, we use an algorithm of the meta-
learning branch [13] of AI to explore the possibility of
incorporating personalization in the assessment of sketches,
particularly in recognition of rectilinear perspective accuracy
recognition. This research paper, therefore, explores the fol-
lowing three questions:

1) Using data assessed by an expert, what would be an
approximate number of sample sketches required for
stakeholders to personalize Sketchtivity’s rectilinear per-
spective accuracy classification?

2) How does noise in the classification classes affect the
sample size requirement?

3) In case of unbalanced and noise data with few valid
training samples, would the learning to reweight algo-
rithm proposed by Ren et al. [10] have the potential to
account for the noise and perform with good accuracy
with a small valid sample size?

Our hypotheses are: (1) When the classification is performed
using a valid set of samples, the sample size requirements
provided by stakeholders can be very low, of the order of 50
samples. (2) Nevertheless, if some of those samples contain
noise or the classes are unbalanced, the sample required might
be more extensive. (3) The learning to reweight algorithm can
increase the accuracy of the model under noise conditions,
lowering the number of valid samples required.

II. LITERATURE REVIEW

This literature review will be divided into two sections.
The first section will focus on the literature on learning and
feedback, further focusing on sketching. The second section
will focus on the literature on deep learning and meta-learning.

A. Learning, sketching and Feedback

Sketching is arguably one of the keystones of the engi-
neering disciplines. It helps engineers consolidate ideas and
communicate with others. Sketching is rooted in engineering
identity, being noticed as the way engineers think and work
[14]. Sketching has been integrated into engineering education,
taking part in engineering training and designing courses. Its
predominance in engineering education has highlighted its
importance.

As with many other skills, feedback is essential in mastering
the ability to sketch. Feedback is conceived as the notion
of the dialogue that exists among different actors to support
learning in formal and informal situations [15]. The relevance
of feedback in learning draws from the complex relation-
ship between teaching and learning; for instance, the co-
constructive model of learning describes learning as a complex
process in which social, emotional, and cognitive dimensions
affect students learning [16]. Feedback takes a role in the
model; as the communication between instructor and learner
and is conceived as an additional opportunity for the students
to learn, adding to the social dimension of learning [17].

Even more important than feedback, timely feedback is
one of the most relevant resources in learning [17]. However,
increasing classroom sizes makes giving individual feedback
a problematic task, with time constrain affecting both qual-
ity and timely feedback. Nevertheless, automatic feedback,
namely intelligence systems programmed to give automatic
feedback to learners, have demonstrated to be a technological
tool with the potential to help students master abilities [18]
such as sketching [9]. The purpose of Sketchtivity is to give
students opportunities to learn sketching skills while receiving
continuous and timely feedback [5].

Students are trained to sketch using perspective and com-
mon exercises in beginner courses, including rectilinear per-
spective, providing the foundation for students to learn to draw
simple sketches using point perspective. However, one of the
most challenging tasks for novice learners is the sketching
of strokes with good perspective technique [9]. Therefore,
accuracy in rectilinear perspective is one of the features that
Sketchtivity assesses. It helps students recognize whether a
linear stroke has accurately drawn on perspective or not. For
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instance, this skill can be used when practicing sketches of
streets and corners (see 2). The immediate feedback given
by Sketchtivity has already proven been beneficial for novice
learners [6], [9]; nevertheless, its adoption requires instructors
confidence in the automatic feedback system.

B. Deep Learning and Meta Learning

Machine learning is a field of artificial intelligence that
aims to give machines the ability to make decisions and
predictions without a specific programming routine designed
for it [19]. Machine learning has been conceived as a way to
replicate human thinking in an artificially intelligent system.
In particular, deep learning is an area of machine learning
compromised with the development of neural networks that
contain hidden layers using linear and non-linear models
and mainly used in the prediction of classification outcomes
[20]. Finally, meta-learning is a branch of machine learning
concerned with the ability of a machine to “learn how to learn.’
The meta-learning branch of machine learning is in charge of
creating algorithms that deal with tasks requiring the machine
to learn multiple times and teach “itself” a task [21].

Some of the algorithms created in the meta-learning branch
intend to solve problems that arise from work with real
data. This is the case of the Learning to Reweight algorithm
proposed by Ren et al. [10]. This algorithm intends to propose
a solution to scenarios in which the training data contains
noise, or the imbalance of the training data creates difficulties
from deep learning algorithms.

The reasoning behind this algorithm is that if one has
a small training sample that is clean, then a machine can
learn from that small sample. It uses multiple runs to create
weights, helping gather information from the rest of the
training samples while remembering that there is a sub-sample
of the data that is more accurate. This algorithm has been used
in multiple fields such as image recognition [22], medicine
[23] and biology [24], but to our knowledge, the current study
is the first in which this algorithm is applied in an education
context.

III. METHODS

A. Data

The data for this study corresponds to the data collected
from a convenience sampling of 40 students from undergradu-
ate and graduate programs and from various majors, including
engineering. The students were asked to sketch a rectilinear
perspective sketch (see Fig.1). From the observation collected,
1210 strokes were manually coded by a design expert. Al-
though multiple classifications were given to each stroke,
this research paper focuses on classifying accurate rectilinear
perspective strokes. The data was collected with Sketchtivity
and the features used correspond to 25 features (see Table
I) that have been highlighted as significant predictors for the
rectilinear perspective [9].

From the 1210 observations obtained, 55% were classified
as perspective strokes while 45% were classified as non-
perspective strokes. Based on mutual information, the ten

TABLE I
FEATURES DEFINITION, ADAPTED FROM [9]

FEATURE DEFINITION
F1 COSINE OF INITIAL ANGLE
F2 SINE OF INITIAL ANGLE
F3 LENGTH OF BOUNDING BOX DIAGONAL
F4 ANGLE OF BOUNDING BOX DIAGONAL
F5 DISTANCE BETWEEN FIRST AND LAST POINT
F6 COSINE OF ANGLE BETWEEN ENDPOINTS
F7 SINE OF ANGLE BETWEEN ENDPOINTS
F8 TOTAL STROKE LENGTH
F9 TOTAL ANGLE TRAVERSED
F10 SUM OF ABSOLUTE VALUES OF ANGLES
F11 SUM OF SQUARED VALUES OF ANGLES
F12 LINE SIMILARITY RATIO
F13 # OF SUB-STROKES SIBLINGS
F14 ABOVE HORIZON?
F15 COSINE OF VP1
F16 COSINE OF VP2
F17 COSINE TO VERTICAL
F18 COSINE TO HORIZONTAL
F19 SINE TO VP1
F20 SINE TO VP2
F21 SINE TO VERTICAL
F22 SINE TO HORIZONTAL
F23 DEGREES TO VP1
F24 DEGREES TO VP2
F25 DEGREES TO VERTICAL

most important features for distinguishing perspective versus
non-perspective are cosine of the initial angle (F1), length of
bounding box diagonal (F3), angle of bounding box diagonal
(F4), the distance between endpoints (F5), cosine of the angle
between endpoints (F6), total stroke length (F8), total angle
traversed (F9), the sum of absolute values of angles (F11), and
line similarity ratio (F12).

Fig. 1. Example of a sketching canvas with two vanishing points and a
sidewalk [9]

B. Data sub-samples

In order to answer the first research question, the data is
divided into two sets: train and test. All features are used, and
the response variable is the binary classification of rectilinear
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perspective. For the second research question, an additional
sub-sample is split from the training set called a meta sample.
This sample will be a set of observations taken from the train
sub-sample of research question 1, and that is left untouched
by the addition of noise (see Fig.2).

Fig. 2. Data sub-sampling to train and test the accuracy and recall

C. Noise

The training dataset corresponds to 50% of the total train
data. This training dataset is modified to account for the
noise that instructional teams might introduce in labeling the
perspective strokes. For instance, one scenario that we can
see as relevant is that of an assistant classifying more strokes
as correctly rectilinear perspective when the strokes do not
comply with all requirements. Therefore, the noise is created
randomly, redirecting actual labels from 0 (non-perspective)
to 1 (perspective) in 1%, 5%, 20%, 30%, 40%, and 50% of
the cases assuming different levels of error. This noise would
be testing the assumption of instructional teams being less
accurate in classifying strokes that are not perspective.

D. RQ1 and RQ2: Approximate number of sketches required

To approximate the number of sketches, a multi-layer
perceptron (MLP) will be used. An MLP is a series of
activation functions stacked on top of each other to predict a
classification, or linear outcome [25]. The choice of an MLP
comes from three reasons (1) First, since the data used for
this project is tabular with only 25 features, a standard feed-
forward neural network fits the data (2) Second, a MLP is a
universal approximator, meaning that it can model any suitable
smooth function and produce any level of accuracy [25]. (3)
Third, the data collected contains strokes from the same user
produced in sequence. Nevertheless, the MLP processes each
stroke independently without any time context, following the
non-dependant nature of the data.

In this work, the model is implemented using PyTorch [26].
The MLP architecture has two hidden layers of sizes 20 and
10 and uses a rectified linear function (RELU) as the activation

function. This architecture was determined empirically by
testing between 1 and 3 layers and the hypertangent, sigmoid,
and RELU activation functions. Following standard practice to
create as generalizable a model as possible, each hidden layer
decreases in size as data passes through the model. The MLP is
trained using stochastic gradient descent with backpropagation
and a momentum of 0.8. The loss function used is binary cross-
entropy with logits. The training uses a batch size of 128, a
learning rate of 0.001, and 100 epochs.

For both modeling scenarios, different training set sizes are
tested (i.e., training on 80%, 50%, 20%, 10%, 5%, and 2%
of the data). Each training configuration is run five times to
get average performance. A summary table with the different
results in terms of accuracy will be reported. The results will
then be descriptively analyzed.

E. RQ2: Learning to reweight algorithm

Using the information gathered in the first research question,
the experiment is repeated with the train/test split size held
constant and the amount of noise in the training data varying
from 0% to 50% as described earlier. Noise is added by
dividing the training set into a training sub-sample and a
meta sub-sample where the training sub-sample randomly has
the noise percentage amount of the non-perspective labels
flipped to perspective. This simulates the scenario in which
the instructor provides some of the samples while less expert
instructional team members provide others with possible er-
rors. Finally, we report the accuracy results for the network
without the additional meta-algorithm and then applied the
algorithm reporting equivalent results.

IV. RESULTS

In this study, we analyzed the training size requirement for
an MLP to accurately predict whether or not a stroke was a
perspective stroke. We replicated the technique proposed by
Ren et al. [10] to reweigh the labels that might have noise in
the data due to the diversity of graders. From the first part
of the study, we concluded that the training data required
to predict the accuracy of a rectilinear stroke is small. For
instance, when looking at Table II it is possible to observe
that the accuracy of the MLP stays relatively high even with
a small training set. For example, from these experiments, an
accuracy of nearly 80% is reached with a test proportion of
90%. In this case, the model is notably accurate while only
having 10% of the observations to train.

From this observation, it was possible to conclude that
a small valid training size might be sufficient to train the
algorithm. Nevertheless, when accounting for how the data
was obtained, it is possible to see that a unique design expert
coded the data used in this study. In practice, this might not
be the case. Therefore, a simulated scenario was proposed.
Dividing the training sample between two sub-samples meta
and training (see Fig 2) as specified in the methods section and
carrying out different experiments, it was possible to see that
when the test proportion was 0.9, even with a small proportion
of noise the model lost accuracy at a great rate (see Table III).
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TABLE II
PERFORMANCE METRICS BY TRAINING SIZE

TEST % TRAIN SAMPLES ACCURACY RECALL PRECISION
20 968 87.52 94.61 82.56
50 605 84.63 91.12 81.54
80 242 82.62 87.81 81.77
90 121 79.80 86.58 77.91
95 60 76.47 83.04 76.28
98 24 70.34 89.73 67.13

TABLE III
PERFORMANCE METRICS BY DIFFERENT LEVELS OF NOISE

TEST % NOISE % ORIG. ACC. NEW ACC. ORIG. RECALL NEW RECALL ORIG. PRECISION NEW PRECISION
90 50 70.12 78.60 96.77 85.35 65.14 76.89
90 40 72.69 79.34 95.14 87.08 67.71 76.91
90 30 77.43 79.71 91.91 86.16 72.97 77.87
90 20 77.41 79.89 89.50 86.50 73.73 77.84
90 10 78.86 80.18 88.47 86.51 75.79 78.17
90 5 78.86 80.18 88.47 86.51 75.79 78.17
90 1 79.72 80.86 87.21 86.89 77.53 78.92
90 0 79.80 80.77 86.58 86.73 77.91 78.96

Thus, the importance of a meta-learning algorithm to account
for the noise in the observations is evident.

Finally, the application of the meta-learning algorithm pro-
posed by [10] in the noisy data seems promising. While keep-
ing the proportion on training samples constant and varying
the noisy order to simulate the error, the algorithm achieves a
greater accuracy and precision in all scenarios. For instance,
when looking at Table III it is possible to see that the algorithm
maintains the performance of the network in the face of noise,
keeping all performance metrics high and balanced while the
accuracy and precision of the baseline model decrease.

V. DISCUSSION

The incorporation of AI in education is the next step for
educational technologies. While there are multiple applica-
tions in which AI-like approaches may help instructors and
other stakeholders encounter better alternatives to those used
until now, it is necessary to encounter interaction between
humans and technological tools for these implementations
to be successful. AI-based technologies which provide high-
quality feedback are a way of making engineering sketching
instruction more scalable and personalized.

The assessment scenario is particularly challenging. Assess-
ment is already a controversial topic, and the incorporation
of automatic tools can create tensions between supporters
and detractors. Nevertheless, the need for feedback and its
importance [17], makes the use of intelligent feedback relevant
for the educational community. Therefore, the more human
interaction that exists between intelligent systems and humans,
the better for the integration and acceptance of such systems
into engineering education [8]

Nevertheless, the more interaction and flexibility of intelli-
gent systems, the greater is the risk of finding extreme cases or
difficulties in the training of the algorithms. In this research,

we have demonstrated a specific case in which personalizing,
defined as human participation in the system, can potentially
carry noise. We have also experimentally shown how noise,
even when in a small proportion, can lower the accuracy of
an otherwise stable algorithm (see Table II).

Meta-learning, a branch of deep learning, has the potential
to deal with some of the problems that might arise when
using human interaction approaches. Furthermore, these types
of algorithms open space to new approaches to the personaliza-
tion of AI systems using fewer data points and learning from
data provided by the stakeholder or users directly. This is the
case of the learning to reweight algorithm proposed by [10].
We conclude that with the aid proportioned by this specific
algorithm, a small proportion of valid classification samples,
such as 61 samples, can be enough to train the network and
achieve good accuracy results.

With these personalization features, instructors may use an
AI system to support grading by first training on a small
sample of assessed sketches. Sketching assessment can benefit
from personalization when the system can accurately deter-
mine what level of learning students are at, providing more ac-
curate information about student learning. Personalized assess-
ment results can also inform higher-quality feedback provided
by the system and/or instructions. The ability to implement
personalized assessment in large classrooms is an advantage
for making sketching assessment more scalable.

VI. LIMITATIONS

A comparison with other approaches for analyzing the
data is necessary to assess other methodologies and make a
holistic evaluation of the approach performance. The data and
trained model apply only to perspective vs. non-perspective
classification and have been proven beneficial when classifying
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rectilinear strokes. More studies need to be developed in order
to argue its applicability to a broader spectrum of strokes.
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