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ABSTRACT
Wepresent a principled automatic testing framework for application-
layer protocols. The key innovation is a domain-specific embedded
language for writing nondeterministic models of the behavior of
networked servers. These models are defined within the Coq inter-
active theorem prover, supporting a smooth transition from testing
to formal verification.

Given a server model, we show how to automatically derive a
tester that probes the server for unexpected behaviors. We address
the uncertainties caused by both the server’s internal choices and
the network delaying messages nondeterministically. The derived
tester accepts server implementations whose possible behaviors
are a subset of those allowed by the nondeterministic model.

We demonstrate the effectiveness of this framework by using it
to specify and test a fragment of the HTTP/1.1 protocol, showing
that the automatically derived tester can capture RFC violations
in buggy server implementations, including the latest versions of
Apache and Nginx.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Networks → Protocol testing and verification; •
Theory of computation→ Program specifications; • Information
systems → Web services.

KEYWORDS
Model-based testing, nondeterminism, network refinement, inter-
action trees, Coq, HTTP
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1 INTRODUCTION
The security and robustness of networked systems rest in large
part on the correct behavior of various sorts of servers. This can be
validated either by full-blown verification [4, 16] or model check-
ing [2, 17, 19] against formal specifications, or (less expensively) by
rigorous testing.

Rigorous testing requires a rigorous specification of the protocol
that we expect the server to obey. Protocol specifications can be
written as (1) a server model that describes how valid servers should
handlemessages, or (2) a property that defineswhat server behaviors
are valid. From these specifications, we can conduct (1)model-based
testing [7] or (2) property-based testing [12], respectively.

When testing server implementations against protocol speci-
fications, one critical challenge is nondeterminism, which arises
in two forms—we call them (1) internal nondeterminism and (2)
network nondeterminism. (1) Within the server, correct behavior
may be underspecified. For example, to handle HTTP conditional
requests [10], a server generates strings called entity tags (ETags),
but the RFC specification does not limit what values these ETags
should be. Thus, to create test messages containing ETags, the tester
must remember and reuse the ETags it has been given in previous
messages from the server. (2) Beyond the server, messages and re-
sponses between the server and different clients might arrive in
any order due to network delays and operating-system buffering. If
the tester cannot control how the execution environment reorders
messages—e.g., when testing over the Internet—it needs to specify
what servers are valid as observed over the network.

To address the challenges of both internal and network nonde-
terminism, we propose a generic framework for specifying and
testing servers over the network. Our specification is phrased in
terms of interaction trees [22], a general-purpose data structure for
representing interactive processes. We specify the protocol with a
server model (i.e., a nondeterministic reference implementation),
from which our framework automatically derives a tester that in-
teracts with the server and tries to falsify the assertion that it meets
its specification.

To handle internal nondeterminism in the server, we represent
invisibly generated data and unknown initial state as symbolic
expressions. These expressions are evaluated against observed mes-
sages during testing.

For network nondeterminism, we introduce a network model
that describes how the network can delay messages. We compose
this network model with the server model, yielding a model that
exhibits all valid behaviors as observed by the client from across
the network. Using this client-side model, our derived tester can
interact with the server via multiple connections and reason about
all possible message reorderings among the connections.

To validate our framework, we specified a fragment of HTTP/1.1,
supporting WebDAV methods GET and PUT, conditional requests
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(that are processed only if the precondition is satisfied), and proxy-
ing (forwarding the request to another HTTP server). The specifica-
tion includes a server model for a subset of HTTP/1.1 and a network
model for a subset of TCP. We derived a testing client from these
models and found violations of RFC 7232: HTTP/1.1 Conditional
Requests [10] in both Apache and Nginx. The tester was also able
to capture several bugs that we intentionally inserted into Apache.

Our main contributions are:
• We propose a methodology for testing application layer pro-
tocols over the network. Our specification composes a server
model with a generic network model, addressing network
nondeterminism caused by network delays.

• We represent server states symbolically using interaction
trees, allowing the testing framework to reason about inter-
nal nondeterminism in the server.

• We demonstrate the effectiveness of our methodology by
specifying and testing a subset of HTTP/1.1 with both inter-
nal and network nondeterminism. Our automatically derived
tester is able to detect violations of RFC standards in main-
stream servers.

We describe the challenges of testing nondeterministic protocols
in more detail in Section 2, define our specification language in
Section 3, and explain our method for deriving testers from specifi-
cations in Section 4. We evaluate the derived tester for HTTP/1.1
empirically in Section 5, survey related work in Section 6, and
conclude with future work in Section 7.

2 CHALLENGES: TESTING INTERNAL AND
NETWORK NONDETERMINISM

To illustrate the challenges in testing networked applications, we
discuss two features of HTTP/1.1—conditional requests [10] and
message forwarding [11]—showcasing internal nondeterminism
and network nondeterminism, respectively.

Internal Nondeterminsm. HTTP/1.1 requests can be conditional:
if the client has a local copy of some resource and the copy on
the server has not changed, then the server needn’t resend the
resource. To achieve this, an HTTP/1.1 server may generate a short
string, called an “entity tag” (ETag), identifying the content of some
resource, and send it to the client:

/* Client: */

GET /target HTTP /1.1

/* Server: */

HTTP /1.1 200 OK

ETag: "tag -foo"

... content of /target ...

The next time the client requests the same resource, it can include
the ETag in the GET request, informing the server not to send the
content if its ETag still matches:

/* Client: */

GET /target HTTP /1.1

If -None -Match: "tag -foo"

/* Server: */

HTTP /1.1 304 Not Modified

If the tag does not match, the server responds with code 200 and
the updated content as usual. Similarly, if a client wants to modify
the server’s resource atomically by compare-and-swap, it can in-
clude the ETag in the PUT request as If-Match precondition, which
instructs the server to only update the content if its current ETag
matches.

Thus, whether a server’s response should be judged valid or not
depends on the ETag it generated when creating the resource. If the
tester doesn’t know the server’s internal state (e.g., before receiving
any 200 response including the ETag), and cannot enumerate all of
them (as ETags can be arbitrary strings), then it needs to maintain
a space of all possible values, narrowing the space upon further
interactions with the server.

It is possible, but tricky, to write an ad hoc tester for HTTP/1.1
by manually “dualizing” the behaviors described by the informal
specification documents (RFCs). The protocol document describes
how a valid server should handle requests, while the tester needs to
determine what responses received from the server are valid. For
example, “If the server has revealed some resource’s ETag as "foo",
then it must not reject requests targetting this resource conditioned
over If-Match: "foo", until the resource has been modified”; and
“Had the server previously rejected an If-Match request, it must
reject the same request until its target has been modified.” Fig-
ure 1 shows a hand-written tester for checking this bit of ETag
functionality; we hope the reader will agree that this testing logic
is not straightforward to derive from the informal “server’s eye”
specifications.

Network Nondeterminism. When testing anHTTP/1.1 server over
the network, although TCP preserves message ordering within
each connection, it does not guarantee any order between different
connections. Consider a proxy model in Figure 2: it specifies how a
server should forward messages. When the forwarded messages
are scrambled as in Figure 3, the tester should be loose enough to
accept the server, because a valid servermay exhibit such reordering
due to network delays. The tester should also be strict enough to
reject a server that behaves as Figure 4, because no network delay
can let the proxy forward a message before the observer sends it.

The kinds of nondeterminism exemplified here can be found
in many other scenarios: (i) Servers may use some (unknown) al-
gorithm to generate internal state for nonces, sequence numbers,
caching metadata, etc, featuring internal nondeterminism. (ii) When
the server runs multiple threads concurrently (e.g. to serve mul-
tiple clients), the operating system might schedule these threads
nondeterministically. When testing the server over the network,
such “nondeterminism outside the code of the server program but
still within the machine on which the server is executing” is indis-
tinguishable from nondeterminism caused by network delays, and
thus can be covered by the concept “network nondeterminism.”

3 SPECIFICATION LANGUAGE
A specification in our framework consists of two parts: a server
model specifying server-side behavior, and a network model de-
scribing network delays. By composing these two models, we get a
tester-side specification of valid observations over the network.

Formally, our specifications are written as interaction trees, a
generic data structure for representing interactive programs in Coq.
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(* update : (K → V) * K * V → (K → V) *)

let check (trace : stream http_message ,

data : key → value ,

is : key → etag ,

is_not : key → list etag) =

match trace with

| PUT(k,t,v) :: SUCCESSFUL :: tr '⇒
if t ∈ is_not[k] then reject

else if is[k] == unknown

∨ strong_match(is[k],t)

then let d' = update(data ,k,v) in

let i' = update(is,k,unknown) in

let n' = update(is_not ,k,[]) in

(* Now the tester knows that

* the data in [k] is updated to [v],

* but its new ETag is unknown. *)

check(tr',d',i',n')

else reject

| PUT(k,t,v) :: PRECONDITION_FAILED :: tr '⇒
if strong_match(is[k],t) then reject

else let n' = update(is_not , k, t:: is_not[k])

(* Now the tester knows that

* the ETag of [k] is other than [t]. *)

in check(tr',data ,is,n')

| GET(k,t) :: NOT_MODIFIED :: tr '⇒
if t ∈ is_not[k] then reject

else if is[k] == unknown ∨ weak_match(is[k],t)

then let i' = update(is,k,t) in

(* Now the tester knows that

* the ETag of [k] is equal to [t]. *)

check(tr',data ,i',is_not)

else reject

| GET(k,t0) :: OK(t,v) :: tr '⇒
if weak_match(is[k],t0) then reject

else if data[k] ≠ unknown ∧ data[k] ≠ v

then reject

else let d' = update(data ,k,v) in

let i' = update(is, k,t) in

(* Now the tester knows

* the data and ETag of [k]. *)

check(tr',d',i',is_not)

| _ :: _ :: _ ⇒ reject

end

Figure 1: Ad hoc tester for HTTP/1.1 conditional requests,
for demonstrating how tricky it is to write the logic by hand.
The checker determines whether a one-client-at-a-time trace

is valid or not. The trace is represented as a stream (infinite
linked list, constructed by “::”) of HTTP messages sent and
received. PUT(k,t,v) represents a PUT request that changes
k’s value into v only if its ETag matches t; GET(k,t) is a GET
request for k’s value only if its ETag does not match t; OK(t,v)
indicates the request target’s value is v and its ETag is t. The
tester maintains three sorts of knowledge about the server:
data stored for each content, what some ETag is known to be
equal to, and what some ETag is_not equal to.

in(x)
out(x)
in(y)
out(y)

Proxy

x
x

yy

Figure 2: Proxy model specifying a server that forwards a
message immediately upon receiving it.
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Figure 3: A reordered observation, with two valid network-
level explanations.
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Figure 4: Example of invalid observation.

This language allows us to write rigorous mathematical specifi-
cations, and transform the specification into tester conveniently.
In this paper, we present models as pseudocode for readability.
Technical details about interaction trees can be found in [22].

Subsection 3.1 shows how to handle network nondeterminism.
Subsection 3.2 then expands the model to address internal nonde-
terminism.

3.1 Server and Network Models
The server model specifies how the server code interacts with the
network interface. For example, an extremely simplistic model of
an HTTP proxy (shown in Figure 2) is written as:

let proxy () =

msg := recv();

send(msg);

proxy ()

An implementation is said to be valid if it is indistinguishable
from the model when viewed from across the network. Consider
the following proxy implementation that reorders messages:

void proxy_implementation () {

while (true) {

recv(&msg1); recv(&msg2);

send(msg2); send(msg1);

}

}



ISSTA ’21, July 11–17, 2021, Virtual, Denmark Yishuai Li, Benjamin C. Pierce, and Steve Zdancewic

let tcp (buffer : list packet) =

let absorb =

pkt := recv();

tcp (buffer ++ [pkt]) in

let emit =

let pkts = oldest_in_each_conn(buffer) in

pkt := pick_one(pkts);

send(pkt);

tcp (remove(pkt , buffer)) in

or (absorb , emit)

Figure 5: Network model for concurrent TCP connections.
The model maintains a buffer of all packets en route. In each
cycle, the model may nondeterministically branch to either
absorb or emit a packet. Any absorbed packet is appended to
the end of buffer. When emitting a packet, the model may
choose a connection and send the oldest packet in it.

This reordered implementation is valid, because the model itself
may exhibit the same behavior when observed over the network, as
shown in Figure 3. This “implementation’s behavior is explainable
by the model, considering network delays” relation is called network
refinement by Koh et al. [15].

To specify network refinement in a testable way, we introduce
the network model, a conceptual implementation of the transport-
layer environment between the server and the tester. It models
the network as a nondeterministic machine that absorbs packets
and, after some time, emits them again. Figure 5 shows the network
model for concurrent TCP connections: The network either receives
a packet from some node, or sends the first packet en route of some
connection. This model preserves the message order within each
connection, but it exhibits all possible reorderings among different
connections.

The network model does not distinguish between server and
tester. When one end sends some message, the network recvs the
message and sends it after some cycles of delay; it is then observed
by the other end via some recv call.

In Subsection 4.3, we compose the server and network models
to yield an observer-side specification for testing purposes.

3.2 Symbolic Representation of
Nondeterministic Data

To incorporate symbolic evaluation in our testing framework, our
specification needs to represent internally generated data as sym-
bols. Consider HTTP PUT requests with If-Match preconditions:
Upon success, the server generates a new ETag for the updated
content, and the tester does not know the ETag’s value immediately.
Our symbolic model in Figure 6 represents the server’s generated
ETags as fresh variables. The server’s future behavior might depend
onwhether a request’s ETagmatches the generated (symbolic) ETag.
Such matching produces a symbolic boolean expression, which can-
not be evaluated into a boolean value without enough constraints
on its variables. Our model introduces IF operator to condition
branches over a symbolic boolean expression. Which branch the
server actually took is decided by the derived tester in Section 4.

(* matches : (etag * exp etag) → exp bool *)

(* IF : (exp bool * T * T) → T *)

let put (k : key ,

t : etag ,

v : value ,

data : key → value ,

xtag : key → exp etag) =

IF (matches(t, xtag[k]),

(* then *)

xt := fresh_tag ();

let xtag ' = update(xtag , k, xt) in

let data ' = update(data , k, v) in

return (OK , xtag ', data '),

(* else *)

return (PreconditionFailed , xtag , data))

Figure 6: Symbolic model handling conditional PUT request.
The model maintains two states: data that maps keys to their
values, and xtag that maps keys to symbolic variables that
represent their corresponding ETags. Upon receiving a PUT
request conditioned over “If-Match: t”, the server should
decide whether the request ETag matches that stored in the
server. Uponmatching, the server processes the PUT request,
and represents the updated value’s ETag as a fresh variable.

Network Model

Server Model Symbolic
Model

Composition

Symbolic
Observer

Dualization

Nondeterministic
Tester

Unification
Deterministic

Tester

Backtracking

Legend

Server side

Client side

Interpretation

Figure 7: Deriving tester program from specification

In Subsection 4.2, we implement the symbolic evaluation pro-
cess that checks servers’ observable behavior against this symbolic
model.

4 DERIVATION: FROM SERVER
SPECIFICATION TO TESTING PROGRAM

From the specified the application and network models, our frame-
work automatically derives a tester program that interacts with
the server and determines its validity. The derivation framework
is shown in outline in Figure 7. Each box is an interaction tree
program, and the arrows are “interpretors” that transform one in-
teraction tree into another. Subsection 4.1 explains the concept of
interpretation, and the rest of this section describes how to interpret
the specification into a tester program.

4.1 Interpreting Interaction Trees
Interaction tree programs can be destructed into an interaction

event followed by another interaction tree program. Such structure
allows us to interpret one program into another. Figure 8 shows
an example of interpretation: The original acc program sends and
receives messages, and the tee interpretor transforms the acc into
another program that also prints the messages sent and received.
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1let acc(sum) =

2x := recv(); send(x+sum); acc(x+sum) in

3let tee(m) =

4match m with

5| x := recv(); m'(x)⇒
6a := recv(); print ("IN" ++ a); tee(m'(a))

7| send(a); m'⇒
8print ("OUT" ++ a); send(a); tee(m')

9end in

10tee(acc (0))

11(* ... is equivalent to ... *)

12let tee_acc(sum) =

13a := recv(); print ("IN" ++ a);

14print ("OUT" ++ (a+sum)); send(a+sum);

15tee_acc(a+sum) in

16tee_acc (0)

Figure 8: Interpretation example. acc receives a number and
returns the sum of numbers received so far. tee prints all the
numbers sent and received. Interpreting acc with interpretor
tee results in a program that’s equivalent to tee_acc.

Such interpretation is done by patternmatching on the program’s
structure in Line 4. Based on what the original program wants to
do next, the interpretor defines what the result program should
do in Line 6 and Line 8. These programs defined in accordance
to events are called handlers. By writing different handlers for the
events, interpretors can construct new programs in various ways, as
shown in following subsections. Further details about interpreting
interaction trees are explained by Xia et al. [22].

4.2 From Server Specification to Tester Program
For simplicity, we first explain how to handle servers’ internal
nondeterminism with symbolic evaluation. This subsection cov-
ers a subgraph of Figure 7, starting with dualizing the symbolic
model. Here we use the server model itself as the symbolic model,
assuming no reorderings by network delays. We will compose the
server model with the network model in Subsection 4.3, addressing
network nondeterminism.

Dualization. To observe the server’s behavior, we have to inter-
pret the specified server-side events into tester-side events: When
the server should send a certain message, the tester expects to re-
ceive the specified message, and rejects the server upon receiving
an unexpected message; when the server should receive some mes-
sage, the tester generates a message and sends it to the server, as
shown in Figure 9.

Besides sending and receiving messages, the model also has IF
branches conditioned over symbolic expressions, like that shown
in Figure 6. Upon nondeterministic branching, the tester needs
to determine which branch was actually taken, by constructing
observers for both branches. Each branch represents a possible
explanation of the server’s behavior. Upon further interacting with
the server, some branches might fail because its conjecture cannot
explain what it has observed. The tester rejects the server if all

let observe (server) =

match server with

| pkt := recv(); s'(pkt)⇒
p := gen_pkt (); send(p); observe (s'(p))

| send(pkt); s'⇒
p := recv(); guard(pkt , p); observe (s')

| IF (x, s1 , s2)⇒
(* Allow validating observation with [s1],

* provided [x] is unifiable with [true];

* Or, unify [x] with [false],

* and validate observation with [s2]. *)

determine(unify(x, true ); observe (s1),

unify(x, false); observe (s2))

| r := _(); s'(r)⇒
r1 := _(); observe (s'(r1))

end

Figure 9: Dualizing server model into observer model. Upon
recv events, the observer generates a packet and sends it to the
server. For send events, the observer receives a packet p1, and
fails if it does not match the specified pkt. When the server
makes nondeterminstic IF branches, the observer determines
between the branches by unifying the branch condition with
its conjectured value, and then observing the corresponding
branch.

branches have failed, indicating that the server corresponds to no
possible case in the model.

Dualizing the server-side model produces an observer model that
performs interactions to reveal the server’s behavior and check its
validity. This model includes all possible observations from a valid
server, and needs to determine which branch in the server model
matches the observed behavior. Themodel validates its observations
with unification events unify and guard. These primitive events are
handled by later interpretations: The unify and guard events in each
branch are instantiated into symbolic evaluation logic that decides
whether this branch should fail or not; The determine events are
instantiated into backtracking searches to find if all branches have
failed, which rejects the server.

Symbolic Evaluation. In this interpretation phase, we handle
nondeterminism at data level by handling fresh events in the server
model, as well as unify and guard events introduced by dualization.
The interpretor instantiates these events into symbolic evaluation
algorithms.

As shown in Figure 10 (skip Line 18–28 for now—we’ll explain
that part later), the tester checks whether the observed/conjectured
value matches the specification, by maintaining the constraints
on the symbolic variables. These constraints are initially empty
when the variables are generated by fresh events. As the test runs
into unify and guard events, it adds constraints asserting that the
observed value matches the specification, and checks whether the
constraints are still compatible. Incompatibility among constraints
indicates that the server has exhibited behavior that cannot be
explained by the model, implying violation against the current
branch of specification.
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1(* unifyS = list variable * list constraint *)

2(* new_var : unifyS → variable * unifyS *)

3(* assert : exp T * T * unifyS → option unifyS *)

4let unifier (observer , map : mcid → pcid ,

5vars : unifyS) =

6match observer with

7| x := fresh (); o'(x)⇒
8let (x1 , vars ') = new_var(vars) in

9unifier (o'(x1), vars ', map)

10| unify(x, v); o'⇒
11match assert(x, v, vars) with

12| Some vars '⇒ unifier (o', vars ', map)

13| None⇒ failwith "Unexpected payload"

14end

15| guard(p0 , p1); o'⇒
16match assert(p0, p1, vars) with

17| Some vars '⇒
18let mc = p0.source in

19let pc = p1.source in

20if mc.is_created_by_server

21then match map[mc] with

22| pc⇒ unifier (o', vars ', map)

23| unknown⇒
24let map ' = update(map , mc, pc) in

25unifier (o', vars ', map ')

26| others⇒
27failwith "Unexpected connection"

28end

29else unifier (o', vars ', map)

30| None⇒ failwith "Unexpected payload"

31end

32| r := _(); o'(r)⇒
33r1 := _(); unifier (o'(r1), vars , map)

34end

Figure 10: Instantiating symbolic events. The tester main-
tains a unifyState which stores the constraints on symbolic
variables. When the specification creates a fresh symbol,
the tester creates an entry for the symbol with no initial
constraints. Upon unify and guard events, the tester checks
whether the assertion is compatible with the current con-
straints. If yes, it updates the constraints and move on; oth-
erwise, it raises an error on the current branch.

Handling Incoming Connections. In addition to generating data
internally, the server might exhibit another kind of nondeterminism
related to the outgoing connections it creates. For example, when
a client uses an HTTP server as proxy, requesting resources from
another server, the proxy server should create a new connection to
the target server. However, as shown in Figure 3, when the tester
receives a request from an accepted connection, it does not know
which client’s request the proxy was forwarding, due to network
delays.

Outgoing connections created by the server model are identified
by “model connection identifiers” (mcid), and the tester accepts

(* filter : event T * T * list M → list M *)

(* [filter(e, r, l)] returns a subset in [l],

* where the model programs ' next event is [e]

* that returns [r]. *)

let backtrack (current , others) =

match current with

| determine(t1 , t2)⇒
backtrack (t1 , t2:: others)

| failwith error⇒ (* current branch failed *)

match others with

| []⇒ failwith error

| another ::ot '⇒ backtrack (another , ot ')

end

| send(pkt); t'⇒
let ot ' = filter(SEND , pkt , others) in

send(pkt); backtrack (t', ot ')

| pkt := recv(); t'(pkt)⇒
opkt := maybe_recv ();

match opkt with

| Some p1⇒
let ot ' = filter(RECV , pkt , others) in

backtrack (t'(p1), ot ')

| None⇒ (* no packet arrived *)

match others with

| []⇒ backtrack (current , []) (* retry *)

| another ::ot '⇒ (* postpone *)

backtrack (another , ot '++[ current ])

end

end

end in

backtrack (tester_nondet , [])

Figure 11: From nondeterministic model to determinis-
tic tester program. If the model makes nondeterministic
branches, the tester picks a branch to start with, and puts
the other branch into a set of other possibilities. If the cur-
rent branch has failed, the tester looks for other possible
branches to continue checking. When the current branch
sends a packet, the tester filters the set of other possibilities,
and only keeps the branches that match the current send
event. If the model wants to receive a packet, the tester han-
dles both cases whether some packet has arrived or not.

incoming connections identified by “physical connection identifiers”
(pcid). As shown in Line 18–28 of Figure 10, to determine which
mcid in the specification does a runtime pcid corresponds to, the
tester maintains a mapping between the connection identifiers. Such
mapping ensures the tester to check interactions on an accepted
connection against the right connection specified by the server
model.

Backtracking. Symbolic evaluation determines whether the ob-
servations matches the tester’s conjectures on each branch. So far,
the derived tester is a nondeterministic program that rejects the
server if and only if all possible branches have raised some error.
To simulate this tester on a deterministic machine, we execute
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let http_server (http_st) =

request := recv_HTTP(http_st);

(response , st ') := process(request , http_st);

http_server (st ')

...

let observer (server) =

match server with

| req := recv_HTTP(http_st); s'(req)⇒
r1 := gen_Observer(http_st);

send(r1); observe (s'(r1))

...

let unifier (observer , vars , conn) =

match observer with

| req := gen_Observer(http_st); o'(req)⇒
r1 := gen_Unifier(http_st , vars , conn);

unifier (o'(r1), vars , conn)

...

Figure 12: Embedding programs’ internal state into the
events. By expanding the events’ parameters, we enrich the
test case generator’s knowledge along the interpretations.

one branch until it fails. Upon failure in the current branch, the
simulator switches to another possible branch, until it exhausts
all possibilities and rejects the server, as shown in Line 9–13 of
Figure 11.

When switching from one branch to another, the tester cannot
revert its previous interactions with the server. Therefore, it must
match the server model against all interactions it has performed,
and filter out the mismatching branches, as shown in Line 15 and
Line 21 of Figure 11.

We’ve now derived a tester from the server model. The specified
server runs forever, and so does the tester (upon no violations
observed). We accept the server if the tester hasn’t rejected it after
some large, pre-determined number of steps of execution.

Test Case Generation. Counterexamples are sparsely distributed,
especially when the bugs are related to server’s internally generated
data like ETags, which can hardly be matched by a random test
case generator. After observing the ETag field of some response, the
generator can send more requests with the same ETag value, rather
than choosing an unknown value arbitrarily.

As shown in Figure 12, our derivation framework allows pass-
ing the programs’ internal state as the events’ parameters, so the
test case generator can utilize the states in all intermediate inter-
pretation phases, and apply heuristics to emphasise certain bug
patterns.

Notice that the state-passing strategy only allows tuning what
messages to send. To reveal bugs more efficiently in an interactive
scenario, we need to tune when the interactions are made, which is
further discussed in Subsection 5.2. Generating test cases in certain
orders is to be explored in future work.

1 let compose (net , bi , bo , srv) =

2 let step_net =

3 match net with

4 | send(pkt); n'⇒
5 if pkt.to_server

6 then compose (n', bi++[ pkt], bo , srv)

7 else send(pkt); (* to client *)

8 compose (n', bi , bo , srv)

9 end

10 | pkt := recv(); n'(pkt)⇒
11 match bo with

12 | p0::b'⇒ compose (n'(p0), bi , b', srv)

13 | [] ⇒ p1 := recv();

14 compose (n'(p1), bi , bo , srv)

15 end

16 | r := _(); n'(r)⇒
17 r1 := _(); compose (n'(r1), bi , bo , srv)

18 end in

19 match srv with

20 | send(pkt); s'⇒
21 compose (net , bi , bo++[ pkt], s')

22 | pkt := recv(); s'(pkt)⇒
23 match bi with

24 | p0::b'⇒ compose (net , b', bo , s'(p0))

25 | [] ⇒ step_net

26 end

27 | r := _(); s'(r)⇒
28 r1 := _(); compose (net , bi , bo , s'(r1))

29 end in

30 compose (tcp , [], [], http)

Figure 13: Composing http server model with tcp network
model by interpreting their events and passing messages
from one model to another. The composing function takes
four parameters: server and network models as srv and net,
and the message buffers between them. When srv wants to
send a packet in Line 21, the packet is appended to the outgo-
ing buffer bo until absorbed by net in Line 12, and eventually
emitted to the client in Line 7. Conversely, packets sent by
clients are absorbed by net in Line 13, emitted to the applica-
tion’s incoming buffer bi in Line 6, until srv consumes it in
Line 24.

4.3 Network Composition
We have shown how to derive a tester from the server model

itself. The server model describes how a reference server processes
messages. For protocols like HTTP/1.1 where servers are expected
to handle one request at a time, a reasonable server model should be
“linear” that serves one client after another. As a result, the derived
tester only simulates a single client, and does not attempt to observe
the server’s behavior via multiple simultaneous connections.

The network model describes how messages sent by one end
of the network are eventually received by the other end. When
interacting with multiple clients, a valid server’s observable behav-
ior should be explainable by “server delayed by the network”, as
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discussed in Subsection 3.1. To model this set of observations, we
compose the server and network models by attaching the server
model as one end on the network model.

As shown in Figure 13, we compose the events of server and
network models. Messages sent by the server are received by the
network and sent to clients after some delay, and vice versa. Such
composition produces a model that branches nondeterministically,
and includes all possible interactions of a valid HTTP server that
appear on the client side.

The composed model does not introduce new events that were
not included in the server model: The network model in Figure 5
does perform nondeterministc or branches, but or(x,y) is a syn-
tactic sugar for b := fresh(); IF(b,x,y). Therefore, using the same
derivation algorithm from the server model to single-connection
tester program, we can derive the composed server+network model
into a multi-connection tester.

Notice that the server and network events are scheduled at dif-
ferent priorities: The composition algorithm steps into the network
model lazily, not until the server is blocked in Line 25. When the
network wants to recv some packet in Line 10, it prioritizes pack-
ets sent by the server, and only receives from the clients if the
server’s outgoing buffer has been exhausted. Such design is to
enforce the tester to terminate upon observing invalid behavior:
When the server’s behavior violates the model, the tester should
check all possible branches and determine that none of them can
lead to such behavior. If the model steps further into the network,
it would include infinitely many absorb branches in Figure 5, so
the derived tester will never exhaust “all” branches and reject the
server. Scheduling network events only when the server model is
blocked produces sufficient nondeterminism to accept valid servers.

5 EVALUATION
To evaluate whether our derived tester is effective at finding bugs,
we ran the tester against mainstream HTTP servers, as well as
server implementations with bugs inserted by us.

5.1 Experiment Setup
Systems Under Test (SUTs). We ran the tests against Apache

HTTP Server [9], which is among the most popular servers on
the World Wide Web. We used the latest release 2.4.46, and edited
the configuration file to enable WebDAV and proxy modules. Our
tester found a violation against RFC 7232 in the Apache server, so
we modified its source code before creating mutants.

We’ve also tried testing Nginx and found another violation
against RFC 7232. However, the module structure of Nginx made
it difficult to fix the bug instantly. (The issue was first reported 8
years ago and still not fixed!) Therefore, no mutation testing was
performed on Nginx.

Infrastructure. The tests were performed on a laptop computer
(with Intel Core i7 CPU at 3.1 GHz, 16GB LPDDR3 memory at
2133MHz, and macOS 10.15.7). The SUT was deployed as a Docker
instance, using the same host machine as the tester runs on. They
communicate with POSIX system calls, in the same way as over
Internet except using address localhost. The round-trip time (RTT)
of local loopback is 0.08 ± 0.04 microsecond (at 90% confidence).

5.2 Results
Finding Bugs in Real-World Servers and Mutants. Our tester re-

jected the unmodified Apache HTTP Server, which uses strong com-
parison for PUT requests conditioned over If-None-Match, while
RFC 7232 specified that If-None-Match preconditions must be evalu-
ated with weak comparison. We reported this bug to the developers,
and figured out that Apache was conforming with an obsoleted
HTTP/1.1 standard [8]. The latest standard has changed the seman-
tics of If-None-Match preconditions, but Apache didn’t update the
logic correspondingly.

We created 20mutants bymanuallymodifying the Apache source
code. The tester rejected all the 20 mutants, located in various
modules of the Apache server: core, http, dav, and proxy. They
appear both in control flow (e.g., early return, skipped condition)
and in data values (e.g., wrong arguments, flip bit, buffer off by one
byte).

We didn’t use automatic mutant generators because (i) Existing
tools could not mutate all modules we’re interested in; and (ii)
The automatically generated mutants could not cause semantic
violations against our protocol specification.

When testing Nginx, we found that the server did not check the
preconditions of PUT requests. We then browsed the Nginx bug
tracker and found a similar ticket opened by Haverbeke [13]. These
results show that our tester is capable of finding bugs in server
implementations, including those we’re unaware of.

Performance. As shown in Figure 14, the tester rejected all buggy
implementations within 1 minute. In most cases, the tester could
find the bug within 1 second.

Some bugs took longer time to find, and they usually required
more interactions to reveal. This may be caused by (1) The counter-
example has a certain pattern that our generator didn’t optimize for,
or (2) The tester did produce a counter-example, but failed to reject
the wrong behavior. We determine the real cause by analysing the
bugs and their counterexamples:

• Mutants 19 and 20 are related to the WebDAVmodule, which
handles PUT requests that modify the target’s contents. The
buggy servers wrote to a different target from that requested,
but responds a successful status to the client. The tester
cannot tell that the server is faulty until it queries the target’s
latest contents and observes an unexpected value. To reject
the server with full confidence, these observations must be
made in a certain order, as shown in Figure 15.

• Mutant 18 is similar to the bug in vanilla Apache: the server
should have responded with 304 Not Modified, but sent back
200 OK instead. To reveal such violation, a minimal coun-
terexample consists of 4 messages: (1) GET request, (2) 200
OK response with some ETag x, (3) GET request conditioned
over If-None-Match: x, and (4) 200 OK response, indicating
that the ETag x did not match itself. Notice that (2) must be
observed before (3), otherwise the tester will not reject the
server, with a similar reason as Figure 15.

• Mutant 5 causes the server to skip some code in the core mod-
ule, and send nonscence messages when it should respond
with 404 Not Found. The counterexample can be as small as
one GET request on a non-existential target, followed by a
non-404, non-200 response. However, our tester generates



Model-Based Testing of Networked Applications ISSTA ’21, July 11–17, 2021, Virtual, Denmark

da
v-

1

co
re

-2

ht
tp

-3

co
re

-4

co
re

-5

pr
ox

y-
6

pr
ox

y-
7

co
re

-8

pr
ox

y-
9

pr
ox

y-
10

ht
tp

-1
1

ht
tp

-1
2

ht
tp

-1
3

da
v-

14

da
v-

15

ht
tp

-1
6

da
v-

17

Apa
ch

e

ht
tp

-1
8

da
v-

19

da
v-

20

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

2

5

10

30

60

T
im

e
 t

o
 f

a
ilu

re
 (

s
e

c
o

n
d

s
)

2

5

10

20

50

100

200

500

1000

2000

5000

10000

20000

In
te

ra
c
ti
o

n
s
 t

o
 f

a
ilu

re

Figure 14: Cost of detecting bug in each server/mutant. The left box with median line is the tester’s execution time before
rejecting the server, which includes interacting with the server and checking its responses. The right bar with median circle is
the number of HTTP/1.1 messages sent and received by the tester before finding the bug. Results beyond 25%–75% are covered
by whiskers.

Observer Server

PUT
GET

204

send (1, PUT “some” -> /key)
send (2, GET /key)
recv (1, 204 No Content)
recv (2, 200 OK: “else”)

Acceptable

200

Observer Server

PUT

204

GET

send (1, PUT “some” -> /key)
recv (1, 204 No Content)
send (2, GET /key)
recv (2, 200 OK: “else”)

Unacceptable

200

Figure 15: The trace on the left does not convince the tester
that the server is buggy, because there exists a certain net-
work delay that explains why the PUT request was not re-
flected in the 200 response. When the trace is ordered as
shown on the right, the tester cannot imagine any network
reordering that causes such observation, thus must reject the
server.

request targets within a small range, so the requests’ targets
are likely to be created by the tester’s previous PUT requests.
Narrowing the range of test case generation might improve
the performance in aforementioned Mutants 18–20, but Mu-
tant 5 shows that it could also degrade the performance of
finding some bugs.

• The mutants in proxy module caused the server to forward
wrong requests or responses. When the origin server part
of the tester accepts a connection from the proxy, it does
not know for which client the proxy is forwarding requests.
Therefore, the tester needs to check the requests sent by all
clients, and make sure none of them matches the incoming
proxy request, before rejecting the proxy.

These examples show that the time-consuming issue of some
mutants are likely caused by limitations in the test case genera-
tors. Cases like Mutant 5 can be optimized by tuning the request
generator based on the tester model’s runtime state, but for Mu-
tants 18–20, the requests should be sent at specific time periods
so that the resulting trace is unacceptable per specification. How
to produce a specific order of messages is to be explored in future
work.

6 RELATEDWORK
6.1 Specifying and Testing Protocols
Modelling languages for specifying protocols can be partitioned
into three styles, according to Anand et al. [1]: (1) Process-oriented
notations that describe the SUT’s behavior in a procedural style,
using various domain-specific languages like our interaction trees;
(2) State-oriented notations that specify what behavior the SUT
should exhibit in a given state, which includes variants of labelled
transition systems (LTS); and (3) Scenario-oriented notations that
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describe the expected behavior from an outside observer’s point of
view (i.e., “god’s-eye view”).

The area of model-based testing is well-studied, diverse and
difficult to navigate [1]. Here we focus on techniques that have been
practiced in testing real-world programs, which includes notations
(1) and (2). Notation (3) is infeasible for protocols with nontrivial
nondeterminism, because the specification needs to define observer-
side knowledge of the SUT’s all possible internal states, making
it complex to implement and hard to reason about, as shown in
Figure 1.

Process-Oriented Style: LOTOS and TorXakis. Language of Tem-
poral Ordering Specification (LOTOS) [6] is the ISO standard for
specifying OSI protocols. It defines distributed concurrent systems
as processes that interact via channels, and represents internal non-
determinism as choices among processes.

Using a formal language strongly insired by LOTOS, Tretmans
and van de Laar implemented a test generation tool for symbolic
transition systems called TorXakis, which has been used for testing
Dropbox [21].

TorXakis provides limited support for internal nondeterminism.
Unlike our testing framework that incorporates symbolic evaluta-
tion, TorXakis enumerates all possible values of internally generated
data, until finding a corresponding case that matches the tester’s
observation. This requires the server model to generate data within
a reasonably small range, and thus cannot handle generic choices
like HTTP entity tags, which can be arbitrary strings.

As for network nondeterminism of interacting with multiple
clients, LOTOS-style specifications requrie defining input/output
channels for each client-server connection, so the tester cannot cre-
ate more connections than the model’s specified channels. Whereas
in our application model, input and output operations are described
as events, and different channels are distinguished by the events’
parameter, so the model supports infinitely many connections, and
the derived tester can simulate as many clients as the operating
system supports.

State-Oriented Style: NetSem, Modbat, and IOSTS. Bishop et al.
[5] have developed rigorous specifications for transport-layer pro-
tocols TCP, UDP, and the Sockets API, and validated the specifica-
tions against mainstream implementations in FreeBSD, Linux, and
WinXP. Their specification represents internal nondeterminism
as symbolic states of the model, which is then evaluated using a
special-purpose symbolic model checker. They focused on devel-
oping a post-hoc specification that matches existing systems, and
wrote a separate tool for generating test cases. Whereas, our work
aims at finding bugs in server implementations, so we derived the
specification into a testing program.

Using an abstract model based on extended finite state machines
(EFSM), Artho and Rousset [3] have generated test cases for Java
network API, which involves blocking and non-blocking communi-
cations. They have found defects in the network library java.nio,
including unexpected exceptions and failing assertions. While their
state machine specification writes assertions about what behavior
is valid, our program model defines how to produce valid behav-
ior. The difference between these validation logic was shown in
Section 2 and 3.

Rusu et al. [18] have extended LTS into Input/Output Symbolic
Transition System (IOSTS), and derived symbolic tests that were
applied for a simple version of Common Electronic Purse Speci-
fication. In order to generate test cases, their specification IOSTS
needs to be composed with a test purpose IOSTS that defines a goal
of the test experiment. In comparison, our tester is derived from
the specification itself, and checks whether the SUT’s observable
behavior is expected by the specification.

6.2 Reasoning about Network Delays
Koh et al. [15] have introduced “network refinement” relation, a
variant of observational refinement, to specify implementations
that are indistinguishable as observed over the network. Using the
same specification language as ours, they have formally verified a
simple “swap server” written in C, and tested the server by reorder-
ing the client-side trace to find a corresponding server-side trace
that matches the server model. Whereas, we combined the server
model with a network model to include all possible client-side
observations.

For property-based testing against distributed applications like
Dropbox, Hughes et al. [14] have introduced “conjectured events”
to represent uploading and downloading events that nodes may
perform at any time invisibly. We are inspired by the idea of conjec-
turing when the events might happen, and provided a more mod-
ularized language for describing nondeterminism in networked
applications. By splitting the specification into server and network
models, handling nondeterminism in each, we clarified how the
servers’ behavior might vary. Such modularization also makes our
specification reusable, as the network model can be composed with
many other server models to address network reorderings.

Besides reasoning about the packets’ order of arrival, Sun et al.
[20] symbolised the time elapsed to transmit packets from one
end to another, and developed a symbolic-execution-based tester
that found transmission-related bugs in Linux TFTP upon certain
network delays. Their tester used a fixed trace of packets to interact
with the server, and the generated test cases were the packets’ delay
time. In comparison, we specify the space of valid observations
caused by possible network delays, and generate messages that
trigger semantic bugs in networked applications.

7 FUTUREWORK
7.1 Test Case Generation
As discussed in Subsection 4.2, our framework allows applying
heuristics to generate certain messages, but hasn’t implemented
configuration of the interactions’ order. We hope to explore the
potential of packet dynamics [20] and combine their generator’s
mechanism with ours. By tuning the time of sending messages,
we’d expect our tester to capture bugs more effectively.

7.2 Shrinking
When our tester rejects a server, it reports the first failing trace as
counterexample, which possibly contains irrelevant transactions.
To locate the bug efficiently, we hope to shrink the counterexample
to a minimal trace that clearly shows why the server is wrong. The
existing shrinking technique for pure functional programs needs to
be adjusted to our scenario, where the response of an impure server
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differs from one execution to another. Shrinking for interactive,
nondeterministic programs deserves more exploration. A smaller
counterexample might require not only fewer and smaller messages,
but also reordering the messages as well.

7.3 Verification
Our specification language is designed for both testing and verifi-
cation purposes. Using the same specification language, we have
verified and tested a similar HTTP/1.1 server written in C [23]. The
verified server covers a subset of HTTP/1.1 features in this paper.
As we expand the verified server, we’d expect to eliminate bugs by
testing it against the specification, until formal proof provides an
even more rigorous correctness guarantee.

Although a limited number of test cases doesn’t give us full
guarantee of the server’s compliance upon arbitrary inputs, we are
still interested in proving that the tester is “exhaustive”—i.e., for all
servers that contains some bug, the tester can eventually generate
some counterexample to reveal that bug. Having an exhaustive
tester, as the number of tests increase, our confidence of the server’s
correctness converges to 100%.

7.4 Specifying and Testing HTTP/1.1 in General
In this paper, we specified a network application that covers a subset
of HTTP/1.1. Whereas in real world, HTTP/1.1 is a basis for various
web applications. We hope to generalize the current specification
into a generic library, so that developers can specify their own web
apps, and derive a tester for it.

8 CONCLUSION
We introduced a domain-specific language for specifying networked
applications, addressing challenges of internal and network non-
determinism. We then presented a derivation framework that in-
terprets the specification into an interactive tester program. The
derived tester can reveal bugs in server implementations—including
those we were unaware of—within reasonable amount of time. Our
specification language is also capable of formal verification.
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