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ABSTRACT: There is a lack of scalable quantitative measures of
reactivity that cover the full range of functional groups in organic |:> Calculating MCA* and MAA* using DFT

N
|:> Quantitative Ranking of Chemical Reactivity

and time-consuming, and no single method has sufficient dynamic g
range to cover the astronomical size of chemical reactivity space. In Training Graph Attentional Models
previous quantum chemistry studies, we have introduced Methyl
Cation Affinities (MCA*) and Methyl Anion Affinities (MAA*),
using a solvation model, as quantitative measures of reactivity for

. . Unseen chemical
organic functional groups over the broadest range. Although
MCA* and MAA* offer good estimates of reactivity parameters, [ |
their calculation through Density Functional Theory (DFT) —
simulations is time-consuming. To circumvent this problem, we
first use DFT to calculate MCA* and MAA* for more than 2,400 organic molecules thereby establishing a large data set of chemical
reactivity scores. We then design deep learning methods to predict the reactivity of molecular structures and train them using this
curated data set in combination with different representations of molecular structures. Using 10-fold cross-validation, we show that
graph attention neural networks applied to a relational model of molecular structures produce the most accurate estimates of
reactivity, achieving over 91% test accuracy for predicting the MCA* + 3.0 or MAA* =+ 3.0, over 50 orders of magnitude. Finally, we
demonstrate the application of these reactivity scores to two tasks: (1) chemical reaction prediction and (2) combinatorial
generation of reaction mechanisms. The curated data sets of MCA* and MAA* scores is available through the ChemDB
chemoinformatics web portal at cdb.ics.uci.edu under Chemical Reactivities data sets.

B INTRODUCTION donor and electron acceptor functional groups.” Specifically,
we applied DFT to over 100 diverse molecular structures and

In general terms, the chemical reactivity of an atom in a molecule
showed that, in general, methyl ion affinities, using a solvation

is its propensity toward being an electron donor or acceptor in a

polar chemical reaction. Being able to assign reactivity scores to model, are highly correlated to the Mayr reactivity scale.
atoms and molecules can be useful to better understand However, while using QM is faster than running laboratory
chemical reactions and their mechanisms in different areas such experiments and can potentially cover a larger range of
as chemical synthesis, atmospheric chemistry, drug design, and electrophiles and nucleophiles, the underlying DFT calculations
materials sciences. Reaction rates have been measured still take up several hours for a molecule with only 20 atoms.
experimentally for a long time, but this is typically a time- Therefore, here we develop a more efficient approach leveraging
consuming process, which becomes increasingly costly as one the synergies between QM and machine learning,” where we first
tries to explore the most challenging reactions. Moreover, true use DFT to produce a substantial training set of chemical
solution-phase reaction rates are bounded by the rates of reactivity scores and then develop and train machine learning
molecular diffusion which complicates quantifying the extremes methods to predict chemical reactivity scores in real-time. These

of reactivity. Mayr and his colleagues have pioneered the
empirical study of chemical reactivity by laboriously measuring
the reactivity of the main organic functional groups and deriving
corresponding scales of reactivity.”> However, due to the
experimental limitations, their scale covers only a limited range

machine learning methods, in particular deep learning
methods,® have already been successfully applied to a variety
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of electrophiles and nucleophiles. An alternative approach to Space
derive reactivity scores is to use quantum mechanical (QM) Received: November 16, 2021
simulations. Published: January 12, 2022

Recently, we used QM with Density Functional Theory
(DFT) simulations to investigate this problem for electron

© 2022 American Chemical Society https://doi.org/10.1021/acs.jcim.1c01400

W ACS PUblicationS 2121 J. Chem. Inf. Model. 2022, 62, 2121-2132


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mohammadamin+Tavakoli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aaron+Mood"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Van+Vranken"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pierre+Baldi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.1c01400&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01400?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01400?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01400?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01400?goto=supporting-info&ref=pdf
http://cdb.ics.uci.edu
https://pubs.acs.org/doi/10.1021/acs.jcim.1c01400?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/62/9?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/9?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/9?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/9?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/9?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/9?ref=pdf
https://pubs.acs.org/toc/jcisd8/62/9?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01400?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

Quantum Chemistry Simulations

A Million Molecular
Structures

Takes Hours

Many Years

Few Hours

Deep Learning Models

Figure 1. Typical speed differences in computing a given molecular property for a database of 1 M molecules using DFT versus machine learning.
Assuming QM simulations take approximately 5 h per molecular structure, the total processing time for 1 M structures is 5 X 3600(s) X 10° ~ 500
years. This processing time can be reduced to a few hours, after training a suitable neural architecture, assuming that inference time in a trained deep
learning model is in the range of 5 ms: 5 X 1073(s) X 10° & few hours.

of chemoinformatics problems, includin§ the prediction of
molecular properties’ ” and reactions.'”'® Training these
models may take some time, but once trained, they are orders of
magnitude faster than QM calculations and can generalize,
making them a suitable complement to time-consuming DFT
simulations (Figure 1).

In what follows, we first review some of the related work on
chemical reactivity. Because the concept of chemical reactivity
has different interpretations, we then describe the interpretation
used in this work and how it correlates with methyl ion affinities.
We then describe the curation of a training and testing data set
obtained using DFT calculations. We develop different machine
learning methods, tuned to different molecular representations,
and train, test, and compare them using the curated data set.
Finally, we demonstrate and discuss the potential applications of
this approach for estimating the relative reactivity of atoms for
the tasks of chemical reaction prediction and combinatorial
generation of organic mechanisms.

Bl RELATED WORK ON PREDICTING CHEMICAL
REACTIVITY

The notion of chemical reactivity has different interpretations
depending on whether one emphasizes thermodynamic or
kinetic properties and corresponding properties such as
activation energy, yield, rate constants, and stereoselectivity.
These properties are usually measured experimentally or
estimated via DFT calculations. Although DFT-based calcu-
lations can be accurate, their computational cost is not suitable
for high-throughput analyses and for applications to a broad
range of chemical structures.'”*° On the other hand, data-driven
methods, such as deep learning-based predictive models, are
orders of magnitude faster than DFT calculations and can be
applied to a wide range of chemical structures.

To predict reaction yields and stereoselectivities, Sandfort et
al.”' proposed a transferable machine learning method using the
QM9 data set.””*® In a similar direction, Schwaller et al.**
proposed an attentional neural network to predict the reaction
yield for Buchwald-Hartwig and Suzuki reactions with an R*
coeflicient greater than 0.6. Although the reaction yield and
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selectivity, under certain conditions (e.g,, pressure and temper-
ature), are often interpreted as measures of chemical reactivity,
this interpretation has several drawbacks.”® For instance, a high
yield can result from a low energy barrier; the converse is not
necessarily true. A low energy barrier may still be associated with
a low yield because of the presence of side reactions yielding
other products. In addition, prediction of yield or stereo-
selectivity must be performed in the context of a chemical
reaction, and therefore, it cannot be applied to an atom,
functional group, or molecule in isolation.

To predict activation energy barriers, Mulliner et al.*® used
linear regression models to predict the activation energies (AE)
of Michael acceptors using a data set derived by DFT
calculations. Similarly, Palazzesi et al.”” used DFT-computed
(AE) data for the reactions between a limited set of acrylamides
and cysteines to train a tree regressor model using
physicochemical descriptors. The tree regressor model predicts
the reactivity of covalent warheads with an R* regression
coefficient greater than 0.5. In this line of work, DFT
calculations are used to produce chemically narrow data sets
that are used to train corresponding predictors of reactivity
operating over a narrow range of chemical structures.

A different data-driven approach'” trains graph neural
networks using the patent mining work of Lowe™ to learn
how to rank pairs of atoms with respect to the likelihood of their
participation in a chemical reaction. This likelihood, interpreted
as the reactivity of the corresponding pair of atoms, is also
reaction-dependent and cannot be applied in more general
settings to single atoms, functional groups, or molecules.

Here we use a new metric for measuring chemical reactivity,
recently introduced in Mood et al.” and Kadish et al.,* based on
methyl ion affinities. This metric has several advantages. First, it
provides a reliable measure of chemical reactivity, as it is highly
correlated with the Mayr reactivity scale””® which is an
experimentally derived scale. Second, this metric is applicable
to a broad range of chemistry, over 180 orders of magnitude of
reactivity.”* Using this new metric and DFT calculations, we
generate a new data set to train corresponding predictors of
reactivity.

https://doi.org/10.1021/acs.jcim.1c01400
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B REACTIVITY METRIC

The extent to which a chemical compound can donate or accept
electrons (referred to as nucleophilicity and electrophilicty,
respectively) has always been an essential concept in organic
chemistry. Until the pioneering work of Mayr and his team, the
very idea that nucleophilicity or electrophilicity might be
quantified on independent scales had eluded chemists. Through
a massive experimental and theoretical undertaking, Mayr and
his collaborators have made comprehensive and systematic
measurements of reaction rates for reactions of various
electrophiles and nucleophiles in the laboratory. Furthermore,
they showed that the solution-phase electrophilicity E and
solvent-dependent nucleophilicity N could be independently
quantified using a logarithmic scale that correlates with the free
energy of activation, allowing useful predictions of reaction rate
constants, below diffusion control, using the equation log; ks
= (E + N)sy, where sy is a nucleophile-dependent parameter
typically near unity, and k is the rate constant. The success of this
equation centers around a focus on reactions that form bonds to
carbon atoms; given the importance of solution-phase organic
chemistry in biochemistry and medicine, this is a reasonable
restriction. >

Prior to Mayr’s work, a limited range of nucleophilic
parameters was available for the early Swain-Scott’® and Ritchie
relationships,31 which quantify nucleophilicity toward methyl
bromide and esters, respectively. However, Mayr reactivity
parameters are available for about 350 electrophiles and over
1200 nucleophile/solvent combinations. While experimental
parameters seem plentiful, parameters for many of the canonical
functional groups (C—C bonds, esters, amides, alkyllithiums,
tert-butyl cation, and methyl anion) seem far out of reach.
Additionally, nucleophilicity is far more difficult to quantify than
electrophilicity. After over almost a century of study,’” there is
still no comprehensive list of nucleophilicities of all the canonical
organic functional groups, ranging from C—C bonds to naked
alkyl anions, against any reference electrophile in any reference
environment (gas phase or solvent system). The most common
approach is to correlate equilibrium basicities with nucleophi-
licities. Basicity, in the form of pK_ys, is readily available from
titrations, but pK s cannot be directly measured for functional
groups far less acidic than the solvent or far more acidic than the
solvent’s conjugate acid.””>° In particular, pK,ys are generally
not available for carbon nucleophiles with low basicity, such as
alkenes and arenes. Mayr’s team has already measured log-scale
nucleophilicity (N-sy) across 24 orders of magnitude versus a
reference electrophile (4-MeOPh),CH+ (Mayr E = 0), ranging
from toluene to an alpha-phenylpropionitrile carbanion.
Equilibrium pK,ys are available for nucleophiles across a
broader range and correlate well with logk for a nucleophilic
attack within functional group families, but they correlate poorly
with logk between diverse functional group families.*® pK,s in
DMSO can be accurately calculated,””*® and the correlation
between kinetic nucleophilicity and equilibrium basicity can be
improved by including extra parameters, such as molar
refractivity in the well-known Edwards equation;39 but a better
parameter than pK,y is needed for training systems to predict
organic reactivity.

Methyl cation affinity (MCA) is defined as the energy
difference resulting from combining a methyl cation with a
nucleophile; similarly, methyl anion affinity (MAA) is defined as
the energy difference resulting from combining a methyl anion
with an electrophile (Figure 2a). Mayr, Ofial, Zipse, and others
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Figure 2. (a) Schematic definition of MCA and MAA: Nuc
nucleophile, E = electrophile, MCA = the negative of the energy
difference resulting from combining a methyl cation with a nucleophile,
and MAA = the negative of the energy difference resulting from
combining a methyl anion with an electrophile. (b) A few molecules
from the curated data set and the corresponding reactivity scores shown
on two separate scales for nucleophilicity and electrophilicity.

have shown that MCA and MAA correlate with the
experimentally measured nucleophilicities and electrophilicities
on a relatively small range of reactivity'*~** (~30 orders of
magnitude45’4é).

Recently, Van Vranken and his collaborators have shown that
calculated methyl cation affinities and methyl anion affinities,
with the inclusion of a solvation model, (MCA*) and (MAA*)
where * denotes the solvation model, are highly correlated with
measured nucleophilicity N*sy and electrophilicity E over a
broad range of molecules containing first- and second-row
atoms.”" They used this correlation to expand the lower and
upper ends of the nucleophilicity and electrophilicity scale
produced by Mayr. Their work introduced MCA* and MAA* as
new metrics to estimate reactivity parameters without carrying
laboratory experiments. Calculated MCA* and MAA* provide
useful reactivity scores across a much broader range of chemical
reactivity than previous work (up to ~180 orders of magnitude).
Since calculating MCA* or MAA* for only ground state
electronic structure calculations, this approach is relatively fast
compared to experimental approaches. However, electronic
structure calculations are still resource intensive, particularly for
larger molecules, hence the need to develop faster approaches.

The resulting chemical reactivity scores (MCA* and MAA*),
formulated as the difference between the energy of reactants
(nucleophile and methyl cation or electrophile and methyl
anion, respectively) and products of the reactions shown in
Figure 2a, can be interpreted in slightly different ways,
depending on the entity to which the score is attributed to.
Van Vranken et al. interpreted these quantities as the
electrophilicity and nucleophilicity of the reacting functional
groups.” To a first order approximation, the cation affinity of a

https://doi.org/10.1021/acs.jcim.1c01400
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Table 1. First Half of the Table Corresponds to the Prediction Accuracy Metric (Where the Prediction Is within +3.0 of the
Actual Reactivity Value) and the Second Half Corresponds to the R* Coefficient Metric”

representation atomic group molecular
+3.0 Accuracy

informative fingerprint 91.04 + 0.01 - -
ECFP - - 80.21 + 0.51
electrophilicity SMILES - - 73.66 + 0.44
GCN 90.03 + 0.63 86.97 £ 0.72 86.24 + 0.66
GAT 91.17 + 0.67 87.66 + 0.45 87.93 + 0.79

informative fingerprint 92.01 £ 0.02 - -
ECFP - - 81.04 £+ 0.41
nucleophilicity SMILES - - 72.59 £+ 0.39
GCN 90.91 + 0.43 86.68 + 0.77 87.42 + 0.53
GAT 92.14 + 0.52 87.03 £ 0.51 87.24 £ 0.60

R?

informative fingerprint 0.90 + 0.02 - -
ECFP - - 0.82 % 0.02
electrophilicity SMILES - - 0.72 + 0.01
GCN 0.92 + 0.02 0.88 + 0.01 0.88 + 0.02
GAT 0.94 + 0.02 0.87 £ 0.01 0.89 + 0.01

informative fingerprint 0.91 £ 0.01 - -
ECFP - - 0.83 + 0.02
nucleophilicity SMILES - - 0.79 £+ 0.02
GCN 0.90 + 0.01 0.85 + 0.01 0.86 + 0.01
GAT 0.92 + 0.02 0.89 + 0.01 0.86 + 0.01

“All the numbers are reported in the form of mean + SD over a 10-fold cross-validation experiment. For each interpretation of the reactivity

(atomic, group, molecular), the highest means are bolded.

small molecule that represents a canonical functional group is
not expected to be different when the functional group is
embedded in a larger molecule. In this case, the score
(reactivity) can be attributed to the entire molecule. Lastly,
the methyl ion affinities (MCA* and MAA*) are specific to
individual atoms in a functional group, as shown in Figure 2a.
Different methyl ion affinities could, in theory, be assigned to
different atoms in an ambident functional group, but the overall
reaction score would be dependent on the reacting partner.
Since the goal of this work is to predict bond formation between
atoms, we use the third attribution at the level of atoms.
Throughout the rest of this paper, MCA* and MAA* are
referred to as the nucleophilicity (electron donor) and
electrophilicity scores (electron acceptor).

B CURATED DATA SET OF CHEMICAL REACTIVITIES

Following the method for calculating chemical reactivity in
Mood et al.” and Kadish et al.,* we compute the methyl cation
affinities (MCA*) of 1232 nucleophiles and the methyl anion
affinities (MAA*) of 1189 electrophiles. These molecules
contain simple carbon skeleton structural variations to improve
the generalizability of the trained models such as the ones shown
in Figure 2b. The nucleophilic functional groups include the
following: amines, ethers, amide anions, alkyl carbanions,
aldehydes, ketones, esters, carboxylic acids, amides, enolates,
nitronate anions, diazo compounds, cyanoalkyl anions, imines,
nitriles, isonitriles, and bis(cyano)alkyl anions. The electrophilic
functional groups include the following: iminium ions, imines,
oxonium ions, aldehydes, ketones, esters, amides, benzyl cations,
allyl cations, alkyl cations, carbonyl Michael acceptors, nitrile
Michael acceptors, and nitro Michael acceptors. Methyl ion
affinities (MCA* and MAA*) were calculated using TURBO-
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MOLE V7.3*7* at the PBEO(disp)(ref 49)/DEF2-TZVP(ref
50) COSMO(0)*"** level of theory.”*>* It must be noted that
the MAA* and MCA* tend to correlate with experimentally
determined Mayr E and Mayr N.sy within a range of 3.0 orders of
magnitude.‘%’4 For example, the DFT calculated MCA* for the
compound at the top of the nucleophilicity scale in Figure 2b is
+23.23, which means the actual reactivity score is in the range of
+20.23 to +26.23.

B DEEP LEARNING TO PREDICT CHEMICAL
REACTIVITY

Deep learning® methods have many applications in chemo-
informatics, from molecular property predictiong’g’“‘z”55 and
optimization,l4’16’56 to reaction prediction,'’™'"*” to the
acceleration of QM calculations.”®*’ Although it takes time to
train deep learning methods, at inference time they are fast and
tend to generalize well. Deep learning methods in chemo-
informatics must be developed in tandem with the underlying
chemical representations: while a feedforward neural network
can be applied to vectorial or tensorial representations of fixed
size, a recursive or graph neural network must be used in the case
of variable size, structured, representations.éo Next, we describe
the representations and architectures we use for the problem of
predicting electrophilicity and nucleophilicity.
Representation of Molecular Structures. As previously
mentioned, there are several ways of attributing the reactivity
score introduced in Mood et al.” and Kadish et al.* This score is
defined as the difference between the free energy of the reactants
and products in the reactions shown in Figure 2a. It is also
calculated for the most reactive atom of the most reactive
functional group in each molecule. Therefore, one can interpret
this as (1) the reactivity of the atom which is bonding to the

https://doi.org/10.1021/acs.jcim.1c01400
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methyl ion during the reaction (atomic reactivity); (2) the
reactivity of the functional group which contains the atom that is
bonding to the methyl ion (group reactivity); or (3) the
reactivity of the molecule which is reacting with the methyl ion
(molecular reactivity). Using our know-how and some
preliminary exploration to avoid looking at all possible
combinations of attribution and representations, we converged
on the following list of possible representations: (1) informative
fingerprint vector representation to learn the atomic reactivity;
(2) extended connectivity fingerprint (ECFP) to learn the
molecular reactivity; (3) SMILES string text representation to
learn the molecular reactivity; and (4) graph representations to
learn atomic, functional group, and molecular reactivity. Next,
we develop deep learning models congruous with each
representation.

B DEEP LEARNING MODELS

Informative Fingerprint Vector Representation and
Model. To perform an atom level prediction, each atom has to
be mapped to a vector. The first method to find this mapping is
to use chemical features associated with each atom in a molecule.
These features fall into two categories: 1) graph-topological and
2) physical-chemical. Graph-topological features reflect patterns
of connectivity and the neighborhood of atoms, as in standard
molecular fingerprint representations. The physical-chemical
features instead capture properties of the atom itself. Examples
of physical-chemical features are the presence and type of filled
and unfilled orbitals, electronegativity, and the location of the
atom in the periodic table. Here, we associate a feature vector of
length 52 to each atom. This vector corresponds to the
concatenation of 44 graph topological features and 8 physical-
chemical features. We refer to this vector as the informative
fingerprint vector representation of the corresponding atom.
Then, we train two separate neural networks, one for
electrophilicity prediction and one for nucleophilicity predic-
tion. After a hyperparameter optimization phase carried out
using Sherpa®' with the random search option, both resulting
networks comprise two hidden layers with 32 and 16 units and
one output linear unit for the reﬁgression task using the mean
squared error. We use dropout®”®* on the hidden layers with a
rate of 0.4. We use stochastic gradient descent with a learning
rate initialized at 0.001 and a momentum of 0.85. We also use
SPLASH activation functions initialized to ReLU activations®*
in the hidden layers. The results of this experiment for both
electrophilicity and nucleophilicity are shown in Table 1.

Extended Connectivity Fingerprint Representation
and Model. When the reactivity score is attributed to the
molecule (molecular reactivity), we use molecular fingerprints
to represent the entire molecule as a binary or integer (count)
vector. In this work, we use the well-known extended-
connectivity fingerprints (ECFP)®® to train two separate
networks for electrophilicity and nucleophilicity prediction.
The length of the fingerprints must be adjusted as there is a basic
trade-off: longer fingerprints capture more information;
however, they increase the risk of overfitting. Considering the
length of the fingerprints and the radius as hyperparameters,
after a grid search stage for choosing the best length and radius,
we converge on a size of 512 with a radius of four. The
hyperparameter search carried using Sherpa®" with the random
search option yields an architecture with 64 and 32 units in the
hidden layers, followed by a linear output unit. This hyper-
parameter search also results in a stochastic-gradient-descent
learning rate initialized at 0.001 with a momentum of 0.85 and
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an L2 regularization coefficient of 0.20 which is a relatively large
value for L2 regularization and consistent with avoiding
overfitting on a relatively small training data.

SMILES String Representation and Model. We also use
canonical SMILES strings®® to represent the molecules. In order
to apply deep learning methods, the SMILES strings must be
converted to a numerical format. The most straightforward and
widely used embedding is the character level embedding.”””%*
However, it is more efficient to use atomic symbols as the
embedding units. Not only does this reduce the extra
computations required by atoms represented with multiple
characters, but it also provides a clearer separation between pairs
of atoms versus atoms represented by multiple characters (e.g.,
Sc can be seen as either a sulfur atom connected to an aromatic
carbon or a scandium atom). In this embedding, each atom and
special character in a SMILES string is mapped into a high
dimensional vector. This can be done through an embedding
layer whose weights are learned during the training process.
However, because we are using a relatively small training data set
of reactivity scores, we avoid adding extra embedding
parameters to the model by using a pretrained embedding of
atoms. We use the trained atom embedding vectors used in
Fooshee et al."” for an atom classification task within a reaction
prediction pipeline. In this case, atoms are mapped onto a 10-
dimensional vector space. Figure 3 shows the t-SNE 2D
visualization of the embedded atoms preserving some of their
physical-chemical properties and separating them from special
characters.

&

T3¢

t‘i 'S 1

Cu
Fe

As
Br Se

si Al
as

Figure 3. A two-dimensional t-SNE visualization of the numerical
embedding for atom symbols and special characters found in SMILES
strings. Special characters are clustered together and far from the atom
symbols. The embeddings of atoms with similar properties are close to
each other.

To predict the reactivity as the molecular property (i.e.,
molecular reactivity), the molecules are represented as SMILES
strings. Two neural networks with the same architecture are
employed to predict electrophilicity and nucleophilicity. The
architecture of the neural networks consists of a pretrained atom
embedding layer followed by a one-dimensional convolution
layer with a window size of five. This is followed by a
bidirectional LSTM layer with 16 hidden units. Then, the output
is computed by a linear unit fully connected to the previous
layer. To avoid the risk of overfitting because of the large number
of parameters, an L2 regularization with A = 0.20 is applied for

https://doi.org/10.1021/acs.jcim.1c01400
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each weight of the convolution and LSTM layers. We use
dropout with a 0.5 rate at each layer, and the learning rate was
fixed at 0.001. All the hyperparameters are chosen using
Sherpa®’ hyperparameter optimization software with the
random search option. The results of this experiment are
shown in Table 1.

Graph Representation and Model. Finally, there are deep
learning methods that can be applied directly to graph-
structured data, such as knowled;e graphs, social networks,
parse trees, and molecules.>****~7> Within these methods, the
graph convolutional network (GCN), or outer recursive neural
network approach, is particularly suited for processing molecular
graphs through an iterative message passing mechanism that
aggregates information about each atom’s over increasing larger
neighborhoods. Here we follow an approach similar to
Schlichtkrull et al.”® to model a molecule as a relational graph
structure. Each molecule is first represented as an undirected
labeled graph G = (V, E, R, S), where the nodes in V correspond
to the atoms and the edges in E to the bonds. The labels for the
vertices in R correspond to atom types (e.g,, C, O). The labels
for the edges in S correspond to edge types (single, double,
triple, aromatic). In the beginning, each node of the graph is
associated with a vector representation (initial mapping)
carrying information about the node. The edges of the graph
can be treated in different ways; they can be mapped to real-
valued vectors using learnable embedding weights, or they can
be mapped to binary vectors using the one-hot encoding of the
bond types. Since we are focusing on organic structures, there
are only four types of bonds in the data set, and therefore, the
one-hot encoding approach is both reasonable and economical.
Thus, a molecule with n atoms and a feature vector of length d
for each atom (initial mapping) can be represented by an n X d
node-feature matrix H together with an n X n X d’ adjacency
tensor A (here d’ = 4). Each row in the node-feature matrix is the
vector representation of the corresponding atom. In the
adjacency tensor, for a pair of vertices i and j, the corresponding
vector of length four represents the one-hot encoding of the
corresponding bond type. For atoms that are not bonded, the
corresponding vector is (0,0,0,0). Using this representation, we
can apply a graph convolutional neural network to recursively
update the representation of each atom. The recursive
propagation of information in the convolutional neural network
is given by

W=hl+o| Y wih

JEN(i) (1)
Here }! is the vector representation associated with node i at
level L. W' denotes the shared weights of the convolution applied
from level [ to level I + 1. N(i) denotes the neighborhood of
vertex i, consisting of its immediate neighbors, and ¢ is a
nonlinear transformation. In order to take different bond types
into account, we use the approach in Schlichtkrull et al.” using a
different set of weights for each bond type, resulting in the form

W =hl+o| ) Y (Wik)

keS JEN() (2)
where N, (i) denotes the set of nodes connected to node i
through the edge type k € S. To train this graph neural network,
we optimize a multiobjective loss function. In addition to
minimizing the error between the predicted reactivity and the
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actual value of MCA* or MAA¥* for the node of interest, we
penalize the network whenever the predicted reactivity of other
nodes is greater than the predicted reactivity of the node of
interest. This can be formulated as follows

L= ”f(hiL) - )’”2 + ﬂ[ReLU(maxj((f(hjL)) _f(hiL))]z
3)

where i is the index of the atom which reacts with methyl ions, h*
is the atom representation produced by the last convolutional
layer of the GCN (L), and f(.) is a fully connected linear function

from R? to R which outputs the reactivity prediction. The first
loss term is the standard least-squares regression loss for
predicting the target value of the MCA* or MAA* masked to the
node of interest i. The second term looks at all the other nodes j
and the corresponding reactivity prediction f(h]L) , computes the
maximum reactivity difference with respect to node i, retains it
only in the unwanted case where this difference is positive
(through the ReLU function), and applies a square loss with a
weighting hyperparameter f. In other words, the reactions
shown in Figure 2a have the highest reaction rate among all
other plausible reactions with the same set of reactants. For the
initial mapping of each atom (h)) we use a one-hot vector
encoding of the atom type concatenated with eight physical-
chemical features. As can be seen from eq 2, applying the first
level of graph convolution updates the node representation
using information from its immediate (one-hop) neighbors. To
incorporate information from nodes up to three hops away into
an atom’s representation, we apply three layers of graph
convolution with node representations of length 38, 24, 16,
and 8 chosen after some exploratory experimentation. We also
concatenate a count vector of 10 predefined molecular graph
connectivity patterns to the output of the top convolutional
layer. These predefined patterns have graph lengths greater than
three and thus cannot be captured by the three-layer GCN.
Adding these patterns to the node representations results in a
slight performance improvement without requiring any addi-
tional graph attention layers. ReLU activation functions are used
for each of the graph convolutional layers. An L2 regularization
with 4 = 0.2 is applied to all the weights to avoid any overfitting.
All the hyperparameters including the length of atom
representation at each layer, L2 regularization, and the learning
rate are chosen using Sherpa®' hyperparameter optimization
software with the random search option. The GCN performance
is shown in Table 1.

There are a number of graph pooling mechanisms, such as
those described in Lee et al.”* and Murphy et al.,”* that can be
used to predict molecular reactivity and functional group
reactivity after the graph convolutions. Because of our relatively
small training data set, to avoid the risk of overfitting, we try
simple pooling mechanisms that require minimal additional
learning steps. In addition to the function f described above, we
use an element-wise max-pooling, average-pooling, and the
pooling mechanism introduced in Duvenaud et al.”” which is
described in eq 4, where G(V) is the final representation of the
entire graph, and N is the number of input nodes to the pooling
operation. When predicting molecular reactivity, N = [VI; when
predicting group reactivity, N is the number of atoms within the
functional group which reacts with the methyl ions. As
previously seen, k" is a vector of size n; representing the node
i in the top convolutional layer L, and W, is the shared pooling
weight matrix of size (n, m). Since this pooling is known to work
better with relatively longer node representations,” we set m =
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J. Chem. Inf. Model. 2022, 62, 2121-2132


pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c01400?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

10

Electrophilicity
| I

|
w
=}

—40

Nucleophilicity

40

w
=]

N
=]

=
=)

Figure 4. Range of electrophilicity and nucleophilicity in the curated data set, covering ~50 orders of magnitude in each case, together with five
examples of electrophiles and nucleophiles. The most reactive atom in each sample is labeled as 1.
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Figure S. Predictions of the best performing GAT models for (left) electrophilicity and (right) nucleophilicity. The red strip is showing the actual
electrophilicity and nucleophilicity plus or minus three orders of magnitude for the test samples. The black dotted line is the predicted reactivity.

n;. In our experiments, however, we found that for the prediction
of molecular reactivity and group reactivity max-pooling and
average-pooling work slightlg better than the mechanism
. . 9

introduced in Duvenaud et al.

G(V) =)

i=1

exp(oi) L
o =h'w,
7 exp(o) ’ )

Graph Attention Networks. Another recently introduced
type of neural network which can ogerate on graph data is the
Graph Attention Network (GAT).”" In this approach, node
representations are updated by a weighted message passing
scheme between neighbors, where the weights are calculated
through an attention mechanism as follows:

1 ij)1 lq4 71 .

hi+1 = ”2210 Z a((ﬂgh;W(m) VVlth
JEN,

o AW IW(,h))

a =
(m) ! 1
Lien, SPAMWIW))

©)

Here P is the number of attention mechanisms (also known as
attention heads”"), m ranges from 1 to P, Wl(m) denotes the
shared weights of layer [ and attention mechanism m, and A
represents a shallow neural network with a leaky-ReLU output
activation mapping the input vector into a scalar. The symbol Il
represents the concatenation operation, and h{™', as the updated
node representation, is the concatenation of the output of
different attention mechanisms. Through our experiments, we
find that using a larger node representation at the last layer of the
GAT together with averaging (instead of concatenation) works
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better. We use three GAT layer representations of size 38, 24, 16,
and 12 and concatenate the representation of the top layer with
the same count vector of predefined patterns used with the
GCN. The GAT is trained using the same loss function as
described in eq 3. We experimented with several variations in
terms of the number of attentions heads and bond
representations and report only the best results (P = 3),
although the differences observed were minor. The GAT results
for the prediction of reactivity are shown in Table 1.

B RESULTS

Data. The full curated data set of 2421 molecules and their
scores, covering 53 orders of magnitude of chemical reactivity, is
available for download from the UCI ChemDB chemo-
informatics web portal at cdb.ics.uci.edu. Figure 4 illustrates
the range of electrophilicity and nucleophilicity in the curated
data set.

Comparative Analysis and Predictions. Table 1 shows
the results obtained with four different optimized neural
networks with the corresponding molecular representations.
Each number in Table 1 corresponds to the average 10-fold
cross-validation accuracy, together with the corresponding
standard deviation, for both electrophilicity and nucleophilicity
predictions. As previously mentioned, the reactivity numbers are
valid within 3 orders of magnitude. Thus, a prediction is
considered to be correct if the predicted reactivity is within 3
orders of magnitude of the actual MCA* or MAA*. Although
the informative vector representation of atoms shows a good
performance, it has several downsides and limitations. The
informative features are specifically tailored for our data set and
are not generalizable to unseen molecular structures. Also, there
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Figure 6. An example of a chemical reaction that can be problematic for an automated reaction prediction system. This reaction has two potential
electron donors, marked in red. While both donors are reasonable, the nitrogen’s reactivity score is considerably smaller than the carbon’s reactivity

score.

Table 2. Improvement in the Atom Classification Task Described in Fooshee et al.'* Obtained by Reranking the Atoms Based on

Their Predicted MCA* and MAA* Values

model
informative fingerprint
GAT
informative fingerprint
GAT

electrophilicity (electron sink)

nucleophilicity (electron source)

top-S top-10
before after before after
0.43 0.51 0.35 0.42
0.43 0.50 0.35 0.41
0.41 0.48 0.32 0.40
0.41 0.48 0.32 0.39

is no guarantee that the extracted features are the best
representation of atoms. Since human chemists have designed
these features based on their experience, another chemist might
come up with a different set of features. On the other hand, for
the SMILES representation and the corresponding networks,
although there are no manually tailored features, these networks
do not show comparable performance in comparison to other
representations. The reasons for this poor performance might be
the implicit rules of writing SMILES string which convert the
molecular graphs into text representations. For instance, the
long dependency between two parentheses that specify a branch
of atoms might not be captured with recurrent neural networks
such as LSTMs. Finally, the graph representation of molecular
structure does not have any of the aforementioned drawbacks,
and the corresponding models produce the best results. Figure 5
illustrates the performance of the best graph attention model for
both electrophilicity and nucleophilicity predictions.

When comparing the performance of different models
associated with different interpretations of chemical reactivity
(atomic, group, molecular), one observes that the models based
on atomic reactivity consistently have higher accuracy and lower
standard deviation than the models associated with the group
and molecular reactivity. One reason for this performance
difference is the presence of nonreactive atoms (atoms with low
electrophilicity or low nucleophilicity) in the reacting functional
groups and molecules, which may play a distracting role. These
nonreactive atoms contribute to the final (after pooling)
representations in the models based on group or molecular
reactivity, whereas by definition, these nonreactive atoms are not
present in the final representation of the models based on the
atomic reactivity.

These results provide at least a proof-of-concept that the high-
throughput prediction of the MCA* and MAA* scores is
feasible. Next, we demonstrate how such a system could enable
other tasks, such as chemical reaction prediction and
combinatorial generation of chemical reaction mechanisms.

Chemical Reaction Prediction. In recent years, several
deep-learning-based methods have been introduced to predict
the outcome of chemical reactions under certain conditions.
These systems operate primarily either on string (SMIRKS)
representations®’ or molecular graph representations.'°~"*7* All
the molecular graph-based methods seek to identify the most
reactive atoms within the reactants. For instance, Coley et al."”
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identify the most reactive atoms (i.e., reaction centers) using a
binary classifier that classifies atoms as members of the reaction
center or not. Fooshee et al." focus on reaction mechanisms by
identifying electron sources and sinks and ranking the
corresponding pairings. Although these methods yield reason-
ably successful reaction predictors, they are not always able to
accurately identify the most reactive atoms, especially in the
presence of multiple reagent molecules. The method presented
here for estimating reactivity scores for electrophiles and
nucleophiles could be used to address some of these problems
by using the scores to rank the atoms. Such ranking may
accurately identify reaction centers and electron donors and
acceptors, bypassing or complementing the complex methods
described, for instance, in Coley et al.'* and Fooshee et al.'*> An
example of this approach is depicted in Figure 6. For this
example, a chemical reaction predictor such as Fooshee et al."
might predict both the nitrogen (amine group) and the
highlighted carbon as the potential electron donors (since
both atoms are labeled as electron donors in the training set of
such system). However, our predicted nucleophilicity score for
the carbon is higher than the reactivity score predicted for the
nitrogen (+21.64 vs +9.71), leading to the correct identification
of the electron donor and the corresponding reaction.

To further evaluate the viability of our method in predicting
MCA* and MAA*, we collect a test set of 100 organic
mechanisms where the reacting functional groups are similar to
the electrophiles and nucleophiles in the training data described
in the Curated Data Set of Chemical Reactivities. These 100
organic mechanisms are extracted from the literature and are
given in the Supporting Information. Using these 100
mechanisms, we follow the atom classification task presented
in Fooshee et al."* where atoms are labeled as electron donor/
acceptor. Then, for those reactions where the true electron
donor and the true electron acceptor atoms are predicted within
top-k predictions, we rerank the top-k predictions based on their
actual predicted MCA* and MAA*. We use the Mean
Reciprocal Rank (MRR)’° score to measure the success of the
reranking procedure. The MRR score is defined in eq 6, where N
is the number of test reactions, and g; is the reactive atom (either
the electron donor or the electron acceptor) of the ith test
reaction. The MRR score ranges from 0.0 to 1.0, where a higher
MRR corresponds to a more accurate ranking.

https://doi.org/10.1021/acs.jcim.1c01400
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Table 3. Two Examples of Combinatorial Reaction Mechanisms”

templates substituents
T, (donor) T, (acceptor) S, (donor) S, (acceptor) N(T,) — N(S,) E(T,) — E(S,)
N[R] C[CH+][R] 0=C([R])NC [R]C(OC)=0 +11.47 +2821
C=C([R])[0-] C/[N+](C)=C\[R] N#C[R] O=C([R])N(C)C +7.6 +18.48

“T, and T, correspond to electron donor and electron acceptor templates, respectively. Similarly, S; and S, correspond to electron donor and
electron acceptor substituents, respectively. E(.) and N(.) denote the predicted electrophilicity and nucleophilicity values. The last two columns
show the difference between the reactivity of templates and substituents for both electron donors and electron acceptors. The positive numbers
indicate that the predicted reactivity of the templates is higher than the predicted reactivity of the substituents (see text).

e

a N )

[}

Figure 7. (a) The four possible reactions corresponding to the first row of Table 3 [T, + Sy; T, + Sy; Ty + To; S, + S,]. (b) Likewise, the four possible
reactions corresponding to the second row of Table 3. In each figure, the reaction predicted using the reactivity scores is depicted inside a green box,
whereas the remaining three less plausible reactions are depicted inside an orange box. These implausible reactions can be automatically filtered out
during the process of combinatorial reaction generation. The plausibility and implausibility of these reactions are verified by expert chemists.
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e
N ; rank(a;) (6)

In Table 2, we show the improvement of the MRR score for k
= 5 and 10 before and after the reranking. As it is shown,
reranking the top-k predicted atoms based on their predicted
MCA* and MAA* values improves the atom classification in
Fooshee et al."® by 18% in MRR score. This 18% improvement
in MRR score corresponds to 25 reactions out of the 100 test
reactions, having their reactive atoms (electron donor and
electron acceptor) being ranked higher.

Combinatorial Generation of Chemical Reaction
Mechanisms. Fooshee et al."’ introduced a method to
combinatorially augment a training set of reactions. This
method uses two fixed scaffolds respectively containing one
electron donor group and one electron acceptor group (also
called templates) and then combinatorially varies the decorative
atoms (also called substituents) attached to the templates within
realistic chemical constraints. Following this process, one can
generate large numbers of elementary reactions covering a range
of fundamental reaction classes. The most important constraint
to enable this method to generate plausible reactions is that the
atoms within the attaching substituent functional groups must
be less reactive than the template atoms. Automatically
enforcing this constraint requires a ranking of atoms based on
their reactivity within different functional groups, and this can be
done using the scales proposed here. A demonstration is given in
Table 3 and Figure 7 showing that the proposed scales can be
used to filter out the nonplausible combinatorially generated
mechanisms. The first row of Table 3 and Figure 7a consider
four functional groups in two reactants. The higher nucleophil-
icity of the amino group over the carboxamide and the higher
electrophilicity of the carbocation over the ester carbonyl
correctly predict the attack of the amino group on the
carbocation (the green reaction in Figure 7a). Similarly, the
second row of Table 3 and Figure 7b consider four other
functional groups in two more reactants. The higher
nucleophilicity of the enolate relative to the nitrile and the
higher electrophilicity of the iminium ion over the carboxamide
carbonyl group correctly predicts a Mannich reaction involving
the addition of the enolate to the iminium ion (the green
reaction in Figure 7b).

B CONCLUSION

Methyl cation affinity and methyl anion affinity have been shown
to be highly correlated to the reactivity of atoms in functional
groups over a broad range of organic chemistry. Leveraging this
correlation, we used DFT calculations to curate a data set of
relative reactivity scores for 2,421 electrophilic and nucleophilic
functional groups covering 53 orders of magnitude of chemical
reactivity. This curated data set is available to the community
and was used to train several deep neural networks, with
different representations, to estimate reactivity. Through
experiments, we have shown that graph attention neural
networks outperform other methods and representations and
can accurately estimate the reactivity with a 10-fold cross-
validation accuracy of 92% showcasing another synergistic
application of QM and Machine Learning methods.

In the future, it may be useful to incorporate the
experimentally validated reactivity parameters from the Mayr
database and to further expand the curated data set of DFT-
derived reactivity scores (MCA* and MAA*) to a broader range

2130

of molecular structures. All the proposed methods in this work
are trained using the 2421 structures with decent coverage of
basic functional groups over 53 orders of magmtude of chemical
react1v1ty However, the method in Mood et al.* and Kadish et
al.? for calculating chemical reactivity is applicable to molecular
structures with a chemical reactivity covering 180 orders of
magnitude. Thus, there is significant room for curating larger
data sets and training more refined machine learning systems to
predict chemical reactivity, as well as using the machine learning
results to guide the DFT calculations toward the most
informative regions of chemical reaction space.

Data and Software Availability. The data sets of MCA* and
MAA* scores along with the set of 100 test mechanisms are
available through the ChemDB chemoinformatics web portal at
cdb.ics.uci.edu under Chemical Reactivities Data sets. The
models and training scripts with a description of the required
packages are available at github.com/amintavakol/rrs_
prediction.
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