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Abstract: The asymptotic symmetry of an isolated gravitating system, or the Bondi—
Metzner—Sachs (BMS) group, contains an infinite-dimensional subgroup of supertrans-
lations. Despite decades of study, the difficulties with the “supertranslation ambiguity”
persisted in making sense of fundamental notions such as the angular momentum carried
away by gravitational radiation. The issues of angular momentum and center of mass
were resolved by the authors recently. In this paper, we address the issues for conserved
charges with respect to both the classical BMS algebra and the extended BMS algebra.
In particular, supertranslation ambiguity of the classical charge for the BMS algebra,
as well as the extended BMS algebra, is completely identified. We then propose a new
invariant charge by adding correction terms to the classical charge. With the presence of
these correction terms, the new invariant charge is then shown to be free from any su-
pertranslation ambiguity. Finally, we prove that both the classical and invariant charges
for the extended BMS algebra are invariant under the boost transformations.
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1. Introduction

The study of gravitational radiation [7,8] in the 1960s culminated in the discovery of the
definition of Bondi—Sachs energy-momentum and the mass loss formula of Bondi. An
unexpected realization was that the asymptotic symmetry group of an asymptotically flat
spacetime, or the Bondi-Metzner—Sachs (BMS) group [8,30,31], is much larger than
the Poincaré group. In particular, there exists an infinite dimensional normal subgroup
of supertranslations of the BMS group. This was expressed first in terms of coordinate
transformations of Bondi—Sach coordinate systems [8,30] and then in terms of Penrose’s
conformal compactifications [22,26]. Supertranslations are universal as they are inde-
pendent of the underlying spacetime and ubiquitous in any description of null infinity.
Their presence created subtleties in describing physical reality for a distant observer. The
Bond-Sachs energy-momentum was shown to be supertranslation invariant, and the en-
ergy/mass loss due to radiation can be evaluated without ambiguity. However, this is no
longer the case for angular momentum at null infinity. With the existence of supertrans-
lation ambiguity, one cannot rigorously discuss the angular momentum carried away by
gravitational radiation [27]. This issue was recently resolved by the authors’ discovery
[10,15] of a supertranslation invariant definition of angular momentum, which modifies
the classical definition of angular momentum by a correction term that is derived from
the CWY quasilocal angular momentum [13,14]. A supertranslation invariant center of
mass was also proposed in [10, 15]. Angular momentum and center of mass correspond
to the quotient Lorentz algebra (rotations and boosts) of the BMS algebra by supertrans-
lations. In this article, we consider the conserved charges [2,20,32] of the full BMS
algebra. Our analysis also applies to the extended BMS algebra, which includes super-
rotations or superboosts [21]. In both cases, supertranslation ambiguity is completely
identified for the classical charge, and an invariant charge is proposed and shown to
be free from any supertranslation ambiguity. We note that, from a completely different
perspective, the work of Hawking—Perry—Strominger [23] attempted to interpret these
ambiguities associated with superrotations and supertranslations as soft hairs of black
holes.

Consider the future null infinity #* of an asymptotically flat spacetime which is
described in terms of a Bondi—Sachs coordinate system. .#* is identified with I x S2,
where I C (— 00, +00) is an interval parametrized by the retarded time u and S is the
standard unit 2-sphere equipped with the standard round metric o4p5. Let €4p be the
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area form of o4p and V4 be the covariant derivative with respect to o4 p. Indexes are
raised, lowered, or contracted with respect to o4 5.

The symmetry of .#* consists of the Bondi—-Metzner-Sachs (BMS) group, of which
supertranslations form an infinite dimensional subgroup.

Definition 1.1. Suppose (i, x) and (u, x) are two Bondi—Sachs coordinate systems on
#*. A BMS transformation B : #* — #* is given by

(u, x) = B(u,x) = (K(X)u + f(x), g(x)) (1.1)

where f is a function on $2 and g : (§%2,6) — (§2,0) is a conformal map with
g*o = K26 (see Appendix C).

B is called a supertranslation, denoted by Sy, if g is the identity map, K = 1, and
(u,x) = (u+ f(x), x). On the other hand, B is called a boost, denoted by B, if f =0
and (u, x) = (K(x)u, g(x)).

The infinitesimal symmetry of .#* is the BMS algebra of BMS fields. Our consider-
ation also includes the extended BMS algebra which was recently proposed in [3-6].

Definition 1.2. A classical BMS field is a vector field Y on .#+
Y =@ +urha, + Y9,, (1.2)

such that Y is a smooth function on % and Y4 is a smooth conformal Killing vector
field on S2,

VAYB + VBYA = 2Yloup. (1.3)

An extended BMS field is a vector field Y defined on (— 00, 00) x % C .#* for some
open subset % C S2.Y = (YO +uY"d, + Y29, where YY is a smooth function on %
and Y4 satisfies (1.3) on % . It is understood that an extended BMS field indicates such
a pair (Y, %), though 7% is often omitted.

A classical BMS field corresponds to an infinitesimal deformation of the BMS group,
while an extended BMS field may not be integrable. We also note that a classical BMS
field is characterized by that both V4 Y4 and €45 VAY 8 are functions of harmonic mode
(=1 02n $2. One can view a classical field as a special case of an extended field with
w = S-.

Let m denote the mass aspect, N4 the angular momentum aspect, C4p the shear
tensor, and N4 g the news tensor of the Bondi—Sachs coordinate on .#™*. One can view
m as a smooth function, N4 a smooth one-form, and C4p and N4p smooth symmetric
traceless 2-tensors (with respectto o4p) on S 2 that depend on u. In particular, 9,Cap =
Nag. See a brief description of .#* in the Bondi—Sachs coordinate and the definitions
of these quantities in Sect. 2.1.

Definition 1.3. The classical charge O(u, Y) associated with an extended BMS field Y
defined on (— 00, 00) x % is defined to be:

Ow,Y) = f YAINA — chDvBcDB — ivA<cDECDE>]
p 4 16
+/ Y% +uyhH2m) (1.4)
4

1
_Z/ u(eapVAY2)ePCvpvECr,
w

where V4 denotes the covariant derivative with respect to o4 .
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The last integral vanishes for classical BMS fields as € 4gVAY B is of mode ¢ = 1.
In this case, the definition reduces to that of Dray—Streubel [20]. See Section III.B
of Flanagan—Nichols [21] for details. It is added to make the charge independent of
retarded time in a non-radiative spacetime for extended BMS fields'. See also Section
III.D of Flanagan—Nichols [21] for a related discussion. The integrals may not be finite
for an extended BMS field Y. In this case, we shall assume that the supports of the
BMS functions m, N4, Cap, Nap are contained in %/. This will ensure the finiteness
of the charge and justify the integration by parts that we perform. One can, in fact,
work in the space of the L? completion of data with such support. For simplicity, we
will not pursue this completion here. In the Bondi—Sachs formalism, such data can be
constructed by choosing initially that m, C4p and N4 are properly supported and then
require that N4p is properly supported. On the other hand, asymptotically flat initial
data sets at spacetime infinity with physical data properly supported can be constructed
via the localized solutions to the Einstein constraints equation by Carlotto and Schoen
[9].

Throughout this article, we assume that .#* extends from u = — oo (i Ntou =+00
(i*), the total flux of the classical charge is

§Q(Y)= lim Q,Y)— lim Q@,Y).
u—+00 u—+00
We turn to the definition of supertranslation ambiguity.

Definition 1.4. Let S be the supertranslation (1, x) = (u + f(x), X). We say that two
extended BMS fields ¥ = (Y + uY1d, + Y49, and Y = (YO + aY 19 + Y49, are
related by S if

YO=y0 y'=y! y4 =5ty (1.5)

Definition 1.5. The supertranslation ambiguity of the total flux of the classical charge
is defined as

50(Y) = 30(Y)
for two BMS fields related by a supertranslation.

Definition 1.6. We say a quantity is supertranslation invariant if it is invariant under all
supertranslations of mode ¢ > 2. In the case of the classical charge, this means

50(Y) —80(¥) =0
for any supertranslation Sy of mode £ > 2.
For classical BMS fields, we prove that
Theorem 1.7 (Corollary 3.3). Suppose the news tensor decays as
NapQu,x) = O(u|"" %) asu — + oo,

then the total flux of the classical charge is supertranslation invariant for all classical
BMS fields if and only if

Iim m(u,x) — lim m(u,x)
U—+00 U—>—00

is a constant on S2.

1 On the other hand, the integrable part of the surface charge introduced by Barnich-Troessaert [6, (3.2)] is
the same for classical and extended BMS algebra.
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In particular, as long as lim,_, 4o m (1, x) — lim,_, _ o, m(u, x) is non-constant, the
total flux of the classical charge is shifted by supertranslations and can assume any value.
The supertranslation ambiguity of an extended BMS field is also identified, see Theorem
5.3.

In order to remove the supertranslation ambiguity, we define a new charge for the
BMS algebra by adding correction terms. To define the new charge, we consider the
decomposition of C4p into

1 1
Cap =VaVpe = Joaghc+ E(GAEVEVBQ+ €3 VEVaAC) (1.6)

where € 4p denotes the area form of o4p5. ¢ = c(u, x) and ¢ = c(u, x) are the closed
and co-closed potentials of C 4p(u, x). They are chosen to be of ¢ > 2 harmonic modes
and thus such a decomposition is unique.

Given the decomposition of the shear tensor C 4 g, its Hodge dual, (xC) 4p = €4 Dcps,
admits the following decomposition

1 1
(%*C)ap = —VaVpe + EaABAg+ E(eAEvaBc +e3EVEVa0).

In the following, we propose a notion of invariant charge for an extended BMS field.

Definition 1.8. The invariant charge Q(u, Y) associated with an extended BMS field Y
on (— 0o, 00) X % is defined to be:

Qw,Y) = Ou, Y)+/ (YAV4c — Y'om
w

1
—— | vAVE(VpYP)Cup
16 Jo

1
—— | VAVE(VLYP)(C)ap. (1.7)
16 Jo

Again, we assume that m, C4p and N, are supported on % .
Remark 1.9. For a classical BMS field Y,

1 1
Qu,Y) = /2 YAINy — ZCADVBCDB - 1—6VA<CDECDE)]
S

+/ (Y0+uY‘)(2m)+/ (YAVAC—ch)m. (1.8)
S2 SZ

This provides a unified expression for the invariant angular momentum (Y 4 =e48 v 3 X¥)
and invariant center of mass integral (Y4 = VA X¥) studied in [15]. We do not include
the two terms involving co-closed potentials in Chen—Wang—Yau center of mass integral
in order to retain boost invariance.

The correction term for a classical BMS field is precisely the same as the correction
term for the invariant angular momentum and center of mass defined in [10, 15], which
are the limits of CWY quasilocal angular momentum and center of mass at null infinity
[13,14,24]. The correction term arises from solving the optimal isometric embedding
equation in the theory of Wang—Yau quasilocal mass [33,34]. This provides the critical
reference term in the Hamiltonian approach of defining conserved quantities.

We can similarly define the total flux of our new invariant charge and the super-
translation ambiguity. We prove that the total flux of the invariant charge is free of
supertranslation ambiguity for both classical BMS fields and extended BMS fields.



P-N. Chen, M.-T. Wang, Y.-K. Wang, S.-T. Yau

Theorem 1.10 (Theorem 3.5). Suppose Y is a classical BMS fieldand Nop=0 (|u|™ 1-€)
as u — 0o, then the total flux of the invariant charge Q(u,Y) is supertranslation
invariant.

In order to ensure the finiteness of the total flux and prove the supertranslation in-
variance for an extended BMS field, a slightly stronger decay condition for the news at
i% and i* is required.

Theorem 1.11 (Theorem 5.4). Suppose Y is an extended BMS field and Nap =
O(|u|*2’€) as u — £ 00, then the total flux of the invariant charge Q(u,Y) is su-
pertranslation invariant.

Next, we study the invariance of the total flux of the charges under a boost, first for
the classical BMS fields and next for the extended BMS fields.

Definition 1.12. Let B, be the boost (u, x) = (K (x)u, g(x)). We say that two extended
BMS fields Y = (YO +uY1)d, + Y494 and Y = (YO +uY1)d; + Y9, are related by B,
if

YO=kY? y'=Y'+K7'Y'V,K, YA = 09,87 (1.9)

where the left hand sides are evaluated at x and the right hand sides are evaluated at
= -1
x =g (x).

Theorem 1.13 (Theorem 4.1). Suppose Y and Y are two classical BMS fields related by
a boostand Nag = O(lu|~17¢) as u — =+ o00. We have

8Q(Y)=80Q(Y) and 5Q(Y) =38Q(Y).

Theorem 1.14 (Theorem 6.2). Suppose Y and Y are two extended BMS fields related
by a boost and Nsp = O(|u|_2_6) as u — £ 00. We have

8Q(Y)=80Q(Y) and 5Q(Y) =38Q(Y).

The other major results of this article concern non-radiative spacetimes.? In such case,
Q(u, Y) is supertranslation invariant and boost invariant. See the statement of Theorems
3.6,4.4, 5.5 and 6.3 for further details.

The paper is organized as follows. In Sect. 2, we review the Bondi—Sachs coordinate
system, compute the evolution of classical charges, and present the formula of Bondi—
Sachs data in non-radiative spacetimes. In Sect. 3, the supertranslation ambiguity of the
classical charge is defined and supertranslation invariance of the invariant charges is
proved. Section 4 demonstrates the boost invariance for both the classical charge and
the invariant charge. Sections 5 and 6 generalize the results in Sects. 3 and 4 to extended
BMS fields. There are three appendices presenting useful formula and explicit forms of
extended BMS fields.

2. Background Information

In this section, we review the Bondi—Sachs coordinate systems and compute the evolution
of the classical charge in such a coordinate system.

ZA spacetime is non-radiative if the news tensor vanishes.
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2.1. Bondi—Sachs coordinates and BMS transformations. In terms of a Bondi—Sachs
coordinate system (u, r, xz, x3 ), near .#* of a vacuum spacetime, the metric takes the
form

Supdx®dxP = —UVdu* — 2Ududr + r*hap(dx® + WAdu)(dx® + WBdu). (2.1)

The index conventions here are ¢, 8 =0,1,2,3, A, B =2,3,and u = X9 r = xn.
See [8,25] for more details of the construction of the coordinate system.

The metric coefficients U, V, hxp, WA of (2.1) depend on u, r, 0, ¢, but dethp
is independent of u# and r. These gauge conditions thus reduce the number of metric
coefficients of a Bondi—Sachs coordinate system to six (there are only two independent
components in & 4p). On the other hand, the boundary conditions U — 1, V — 1,
WA — 0, hyp — oap are imposed as r — oo. The special gauge choice of the
Bondi—Sachs coordinates implies a hierarchy among the vacuum Einstein equations,
see [23,25].

Assuming the outgoing radiation condition [8,25,30], the boundary condition and the
vacuum Einstein equation imply that as r — 00, all metric coefficients can be expanded
in inverse integral powers of r. In particular (see Chrusciel-Jezierski—Kijowski [19,
(5.98)—(5.100)] for example),

1

_ 2 -3
U=1-15ICP+007),
om 1 /1 1 1
Vel (2VAN, +-VACAEVCED + —|C2 ) + 0D,
r r2\3 4 16
wa = Lvpens e L (Zna - Loacp Z Leasgre, ) o0
22 r3\3 16 2 ’

Cy 1 _
hap =oap+ ==+ 5|ClPoap + 0G)

where m = m(u, xA) is the mass aspect, N4 = Na(u, xA) is the angular aspect and
Cap = Cap(u, x*) is the shear tensor of this Bondi—Sachs coordinate system. Note that
our convention of angular momentum aspect differs from that of Chrusciel-Jezierski—
Kijowski, No = —3Ny4(cJk). Here we take norm, raise and lower indices of tensors
with respect to the metric o4 p. We also define the news tensor Nayp = 9,C4p.

To close this subsection, we note that, identifying a BMS field ¥ = (Y° + u¥1)9, +
Y49, with (Y4, Y9), the Lie bracket of the BMS algebra is (see [6, (2.11)])

[, v, (3 ) = @4 70
where
YA =yEvpys —vEvpyit
YO =rAvAYY — YAVAYD + %(YPVAYZA - YQOVAYIA>
In particular, the Lie bracket between a supertranslation fd, and a BMS field Y is
[fou, Y] = (%fVAYA — Y4Va f)ou. 22)

As aresult, the supertranslations form an ideal in the BMS algebra.
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2.2. Evolution of the classical charge. In this subsection, we derived the evolution for-
mula of the classical charge, which will be used to calculate the total flux of the classical
charge and the invariant charge in the later sections.

The evolution of the mass aspect [19, (5.102)] and the angular momentum aspect
[10, Proposition 3.1] are given by

1 1
dum = —gNABNAB + ZVAVBNAB, (2.3)

and

duNa = Va(m+ §CppNBE) + LespVE(ePCVpVECE))
+3easVE(EP2CENEQ) + 1CapVpNPE. (2.4)

Proposition 2~.1. Let Y be an extended BMS field defined on (— 0o, 00) x % . The clas-
sical charge Q(u, Y) evolves according to the following:

3 1 1
0,0, Y) = 7 fy y4 [CABVDNBD — NapVpCBP EGABVB(GPQCPENEQ)}
I
- -/ uY1|N|2+/ Y23, (2m) (2.5)
4 Joy w
1
7 /62/ " [(zyl)vAvBNAB - (eABvAYB)ePvavENEQ]

Note the last line vanishes for classical BMS fields.

Proof. From the definition of the classical charge (1.4), we compute
. 1 1
3.0, Y) = / YA[9,Na — =3,(C4PVECpp) — —Vad,(CppCPE)]
u 4 16
+/ Y%, (2m) +/ Y'@2m) +/ uY'a,2m). (2.6)
4 4 4
1
— Z/ (eapVAYBYePOVpVECE +u(eapVAYE)eP2VpVENE,
w

and then apply (2.3) and (2.4). Finally, we use (5.2), V4 Y4 = 2Y!, to show that
[ [YAVAm +Y!'2m)] =0. u!

2.3. Non-radiative spacetimes. By a non-radiative spacetime, we mean a spacetime
with zero news tensor Ngp(u, x) = 0. This includes all model spacetimes such as
Minkowski and Kerr. The vanishing of the news tensor implies d,m(u,x) = 0, 9,
Cap(u, x) = 0 and thus

mu,x) =mx), Capu, x) = é‘AB(x)

and both potentials ¢ and ¢ are independent of u as well. By Proposition 2.1, the classical
charge is independent of u in a non-radiative spacetime. In fact, the same holds for the
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invariant charge since the corrections terms are independent of # in a non-radiative
spacetime as well.

In the rest of this subsection, we pin down the exact formulae for the transformation
of Bondi—Sachs data under supertranslations and boost, in a non-radiative spacetime.
In general, under a BMS transformation the shear and news tensors are transformed by
[11, Corollary 2.7]

Cap(it, %) = K1 (2)0,8% 0585 Cap(f, () — 2V Vo f + AfGur  (2.7)
Nap(it, %) = 85Cap = 3,828 Nap(f, g(X)) (2.8)

where f(ﬁ, xX) = K(X)u + f(x). See also [19, page 163]. Consequently, vanishing of
news is preserved under BMS transformations.

First we focus on supertransltion. Since the spherical coordinate is unchanged, we
use the same index A for both x and x to simplify the notation and use x to denote either
x4 or ¥4 in the following lemma.

Lemma 2.2. Suppose the news Nap(u,x) = 0 in a Bondi-Sachs coordinate system
(u, x) and (u, x) is another Bondi—Sachs coordinate system that is related to (u, x) by
a supertranslation u = it + f for f € C®(S?). Then we have

m(i, x) = m(x) = m(x)

CAB(’/_hx)a = éAB(x) = Cap(x) — Fap 2.9)
c=¢—=2fi>2
c=¢

where Fap = 2VsVpf — Afoap and
Na(it, x) = Na(uo, x) + (@ — uo + f)(Vari ivgﬁm +3mVa f — %ﬁBAVBf
(2.10)
where
Pga = (VgVECEA — VaVECEp)
for any u and fixed uy.

Proof. The mass aspect m (i, x), the shear C_'AB(IZ, x), and the news NAB(L?, x) in the
(u, x) coordinate system are related to the mass aspect m(u, x), the shear Cap(u, x),
and the news N4 p (1, x) in the (u, x) coordinate system through:

(i, x) =m(i+ f, x) + %(VBNBD)(IZ + f,x)VPr

+j—‘<auNBD)<ﬁ + L0VEFVP 4 %NBD@ + f,x)VEVP f

?AB(ﬁ’ x) =Capu+ f(x),x) —2VaAVpf+Afoap
Nap(i,x) = Nap(u + f(x), x) (2.11)

See [19, (C.117) and (C.119)] for example.
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In particular, N4 g (u, x) = 0 implies that N (i1, x) = 0 and
m (i, x) = m(x) = m(x)
Canli, x) = Cap(x) = Cap(x) — Fap
¢ =¢—2fps0

oY
Qo

10

1810

For the angular momentum aspect, we have
duNau, x) = Vam(u, x) — %VBPBA(u,x)
where
Ppau,x) = (VgVECra = VaVECrp)u, x).
Therefore,
0uNa(u, x) = Vari(x) — %vBﬁBA(x)
is independent of u. Integrating gives
Na(u, x) = Na(ug, x) + (u — ug)(Varit — %vBﬁBA) (2.12)

for any u and fixed ug.
Finally, from [11] the angular momentum aspect transforms by

_ 3
Na(it, x) = Na(ii + f,x) +3m(i + f,x)Vaf — Z(VBVECEA — VaVECER) (u, x)VE f
3,
= NG+ f,x) + 30V f — ZLPBAva.

Combining with (2.12) and setting u = u + f, we obtain (2.10). O
Next we focus on the boost.

Lemma 2.3. Suppose the news Nap(u,x) = 0 in a Bondi-Sachs coordinate system
(u, x), and (u, x) is another Bondi—Sachs coordinate system that is related to (u, x) by
a boost By, namely,

u= K@i, x = gX). (2.13)
Then we have
m(i, ) = K>m
Cap(it, ¥) = K 3,8% 985 Cup
¢, x) =K '¢
N, (it, %) = K*9,8" (NA(uo, g(x)) + (Ku — up)(Vam — ZVBPBA)>
3 PN
+3mK29,Kii — ZKaagAPBAKVbKﬁabgB

where K is evaluated at X and i, Cap, é, Pga are evaluated at g(x).
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Proof. The formula for C,, follows from C 45 (K it, g(X)) = Cug (g(x))when Ngp =0
and then the formula for ¢ follows from (C.4).

Finally, from [11, Theorem 3.1 and Theorem 3.3], the assumption N4p = 0 implies
that

mi, x) = K’m
_ 3 ~
Ng(it, %) = K*0,8" Ny +3mK>0,Kii — ZKaagAPBAKVbKﬁabgB

where K is evaluated at x and N4, m, Ppa are evaluated at (Ku, g(x)). The formula
follows from (2.12). o

Part 1. Classical BMS fields
3. Supertranslation Invariance of the Invariant Charges

In this section, we revisit the study of the effect of supertranslation on the total flux
of a classical BMS field in [10], providing a unified treatment of angular momentum
and center of mass integral. In the first subsection, the supertranslation ambiguity of the
classical charge is identified, and then supertranslation invariance of the invariant charge
is shown in the next subsection. In the third subsection we show that the classical charge
itself, not just its total flux, is supertranslation invariant in non-radiative spacetimes.

3.1. Supertranslation ambiguity of the classical charge. We study the effect of su-
pertranslation on the total flux of the classical charge along null infinity or, equiva-
lently, the difference of classical charge at timelike infinity and spatial infinity. Suppose
I = (— 00, 00) and .#* is complete extending from spatial infinity (u = — 00) to time-
like infinity (u = + 00). A supertranslation is a change of coordinates (i, ) = (u, x9
such that u = u + f(x), x4 = 8;‘;?“ on #*t. Let m, Cap, and N4p denote the mass
aspect, the shear, and the news, respectively, in the (u, x*) coordinate system. Since the
spherical coordinate is unchanged, we use the same index A for both x and x to simplify
the notation and use x to denote either x4 or ¥4 throughout this section.
We assume that there exists a constant € > 0 such that

Nag(u,x) = O(u|"""®) asu — +oc0. (3.1
The decay rate (3.1) implies that the limits of the shear tensor and the mass aspect exist

lim Cap(u,x) =Cap(E), lim m(u,x) = m(L).
u—=+oo u—=+ o0

Recall the mass aspect m (u, x), the shear Cap(it, x), and the news N4 p (i1, x) in the
(u, x) coordinate system are related to those in the (#, x) coordinate system through:

m(i,x) =m@u+ f,x) + %(VBNBD)(ﬁ+f,x)VDf

+ LN @+ £, 0V VP f + L Npp(+ 0V VP

C:'AB(LZX) =Caplt+ f(x),x) =2VaVpf+Afoap
Nap(it,x) = Nap(u + f(x), x) (3.2)
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Applying the chain rule on (3.2) yields

VpCag(it,x) = Nap(i + f,x)Vp f +(VpCap)(ii + f,x) — VpFag,
VpCBP (i, x) = N8P+ f,x)Vp f + (VpCBPY + f,x) — VpFBP,

where
Fap =2VaAVpf — Afoap

is a u-independent symmetric traceless two-tensor on S2.
We are ready to identify the supertranslation ambiguity of the total flux of classical
charge for classical BMS fields.

Theorem 3.1. Suppose Y is a classical BMS field and Nag = O(|u|~'=€), then the
supertranslation ambiguity of the total flux of the classical charge § Q is

50(Y) = 80(Y) = /Sz(‘fVAYA +2Y VA ) () = m(-)),

if Y is related to Y by a supertranslation S f

Proof. By Proposition 2.1 and the remark afterward, we obtain
50(Y) - / 2Y°0m(+) — m(-))

1 [r° 1
= Z/ /52 Y4 (CABVDNBD — NagVpCBP 4 5eABvB(e"’QcPENEQ)>
—00

1 +00
——/ / uY'INP? =1+11L (3.3)
4 —00 52

Suppose Y is related to ¥ by a supertranslation Sy, we derive:
50(Y) — / 2Y%(m(+) = m (=)

1 +00 _ _ _ B 1 _ _
= Z/ /52 Y4 <CABVDNBD — NagVpCBP 4 5eABVB(e"’QC,,ENEQ)>
—00

1 +00 _ _ _
——/ / aY'INP? =T1+11. (3.4)
4 —00 52

To evaluate I — I, we compute

VB(CF NEQ) = 0,((CpF — FpP)NEQVP ) + VB((Cp® — Fpf)NEeg)
CasVpNPP = 3,((Cap — Fa)NPPVp f) — NagNBPVp f
+(Cap — Fap)VpNBP
NagVpCPBP = NygNBPV f + Nap(VpCBP — v FBD).
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All left-hand sides are evaluated at (u, x) and all right hand sides are evaluated at
(u + f, x). Plugging these into (3.4), applying Fubini’s theorem and change of variable,
the assumption (3.1), the identity 2N, NBP = |N|28AD, and (A.1), we obtain

I-1

1 +00
- Z/ fz [YA<—FABVDNBD+NABVDFBD
—o00 JS

1
— EGABVB(GPQFPENEQ) - VA]C|N|2)i|

1 +00
= Zf (EVAYAf 42V AV, f)(VEVDNEP) — Y AVA fINP.
—00 J§

On the other hand,

= __l +00 3 l A 5 _l/+00/ l A 5
I-1= 4/_00 /52( f)(ZVAY NI = 7 i Szzf(VAY JINT®.

Therefore I — I +IT — II is given by

o0
i—1+1'1—11=/ / (=VAYA £ +2YAV 4 £)(0um).
—00 S2

The theorem follows immediately. O

Remark 3.2. The case YA = €48V X* of Theorem 3.1 corresponds to the combination
of (3.21) and (3.22) in [1].

Corollary 3.3. Suppose the news tensor decays as
Nag(u,x) = O(u|"""%) asu — =+ oo,

then the total flux of the classical charge is supertranslation invariant for all classical
BMS fields if and only if m(+) — m(—) is a constant on S>.

Proof. The supertranslation invariance is equivalent to
[ [-39ar an) = m(o) = 20 4940m0) — mi-))] =0,
S2

for any function f of mode £ > 2 and any conformal Killing field Y4 on S2. This is
equivalent to the condition that

—3VAYA(m(+) — m(=)) = 2Y AV a(m(+) — m(=))

must be a function of mode ¢ < 1 for any conformal Killing field Y4, or m(+) — m(—)
must be of £ = 0. O
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Remark 3.4. Let
(u,x) = B(u, x) = (K(X)u + f(x), g(x))

be a BMS transformation and choose local coordinates x® and x?. Given a BMS field
Y=+ IZYI)% + Y4 %, we compute the differential of B

. K 9,Kii+3d YO +ay!

B*(Y)=|:0 “ aagA af:||: Ya :|
_ _ _ _ _ _ 9
- (KYO — P KT Y0, K +u(Y + KTP9,K) + Y“aaf> -~
u

_ 9
A
+8ag Yaax_A

In view of this and (2.2), Theorem 3.1 says §O(Y) = SQ(Sf*(Y)).

3.2. Supertranslation invariance of the total flux of the invariant charge. We show that
the invariant charge is supertranslation invariant for any classical BMS field.

Theorem 3.5. Suppose Y is a classical BMS field and Nap = 0(|u|_1_€), then the
total flux of the invariant charge is supertranslation invariant. Namely,

8Q(Y) —80(Y) =_/52(—fl51VAYA +2Y AV fiz) (m(+) = m (=)
=—380([fe<194, YD)

if Y is related to Y by a supertranslation Sy (L.5).
Proof. Recall that for a classical BMS field Y (1.8),
oY) = 0(Y) +/ YAV e — Y'o)m.
S2
Suppose Y and Y are related by a supertranslation S r, then we have

5Q(Y) —3Q(Y)
oo 5 o0 o0
=380(Y)—80(Y) + [/ YAV, — Yla)na] — U YAV — ch)m]
52 —00 §2 —00
After the supertranslation, we have c(£) = c(£) — 2 fi>2, c(£) = c(£) and m(%) =
m(x) from (3.2). Recall Y! = 1V, Y4 and it follows that

5Q(F) — 50(Y) = /52<—fl51vAYA F2YAV, fia)(m(+) — m(=))

The result follows from (2.2). O
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3.3. Non-radiative spacetimes. Recall that both the classical and invariant charge are
independent of the retarded time in a non-radiative spacetime.
Fixing u = i, we consider the invariant charges

0 = Q(up, Y)
0 = Q(ii, Y)

We show that in non-radiative spacetimes, the invariant charge itself, not just its total
flux, is invariant under supertranslation.

Theorem 3.6. The invariant charge satisfies
0-0= /Z(ZYAVAfegl — fe<tVaY Mt = = ([ fo<19u, Y1) (3.5)
N

Proof. Taking the difference of Q and Q and applying (2.9), we obtain

0-0
1 . ) 1.
_ Z/ YA[CABVDFBD + FupVpCBD & EVA(CBDFBD) — FupVpFBP
52

1 BD ATRN (r
_ZVA(FBDF )]+/52Y [NA(MO,X)—NA(MO,X)] (36)
+ [/Z(ZYlfzzz —2Y AV fe=o)iit]
s
1 o
+ (i —uo)[/ 2yt — -f (eanVAYP)ePOVpVECEg)
SZ 4 SZ
We observe that, by Lemma A.3,
1
/ Y4 [—FABVDFDB - ZVA(FBDFBD)} =0.
S2
We compute
/ YA [NA(ﬁo,x)—NA(uo,x)]+(ﬁ0—uo)[f 2my! — 1/ (GABVAYB)EPQVPVECEQ]
SZ 52 4 SZ
- / Y4 [f(vm +3RVAf — [VEBpa — 3ﬁBAva]
S2

As aresult,

- 1 o o 1 o
0-0= Z/ y4 [CABVDFBD + FABVDCBD + EVA(CBDFBD)
SZ
—fVBPga —3ﬁBAVBf]
+/2(2YAVAf€51 — frc1VaY )it
s

By Lemma A .4, the first line vanishes. This completes the proof using (2.2). O
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4. Boost Invariance of the Classical and Invariant Charges

4.1. Total flux of classical and invariant charges. In this section, we show that the
total flux of both classical and invariant charge is invariant under a boost. Suppose
g: (Sz, o) —> (Sz, o) is a conformal map with conformal factor K. We denote g*o =
& = K?&. Consider the boost B, in the BMS group. Denoting the coordinate by (i, x)
and (u, x4), we have Bg(u, x) = (u,x) where u = Ku,x = g(x) and consider two
BMS fields Y = (YO +aV")d; + Y99, and Y = B, (Y) = (YO +uY")d, + Y29, related
by the boost, Definition 1.12. In particular, we have the relation of the spherical vectors
3,82Y* =Y on S2.
The main result of this subsection is the following.

Theorem 4.1. Suppose Y and Y are two classical BMS fields related by a boost and
Nag = O(u|"'"¢) asu — £ 00. We have

8Q(Y) =38Q(Y) and 5Q(Y) =5Q(Y).
Proof. We first deal with the case of the classical charge and separate it into two cases

Y =Y%; and Y = a¥'9; + Y49,.
Case 1: Suppose ¥ = Y°3;. From the transformation of the mass aspect function

i (£) = K> () (m(£) o ¢)(X),

we have
§O(Y) = / 170(32“)(217_1)016]
52 —o0

= /2 K@@Y@ @2mo g)()?)d’ai|
N —00

- / K(g‘%x))io(g‘l(x))-2m<x>da}
52 PSS
=350(Y).
Case 2: Suppose ¥ = Y 'd; + Yd,. We have
~ — CX) —_ — —_ —_ —_ —_
450(Y) = / / [Y“ (caedebda”e - NaeVddec‘rbe)]d&dﬁ
_ S2
s L o
+f / —~VpY9E,P(EPIC e Nuy6%) d5 dii (4.1)
—00 52 2
00 1. - _ B
+/ / —ii - =V, Y569 NpyNoo ddi.
A 2

By (2.7) and (2.8), the divergence of the shear tensor and the news tensor are given
by

V(K Cpg) = K2V (K Cpy) = K2 (abngDCBD + a,,gBangNBDzﬁdK) (4.2)

VI Npy = K2V9Npy = K2 (abngDNBD + abgBangauNBDWdK) . (43)
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Moreover, we have

@bfa = /V\},Ya + K1 (—8;,[(?‘1 — adKYd(SZ + /V\aKfT\},d?a)
and

~

V., Y* =V, Y* — 2K '9,KY".

Putting these together with the change of variable formula

/OO/ F(ﬁ,f)d&dﬁ:/ oo/ Fu,g ') (K 'og H(x)dodu, (4.4)
—oo JS2 —oo JS2

we obtain

480(Y) — 48Q(Y)

0%
+00 _
=/ / 3,82YCB9,Nppu(K~' o g™HYVP(K 0 g7 dodu
—oc0 J§2
+ —0,8"Y*NB (Nppu — Cpp) (K~ 0 g7)VP(K 0 g7 V)dodu

|/

/ / 387 (K o g7 HYVA(K 0 g DHu|NPPdodu.

agA)_’“(K_l og_l)VB(K og_l)eAB(ePQCENEQ)dUdu

+oo/<
oo JS§2?
+00/

We integrate the first line by parts in . When 9, falls on C f , the result together with
the first term in line 2 cancel the fourth line. When 0, falls on u, the result, the second
term in line 2, and the third line together yield

450(Y) — 480(Y)
= / /52 YAK 'og HvB(Kog™) I:EAB(GPchNEQ) —(CPNpp — C}?NDA)]

=0.

This completes the proof of Case 2 and, by additivity, the assertion §QY) = 80(Y)
for any two classical BMS fields Y and Y related by a boost.
For the invariant charge, recall

50(Y) _SQ(Y)+/ YAV e — %VAYAc)m] *

—00

The closed potential and mass aspect function at u = =+ 0o are transformed by

E(H)F) = K @)e(g(F)),
m(E)(X) = K3(X)m(g(¥)).
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At u = £+ oo, we have
_ _ 1- -
(Y'V,C — =V, YC)mdo
SZ 2
_ o o .
_ / Y9V (K cog) — 5 (VaY“ - 2K_1VaKY“) K lco g] K3mogK2d5
s2 L

. 1~ R
= SZ(Y”Va(cog)—EVaY”cog)mogdo'

“J.l

Hence the correction term is invariant under boost. This completes the proof of § O ( Y) =
sQ(Y). O

Remark 4.2. The above argument actually shows that the expression (4.1) is invariant
under boost for any vector field Y¢ on S2.

1
YAVAc — EVA YAC] mdo.

Remark 4.3. Using the notation (Y Oy A) for BMS fields, we define the components of
angular momentum

Jiu) = O(u, (0, *BVpX") (4.5)
and center of mass integral
C*u) = Q(u, (0, VAX*)).

Suppose the conformal map g is given by z — exp(f)z in complex coordinates, then
Theorem 4.1 reads

§J' = (cosh B)8J" + (sinh B)8C?
8J% = (cosh B)8J% — (sinh B)5C!
8J°=8J3

and
8C' = (cosh B)sC"' — (sinh B)8J>
§C? = (cosh B)5C? + (sinh B)8J"
8C3 =sC3.

The same applies to classical angular momentum and center of mass. The case of classical
angular momentum corresponds to the combination of (3.27), (3.28), (3.30) in [1].

4.2. Non-radiative spacetimes. In this subsection, we prove that both classical and in-
variant charges for classical BMS fields are invariant under boost.

Theorem 4.4. Suppose Y and Y are two classical BMS fields related by a boost. We
have

0@, Y) = Qu,Y) and Q(i,Y) = Qu,Y)

at any retarded time u and u.
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Proof. We deal with the two cases Y =Y%; and Y = aY'd; + Y9, separately.
Case 1: Suppose ¥ = Y99;. Note that Ow,Y) = Q(u, Y). For any retarded time u and
u, we have

0. 7) = [ 76 2inda
N
= / K@Y @ @i o g)(3)dE
N

= /S K@ 7@ ) - 2 do
=0, Y).

Case2: Y = uY! 0 + )_"‘8,1. For any retarded time u# and u, we have, by Lemma 2.3,
A(n V) — V(N _l—de' b i' va—ab—de~ -~ -7 v,z =
Ow,Y)= YY(N, 40 CueV7Cyp) + 16VaY 0?0 CpqCpe +uV,Ym| do
S2
_ 1 o
- / Y9K%0,g" (NA(u, g(®) + (Kit — u)(Vari — ZVBPBA)> dé
52
_ 3 PN
+f Ye (3n°11<2va1(ﬁ - ZK28agAPBAVbKIZ8th) de
S2
- 1 . - _
+/ Ye (7) K%K 19,840,865 Car (—K_ZV”K -KCup
S2
+K_1K23bgBVDéBD> do
1 ~ = o~ — o o
+/ — (V,,Y“ - 2K—1va1<ya) K2CppCBP 4
S2 16
+/ i (%?“ - 21{—1%1(1?“) K3mdé
S2
where m, }Q’B A, ¢ Ap are evaluated at g(x). We simplify the integral into
- _ 1 o
0@, Y) = / y4 <NA(u,x) — uVam +quBPBA> do
S2
1. . 1 o e
+/ YA —=CupVpCpp | + —VAYACBDCBD do
52 4 16
+/ yA ((K 0 g~V + VA(K o g—l)zzn‘a> +aVAYA(K 0 g~ Vi do
S2
1 . 3.
+[ Y4 <——(K 0g HWVBPgs — ZPpaVB(K og_1)> do.
S2 4 4
We have VB Pg, = %e AeVEA(A +2)¢& and integration by parts yields

. 1
/2 YAVBPBAda=/2—§(A+2) <eAEvEYA).A§=0 (4.6)
S S

for either Y4 = eABVg XKk or YA = VAXK. Hence the first two lines are precisely
Q(u, Y). Moreover, the third line vanishes through integration by parts. Finally, since
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VaVe(K 0g™!) — LA(K 0 g7!) = 0 by (C.4), the last line vanishes by Lemma A.4.
It follows that for any retarded time u and u,

0@, Y)=0w,Y).
For the invariant charge, we have

0@, 7) = 0, Y)+f (Y“vaa— 17‘5) mda

52
= 0(a, Y)+f
= Q(, Y)+f (YAvAé— ch") mdo

S2

=0, Y)=0,Y)

for any retarded time # and u. This completes the proof. O
Part 2. Extended BMS fields

(?”VQ(K_Ié 0og)— 7' K '¢o g) K (110 ) d&

5. Supertranslation Invariance of the Invariant Charges

In this section, we generallize the supertranslation invariance of invariant charge for
classical BMS fields in Sect. 3 to extended BMS fields. We first introduce the extended
BMS algebra. The ensuing three subsections correspond exactly to those in Sect. 3.

We recall from [22, page 31] that a BMS field Y (or an infinitesimal symmetry in the
terminology of [22] ) satisfies the following equations:

Lyo =2ko,Lyn = —kn

for a function « on .#*. Here o is the degenerate 2-metric and 7 is the null generator of
#* which can be taken to be 9, and £ is the Lie derivative on .#*. The solutions are of
the form

Y = @00) +uY ' (x)d, + Y (x)d4
where Y4 satisfies
VAYB 4+ vByA _2ylsAB — . (5.1)

In other words, Y4 is a vector field that satisfies the conformal Killing equation on
52
VAYB + vByA —veYColt = 0. (5.2)

Note that (5.2) is equivalent to
1 1
vAY B = 5(VCYC)UAB + E(eCDVCYD)eAB. (5.3)

Smooth vector fields on S2 that satisfy (5.2) are linear combinations of of vAX kK k=
1,2,3 and €48vp Xk ,k = 1,2,3. They are infinitesimal deformation of conformal
diffeomorphisms or Mébius transformations of S2.

An extended BMS field corresponds to the case when Y4 is a solution of (5.2) on an
open subset % of S?. We define
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Definition 5.1. An extended conformal Killing field is a vector field Y 225 defined on
an open set % C S such that Y4 satisfies the conformal Killing equation (5.2) on % .

In this case, we may not be able to integrate ¥4 to a conformal diffeomorphism of
S2. See the appendix for an explicit construction with % = §2 — {(0, 0, 1)}.

Lemma 5.2. An extended conformal Killing field Y on % satisfies the following equa-
tions on U :

VaVAYB 4+ YB =0 (5.4)
(A+2)(VaY4) =0 (5.5)
(A +2)(eapVAYE)y =0 (5.6)

Proof. To prove the first equality, we apply V4 to (5.2) and obtain
Va(VAYB + vBY4d) = vBvy, Y€,
On the other hand, since S2 has constant curvature 1, we have
VavEY4 =vEv,vA +vE.
Therefore,
VaVAYE 1 VBV, YA +YB = VBVYC,

and the first equality follows.
For the second equality, we proceed as follows.

A(VAYY) =V VBV, YA
=VpVaVBYA —vgyB

1
= EVBVA[(VCYC)JBA + (ECDVCYD)GBA] —VYB

1
=§A(VAYA) — VY5,

where we use (5.3) in the third equality above.
The third equality can be checked similarly. O

5.1. Supertranslation ambiguity of the classical charge. The derivation in this subsec-
tion is similar to Sect. 3.1. To ensure the finiteness and the absolute convergence of
the total flux for an extended BMS field, we need to make stronger decay conditions.
We also need to deal with extra terms that vanish for a classical BMS field. Finally, as
mentioned after Definition 1.6, we need to assume that the data m, Na, Cap and Nyp
are supported on 7/. To preserve the support under a supertranslation, we assume that
f is also supported on %/ .
Recalling (2.6), the evolution of classical charge of extended BMS fields reads

- 1 1
000w, Y) = 7 /% YA [CABVDNBD — NagVpCBP + zeABVB(e”QCPENEm]
1
- -/ uY'INJ? +/ Y%, (2m) (5.7)
4 Ju $2

1
+Zf [u(ZYl)VAVBNAB—u(eABVAYB)GPQVpVENEQ]
v
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Theorem 5.3. Suppose Y is an extended BMS field and Nap = 0(|~u|_2_5), then the
supertranslation ambiguity of the total flux of the classical charge §Q(Y) is

80(Y) = 80(Y)
1 +00
=/ (—vaYA+2YAvAf)(m(+>—m(—))—Z/ £ [VAVE DY P)Cas |
w w -

if Y and Y are related by the supertranslation Sy (L.5).

Proof. By Proposition 2.1, we obtain

500 = [ 2t = m(-)
1 o A BD BD 1 B, PQ E
= - Y CapVpN — NapVpC + -€apV (" ¥Cp NEg)
4 ) oo Ju 2

1 +00
—-f / uY'IN|?
4 J_x w

1 o0
+-/ / u[vAvB(VCYC)NAB—vap(eABVAYB)ePQNEQ]
4 —oco JU

=1+ +1I. (5.8)

where the last term was integrated by parts twice.
If Y is related to Y by a supertranslation Sy (1.5), we have

8Q(Y) — A/ 2Y0(m(+) — m(-)

1 +00 _ B B _ 1 ~ ~
= Z/ / yA (CABVDNBD — NapVpCBP + 5eABv"‘*(e“’QcPENEQ))
—o0 YU

1 +00 _
- f/ f ay'|NJ?
4 )  Ju

1 +00 _ _ _ _ _
+ Z/ / i [VAVB(VDYD)NAB - VPVE(eABVAYB)ePQNEQ] — T+ +10
—oc0 JU

(5.9)

To evaluate I — 1, we compute

VE(CFENEQ) = 3u(CpF = FE)NEQVE £) + VE((CHF — FpF)NEQ)
CapVpNBP = 8,((Cap — FAp)N®PVp f) — NagNBPVp f + (Cap — Fap)VpNEP
NABVDGBD = NABNBDVDf + NAB(VDCBD — VDFBD).

All left hand sides are evaluated at (i, x) and all right hand sides are evaluated at
(i + f, x). Plugging these into (3.4), applying Fubini’s theorem and change of variable
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and the assumption (3.1), and using 2NspNBD = |N|28£, we obtain,

-1
1 +00
z_/ / [YA (—FABVDNBD+NABVDFBD
4 -0 JU
1
—EEABVB(GPQFPENEQ) - VAf|N|2>]
1 +00 A A BD 1 +oo A 2
ZZ/ /(—VAY F+2Y2VAf)(VpVDN )——/ / Y2Va fIN]
—oo Ju 4 —oco JU

1 oo P E CyD
‘Z/ /%/fe ONEQVEVR(ecpVEYP)
—0o0 /

On the other hand,

_ 1

T __/+00/ =PV IND)
4 —o00 JU 2 A

1 +00 1 A 2
=7 5 S (VaYD)IN|
4 [oo /”// 2
Therefore I — I + IT — II is given by

[-1+0-1I
+00 N N
=/_oo f%(—VAY f+2Y%V 4 f)(0,m) (5.10)
[ P E CyD
_Z/ /z/ fePONpoVEVp(ecpVEYP)
—00
Next we deal with ITI — III. We compute

_ 1 0
I — 11 = Z/ / f[VEVp(eABVAYB)ePQNEQ—VAVB(VCYC)NAB]
—oco JU
(5.11)

using u = u — f, (2.11) and Fubini’s theorem.
Adding up (5.10) and (5.11), we obtain

+00

4(T—I+I_I—II+ITI—III)=4/ /(—fVAYA+2YAVAf)8um
—o00 JU

+00
—/ /fVAVB(VcYC)NAB.
—o0 JU
Therefore, the supertranslation ambiguity is
4E0(Y) —380(Y))

+00
= 4/ (—fVAYA +2YAVAf)m|t%% —/ f [VAVB(VCYC)CAB]
4 w -0
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5.2. Supertranslation invariance of the total flux of the invariant charge. Finally, we
prove that the supertranslation invariance of the invariant charge of an extended BMS
field.

Theorem 5.4. Suppose Y is an extended BMS field and Nap = O(lu|~%7¢), then the
total flux of the invariant charge § Q(Y) is supertranslation invariant. Namely,

80(Y) —80(Y) = ﬁz/(—fzslvAYA +2YAV4 fic) (m(+) — m(—))

+00

1

——[ feflvAvB(chc)cAB}
8 L/

—0Q
+00

1
= —60(fes180, YD — ¢ U% feslvAvBNcYc)cAB]

—00

if Y is related to Y by a supertranslation S r (1.5). The last integral vanishes if the
potentials of Cpp(00) — Cap(— 00) is supported in % .

Proof. We consider the following bilinear forms of functions on S?

1
T (v, w) =/ [u(vAva - 5aABAw)]VAvB(VCYC)
4

S(v, w) = / [u(eADvaB + eBDVDVA)w]VAVB(VCYC)
(74

By Lemma A.2 in the appendix, T (v, w) = T (w, v) and S(v, w) = S(w, v) if either v
or w is supported in 77. In terms of the bilinear forms 7" and S,

oY) = 0(Y) +f%(YAVAc —Y'om— %T(c, c) — 3%5(6,9)

+11—6T(£, ) — 31—25(9 )
and §OQ(Y) —80(Y) is
1
ﬁ/ (—fVAYA+2YAV 4 H)m(+) — m(=)) — 1T (fre) —e(=)

1
—gS(f, c(+) —c(=).
Suppose Y and Y are related by a supertranslation S r, then we have
3Q(Y) —380(Y)
o ~ o
=380(Y)—80(Y) + [/ (YAV,E — Ylé)rh} - [
4

—0o0

oo
(YAV4c — ch)mi|

wu —00

1

+ [T ) = T(e(). (=) = T@E). &) + T (@) 8- |
1

+ 35| S ) = Se(). e() = SE). &) + S@E ). 2|

1

+ 3—2[S(£(+), c(#) = Se(=).c(=) = ScH).c(+)) + S(c(=), 5(—)))]
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After the supertranslation, we have ¢(£) = c(£) =2 fi>2,c(£) = c¢(£) and m (%) =
m(Z£). As aresult,

U (YAV,4C — Ylé)ﬁz} — [/ (YAV4c — ch)mi|
74 —00 74 —00

=2 [%(YAVAflzz — Y fi)(m(+) — m(—)).

On the other hand,

T(c(#),c(+) = T(c(=),c(=) =T((H), c(+) + T(E(—), ¢(—))
=2T(c(+), fiz2) + 2T (fiz2, c(+)) = 2T (c(=), fi1z2) — 2T (fiz2, c(—))
= 2T (fiz2, c(+) = (=) + 2T (c(+) — (=), fi=2)
= 2T (fiz2, c(+) = (=) + 2T (c(+) — (=), f)
=2T(fiza + [, c(+) = c(=)).

Similarly,

S(e(#), () = Se(=), c(=) = S(c(+), c(+) + S(c(=). ¢(=))
=25(fiz2,¢(+) —c(=))

and

S(c(#), c(#) — S(c(—=).c(=)) — SEH).E(+)) + S(E(—), (=)
=285(f, c(+) —c(—)).
It follows that
80(Y) —80(Y) = A{(—ﬁgVAYA +2YAV4 fic)(m(+) — m(—))
_! [/ feglvAvacYC)cAB}
8 [Jw oo

It remains to show that the last integral vanishes, given the additional assumption of the
potentials of C4p(0c0) — Cap(— 00). Combining Lemma 2.6, (2.18), (2,7) of [10] and
(5.5), we have

AoB c 1 c
/; VAVZ (VY )(Cap(00) — Cpop(—00)) = 5 /// AA+2)(VeY™) - (c(+) —c(=) =0
{l/ d/
and

/ X*VAVE(VeYC)(Cap(oo) — Cap(— o0))

= % // XA+ DY@ +2(e#) = e(=) = 264 BVA (Ve YOV (A +2)(e() — e(-))]
K4

=0.

This completes the proof using (2.2). O
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5.3. Non-radiative spacetimes. Recall that the invariant charge is independent of the
retarded time in a non-radiative spacetime. We show that in non-radiative spacetimes
the invariant charge itself, not just its total flux, is invariant under supertranslation.
Namely, fixing i = u(, we consider the invariant charges

Q = Q(uo, ¥)
Q = Q(io. ¥)
and prove the following theorem:
Theorem 5.5. The invariant charge satisfies
- .1 .
0-0= /%(ZYAVAflfl = fez1VaY i = /% fetVAVE (VY ) Cag
1 AgyB C\ o
=—0(fe<10u, Y] — 3 Z/fzgv VZ(VeY™)Cas
Moreover,

/ fe<1VAVE(VeYC)Cap =0
4

if the potentials for Cap are supported in U .

Proof. Taking the difference of Q and Q and applying (2.9), we obtain

0-0
1 o . 1 .
= Z/ YA[CABVDFBD + FABVDCBD + EVA(CBDFBD) - FABVDFBD
w

1 o
— Va(FspF"P)| + /% Y4 [Naio. x) = Nauo. x)]
1 1
+[/ QY fron — 2YAVAf422)n°1] +—T(¢) — =T —2fr>2,¢ =2 f1>2)
% 16 16
s LS — LS 2f1r )+ SEE) — = S@E—2fin)
S A R Y e e
1 .
+(120—u0)[/ 2n°1Y1—Zf (EABVAYB)EPQVPVECEQ] (5.12)
w %

We have
2T (¢,¢) = 2T (¢ =2 fu=2, ¢ = 2 fu=2) + S(¢,8) — (¢ — 2 fy=2,8) + S(C, €)
— 8¢, ¢ —2fi=2)

=4 [ iz 4 P [VAVAVCY O rn] +8T (i, fizo)
and observe that
1
/7 yA [—FABVDFDB - ZVA<FBDFBD>} = T(fio, fio2)
/4

by Lemma A.3.
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We compute
| ¥ [¥atio, ) = Natuo, ]+ Gio = o
1
[/ 2wy — -/ (eABVAYB)ePQVPVECEQ]
w 4 Js
- / Y4 [f(vAn% +3RVAf — fVE Pgy — 3ﬁBAva] .

w

As aresult,

0-0

1 , .\ 1 s . .
= Z/ YA [CABVDFBD + FagVpCBP 4 5VA(CBDFBD) — VB Py — 3PBAVBf]
w

1 .
+ /} QYVa fezt = fesi Va¥ i+ o /) (fiz2+ HVAVEVCY)Cas.
) 4
By Lemma A 4, the first line is equal to
1 o
- / FVAVB(VeY©)Cyp.
4 Ju
Putting everything together, we arrive at

_ o .
Q-0= [2/ QYAVA fo<t — fo=1 VaY it — 3 /% frsaVAVE (VY ) Cap.

This completes the proof using (2.2). O

6. Boost Invariance of the Classical and Invariant Charges

This section generalizes the boost invariance of classical and invariant charges in Sect. 4
to extended BMS fields. The two subsections correspond exactly to those of Sect. 4.

We alsorecall the assumption made in the beginning of Sect. 5.1 thatm, N4, Cap, Nap
are supported in %, the domain of the extended conformal Killing vector field Y.

6.1. Total flux of classical and invariant charges. We generalize Theorem 4.1 to ex-
tended BMS fields. We begin with a pointwise identity.

Lemma 6.1.
-~ | P ~ ~ I~ _
VoV (KY) — §A<KY1)% =K (vavb(Yl 0g) — 5A<Y1 ° g)aah) :

Proof. Recalling

Y'=vlog— K '9,KY"
and

PN 1o
VoVpK — =AKo,, =0,

[\
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we get

-~

~ ; I~ -
VaVp(KYY — EA(I(Yl)aab
o o 1 -1 v C 1~ 1 -1 VONAS
=K (VaVp(¥'og — K719.KV) = SAX' 0 g — K™ 8K V)50
+ 0, KoY + 0, K3, Y — VK.Y G
PN 1~ ~ PN _
—K (vav,,(yl 09)—5A(r"o g)aab> B SAA (K_IE)CKW)
+0,KopY! + 0, K0, Y + o7
where .7 is proportional to ;. We compute
EEAA (K_IBCKI?C)
< -2 ve  p—1 l’\ ~ v -l <, ve
=V, | K “0,K0.KY K- 2AKUbCY K 0. KV,Y
-3 v C -2 1~ v C -2
= —2K 30, KK KY + K2 JAKGapd KV + K20, K
T~ V¢ -2 v v
S AKG Y+ K20, KK V¥
-2 I~ Ve 711 N ye -1 I~ Ve
+ K “0,K - EAKabCY —K EBaAKUbCY - K ~§AK0bCY
~ - 1~ R ~ ~ -
+ K 20,K9.KVpYS — K~ ! EAKEMV,,YC — K '9.KV,V,Y°.
We use the fact that a conformal Killing vector field is preserved by a conformal map
VPYe + VYl = 2(v! 0 g)5%¢ (6.1)
to simplify the last term
§a§by'vc = 6(1 (—Ebd§c?d + 2(Y1 o g)(SZ)
= —Gha (?Cﬁaid + ﬁacde?e) +20, (171 + K—ladK?d) 5
= —Gpa VY + (855 ae — GpadS)YE +20,V' 85
+2 (-K—2aa1<adm?d + KT AKG 74 + K—ladK%Yd) 5
Noting that AK = 2K + const., we obtain
v -1 veY _l AV -1 Ve AV -1 Ve
VoV (K10KY€) = == (V¥ (K710:KT€) + ¥,V (K~10cK Y
1 e
= 5K*lach%abdvaY‘f +3,aVpY%

_ k! (abKaa?‘ + aaka,,?“) .
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By (6.1), the first term on the right-hand side is proportlonal to oab Consequently,
the difference of two symmetric traceless 2-tensors V V;,(K yh — A(K Y1Ha,, and

K (VaVb(Y1 og)— QA(Y] 0 §)0up) is proportional to G5 and hence zero. This com-
pletes the proof. O

Theorefn 6.2. Suppose Y and Y are two extended BMS fields related by a boost B,
where Y (resp. Y) is defined on (— 00, +00) X % (resp. (— o0, +00) X g(%)). If
Nap = 0(|u|_2_€), then we have

8Q(Y) =80(Y) and $Q(Y)=35Q(Y).
Proof. Following the proof of Theorem 4.1, we have

- - - 1 +00 _ _ o~
5OY) —80(Y) = _Z/ L/ i (EabV“Yb) PN,V Noyd& dii
—0Q /
+00
-/ / u(eapVAYB)ePOVpVENE gdodu
8()

for extended BMS fields. By (A.3), (6.1), and the change of variable formula, we have
+00 _ _ _ _ _
/ / it (€ 97 77) €019,V Ny dirdi
4
+00 1--
/ / a(Vevhy! — —AYlo“b)Nabdodu

oo ~ ~ _ 1~ _ _
:/ / uk~! <VaVb(KY1)— 5A([(Yl)a,b> 596 N yd5 du
—co Ju

+00 1
/ / u(VAVEY! — ZAY6AB YN pdodu
() 2

+00
/ / u(eapVAY8)e’2VpVENEodadu.
8()

This proves § QYY) = 8Q(Y) for two extended BMS fields Y and Y related by a boost.
For the invariant charge, it suffices to examine the correction terms

1

00 1 oo
- chvB(vDYD)cAB‘ - cVAVB(VpYPY(+C) g
16 Jo) -

—oo 16 Jo)
(6.2)

We claim that each of them is invariant under boost. By Lemma 6.1, we have the
relation

_ o~ _ 1 ~ _ _
/Z/ evevlylC pds = L{ ¢ (vuvb(Kyl) — EA(KYI)G,,I,> 545b (K Cyp)do
~ ~ 1 ~ _
- / K¢ (vav,,(Y‘ 0g) — EA(Y1 o g)aab> 545 (K Cyo)d
w

1
= / c <VAVBY1 — -AYlaAB) Capdo.
8 ) 2

at u = +00 and u = +00. Hence, the first term in (6.2) is invariant. The invariance of
the second term follows similarly. This completes the proof of §Q(Y) = § Q(Y) for two
extended BMS fields related by a boost. O
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6.2. Non-radiative spacetimes. We generalize Theorem 4.4 to extended BMS fields.

Theorem 6.3. Suppose Y and Y are two extended BMS fields related by a boost B,
in a non-radiative spacetime where Y (resp. Y) is defined on (— 00, +00) X % (resp.

(— 00, +00) x g(%)). If ¢ is supported in g(% ), then
Q. Y)=Q,Y) and Q1Y) = Qu,Y)
for any retarded time u and u.

Remark 6.4. The assumption on the support of ¢ is invariant under BMS transformations
in non-radiative spacetimes.

Proof. The proof of Theorem 4.4 implies that

~ - ~ 1 o o
0@ V)= 0@.Y) - —/ i (K o g™ )VE Ppa+3PpaVP (K 0g7"))
4o

1 .
+-/ (K 0o g HWVAVE(VeYS)Cas
4 Je)

for extended BMS fields. Note that the assumption on ¢ is used so that the integration by
parts in (4.6) holds. By Lemma A .4, the additional terms vanish. This proves 0@, Y) =
O(u,Y) for any retarded time u and u.

For the invariant charge, one verifies the boost invariance of each correction term
as in the previous theorem. This completes the proof of Q(ii, Y) = Q(u, Y) for any
retarded time u and u. O

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
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Appendix A. Integral Formulae for Extended Conformal Killing Fields

We derive integral lemmas for extended gconformal Killing fields YA + defined on

an open subset % C S2, see Definition 5.1. In these integral formulae, we impose
assumptions so that integrations by parts are valid. This happens, for example, if the
extended conformal Killing field is integrating against tensors with compact support in
w. YA Py is a global conformal Killing field, namely % = S?, those assumptions
hold automatlcally and the formulae are applicable in Part 1.

Lemma A.1. Let Y Aax_A be an extended conformal Killing field defined on an open
subset % C S%.If f is a function with compact support in %, then we have

1
lz/ YA <—FABVDNBD + NsgVpFBP — EeABvB(e“’QFPENEQ)>

= ﬁy(—VAYAf +2YAV, ) (VpVpNBP) — A fePONEoVEVR(ecpVEYPD)
' (A1)
where Fap = 2VaVpf — Afosp.
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Proof. We denote the function @ = €4 sVAYE in the proof. We write the left-hand side
as (1) + (2) + (3). Integrating by parts, we get

()= [ ~¥AQVaVaf - AfaunoNT
%
= f 2VBYAV, VPN +2Y AV fVEVP Ny + AfYAVE N3,
%
?2) =/ YANAVE(A+2)f
%
= / —VBYANAR(A+2) f —YAVENAg(A+2) f
%
:f —YAVEN,g(A+2) f
%
and hence
H+(Q) = / 2VBYAV, FVPNpp +2YAV, FVBVP Ngp —2YA FVEN 3.
%
We simplify the first integral
/ 2vByAv, fVvPNgp
w
= / VcYCVBfVDNBD +OlEBAVAfVDNBD
4
= / —VuVeYC FVpNBP — vy rVvBVP Ngp + aeBAV, VPN
4
= / 2YB VP Ngp — egeVCeafVpNEP — VY€ FVBVP Ngp + aeBAV, VP Ngp.
4
In the last equality, we used the identity
VeVeYC = —2Yp +e5cVCa, (A.2)
which is obtained from the computation

1 1
VBVCYC = VCVBYC —Yp = v¢ (szYDGBD + 50[63@) —Yp.

We also note the identity

2VAVE(VeYC) = A(VeY)oap = €ac VeV (epeVPYE) +€5c VAV  (epp VP Y E),
(A3)

which is obtained by differentiating (A.2) and using the identity (A +2)V¢ Y€ =o.
In summary, we have

)+ = / (“VAY™ [ + 274V 4 f)(V5VDNED)
(74

—GBCvCOlfVDNBD + (XGBAVAfVDNBD.
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Finally, we have
1
(3) = / ——aePCVpVEf — Af8E)NEg
2
= / Vpae2VE fNpo +ae”9VE fVpNEg
4
= / —VEVP(XGPQfNEQ — VPOZEPQfVENEQ +C¥VEf€EPVQNEQ
w

where we used the identity € POV, Ngg = eEP Vo NEQ10, (2.13)] in the last equality.
Putting these together, the assertion follows. O

Lemma A.2. Let « be a function defined on an open subset % C S°. Consider two
functions u and v defined on % such that one of them has compact support. Denoting
uap = VaVgu and vap = VoAVpv, we have

1 1
/ [M(UAB — EAUGAB) —v(uap — EAMGAB)]VAVBa

4

= l/ (uAv — vAu)(A +2)a. (A4)
2 Ju

and

[

/ [M(GADUDB +egPvpa) —vieaPupp + GBDMDA)]VAVBa

(A.5)

= / €AD (uVAv — vVAu> VP2(A +2)a.
w

In particular, applying the above formulae to the divergence of an extended conformal
Killing field Y4 P defined on %, we have

xA

1 1 Ao B C
[u(vAB—EAUUAB)—U(MAB—EAIAGAB)]V VB (VerC) =0.
4

/Z/ [”(EADUDB +epPupa) — v(eaPupp +€BDMDA)]VAVB(VCYC) =0

if either u or v is supported in U .

Proof. We write ugy = Vu in the proof. We compute
/ (MUAB - vuAB)VAVBa
v
:/ Ve (uvs —vuys)VAVEa
/4
= _/ (uvpa — vus)VVAivea
w
— _/ (wva — vu)|[VAVEVE (VY ©) +VA(VCYC)]
/4
= —/ (uvg — vuA)VA(A + Do
4

= / (uAv —vAu)(A + 1o
v
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(A.4) follows from rearranging the terms. For (A.5), note that we can replace VAVZq
by the symmetric traceless 2-tensor VAVBq — %AaaAB . Recalling Proposition 2.4 of

[10] thatepp VD CBA = ADYB () for any symmetric traceless 2-tensor, we integrate
by parts to get

/M(EADUDB+GBDUDA)VAVBO[
w
1
:/ —(uDeADvB+uAeBDvD> <VAVBa— —AozaAB>
w 2
1 1
+/ —uvg <——eBDVD(A+2)a> —uegPvp - =VB(A +2)a.
w 2 2

Interchanging u# and v and subtraction yield (A.5). The second claims follows from
(A +2)(VcY€) = 0 for an extended BMS field. |

The following lemma generalizes Lemma 2.3 of [10].
Lemma A.3. Let Y AaxiA be an extended conformal Killing field defined on an open
subset % C S%. If u is a function with compact support in % , then we have
/ Y'2VAVuVAVEL — (Aw)?).
4

1 2 AgByl 1
= Y [(A+2)ul”+2 u(VoV2Y*)(VaVpu — EAMO'AB)

where 2Y! = VY€
Proof. We use the following formulae in the derivation
AlVul? = 2|V2ul> +2Vu - V(A + Du
AW?) =2|Vul® +2ulu
AwAu) = (Au)*> +2Vu - V(Au) + uA’u.

Integrating by parts twice gives
/ Y'VaVuvAVEy = / uVAVB(YIV A Vgu)
4 4

We compute

VAVE(Y!'V,VEu)
= (VAVBYYV,Veu +2VBYI VAV, VEu + Y VAVEV, Vu

1 By 1 1 AgByl 1 1 s
= —Y'Au+2VPY V5 (A + Du+ YIAA + Du+ (VAVEYT — DAY 045)VaViu
1
= Y'A2u +2VEY!IVE(A + Du + (VAVEY! — EAYIUAB)VAVBM

where we use VAV, Vgu = V(A + 1)u and AY! = —2Y! in the second equality.
On the other hand, we have the identity:

ZVBuVBv = A(uv) —ulAv —vAu
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and thus
2VBYIVE(A+ Du =AY YA+ Du) — Y'AA + Du+2Y(A + Du.

Putting all together gives:
f Y'VaAVauvAVEy
/4
=/ Y1A2u+/ u[A(Y'(A + Du) — Y'AA + Du +2Y (A + Du]
4 4
1
+f u(VAVBY! — EAYIUAB)VAVBM
w

1
=/ Yl[(Au)2+2uAu+2u2]+f u(VAVBYl—EAYloAB)VAVBu
4 4

Therefore,

/ Y'2VAVuVAVEL — (Au)?].
w
1
=f Yl[(A+2)u]2+2/ u(VAVBYl—EAYlaAB)VAVBu

1
=/ Yl[(A+2)u]2+2/ u(VAVBY ') (VAVeu — = Aucap)
w % 2

O

The nextlemma, used in all invariance proofs in non-radiative spacetimes, generalizes
Lemma B.1 and B.2 in [10]. It also appears in the derivation from (B.8) to (B.9) in [6].

Lemma A.4. Let Y4 MLA be an extended conformal Killing vector field defined on an

open subset % C S%. Let f be a function on S* and Cap be a symmetric traceless
2-tensor on S2. If either f or Cap has compact support in %, then

1 1
Z / r4 [CABVDFBD + FapVpCBP + EVA(CBDFBD) — fVEBPga — 3PBAVBf}
4

1
=7 /% FVAVB(VeYC)Cap

where Fap =2VAVpf — Afoap and Ppy = VBVECEA — VAVECEB.

Remark A.5. If YA % is defined globally on S2, then we have

VAVE(VeYE)Cap = 0.
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Proof. Integrating by part the last two terms of the first line, we have
[ RS YEE e
= /7/ —2YA(VeVPCpa — VaVPCpp)VE F+27(VEYA
—~ %VEYEUAB)VBVDCDA
= L 2VEYAVLCpaVE f+2YAVPCpaAS

—2VAYAVPCppVE f —2YAVP CppVaVE £

+/ 2fYAVPCpa —2VBYAVE FVPCpa — FVEYEVAVEC
v
1
= / —2YAVPCpp(VaAVE f — EAfaAB) +YAVPCap(A+2) f
4
—f 2VAYAVPCppVB f+ fVpYEVAVEC,,
w

where in the first equality we anti-symmetrize VZY4 into VBy4 — %VE YEGAB by
(5.2).
After simplifying the last two terms

ﬁz/ 2VAYAVPCppVE f+ fVpYEVAVEC,p
= /% —2VPVAYACHpVE f — 2V YACHpVPVE f
+/% VAVE fVeYECup + fVAVEVEYEC A +2VE fVA(VEYE)Cap
= /q/ FVAVEBVEYECAp — VaYACppVPVE f

1
= A FVAVBVEYEC,p — 5VAYACDBFDB,

1
/ YA [CABVDFBD+FABVDCBD+§VA(CBDFBD) — VB Py, — 3PBAVBf:|
(AZ/

1
Z_Z/; FVAVEB(VeY©)Cas.
4

Appendix B. Explicit Forms of Extended BMS Fields

An extended BMS field corresponds to a singular solution of (5.2) which cannot be
integrated to a conformal diffeomorphism of S2. In the following, we discuss these
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solutions. First observe that the equation (5.2) is conformally invariant in the sense that
Y4 is a solution of (5.2) with respect to o if and on if Y4 is a solution of (5.2) with
respect to a metric that is conformal to . Consider the stereographic projection p from
the complement of the north pole (0, 0, 1) of 2 cR3toR? =C:

082 —1(0,0,1)} > R* =C.

The pull-back of the flat metric 6 = ldz|? = (dx)* + (dy)>? on R? = C through p is
conformal to the standard round metric o on S2. With respect to the flat metric 6 = p*6,
(5.2) is exactly the Cauchy—Riemann equation, i.e Y9, + Y28y satisfies (5.2) if and only
if Y +iY? satisfies the Cauchy-Riemann equation d; (Y ' +iY?) = 0. A complete basis
for the extended conformal Killing fields can be found in [21] in terms of £ = 1 spherical
harmonics.

lm = _Zm+lazy l_m = _Zm+laz, m e 7.

In particular, 3, and z"*'9, are conformal Killing fields with respect to 6. We also
recall that the function z on C satisfies Az = 0 and V4zV4z = 0 with respect to .

Let Z be the pull-back of z through p, and Y4 be the pull back of (,)* through p~ .
Z and Y4 satisfy

AZ =0,V42ZVAZ =0,VAYB + VBYA v YCo48 =0

by the conformal invariance of these equations.
Explicitly Z, Z, and Y are given by

X'+ix?2 - x'—ix?
7 = 7 _
1 - X3 1 - X3

and
Y4 = (€PVezVpZ) lerBvyz

All are defined and smooth outside the north pole (0, 0, 1). A straightforward calculation
shows that

Va¥4 = —(X!' —iX?) and V,ZVAX3 = 7. (B.1)

Lemma B.1. The divergence VY4 of the conformal Killing field YA = ZmH YA sar-
isfies

(A+2)VaY4 =0

on S —{(0,0, D}
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Proof. We compute

VYA = v (zmy4)
= (m+ DZ™(VAZ)YA + 2" v, 74
=m+1)Z" —z™(X' —ix?
=Z"(m — X),

where we use the first equation in (B.1).
Furthermore,

AVAYY = (AZ™)m — X3) —2mZ" 'V, ZVAX3 — 2" A X3
=-27Z"(m — X°),

where we use the second equation in (B.1). |

Appendix C. Conformal Transformation on S2

Let o be the induced metric of unit sphere S € R? Letg : S — S? be a conformal map
and 0 = g*o. It is well-known that g is a linear fractional transformation and a direct
computation yields that & = K25 In addition, both & and & have constant curvature 1.
Moreover,

1
Kx)y=—>0
oo + o x!

where (g, ;) is a unit timelike vector and x?, i = 1, 2, 3 forms an orthonormal basis
of first eigenfunctions on ( (Si, o).

We denote by V, A (V, A respectively) the covariant derivative and Laplacian with
respect to & (&, respectively). Taking Hessian and Laplacian of K ~!, we get

Lemma C.1.

K72V, VyK — 2K 3V, KVpK = a;jx' 54, (C.1)
1 . _ .
E1(—2A1< — K3IVK|? = ajx! (C.2)

The next lemma compares the covariant derivatives V and V. The proof is through
direct computation and is left to the readers.

Lemma C.2.(1) The Christoffel symbols of & and & are related by

— _ 1

re, =T, + EK—2 ((3;,1(2)5; + (0, K55 — (adK2)aabacd) .
(2) The covariant derivatives of a covector X, are related by

Vo Xa = VpXa+ K N 0pK)Xa+ K0, K)Xp — KN (VK) X, G
K%V, X, = 5%V, X,,.
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I n particular, for a function f, we have

K’Af=Af (C.3)
and
~ ~ 1~ - - 1-
VaVip(Kf) — EA(Kf)a’ab =K <Vabe - EAf5ab) (C4)

(3) If Cyp is a traceless symmetric 2-tensor for & (hence also traceless for &), then

V2 (KCap) = K~'VPCup + K2V K Cyup = K2V (K Cap) (C.5)
and

VeV (KC,p) = K3V4VPCyp. (C.6)
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