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Abstract—Wafer map pattern recognition is instrumental for
detecting systemic manufacturing process issues. However, high
cost in labeling wafer patterns renders it impossible to leverage
large amounts of valuable unlabeled data in conventional machine
learning based wafer map pattern prediction. We proposed a
contrastive learning framework for semi-supervised learning and
prediction of wafer map patterns. Our framework incorporates
an encoder to learn good representation for wafer maps in an
unsupervised manner, and a supervised head to recognize wafer
map patterns. In particular, contrastive learning is applied for
the unsupervised encoder representation learning supported by
augmented data generated by different transformations (views) of
wafer maps. We identified a set of transformations to effectively
generate similar variants of each original pattern. We further
proposed a novel rotation-twist transformation to augment wafer
map data by rotating each given wafer map for which the angle
of rotation is a smooth function of the radius. Experimental
results demonstrate that the proposed semi-supervised learning
framework greatly improves recognition accuracy compared to
traditional supervised methods, and the rotation-twist transfor-
mation further enhances the recognition accuracy in both semi-
supervised and supervised tasks.

Keywords—wafer map pattern recognition, semi-supervised
learning, contrastive learning.

I. INTRODUCTION

As the crucial step of turning a chip design into a real
product, robust semiconductor manufacturing process shall
manifest high performance and yield of integrated circuits
(ICs). However, the manufacturing process may suffer from
different sources of systematic issues, such as stress cracking
in chemical-mechanical polishing or contact to gate misalign-
ment caused by a broken photo tool. Therefore, it is required
that the manufacturing issues can be efficiently recognized and
fixed; otherwise, the yield can be severely reduced and the
production process quality is compromised.

One typical approach to detect such systematic manufac-
turing issues is via wafer map pattern recognition, which
observes the die failure pattern on the wafer. Fig. 1 gives a
few commonly-seen wafer map patterns, where each green
pixel indicates a good die which passes all wafer tests, and
each yellow pixel indicates a bad die which fails any wafer
test. Different wafer map patterns might indicate different sys-
tematic manufacturing issues for a specific technology node.
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Fig. 1: Wafer map patterns.
Certain wafer patterns’ implications might be straightforward
and technology independent. For instance, the scratch failure
pattern may imply some unexpected sharp edges touching and
slipping on the surface of the wafer during the manufacturing
or wafer test process. Regardless, being able to identify
the wafer pattern quickly and automatically is important for
manufacturing process issue detection and root cause analysis.

In order to recognize such failures on the fly, several
machine learning techniques are investigated to automate the
wafer map pattern recognition. [1], [2] applied support vector
machine (SVM) to recognize wafer map patterns with pre-
processed features using Radon transformation and geometric
feature extraction. In recent years, [3]–[6] leveraged the strong
image recognition power from convolution neural networks to
identify wafer map patterns.

However, there are two major challenges which are not yet
fully addressed by the previous works. First, it requires huge
manual effort to correctly label a large wafer map dataset. If a
wafer map is unlabeled, it cannot be utilized in the traditional
supervised learning setting, severely reducing the effective
number of training samples for learning. On the other hand,
the unlabeled data may contain unrecognized patterns, which
may provide extra information for wafer pattern learning.
[7] proposed an unsupervised approach to recognize wafer
map patterns using a set of recognizers trained by generative
adversarial networks (GAN); however, the learning process
of the multiple recognizers was heavily guided and tuned
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manually. The second main challenge comes from that fact
that wafer map pattern data is typically highly imbalanced.
Stable manufacturing processes mostly produce wafer maps
that show no patterns at all. The ones with patterns only
constitute a small chunk in the entire dataset. Such imbalance
may bias a trained recognizer towards making only correct
decisions on the dominant wafers without a pattern in the
dataset while more important problematic patterns are mis-
predicted, causing systematic failure escape. [3], [6] suggested
using an auto-encoder (AE) architecture to augment under-
represented patterns; however, such augmentation still requires
the data label, which may be unrealistic in many cases.

In order to fully use the unlabeled data for wafer map
pattern recognition, we proposed a semi-supervised learning
framework to first learn a good representation of all wafer map
patterns presented in a (potentially large) unlabeled dataset,
and then recognize wafer map patterns in a supervised manner
with a small labeled dataset. Our methodology has been
motivated by the recent development in contrastive learning for
unsupervised representation learning in the machine learning
community. Contrastive learning is a framework to learn good
representation of given data in several applications like image
recognition and natural language processing [8]–[10]. SimCLR
[9] is one contrastive learning technique which achieves com-
parable or even better performance compared to its supervised
counterpart for image recognition tasks demonstrated using the
popular ImageNet dataset [11]. The representation is learnt
in a self-supervised manner via comparison, i.e., different
transformations (views) of the original data are compared
to extracted an informative representation. The contrastive
learning has been explored in the wafer map pattern detection
field in [12], while no novel domain-specific transformations
were proposed.

This paper presents a domain-specific application of con-
trastive learning for wafer pattern recognition. While the exist-
ing contrastive learning techniques have primarily focused on
conventional image recognition and natural language process-
ing tasks, the unique characteristics of the wafer pattern recog-
nition task presents new challenges and opportunities. First, we
investigate the relevance of the transformations proposed in the
literature, which act as a mechanism for data augmentation,
and identify a near-optimal subset of transformations that are
well-suited for meaningful characterization of similarities and
dissimilarities of practical wafer pattern data. Furthermore,
we study rotation-based transformations, which are rarely
employed in conventional image data analysis. We propose a
novel rotation operation that transforms a given wafer pattern
into a similar pattern by performing non-uniform rotations of
the dies on the wafer for which the angle of rotation is a
smooth function of the radius. Our proposed new rotation-
twist transformation acts as a domain-specific data augmen-
tation technique and enables automated generation of high-
volumes of similar wafer data while retaining the structure of
the original wafer pattern. Experimental results demonstrate
that the proposed semi-supervised learning framework greatly
improves recognition accuracy compared to traditional super-
vised methods, and the rotation-twist transformation further

enhances the recognition accuracy in both semi-supervised and
supervised tasks.

II. SEMI-SUPERVISED WAFER PATTERN RECOGNITION

A. Problem Formulation

A wafer map of width W and height H can be denoted by
x ∈ X = {−1, 0, 1}W×H , where 0 is used for good dies, 1 is
used for bad dies, and -1 indicates that there is no die in the
current location.

Consider a labeled dataset DL =
{
· · · ,

(
x(l), y(l)

)
, · · ·

}
with NL labeled samples with each x(l) standing for the
l-th wafer map and each y(l) ∈ Y for its corresponding
pattern. In addition, since labeling all wafer maps requires
huge manual effort, we consider another unlabeled dataset
DU =

{
· · · ,x(k), · · ·

}
with NU unlabeled samples. Typically,

NU � NL.
To learn a wafer map recognizer, we optimize a model

represented by f : X → Y , which is parameterized by θ,
to minimize the difference between the recognizer prediction
ŷ = f (x;θ) and the true data label y governed by a loss
function L : Y × Y → R as follows.

θ∗ = argminE [L (f(x;θ), y) | DL,DU ] (1)

Note that in supervised learning, the model prediction
ŷ is directly compared with the true label y via the loss
function. Therefore, the unlabeled dataset DU cannot be used
to compute the loss function, wasting a large number of
unlabeled data in the wafer map pattern recognition. If the
model is constructed using a neural network with θ as its
model weights, as shown in Fig. 2a, only the comparison
between model prediction and data label is used to tune the
model weights θ for the entire neural network, resulting in a
huge search space and a potentially over-fit recognizer.

B. Semi-Supervised Learning

In order to fully utilize the unlabeled dataset DU , a semi-
supervised learning framework is introduced here. Instead of
directly learning the recognizer model f , we can rewrite the
recognizer as a composition of two functions f = hs ◦ v.
Here v : X → V , parameterized by θe, encodes the origin

… Data LabelPrediction

Learn

(a) Supervised learning.

Encoder
Internal representation
v

Fixed 
Encoder Data LabelPrediction

Learn

Representation Learning Phase

Supervised Head Training Phase

(b) Semi-supervised learning.
Fig. 2: Supervised and semi-supervised learning comparison.
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wafer map into an internal representation space V , and hs :
V → Y , parameterized by θs, is a head predicting the data
label using the internal representation. Correspondingly, the
original model learning procedure is split into 2 phases as
follows, which is also shown in Fig. 2b.

f (x;θ) = hs (v (x;θe) ;θs) (2)

A good representation v of the original wafer map is learnt
using unlabeled data DU , of a potentially large size, in the first
phase so that it can ease the downstream task of supervised
head hs training. How to learn a good representation from
unlabeled data depends on what property the representation
is expected to extract and possess. For example, a typical
consideration in AE is that the representation should compress
all information to reconstruct the original data. In contrastive
learning, which is further described in Section III, we would
like ensure that representations of similar wafer maps are
close to each other. The resulting proxy task to learn good
representation is typically different from (1), eliminating the
needs to use the same loss function requiring labeled data
and enabling unsupervised learning for wafer map pattern
recognition using DU .

Note that in the second phase, the encoder parameters θe is
fixed, and the labeled data is only used to learn the supervised
head model hs to recognize wafer map patterns. With a fixed
θe, the parameter space for θ is greatly reduced, accelerating
the optimization process for the supervised head parameters
θs. In addition, fixing the internal representation avoids dis-
rupting the learnt representation during the learning process
of the second phase. If the encoder weights are tuned, it is
highly likely that the learnt representation is overwritten with
the new information provided by the labeled data, degrading
the model into a simple supervised learning model.

III. SEMI-SUPERVISED REPRESENTATION LEARNING VIA
CONTRASTIVE LEARNING FRAMEWORK

A. Learning Similarity via Data Augmentation

Recently, a novel self-supervised learning framework called
contrastive learning suggests extracting a good data represen-
tation by learning the similarity among samples [8]–[10]. Con-
sider two wafer maps x1 and x2. If they are similar (sharing
the same wafer map pattern), their internal representations v1

and v2 should be “close” to each other.
However, as most data labels are unavailable, the similarity

among samples is not revealed explicitly by data labels. In-
stead, contrastive learning introduces transformations to create
similar variants of each given sample and maintain similarities
among these variants as part of the unsupervised representa-
tion learning. Incorporating these augmented data leads to a
larger dataset with more samples. Consider a transformation
T : X → X sampled from a transformation set T . The
transformations are well selected to make each transformed
variant x̃ similar (sharing the same wafer map pattern) with
the original sample x. Therefore, for two transformations T
and T ′, the resulting internal representations

v = v (T (x) ;θe) , v
′ = v (T ′ (x) ;θe) (3)
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Fig. 3: Semi-supervised contrastive learning architecture.
should be made close to each other. The “closeness” between
internal representations is governed by a contrastive loss
in an unsupervised manner. For two similar samples, their
corresponding internal representations should be close to each
other, suggesting a small contrastive loss; otherwise, a large
contrastive loss should be generated for dissimilar samples.

B. Semi-supervised Contrastive Learning Framework

1) Framework Overview: Fig. 3 gives a brief illustration
of how semi-supervised contrastive learning works. As men-
tioned in Section II, the semi-supervised learning is conducted
in two phases. For the first unsupervised contrastive learning
phase, we carefully design a transformation set T to identify
the similarity among samples. Each sample x ∈ X is first
transformed to multiple variants x̃ in the original sample
space X . For simiplicity, let’s say x̃ and x̃′ are transformed
through two randomly-selected transformations T ∼ T (e.g.,
rotation) and T ′ ∼ T (e.g., flipping); then they go through the
same encoder to obtain their internal representations v and
v′ in the internal representation space V; finally, the internal
representation v is mapped into a metric embedding space Z
through a projection head. The training of contrastive loss,
requiring no data label, learns the similarity among samples
to formulate a good internal representation via comparing
the metric embeddings z from different variants of multiple
samples in the metric embedding space Z .

In the second supervised head training phase, the encoder
is inherited and fixed from the previous phase to obtain the
trained internal representation v ∈ V . An additional supervised
head is added to make prediction ŷ from v. The loss function
is defined by the true data labels over a small labeled dataset
to guide the supervised head learning to predict the correct
wafer map pattern.

During the inference stage, only the encoder and the su-
pervised head are utilized for recognizing the patterns of the
previously-unseen wafer maps, while The projection head is
discarded after the first training phase.

2) Contrastive Learning Objective: Note that the internal
representation v is employed in both training phases where two
different learning objectives are targeted as shown in Fig. 3.
We disentangle the unsupervised contrastive learning objective
from that of the supervised head learning by introducing the
projection head hp : V → Z that is parameterized by θp and
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maps the internal representation v to the metric embedding
space Z in which the contrastive loss is defined. This is more
beneficial than defining the contrastive loss directly based
on the internal representation v. This approach avoids overly
constraining the internal representation learning towards the
minimization of the contrastive learning loss and allows for
more flexible learning of the internal representation to better
support the supervised learning task in the second phase.

To this end, the “closeness” in the internal representa-
tion space we discussed in Section III-A shall be inter-
preted broadly. Two internal representations can be considered
“close” as long as their mapped metric embeddings are close
enough. Hence, the contrastive loss between two metric em-
beddings zi and zj from the same sample within a batch of
metric embeddings {zk}Bk=1 can be defined as

Lcl (zi, zj) = − log
exp (zi · zj/τ)∑

k∈{i}′ exp (zi · zk/τ)
, (4)

where τ is a temperature coefficient to characterize the rel-
ative distance among metric embeddings. Here {i}′ denotes
the set complement {1, · · · , B} \ {i} excluding element i.
To minimize the contrastive loss Lcl, the similarity (inner
product) between metric embeddings zi and zj should be as
large as possible, while the similarity (inner product) with
other embedding zk should become small, implying a good
representation learnt by the encoder v.

Note that the metric embedding z is usually normalized with
z/ ‖z‖ to avoid scaling issues among different sample views.

C. Semi-supervised Contrastive Learning Algorithm

With the contrastive learning framework described previ-
ously, Algorithm 1 summarizes the detailed procedure of the
entire semi-supervised wafer pattern recognition algorithm.
Note that for each sample xk, two parts of contrastive loss
Lcl (zk, z

′
k) and Lcl (z′k, zk) are computed, as the two metric

embeddings zk and z′k from the two views x̃k and x̃′k of the
sample sample xk are symmetric to each other in terms of
contrastive loss computation.

IV. RELEVANCE OF EXISTING CONTRASTIVE LEARNING
TRANSFORMATIONS FOR WAFER PATTERN RECOGNITION

A. Consideration for Domain Specific Transformations

One important component to determine the performance
of the unsupervised contrastive learning is the transformation
set T . Transformations included in T suggest what kind of
similarity should be maintained after the transformation, i.e.,
what similarity among samples should be learnt for a good
representation mapped by the encoder. For example, in the
image recognition task, if we consider only color distortion
transformation without affine transformation in the contrastive
learning, the dogs with different colors can be well coded in
the internal representation space V , however, the dogs with
different sizes and locations in images may be considered
distinct in V . We consider three traits for a good transformation
to be considered for the representation learning task as follows.

Algorithm 1: Semi-supervised contrastive learning.
Input : Unlabeled dataset DU ; Labeled dataset DL.
Output: Model prediction parameters θe and θs.
Hyperparameters: Transformation set T , epochs TU ,
batch size BU , and temperature coefficient τ for
unsupervised contrastive learning; Epochs TL and
batch size BL for supervised head learning;
/* unsupervised contrastive learning */

1 for t← 1 to TU do
2 for a sampled minibatch {xk}BU

k=1 from DU do
3 for k ← 1 to BU do
4 Sample transformations T ∼ T , T ′ ∼ T ;
5 x̃k ← T (xk) ; x̃

′
k ← T ′ (xk);

6 vk ← v (x̃k;θe) ; v
′
k ← v (x̃′k;θe);

7 zk ← hp (vk;θp) ; z
′
k ← hp (v

′
k;θp);

8 Compute contrastive loss using lk ←
− log

exp(zk·z′
k/τ)∑

i∈{k}′ exp(zk·zi/τ)+
∑BU

i=1 exp(zk·z′
i/τ)

;

9 Compute other contrastive loss using l′k ←
− log

exp(zk·z′
k/τ)∑BU

i=1 exp(z′
k·zi/τ)+

∑
i∈{k}′ exp(z′

k·z
′
i/τ)

;

10 end
11 LU ← 1

2BU

∑BU

k=1 (lk + l′k);
12 Update θe and θp to minimize LU ;
13 end
14 end

/* supervised head learning */
15 Fix encoder θe and drop projection head θp;
16 for t← 1 to TL do
17 for a sampled minibatch {xk, yk}BL

k=1 from DL do
18 for k ← 1 to BL do
19 ŷk ← hs (v (xk;θe) ;θs);
20 lk ← L (ŷk, yk);
21 end
22 LL ← 1

BL

∑BL

k=1 lk;
23 Update θs to minimize LL;
24 end
25 end
26 return encoder parameters θe and supervised head

parameters θs.

1) Suitability for the task: Obviously, the transformations
under consideration should be suitable for the data under
analysis. If the transformation cannot be applied to the data
sample space X , it should not be considered.

2) Capability to maintain similarity among samples: This
is the most critical characteristic for a good transformation.
The transformation should maintain the major sample property
unchanged after transformation. Here, in our application, wafer
map patterns should be kept the same, while the detailed
good/bad die distribution in a wafer map can be varied by
the transformations.
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Fig. 4: Several adopted transformations for wafer map pattern
recognition. Note that only random horizontal flipping and
random resized cropping were chosen in the SimCLR work
[9] for traditional image recognition.

3) Flexibility to be randomized: Finally, the transforma-
tions should be easy to be randomized, adding more flexibility
when transforming the details of samples, so that the similarity
among samples can be fully captured by the transformations.

B. Existing Contrastive Learning Transformations

One of the most well-known works in contrastive learning,
SimCLR [9], studied a large set of transformations for general
image recognition tasks like ImageNet [11]. In particular,
four transformations are recommended for standard image
recognition tasks: 1) random horizontal flipping, 2) random
resized cropping, 3) color jitter, and 4) Gaussian blur.

For the wafer map pattern recognition application, however,
not all of the four transformations in SimCLR [9] are suitable.
Since a single location xij in a wafer map may only contain
three possible values {−1, 0, 1}, clearly, the Gaussian blur and
the color jitter cannot be applied to the wafer map dataset. On
the other hand, we argue that the other two transformations are
suitable for the wafer map recognition task. 1) The random
horizontal flipping augments the unlabeled wafer data by in-
troducing symmetric variants of wafer maps without changing
their patterns. 2) The random resized cropping crops a random
portion of the wafer map and resize the cropped portion back
to the original wafer size. It creates new variants of wafer
data by extracting a local view of an original wafer map and
re-projecting that onto the full wafer.

V. PROPOSED DOMAIN-SPECIFIC DATA AUGMENTATION
FOR WAFER PATTERN RECOGNITION

As mentioned in Section IV, we adopt random horizontal
flipping and random resized cropping used in traditional image
recognition [9] for wafer map pattern recognition, as shown
in Fig. 4b and 4c, respectively. In addition, we propose three
domain-specific transformations.

A. Random Wafer Rotation

Rotations are not suitable for traditional image analysis
tasks in which images often maintain a proper orientation,
e.g., an upside-down pedestrian is unlikely in a realistic visual
scene. However, as illustrated in Fig. 4d, rotating a wafer does
not alter its circular shape, but can change the orientation of

the good and bad dies while maintaining the same basic wafer
map pattern. To generate a variety of rotated wafer maps, we
consider two random rotation schemes as follows. The first
scheme rotates wafers with a degree randomly selected from a
continuous range [0◦, 360◦), denoted as “Continuous” in Table
II. The second scheme rotates wafers with a degree randomly
selected from a finite set {0◦, 90◦, 180◦, 270◦}, denoted as
“Discrete” in Table II.

B. Random Die Noise

Adding Gaussian noise to images as a way of transformation
was shown to be ineffective for traditional image recognition
tasks [9]. Differently, as shown in Fig. 4e, we randomly flip
good and bad dies at position (i, j) where a valid die (xij 6=
−1) locates as follows.

x̃ij =

{
1− xij with a probability of pn
xij with a probability of 1− pn

(5)

With a small pn value, we largely maintain the present wafer
map pattern while introducing a certain degree of perturbation
to the wafer. In our experiments, pn is set to be 0.05.

C. Rotation-Twist Transformation

Although the previous domain-specific transformations ex-
tract good similarity among samples for contrastive learning,
these transformations don’t change the detailed shape signif-
icantly in wafer maps. For example, a scratch pattern cannot
be curved no matter which transformation is adopted. With
the detailed shape twisted, the relative positioning and the
correlation among close dies in wafer maps are modified. Note
that the detailed wafer map shapes may vary a lot even for
the same wafer map pattern.

Here we propose a novel transformation to twist the detailed
shape inside wafer maps while maintaining the pattern for
recognition unchanged. Specifically, the proposed transforma-
tion performs non-uniform rotations of the dies on the wafer
for which the angle of rotation is a smooth function of the
radius. As shown in Fig. 5, the proposed transformation can
transform a straight scratch into a curved scratch. In order
to do so, three steps are executed to accomplish the entire
twisting. First we randomly generate a smooth angle function
to provide certain randomness to the transformation. Then,
the wafer map is twisted via rotation based on the generated
smooth angle function. Finally, the wafer map is regularized
to make it valid. The details of each step are given below, and
several examples are provided at the end of the section.

Random Angle Generation

Rotation-Twist Transformation

Fig. 5: Rotation-twist transformation illustration.

Regular Paper



0 10 20 30 40 50 60
Distance

0.1

0.0

0.1

0.2

0.3

0.4

0.5
Ra

nd
om

 A
ng

le
 (r

ad
)

(a) Example 1.

0 10 20 30 40 50 60
Distance

0.5

0.0

0.5

1.0

1.5

Ra
nd

om
 A

ng
le

 (r
ad

)

(b) Example 2.
Fig. 6: Random angle generation examples with m = 3.

1) Random Smooth Function Generation: To add a certain
degree of randomness to the final wafer map twisting results, a
random function is first generated, and then the detailed twist
shape is based on the generated random smooth function. To
avoid the wafer map pattern altered due to the abrupt function
value change, we apply a Fourier-transform-based random
function sampling method in [13] to generate a random smooth
function as follows.

θ (d) = a0 +
√
2
m∑
j=1

[
aj cos

2πjd

D
+ bj sin

2πjd

D

]
, (6)

where D is the sum of the wafer width and height, and m
is the order of the Fourier transform. Each aj and bj is an
independent Gaussian variable from N (0, 1/ (2m+ 1)). As
shown in Fig. 6, the 2 examples of generated random function
with m = 3 is relatively smooth within the radius of the wafer.

2) Twist via Rotation: After the random angle function is
generated, the actual twisting is mainly executed via rotation.
All the dies with the same radius to the center of the wafer
map are rotated with an angle determined by the generated
random angle function and its corresponding radius, ending
up with the following equation to relocate the die at (i, j).

[
i′

j′

]
=

 cos θ
(√

i2 + j2
)
− sin θ

(√
i2 + j2

)
sin θ

(√
i2 + j2

)
cos θ

(√
i2 + j2

) [ i
j

]
(7)

However, we may notice that the resulting location (i′, j′)
is not guaranteed to be an integer. Here the nearest neighbor
is taken by rounding the location to the closest integer grid.
Therefore, we can map the goodness of a particular die at
(i, j) in the original wafer map x to (bi′e, bj′e) in the twisted
wafer map x̃ as follows.

x̃bi′ebj′e = xij (8)

3) Wafer Map Regularization: After twisting the wafer
map, a few additional steps are proceeded to make sure the
resulting wafer map is a valid one.

a) Maintain wafer map shape: First, we ensure that the
shape of the twisted wafer map matches the original one by
guaranteeing that the resulting wafer x̃ doesn’t have die at
(i, j) where xij = −1.

b) Fill in Holes using Majority Votes: Secondly, ac-
cording to (7) and (8), the resulting wafer map may have
a few locations with no corresponding original wafer map
locations. For those unfilled positions (holes) in the wafer

Algorithm 2: Rotation-Twist transformation flow.
Input : A wafer map x.
Output: The transformed wafer map x̃.
Hyperparameters: Order m for random smooth angle
function generation;
/* Random smooth function generation */

1 Sample ai ∼ N (0, 1/ (2m+ 1)) for i = 0, · · · ,m;
2 Sample bi ∼ N (0, 1/ (2m+ 1)) for i = 1, · · · ,m;
3 Construct the angle function θ (d) using (6);
/* Twist via rotation */

4 Generate a new wafer map x̃ using (7) and (8);
/* Wafer map regularization */

5 Let x̃ij = −1 where xij = −1;
6 do
7 Update undefined die x̃ij with a majority vote

using the surrounding four dies x̃i+1,j , x̃i−1,j ,
x̃i,j+1, and x̃i,j−1;

8 while no update in x̃ is observed;
9 Let all remaining undefined dies as good dies;

10 return The transformed wafer map x̃.

map, we determine its die goodness via a majority vote of
its surrounding 4 dies. The new wafer map is kept updating
until no change occurs in two consecutive updates.

c) Final check: Finally, we set all the remaining unfilled-
in locations with good dies. With that, a valid randomly-
twisted wafer map x̃ is generated.

Algorithm 2 summarizes the entire procedure for the
rotation-twist transformation.

D. Rotation-Twist Transformation Examples
As the twisting effect of the rotation-twist transformation is

determined by the generated random smooth angle function,
we first check how different orders m affect the resulting
twisted wafer maps. Fig. 7 gives a few examples of the result-
ing wafer maps after applying the rotation-twist transformation
with different orders to the same wafer map with a single
line pattern. For each order, the first plot is the generated
random angle function, and the rest two images are the original
wafer map and the twisted one. When m = 1, the proposed
transformation is degraded into simple rotation, which pro-
vides no additional information to contrastive learning; when
m = 2, the scratch in the wafer map starts to be twisted, but
in a relatively small scale. As the order grows, more twisted
detailed shapes can be observed in the wafer maps, which
changes the relative positioning of close dies in wafer maps
while maintaining the wafer map patterns when m = 3 or
m = 4. However, if we keep increasing the order, we can see
the wafer map pattern can be destroyed as higher frequency
components are added into random angle function, resulting
abrupt function changes like m = 10.

Furthermore, Fig. 8 gives several wafer map examples after
applying the proposed rotation-twist transformation for all the
patterns under consideration with an order of m = 3. For each
pattern in Fig. 8, the first image is the original wafer map in the
dataset, the second and the third images are two examples of
the twisted views. In general, it can be observed that all the
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Fig. 7: Rotation-Twist transformation with different order m.
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Fig. 8: Rotation-Twist transformation examples for all the considered wafer map patterns with m = 3.

wafer map patterns have been kept after the transformation
while the detailed shape in each wafer map is significantly
changed. For example, in Fig. 8g, although we can treat all
the three wafer maps as “Scratch” pattern, the original scratch
is perpendicular to the wafer edge, while the twisted scratches
are not. In addition, the generated scratches are a bit curved
compared to the original one. In addition, the localized die
failure patterns are significantly changed after transformation,
such as the “Edge-Loc” and “Loc” patterns in Fig. 8e and
8f. These wafer map examples demonstrate the effectiveness
of the proposed transformation to twist wafer maps while
maintaining their patterns.

VI. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Methods under Comparison: We compared our pro-
posed semi-supervised contrastive learning method with two
sets of baseline methods. The first set of baseline methods
mainly adopts a supervised learning methodology, including
the support vector machine (SVM) [1], and the convolu-
tional neural network (CNN) architectures, which are widely
adopted in [3]–[6]. The second baseline method adopts the

semi-supervised contrastive learning method with random
horizontal flipping and random resized cropping chosen as
transformations. These two transformations are the only trans-
formations used in SimCLR [9] that are suitable for wafer
pattern recognition. Hence, the second baseline corresponds
to the existing state-of-the-art contrastive learning technique
when applied to wafer map data.

We consider two variants of our proposed semi-supervised
contrastive learning method. The first variant adopts four
adapted transformations: random horizontal flipping, random
resized cropping, random wafer rotation, and random die
noise, denoted by “4TCLWMPR” (4 transformations in con-
trastive learning for wafer map pattern recognition). The
second variant includes the rotation-twist transformation in
addition to the four transformations included in the first
variant, denoted by “5TCLWMPR” below.

2) Dataset and Metric for Comparison: We experimented
on a public wafer map pattern dataset: WM-811K [14], con-
taining wafer maps collected from real-world manufacturing
process in our experimental studies. As shown in Table I, we
used 54,355 labeled wafer maps in the dataset, and split them
into a training dataset and a testing dataset with a percentage of
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TABLE I: WM-811K dataset statistics.

Wafer map patterns Training Testing

None 33051 3679
Center 3113 349
Donut 372 37

Edge-Loc 2150 267
Edge-Ring 7735 819

Loc 1458 162
Random 546 63
Scratch 446 54

Near-full 49 5

Total 48920 5435

90% and 10%, respectively. In order to perform the proposed
semi-supervised contrastive learning framework, all the 48920
wafer maps in the training dataset are used to construct the
unlabeled dataset DU . Only a small portion pd% of the training
dataset is collected to build the labeled dataset DL, containing
both wafer maps and the corresponding patterns, which is
applied for both the proposed semi-supervised learning method
and the supervised learning methods for comparison. A wide
range of labeled data percentage pd% is experimented as
shown in Table III.

Note that the number of samples for each wafer map pattern
is highly imbalanced in Table I. For example, the majority
pattern, “None” pattern (wafers without any failure pattern),
constitutes 67.6% of the whole dataset. Therefore, a traditional
accuracy metric doesn’t give much information about the wafer
map pattern recognizer quality. Even a recognizer predicting
all wafer maps as “None” patterns gives an accuracy of
67.6%, which obviously exaggerates the recognizer perfor-
mance. Instead, we choose a balanced accuracy metric defined
as follows.

BAC =

∑N
i=1 wi1 [ŷi = yi]∑N

i=1 wi
, (9)

where yi and ŷi is the true data label and the prediction
result for a wafer map xi, respectively. The sample weight
wi balances the imbalance among all the pattern types using
wi = 1/Nyi , where Nyi is the number of samples with
the same pattern yi in the dataset. Note that here a trivial
recognizer (predicting “None” for all inputs) can only give a
balanced accuracy of 11.1% (= 1/9), more fairly presenting
the recognizer performance. Furthermore, for the wafer map
pattern recognition, a higher balanced accuracy indicates the
recognizer is more likely to capture systematic manufacturing
failure patterns, which is more meaningful in the semiconduc-
tor fabrication.

3) Detailed Hyperparameter Settings: For the SVM, we
followed [1] extracting features using Radon-based transform
and geometric-based statistics, and trained the SVM recognizer
with a radial basis function (RBF) kernel.

For the neural network architecture used in the CNN and the
contrasive learning methods, in order to make a fair compari-
son, the same CNN architecture is used for both the supervised
CNN training and the semi-supervised contrastive learning,
although different neural network architectures are used in
[3]–[6]. In particular, the composition of the encoder v (·;θe)
and the supervised head hs (·;θs) used in the contrastive
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ŷ
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x

Fig. 9: Neural networks architectures for semi-supervised
contrastive learning framework. Note that the supervised CNN
uses the same architecture as f (x; θe, θs) = hs (v (x; θe) ; θs).
learning forms the CNN architecture f (·;θe,θs) used in a
supervised setting. The detailed neural network architectures
for the encoder, the projection head, and the supervised head
are given in Fig. 9. We resize all the wafer maps to a size of
128×128, and use a vector space with a dimensionality of 256
for the internal representation space V . The entire architectures
are implemented using PyTorch v1.8.0 [15] on a workstation
with an AMD Ryzen Threadripper 3970X 32-Core processor
and an NVIDIA GeForce RTX 3090 GPU.

We experimented two different batch sizes for the semi-
supervised contrastive learning BU = 256 and BU = 512
(denoted as “SB” and “LB” in Table III). The training of
the encoder uses a maximum epochs of TU = 100 with an
early stopping mechanism [16]. The temperature coefficient is
set to be 0.1 here. For the supervised head training, another
TL = 20 epochs are assigned for finetuning the supervised
head with a batch size of BL = 64. Note that in order to
alleviate the imbalance issue as shown in Table I, we adopt a
weighted batch sampler to balance the occurrence probability
of each wafer map pattern during the supervised head training.
The same setting is applied to the supervised CNN training
with longer epochs TL = 100 to train the entire networks.
Moreover, to give more favors to SVM [1] over BAC metric,
similar consideration for balancing weighting among different
patterns is applied (denoted as “Weighted SVM” in Table III).
All the neural network optimization is conducted via an Adam
optimizer [17] with a learning rate of 1× 10−3 and a weight
decay of 1× 10−4.

B. Evaluating the Performance of Transformations in
4TCLWMPR

In order to justify the usage of the four domain-specific
transformations used in 4TCLWMPR, a comprehensive study
of the four adopted transformations is performed in Table
II. We consider all variants of the possible transformation
combinations, with each transformation enabled or not. In
total, 24 (= 2×2×3×2) possible transformation combinations
are considered (2 from random horizontal flip, 2 from random
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TABLE II: Averaged balanced accuracy performance from
24 variants of different transformation combinations in
4TCLWMPR.

Category Enabled Labeled data percentage
5% 10% 20%

Flip No 80.71% 80.61% 82.53%
Yes 80.90% 81.42% 83.02%

Crop No 80.02% 79.93% 80.99%
Yes 81.59% 82.09% 84.56%

Rotation
No 80.60% 81.05% 82.17%

Continuous 80.68% 80.59% 83.09%
Discrete 81.14% 81.40% 83.07%

Noise No 80.26% 80.24% 81.73%
Yes 81.35% 81.79% 83.82%

resized cropping, 3 from random wafer rotation, and 2 from
random die noise, ). Each row in Table II gives the averaged
balanced accuracy of the transformation combinations with the
enabled transformation category. For instance, the row of ran-
dom “Discrete” wafer rotation averages the balanced accuracy
from the corresponding 8 transformation combinations.

As shown in Table II, three of selected transformations:
random horizontal flipping, random resized cropping, and
random die noise, always improve the resulting prediction
accuracy for all the labeled data percentages considered. For
the random wafer rotation, although the “Discrete” variant’s
performance is slightly lower than the ”Continuous” one for
a labeled data percentage of 20%, a relatively large drop
0.46% of ”Continuous” variant can be observed at a labeled
data percentage of 10% compared to disabling wafer rotation.
With that, we include the “Discrete” version of random wafer
rotation in the final selected transformations.

C. Semi-supervised Learning Performance

The wafer map pattern recognition performance over the
WM-811K dataset for the semi-supervised learning method
is given in Table III. The first three rows are the balanced
accuracy metric for the three supervised methods: SVM [1],
Weighted SVM, and the CNN architecture. The next 6 rows
are the performance for the baseline SimCLR and the proposed
semi-supervised contrastive learning variants with different
transformation combinations and batch sizes. As we can see
from the table, the recognition balanced accuracy for the
supervised methods is relatively low. For the traditional SVM
classifier in [1], the recognition balanced accuracy is even
lower than 50%. Even with balanced sample weights to train
the SVM, the recognizer can be hardly to be used in a real
application to identify wafer map failure patterns, although the
averaged balanced accuracy of weighted SVM gets improved
by 4.56% compared to the vanilla SVM. With the help of
modern neural network architectures like CNN, the recognition
power gets greatly enhanced by another increase of 19.89%
in terms of the average balanced accuracy.

Thanks to the good representation learnt by the con-
trastive learning using an unlabeled dataset, the proposed
semi-supervised learning framework significantly improves the
recognition performance with a boost around 7% for the
balanced accuracy on average. For instance, we can observe a

recognition accuracy boost of 9.77% using the proposed con-
trastive learning with the selected transformations, compared
to CNN, even for a small labeled data percentage like 1%.
These significant wafer map pattern recognition performance
improvements can be attributed to two aspects: 1) Good
representation for wafer maps is well extracted by comparing
different transformations of wafer maps to learn the similarity
among samples; 2) The unlabeled data is fully utilized, which
cannot be learnt by supervised methods, greatly reducing the
manual labor to label all the wafer map patterns.

The effect of different transformation combinations is also
studied for the semi-supervised contrastive learning frame-
work. It is observed from Table III that there still exist certain
performance gaps between different transformation combina-
tions, although even the baseline SimCLR transformations’
performance already surpasses the supervised CNN a lot.
With the domain-specific transformations (4TCLWMPR), the
average balanced accuracy over all labeled data percentages
get improved by 1.23% for small batch size and 1.65%
for large batch size. Another 0.76% boost can be observed
when applying the proposed rotation-twist transformations
(5TCLWMPR). With the additional proposed rotation-twist
transformation (5TCLWMPR), there are 5 cases outperform-
ing all other methods using a small batch size for all the
7 experimented labeled data percentages, and 6 out of 7
using a large batch size. Such domain-specific transformations
suggest the similarity among wafer maps are well captured by
these selected transformations, enhancing the representation
learnability for the wafer map pattern recognition application.
The proposed rotation-twist transformation further refines the
representation learning by identifying similar samples with
distinct detailed failure pattern shapes.

As suggested in [9], a large batch size is beneficial for the
contrastive learning, as more dissimilar views of samples can
be used in (4) to identify the dissimilarity among samples.
As shown in Table III, with a large batch size, the balanced
recognition accuracy can be slightly improved on average,
however, we still suggest a case-by-case study for the batch
size to be used in contrastive learning when applying different
labeled data percentages.

Note that we also experimented another variant of con-
trastive learning which also finetunes the encoder during the
second phase of the semi-supervised learning. However, a
similar performance is observed as the one for supervised
CNN, implying that the finetuned encoder forgets the repre-
sentation learnt during the unsupervised contrastive learning
and degrades to a simple supervised learning.

D. Rotation-Twist as Data Augmentation

To boost the recognition power for a supervised learning
model, one common strategy is to augment a small dataset by
adding more samples transformed from the original dataset
with the corresponding data labels. To validate the effec-
tiveness of our proposed rotation-twist transformation, we
experiment the same CNN architecture, and train them in a
supervised manner with each sample randomly transformed
by the proposed rotation-twist transformation with an order
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TABLE III: Balanced accuracy comparison for WM-811K between supervised learning and semi-supervised learning methods.

Learning Type Method Labeled data percentage Avg.1% 5% 8% 10% 20% 30% 50%

Supervised
SVM 47.27% 41.57% 47.79% 45.88% 48.66% N/A 46.99% 46.36%

Weighted SVM 48.07% 46.99% 51.70% 54.72% 55.40% N/A 48.76% 50.94%
CNN 64.87% 66.10% 71.41% 66.74% 77.90% 74.62% 74.20% 70.83%

Contrastive Learning (SB)
SimCLR 71.20% 71.11% 71.15% 72.81% 81.13% 79.22% 82.42% 75.58%

Proposed 4TCLWMPR 74.64% 70.16% 73.38% 73.18% 83.05% 79.94% 83.32% 76.81%
Proposed 5TCLWMPR 72.81% 74.65% 76.48% 75.48% 79.75% 80.26% 83.47% 77.56%

Contrastive Learning (LB)
SimCLR 72.35% 72.05% 75.24% 70.39% 78.30% 80.10% 79.91% 75.48%

Proposed 4TCLWMPR 72.42% 73.90% 76.34% 75.08% 80.23% 81.75% 80.21% 77.13%
Proposed 5TCLWMPR 73.27% 75.54% 77.52% 73.70% 82.19% 82.39% 80.72% 77.90%

TABLE IV: Performance boost of rotation-twist transforma-
tion as data augmentation in a supervised learning setting.

Labeled data percentage CNN CNN+RoTwist Improvement

1% 64.87% 68.19% +3.32%
5% 66.10% 73.25% +7.15%
8% 71.41% 73.10% +1.69%
10% 66.74% 73.60% +6.86%
20% 77.90% 81.39% +3.49%
30% 74.62% 80.62% +6.00%
50% 74.20% 78.06% +3.86%
Avg. 70.83% 75.46% +4.62%

of m = 3. Table IV gives the resulting balanced accuracy
performance with rotation-twist data augmentation at different
labeled data percentages. Compared to the vanilla CNN, a
great accuracy improvement can be observed with 4.62% on
average, indicating the effectiveness of the proposed transfor-
mation, which well extracts the similarity among wafer maps.

Compared to the semi-supervised contrastive learning re-
sults as shown in Table III, the proposed contrastive learning
recognition still outperforms data-augmented supervised CNN
for all the experimented labeled data percentages, demonstrat-
ing that the proposed semi-supervised contrastive learning can
efficiently learn good representations for wafer maps to build
a robust wafer map pattern recognizer.

VII. CONCLUSION

In this paper, we proposed a semi-supervised contrastive
learning framework for wafer map pattern recognition. Con-
trastive learning is adopted to learn good representation in
an unsupervised manner via comparing different views of
wafer maps generated by a set of selected domain-specific
transformations. In addition, a novel rotation-twist transforma-
tion is proposed to change the detailed shape of wafer maps
while maintaining the original patterns. Our experimental
results demonstrate the effectiveness of the semi-supervised
contrastive learning over the supervised learning methods,
and present the performance boost for the proposed domain-
specific transformations.
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