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Abstract—In this paper, we introduce a new neural net-
work (NN) structure, multi-mode reservoir computing (Multi-
Mode RC). It inherits the dynamic mechanism of RC and
processes the forward path and loss optimization of the NN
using tensor as the underlying data format. Multi-Mode RC
exhibits less complexity compared to conventional RC structures
(e.g. single-mode RC), and offers comparable generalization
performance to its single-mode counterpart. Furthermore, we
introduce an alternating least square-based learning algorithm
as well as the associated theoretical analysis for Multi-Mode
RC. The result can be utilized to guide the configuration of
NN parameters to sufficiently circumvent over-fitting issues. As
a key application, we consider the symbol detection task in
multiple-input-multiple-output (MIMO) orthogonal-frequency-
division-multiplexing (OFDM) systems with massive MIMO em-
ployed at the base stations (BSs). Thanks to the tensor structure
of massive MIMO-OFDM signals, our online learning-based
symbol detection method generalizes well in terms of bit error
rate even using a limited online training set. Evaluation results
suggest that the Multi-Mode RC-based learning framework can
efficiently and effectively combat practical constraints of wireless
systems (i.e. channel state information (CSI) errors and hardware
non-linearity) to enable robust and adaptive communications over
the air.

Index Terms—Reservoir computing, neural networks, online
training, massive MIMO, 5G, imperfect CSI, and non-linearity

I. INTRODUCTION

ASSIVE multiple-input multiple-output (MIMO) is an

essential physical layer technique for the 5th generation
cellular networks (5G) [1]. By employing a large number
of antennas at base stations (BSs), a “favorable propagation”
channel condition can be achieved. It allows inter-user inter-
ference being effectively eliminated via fairly simple linear
precoding or receiving methods, e.g., conjugate beamforming
for downlink, or matched filtering for uplink [2].

However, the deployment of massive MIMO in practical
systems encounters several implementation constraints. Pri-
marily, for the sake of achieving the promised benefits by
massive MIMO, highly accurate channel state information
(CSI) is needed [3]]. On the other hand, CSI with high precision
is challenging to be obtained due to the low received signal-
to-noise (SNR) before beamforming/precoding, as well as the
limited pilot symbols defined in modern cellular networks due
to control overhead [4]. Furthermore, theoretical analysis of
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massive MIMO systems usually assume ideal linearity and
pleasing noise figures requiring exceptionally high costs on ra-
dio frequency (RF) and mixed analog-digital components [5].
This ends up with a compromise on the hardware selection
which introduces imperfectness (e.g. dynamic non-linearity) to
the transmission link. The resulting non-linearity, in turn, leads
to waveform distortion and thereby degrades the transmission
reliability, which is challenging to be analytically tackled using
model-based approaches.

Symbol detection is a critical stage in wireless commu-
nications. It is a process that accomplishes miscellaneous
interference cancellation at receivers, such as inter-symbol,
inter-stream, and inter-user inference, etc. Due to the potential
model mismatch from the non-linearity caused by low-cost
hardware devices, standard model-based signal processing
approaches are no longer effective. With the advent of deep
neural networks, there are growing interests in using neural
networks (NNs) to handle the model mismatch [4]. In general,
NN-based framework aims to compensate for the model mis-
match through the non-linearity of NNs. This recent awareness
of bridging learning-based approaches to the symbol detection
task in massive MIMO systems has posed the following
conceptual discussions in the NN design.

o Curse of Antenna Dimensionality: Since the input, hidden,
and output layers of NNs are often configured as the same
scale as the antennas to jointly extract and process spatial
and time-frequency features, the growth of antenna numbers
inevitably lead to the increase of the volume of underlying
NN coefficients. As NNs essentially learn the underlying
statistics of data, the corresponding increase in the parameter
dimensionality often imposes an exponential need on the
training data set to offer a reasonable generalization result.
However, the availability of the training data for cellular
networks (e.g.,4G or 5G) especially the online ones is
extremely limited due to the associated control overhead [6].
Furthermore, the computational complexity is also evinced
with an exponential relation to the NN scale. Learning
neural weights through generic back-propagation can result
in large computational complexities leading to severe pro-
cessing delays which are not desirable especially for delay-
sensitive applications.

o Blessings of Antenna Dimensionality: On the other hand,
a large number of antennas is able to offer favorable
propagation conditions [1|]. Properly leveraging the asymp-
totic orthogonality of the wireless channels can often re-
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sult in surprising outcomes, which conversely transforms
the curse of dimensionality into “the blessings of dimen-
sionality” [7]]. These findings align with the measurement
concentration phenomena which are widely applied to sim-
plifying machine learning frameworks [8]]. Therefore, to
explore learning-based strategies for massive MIMO, we
can incorporate inherent structures from the spatial channel
as well as the time-frequency features from the modulation
waveform to the design of NNs, which is “blessed” to offer
good generalization performance yet under a very limited
online training.

A. Related Work

A commonly utilized approach for building learning-based
symbol detectors is through unfolding existing optimization-
based symbol detection methods to deep NN, such as DetNet
[9] and MMNet [10]. Since this framework is based on using
explicit CSI, it usually suffers from performance drop or
requires extensive hyper-parameters tuning when CSI is not
perfect. Meanwhile, the resulting “very deep neural networks”
are extremely demanding in computational resources which
hinders their applications in practical scenarios. Alternatively,
implicit CSI can be utilized to circumvent the above mentioned
training issues. For example, [11]] introduced a deep feedfor-
ward NN for symbol detection in single-input-single-output
(SISO) OFDM systems. Due to its independence from channel
models, this approach can equalize the channel under nonlinear
distortion (power amplifier (PA)). However, this method uses a
less-structured deep NN which is yet too complicated to train
in practice, since the guaranteed generalization performance
is based on extensive training over large datasets that are
extremely challenging to be obtained in over-the-air scenarios.
Furthermore, “uncertainty in generalization” [4] will arise if
the dataset used for training the underlying NN is not general
enough to capture the distribution of data encountered in
testing. This is especially true for 5G and Beyond 5G networks
that needs to offer reliable service under vastly different
scenarios and environments.

In 4G/5G MIMO-OFDM systems, there exists different
operation modes with link adaptation, rank adaptation, and
scheduling on a subframe basis [[12]]. Therefore, it is chal-
lenging, to adopt a complete offline training-based approach.
Rather, it is critical to design an online NN-based approach to
conduct symbol detection in each subframe only using the
limited training symbols that are present in that particular
subframe. In this way, the online-learning-based approach can
be adaptive and robust to the change of operation modes,
channel distributions, and environments. On the other hand,
conducting effective and efficient learning only through the
limited training symbols within a subframe is extremely chal-
lenging. To achieve this goal, more structural knowledge of
the wireless channel and modulation waveform need to be
incorporated as inductive priors to the NNs to significantly
relieve the training overhead in each subframe basis [6], [13].
Reservoir computing (RC) and its deep version have been
introduced to the MIMO-OFDM symbol detection task in
[14]-[17] to achieve learning on a subframe basis. To be

specific, [[14] is the first work using a vanilla RC structure
to conduct MIMO-OFDM symbol detection, where the input
and output are defined in the time domain. It shows this simple
approach can achieve good symbol detection performance
in short memory channels with limited training. [15]-[17]]
extended the RC-based symbol detection framework by adding
units in width and depth to handle channel with long taps as
well as more severe non-linearity. Experiments show that the
extended RC framework — RCNet can effectively compensate
for the distortion caused by non-linear components in wire-
less systems as well as mitigate miscellaneous interference
completely from receiver side only using the training dataset
within each subframe.

By referring to the multi-dimensional feature of massive
MIMO signals (e.g. elevation and azimuth directions in the
spatial domain, the time and frequency domain), we are
motivated to incorporate this tensor structure into our symbol
detection NN. Although the concept of tensor-driven NNs
has been studied before, such as Tensorized NNs in [18]],
where NN weights are formulated as a tensor-train decomposi-
tion [19], and CANDECOMP/PARAFAC (CP) decomposition
characterized convolutional layers for learning-acceleration
from [20]], our strategy is completely different from these
techniques as tensor is utilized as the forward path data
structure rather than NN coefficients. In its application to
massive MIMO systems, instead of treating the input signal
as a vector sequence, we define the received signal as a tensor
sequence that is consistent with the intrinsic multiple mode
property of the underlying massive MIMO signals. Such a
signal processing perspective has been studied in our previous
work [21]]-[27] to solve conventional massive MIMO channel
estimation problems. However, a more accurate explicit CSI
does not sufficiently lead to an improvement of the trans-
mission reliability, since symbol detection is conducted on
a separate stage without knowledge of the channel estima-
tion errors. Our introduced method is to directly demodulate
symbols through neural networks avoiding the intermediate
channel estimation stage.

B. Contributions

Uplink transmission is a typical low SNR scenario since
mobile terminals often use relatively low transmission powers,
and the RC framework has not yet been investigated under
the scope of the massive MIMO systems. In addition, being
able to conduct receive processing — symbol detection on a
subframe basis is extremely important for robust and adaptive
communications in the 5G and beyond 5G massive MIMO
networks. Therefore, we consider the uplink symbol detection
in a massive MIMO system with OFDM waveform using a
“subframe by subframe” learning framework, i.e., our method
accomplishes the symbol detection by using training dataset
only from each subframe. The resulting multi-mode processing
framework can in general be extended to process any other
tasks with tensor structured sequence, such as video, social
networks, and recommendation systems, etc.

We name our introduced RC-based NN structure as “multi-
mode reservoir computing” (Multi-mode RC), as it inherits
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Fig. 1. Tllustration of the tensor diagonalization
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superblockdiag_3(g(l)7 Q(Q), g<3>,g<4)), where the diagonal elements are ¢ g2 gB) and g4,

the dynamic mechanism of RC and processes input-output
relation using a tensor format (multi-dimensional array). In
our framework, a core-tensor is built as hidden features of
the input tensor sequence. Desired output is then obtained
through a multi-mode mapping. In terms of tensor algebra,
the RC readout is learned through a Tucker decomposition
with a deterministic core-tensor thanks to the aforementioned
feature extraction. A theoretical analysis is then provided to
show the uniqueness of the learned NN coefficients. Our
experiments reveal that this uniqueness condition is related to
the avoidance of over-fitting issues since it prevents a zero loss
value which often results in poor generalization performance
on the testing dataset. Compared to single-mode RC, Multi-
Mode RC can achieve better symbol detection performance in
terms of uncoded bit error rate in the low SNR regime with
reduced computational complexity. In addition, the introduced
method is shown to be effective to combat extreme waveform
distortion, e.g. applying one-bit analog to digital converter
(ADC) as the receiving quantization. The remainder of this
paper is organized as follows: In Sec. [l we briefly introduce
math foundations of tensor and the background of reservoir
computing which are utilized to build the concept of Multi-
Mode RC in Sec.[ITI} In Sec.[IV] the application of Multi-Mode
RC to massive MIMO-OFDM symbol detection is discussed.
Sec. evaluates the performance of Multi-Mode RC as
opposed to existing symbol detection strategies in massive
MIMO-OFDM systems. The conclusion and future research
directions are outlined in Sec. V1

II. PRELIMINARY

This section provides an overview of basic tensor algebra
and reservoir computing which will be used in the rest of this
paper as the methodology development. In our math notations:
scalars, vector, matrix, and tensor are denoted by lowercase
letters, boldface lowercase letters, boldface uppercase letters,
and boldface Euler script letters respectively, e.g., z, x, X
and X.

A. Tensor Algebra

Tensor is an algebraic generalization to matrix. A tensor
represents a multidimensional array, where the mode of a

tensor is the number of dimensions, also known as ways
and orders [28]. The (41,42, - ,ix)th element of a N-mode
tensor, or namely a Nth order tensor, X € Cl1x[2xxIn g
denoted as x;, j,,... in, Where indices range from 1 to their
capital versions.

By following matrix conventions, rank(X) represents the
rank of the matrix X. X7, X and X* respectively stands
for the transpose, hermitian transpose, and Moore—Penrose
pseudoinverse of the matrix X . Analogously, the tensor trans-
pose of a tensor X is denoted as X" which means the ith
mode of X7 correspond to the mode numbered as TI(i) of
X, where II is a permutation on set {1,2,.., N}. Moreover,
blockdiag( A1, -+, An) represents stacking A;,---, Ay as
a block-diagonal matrix. We denote superblockdiag() as a
super-diagonal tensor by stacking its tensor arguments as illus-
trated in Fig. E} superblockdiag_,, (-) forms a super diagonal
tensor except on mode n.

The definition of the mode-n matricization of a tensor X is
denoted as X,,), where (i1, iz, ...,in) of X € Clxf2xxIn
maps to the (i, j) entry of matrix X,y € C'»*/=» where
I_,:= Hkin Ij.. According to [29],

N
o= [ In-

m=k+1
m#n

N

ji=14) (ir—1)Jp with
k=1
k#n

The n-mode product of a tensor X with a matrix U € C/*!»
is defined as,

In
(X X0 Uiy i jimgain = Z Tiyig...in Ujip -

in=1

Tucker decomposition is often considered as a higher-order
generalization of the matrix singular value decomposition. The
Tucker decomposition of a tensor X is defined as

X:Q’xlA(l) XQA(2)"'><NA(N) (2)

where A represents the nth factor matrix and G is named
as the core tensor. Accordingly, the mode-n unfolding of the
tensor X is given by

X(n) :A(n)G(n)(A(l) Q- An=1) ® A+ ® A(N))T’
(3)
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Fig. 2. Illustration for a Tucker decomposition of a three mode tensor: Core tensor and factor matrices are with four partitions.

where G(n) is the mode-n unfolding of G. Note the above
unfolding tensor has a reverse order in the Kronecker products
of factor matrices which differs to [28]]. This is because we
alter the way to pile up the indices of unfolding tensors
according to (.

We now consider a super diagonal core tensor G with K
blocks, i.e.,

G = superblockdiag(G™M, @ ...  g¥))

k k k
c (Cli Do 1§ s g ()

where G(¥) and the matrix A™ being

partitioned as

[A(ml), A(”’Q), . 7A(n,K)]'

Accordingly, the resulting n-mode product between G and
A™ can be written in terms of a super diagonal tensor except
on the nth mode:

G x, A = superblockdiag_n(g(l) X, A,
G® ., A .. G A

When we assume the core tensor of X is super-diagonal,
the Tucker decomposition defined in can be alternatively
expressed in terms of a summation of sub-Tucker decomposi-
tions:

K

X = Zg(k) x1 AR ) AR oy AVE) (g
k=1

An illustration for Tucker decomposition of a three mode

tensor is depicted in Fig. 2] Particularly, when each diag-

onal component in G is a scalar, becomes CANDE-

COMP/PARAFAC (CP) [30] decomposition simply written as

K
X = Zg(k)a(Lk) o a(Q,k) O---0 a(NJC)’ (5)
k=1
where o represents the outer product between two vectors.
These tensor decompositions have already been applied to
many disciplines, such as neural networks, wireless communi-
cations, audio signal processing, and others. More applications
of tensor decomposition can be found at [31].

B. Reservoir Computing

Recurrent neural networks (RNNs) are powerful in process-
ing sequential data by its hidden dynamical units. However,
its inherent training difficulty limited its application to a wider

research area. Reservoir computing (RC) represents a simple
RNN framework: The ‘reservoir’ is composed of nonlinear
components and recurrent loops, where the non-linearity al-
lows RC to process complex problems and the recurrent loops
enable RC with memory; the ‘computing’ is achieved by
reading out the states in the reservoir through learned NN
layers. The training of this framework is conducted only on
the readout layers which fundamentally circumvents gradient
vanishing/explosion issues in back-propagation through time
thanks to the fixed reservoir dynamics. RC today is a prolific
research area, yielding compelling performance in many tasks,
such as image recognition [32], [33]], speech recognition [34],
[35]], wireless communication [6]], [14]-[17], [36], etc.

A simple realization of RC noted as “vanilla RC”, is
characterized by a state equation and an output equation as
shown in Fig. 3] The state equation is formulated with time
index t by,

st+1)=o0c (Wtran EEQD (6)

where o is a nonlinear function, s(t) is a vector representing
the internal reservoir state, y(¢) is the input vector, and W ¢4,
stands for the reservoir weight matrix which is often chosen
with a spectral radius smaller than 1 in order to asymptotically
achieve a “similarity” to desired dynamic model [37]]. The
output equation is simply treated as

_ s(t)

Z(t) - Wout [y(t)} 9 (7)
where W ,,,; is the output weight matrix and z(t) stands for
the output. As we can see, the output is with a skip-connection
to the input which assimilates to a residual arrangement [38]].

III. MULTI-MODE RESERVOIR COMPUTING

In this section, we introduce the framework of Multi-Mode
RC. Tt processes a sequence-in and sequence-out task, where
the time sequences are configured with more than one explicit
modes, i.e., the input sequence is formulated as Y (¢) or Y(t)
rather than a scalar-wise sequence y(t) or a vector-wise y(t).

A. Two-Mode Reservoir Computing

For ease of discussion, we begin by considering a two-mode
RC. The architecture is comprised of a recurrent module, a
feature queue, and an output mapping.
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Fig. 3. Illustration for a vanilla RC.

Recurrent Module: A recurrent module maps input se-
quence Y (t) € CNW' XN (o a state sequence S(t) €
CNs*Ns where N, represents the number of neurons defined
on each mode of S (t)[ﬂ Therefore, the total number of neurons
is N2. To equally obtain observations from the row-space and
column-space of Y (), we define the recurrent equation as,

W f) o

tran

Sit+1) =0 (W“)

where
Y (t) = blockdiag(Y (¢), Y (t — 1),--- , Y (t —T")),

T’ is a hyper-parameter representing the length of input win-
dow, o is a non-linear function, W,Eil)m € (CNSX(NﬁT/Ni(i)),
ngzm € CNX(NH+T'NT) are reservoir weight matrices
applied on the row and column spaces respectively. Note
that (8) also can be written as a sum in the form of (@).
Accordingly, the state equation can be regarded as an
extension of the standard state equation (6) by incorporating
independent mappings into the row and column spaces of state
S(t) and input Y (¢). It also can be equivalently written via
the form of (6) through vectorizing the matrix-wise state and
input. Rather than directly applying vectorized state and input
to the standard RC, our introduced approach preserves the
multi-mode feature of the input signal, where the advantages
of using this strategy will be discussed in the analysis and
evaluation sections of this paper.

Feature Queue: Our definition of the feature queue G(t) is
a queue of sequence, i.e., at a given time ¢, the sample G(t)
is a queue which is stacked up by current state sample S(¢)
and input sample ?(t) We opt for a simple formulation and
use diagonalizing operation to write the queue as follows,

G(t) = blockdiag(S(t), ST (1), Y (£), Y ().  (9)

G(t) is also called extended state sequence as it is obtained

~ T
with a skip connection to the input. The presence of Y (¢)
and ST(t)~is to create a fair treatment on the row and column
space of Y (t) and S(¢).

IFor simplicity, we assume S(t) as a square matrix. In general, it also can
be designed as a non-square matrix. Meanwhile, the size of N is configured
through experiments in order to maintain a balance between overfitting and
underfitting according to the datasets. The RC structure based on non-square
S(t) is left as our future work.

Output Mapping: An output layer ensures that the feature
queue can be identically mapped back to our desired output
size. It is defined as:

T
Z(t) = ng)tG(t)Wf)i)t (10)
= G(t) xa W) xo W)

where W', ¢ CNowN;" and w?, e CNowx N,
N = 2N+ T/ (N + N ) and NP = 2N +T' (N{Y +
Ni(s)) respectively represent the size of row and column of
G(t); Meanwhile, N(Si% and No(i)t respectively stand for the
size of row and column of Z(t).

Loss Function: In this paper, the loss function is de-
fined to handle sequence-to-sequence tasks. Given a set of
{Y4(t), Z4(t)} as the input-output pairs for training, where
q stands for the batch index, our objective aims to generate
Z,(t) by using Y ,(t). Therefore, we use

Nx Nt
: (1) (2) 2
W(lr)nt,l‘lllv(2>t ;t_zl ||Z¢1(t) - Gq(t) X1 Wout X2 WoutHF?
(In
where || - ||F is the Frobenius norm of a matrix. Although

the loss function is simply formulated via a least square
framework, it offers a connection between the RC readout
learning and alternating least squares (ALS) algorithm which
has been widely used and can be easily analyzed in the context
of tensor decomposition [39]. We can further stack Z,(¢) and
G,(t) to 4-mode tensors along the time axis and the batches to
have Z € CNSAX NG X Nex Nk and G e CNfV XN xNpx Nic
respectively. Accordingly, the loss objective (11)) can be rewrit-
ten in a concise way,

min |2 -G x; w o, w® |%.

out

out (12)

In the training stage, we feed a batch of sequences to RC
and solve the problem (12) using alternating least squares,
where ng)t and W((,i)t are iteratively updated by solving the
following matrix-wise least square problems,

W) =arg min [|Z ) WG (W, 0In, @In, ) | r
Wout
ng)t = argV{,HiHQ 1Z 2y — Wg}tG(z) (ng@INT &In) .

The iterative process continues until a certain stopping cri-
terion is reached. In this ALS formulation, Gy and G
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TABLE I
NOTATIONS OF MULTI-MODE RC
Notations Definitions
T’ Input window length
N Number of signal mode in Multi-Mode RC
N, Z(:Z ) Number of RC input at mode n
N, (522 Number of RC output at mode n
N}m Feature queue size at mode n
Nt Input and output sequence length
Nk Training batch size
Ng Number of neurons on each mode of a state tensor
T Delay configuration in RC state response
NN g xn™ : :
Y(t) € Clin in in A tensor sequence as the input of Multi-Mode RC
N(l)xN(2)><<--><N<N) . .
G(t)eC'/ f ! A tensor sequence as the internal feature of Multi-Mode RC
1 2 N
Z2(t) € (CNéu)t XNGo XN A tensor sequence as the output of RC
&) (2) (N)
Y e CNin' XNip/ XX Ny "XNp XNk | A higher order tensor by stacking ) (t) through time samples and batches
NO YN 5 x N Ny x N . . .
GeC'/ ! ! TATK A higher order tensor by stacking G(t) through time samples and batches
1 2 N
Ze TS X NS NGu) X N x N A higher order tensor by stacking Z(t) through time samples and batches
represent the mode-1 and mode-2 unfoldings of tensor G. where
However, directly using this ALS calculation often requires comb(S(t)) := superblockdiag(S(t), STm (t), ST, t)--),
large memory resources due to the Kronecker products. There-
fore, we introduce an alternative approach to calculate the ALS and IIy, Il - - - stand for permutation patterns which are up
to N! cases.

which is discussed in Appendix.

Since reaction delays exist in RC systems [16], we often
need to add another parameter 7, namely “Delay of RC states”
in the loss objective to optimize. Therefore, we have the
following augmented loss objective,

Ng Nt

. . 1 2)12
rgigxmgllélwz)f;;HZq(t) —G{t+7)x1 va)u)t X2Wf)u)t||Fa

out?

(13)

where T7,,,, represents the upper bound of 7 to search.
Accordingly, the samples of G,(¢) ranging from time index
t = 1tot = Np + Tmae are obtained by concatenating
{Y(t)}Y7, with a 7,4,-length zero matrix at the end as
the RC input. At testing stage, the learned 7 are applied to
truncate the RC state sequence such that the output sequence
becomes {G(t +7T) x1 W(()L)f X2 W(Oi)t Nt . since the output
is anticipated as a Np-length sequence. In general, the output
sequence can be truncated off more or less samples in order

to match the desired sequence of the tasks.

B. Multi-Mode Reservoir Computing

The structure of multi-mode (beyond 2-mode) reservoir
computing is illustrated in Fig. ] As a general framework
of 2-mode RC, each component is respectively extended as

¢ Recurrent Module:

S(t + 1) = o(superblockdiag(S(t), Y(t)) x1 w

tran
xa -y W) (14)
Y(t) = superblockdiag(Y(t),--- , Y(t — T")) (15)

o Feature Queue:
G(t) = superblockdiag(comb(S(t)),comb(Y(t)))  (16)

o Output Layer:
Zt)=61t) <1 W s, W oy W

out

(N)
out

a7

o Loss Function:

NK NT
min min ZZ 124(t)—
T W£2t7wgi)t,"‘ 1W5;11Yt) q=1t=1
1 N
Golt+7) xa Wi - xy WEDIE (18)

Similarly to the 2-mode case, the output weights are learned
through alternating least squares. The optimization can
also be formulated as a high order tensor decomposition as
defined in @I) Moreover, to further avoid model overfitting,
regularization terms can be added in the loss function, such as
ridge regression, Le.. W/, W o [+ W0/ | -
In addition, we can observe that the optimization problem (I8)
is not the canonical Tucker decomposition defined in [40]. This
is because the factor matrices are not designed as full column-
rank in our framework. On the contrary, we choose the factor
matrices with full row-rank to fulfill the mechanism of RC
that is “yielding desired output through dimension reduction
from internal memory states.”

C. Theoretic Analysis

We now study the condition on the uniqueness of solving
(18) via alternating least squares. Through our derivation as
presented in Appendix, we can arri\{% at tl(lze) followi(r]{% theorem.

Theorem 1: Given Z ¢ CNowt X Noyy XX Noyy X No X Nie

out

and @G € (CN; XN e x NG X Nr x Nic with
rank-(N(E},%, Néii, ces ,Néi\?, Nr,Ng) and rank-

(Nj(cl),N}2),--~,N}N),NT,NK) respectively, and Vn,

2This stands for the multi-mode rank of a tensor. The definition can be
found in Appendix.
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Fig. 4. Illustration of Three-Mode Reservoir Computing Architecture

N J(cn) > Nézt), N > 2, the achieved minimization of is
unique by using ALS when the initialization factor matrices

are chosen as full rank and

S NG, + Np o+ N = N, v,

The above theorem reveals that the uniqueness condi-
tion of the Multi-Mode RC learning is characterized by
the shape of the output tensor and feature core-tensor.
Alternatively, if we use a single batch for training, i.e.,
merge the last two modes of the tensors into one, the
shape of the output tensor and core-tensor respectively
CNSo XN X x NS X (N0 NK)  and G ¢

out
. Therefore, the uniqueness con-

19)

become Z
(CN}” XN o x NV x (N7 N )

dition can be rewritten as

> Niik+ NeNi = N, vn.
i#EN

(20)

In our experiments, we observe that when the uniqueness
condition holds, the loss-value is often greatly larger than
zero. The model thereby does not over-fit to the training
dataset which can offer generalization on the unseen testing
dataset. More related discussions on this observation are in the
evaluation section.

On the other hand, Multi-Mode RC can be analyzed as an
advance of conventional RC by imposing particular structures
on the output layer, where the conventional RC refers to
RC operating on single-mode data structures, i.e., scalars and
vectors. To gain this insight, we consider vectorizing the output
layer of a 2-mode RC. According to (I0), the resulting output
equation of the 2-mode RC via a single-mode RC based
formulation is given by,

Vee(Z(t)) = (W, @ W) Vee(G(t)).

U out

The above equation reveals that the output weight of multi-
mode RC is forged as a Kronecker product of two sub-matrices
to process a “vectorized” G(t). As opposed to single-mode RC
using a fully connected layer, the resulting Kronecker output
layer is with less freedom on parameters which requires a less
amount of data to fit. Meanwhile, the Kronecker structure can
further reduce time and space complexity.

We present the complexity analysis results in Table[[l, where
we assume that the conventional RC and Multi-Mode RC

are with the same input-output size. In this table, the time
complexity of the forward path is calculated by the matrix
product between the output layer and RC state at each sample,
while the complexity on output learning is from the matrix
inverse operations involved in solving the loss objectives of the
entire training data set. The memory costs in the forward path
are calculated based on the size of internal states and output
weights. Meanwhile, the memory spent on learning is on the
same scale as the size of the internal state. Moreover, the input
buffer length is ignored in this table for sim%ﬂicity. However,
it can be easily calculated by substituting N, ) as Nip, T" in
this table. Note that energy-efficiency is an important topic for
the adoption of neural network-based processing. Our previous
work [41]] shows that RC-based symbol detector is a “green”
solution compared to the traditional signal processing-based
method with lower energy consumption per information bit.
Due to recent active research in the field of neuromorphic
computing chips [42[]-[44], it is expected that the energy-
efficiency of the introduced multi-mode RC can be high. A
comprehensive study on this aspect of the multi-mode RC will
be treated as a future topic.

IV. APPLICATION: ONLINE SYMBOL DETECTION FOR
MULTI-USER MASSIVE MIMO

In this section, we will briefly review the transceiver ar-
chitecture of multi-user massive MIMO-OFDM systems and
elaborate on how to apply Multi-Mode RC to symbol detection
of an uplink massive MIMO network.

A. Multi-user Massive MIMO-OFDM System

We assume NN, scheduled users are distributed in a cell
communicating to a base station (BS) equipped with a massive
rectangular array as shown in Fig. 5] where each user is
mounted with N, antennas. Note that N, is the number of
scheduled users in each subframe (not the number of users in
the massive MIMO network) and can change from subfame
to subframe depending on BS’s scheduling strategies. The
transmitted signals from all users to BS can be written as
X (t) € CNuexNa_ Let x(t) = vec(X(t)) € CNe*1, where
N, = N,N,. Each entry of =(t) is a time sequence which
stands for a stream of OFDM signals. For convenience, the
OFDM signal x(t) is organized as OFDM resource grids as
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TABLE II
TIME COMPLEXITY AND MEMORY USAGE COMPARISON

NN Operations Time

Memory

Standard RC forward

O, No ([T, NZ7 + NN))

O, NoI([1, NI + NN))

Multi-Mode RC forward

o2, NO ([T, NI N+ NN))

out

Standard RC learning

O(([L, NI + NN N)

O(([1, NI + NN)Nk)

Multi-Mode RC learning

out

oz, NI, NN
(2, N 1, NS Nk)

O(IT, Ny N' + NX)

Fig. 5. Uplink transmission in the multi-user massive MIMO system.

illustrated in Fig. [f] In the OFDM resource grids, the hori-
zontal direction represents OFDM symbols, while the vertical
direction stands for sub-carriers indices. OFDM symbols are
constructed into subframes where the time domain signal x(t)
is obtained by applying an inverse Fourier transform (IFFT) on
symbols across the subcarriers. Cyclic-prefix (CP) is added for
each OFDM symbol. Let N, denote the number of subcarriers
and Np + Nk be the number of OFDM symbols within a
subframe. Here, N is the number of OFDM symbols that are
used as pilots/reference signals whereas Np OFDM symbols
within the same subframe are used for data transmission. Each
element on the resource grids is modulated by quadrature am-
plitude modulation (QAM). Note that pilots/reference signals
are used to conduct CSI estimation at the receiver in modern
4G and 5G networks. Furthermore, N is configured to be
smaller than Np to reduce over-the-air signaling overhead.
Meanwhile, N is often designed to be proportional to the
number of streams to offer a reliable CSI estimation.

The received signal at the BS can be expressed as

L
Y(t)=r (> HO xsz(t—0+N(@H) ], @D
=0

where r(-) is a function which characterizes the non-linearity
at the receiver, such as ADCs, as well as model mismatch;
H() € CNaxNexNe g a tensor which defines a spatial
channel response at the /th-delay, where the total number of
delays is denoted as L; N, is the number of azimuth antennas,
N, is the number of elevation antennas of the massive MIMO
BS antenna array. Our objective is to train a NN D which can
recover X (t) by using Y (¢), i.e.,

(22)

Frequency Subcarrjers

N,

Time Slots

Usersé /\_1\;: Np Nk Np
Antenna ports
N.&N,

Subframe

Fig. 6. Massive MIMO-OFDM resource grids (subframe-subcarrier) structure
for RC training and symbol detection

such that the NN is learned by

min f ({D(Y (1))}, {X(1)})- (23)

B. Online Symbol Detection by Multi-Mode RC

Multi-Mode RC serves as the detection NN, D, through the
over-the-air pilots/reference signals on a subframe basis. The
pilots defined in existing massive MIMO-OFDM systems of
each subframe is directly utilized as the training dataset. The
following data symbols in the same subframe is the testing
dataset, i.e., we train the NN using Ny pilots to detect Np
data symbols in each subframe. This constraint makes the
learning framework different from conventional NNs to enable
online learning for robust and adaptive communications. The
azimuth direction is set as the first mode of Multi-Mode
RC and the elevation direction is set as the second mode.
Each OFDM pilot symbol is considered as one training batch.
Accordingly, the input sequence length equals the number of
subcarriers, N,, plus CP. The output is then truncated to be a
N.-length sequence following the process as described under
equation (I3). The symbols of each stream on each subcarrier
are obtained through quantization and demodulation.

In massive MIMO systems, symbol detection can be con-
ducted through either a joint or a decomposed approach:

1) Joint Processing: In the joint processing, data symbols
are obtained through a single Multi-Mode RC with a multi-
head output, where the size of the first and second mode of the
RC output sequence are respectively N, and N,. The mode
order of the output node also can be reversely configured. This
is because Multi-Mode RC treats equally on each output mode
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according to the generation rule of the internal feature queue as
shown in (T6). A well trained joint model is anticipated to yield
a good symbol detection performance since all interference
and imperfect factors are handled jointly.

2) Decomposed Processing: The decomposed approach
refers to learning the output weight through a decomposed
way. For instance, in the case of 2-mode RC, it has N,, x N,
pairs of (wgz)t,wg}t) to learn, where the vector weight w
maps the internal states to a scalar entry of the output
tensor sequence. In this framework, the training on each
decomposed output weight is based on their individual loss
allowing the training through a parallel manner which can
significantly reduce the computation latency. On the other
hand, the decomposed method takes extra resources on storage
and computation compared to the joint approach. For instance,
in 2-mode RC based joint approach, the size of output weight
matrices ng)t and ng)t are respectively N(Ei)t x N )(cl) and

N, éi)t X NJEQ). In the decomposed way, the shapes of output

mapping on each mode are respectively 1 x N ](cl) and 1 x N }2).

Thus, there are N1 Nowta X (N ](cl) + N }2)) output weights
in total for the decomposed approach which is higher than
N, 0(72 X N}l) + Néil X N;Q) from the joint way. Overall, the

map from MIMO-OFDM parameters to the Multi-Mode RC
parameters is summarized in Table [ITI]

V. PERFORMANCE EVALUATIONS

This section provides performance evaluations of the intro-
duced Multi-Mode RC for uplink symbol detection in a multi-
user massive MIMO-OFDM scenario. We choose uncoded bit
error rate (BER) as the quantitative metric to evaluate the
reliability of the underlying link. Table [I1I| contains simulation
parameters of the massive MIMO-OFDM system. The default
system configuration is: N, = 8, N, = 8, N, = 512, N, =
32, Ny =2, N, =2, Ny =4 and Np = 12. Note that in this
setting, the pilots/reference signals overhead is 25% which is
inline with the 3GPP 5G NR standard [45]]. Furthermore, it is
important to note that the underlying massive MIMO channels
are generated strictly according to the clustered delay line
(CDL) model specified in 3GPP Technical Report (TR) 38.901
to ensure the corresponding performance evaluation is relevant
and practical. To be specific, the transmitter and receiver are
configured with uniform linear arrays having half-wavelength
antenna spacing, and the power delay profile is configured with
a cluster delay rate of 3. The maximum delay spread of the
channel is set as the length of the CP in OFDM. Each obtained
BER point is collected over 100 consecutive subframes. SNR
is defined as the average power ratio between noise-free
received signal and the additive noise. The configuration of
the Multi-Mode RC is set as follows: 77 = Ngp, Ny = 8,
the number of ALS iterations is set as 6, the state transition
matrix W,..,, on each mode is independently generated with
its spectral radius less than 1. Meanwhile, the input weights
matrix W, is generated independently for each mode from
a uniform distribution on [—1, 1].

A. Parsing Multi-Mode RC

We first parse various components of a Multi-Mode RC
to offer more insights on the underlying NN structure. We
consider three types of Multi-Mode RC in the evaluation:
1) Our introduced one; 2) Our introduced one without using
the tensor permutation to construct the feature queue in (I6);
3) Our introduced one using a large number of NN,, where
N, = 128. Fig. []] and Fig. [§] respectively show the training
and testing BERs under different numbers of iteration when
SNR = 15dB. As we can observe that without tensor
permutation in the feature queue, the RC performs underfitting
to the task. This is because the feature from different modes
of the input tensor sequence has not been equally extracted.
Meanwhile, if we increase the number of neurons, the NN
model complexity increases. Accordingly, it “overfits” the
training data as the training BER dramatically decreases,
whereas the testing BER increases.

BER in Training Stage

——- multi-mode RC with proper configurations
multi-mode RC with large # neurons
—— multi-mode RC without state permutations

10,4 4
T T T T T T T T T
0 2 4 6 8 10 12 14 16 18

ALS iteration

Fig. 7. Training BER of multi-mode RC with respect to iterations in ALS.

BER in Testing Stage

—== multi-mode RC with proper configurations
multi-mode RC with large # neurons
—— multi-mode RC without state permutations

0 2 4 6 8 10 12 14 16 18
ALS iteration

Fig. 8. Testing BER of Multi-Mode RC with respect to iterations in ALS.

B. Uniqueness Conditions

Now, we investigate how the uniqueness condition defined
in Theorem 1 determines the training and testing performance.
For convenience, we set N, = 64 and use single-batch based
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TABLE III

NOTATIONS OF MULTI-MODE RC BASED MIMO-OFDM SYMBOL DETECTION

Notations Definition Corresponding notations in Multi-Mode RC
Ny Number of antennas stacked from all users | N/A

Ny, Number of users N, 53 in joint processing

Ny Number of antennas at each user N, éi)t in joint processing

N Number of azimuth antennas N l.%)

Ne Number of elevation antennas NZ(Z)

N¢ Number of OFDM sub-carriers Nr

Ng Number of pilot symbols in a frame N -Training batches (if use multi-batch training)
Np Number of data symbols in a frame Testing batches

x(t) € CNexT Transmitted Signal Desired output

X (t) € CNuXNs | Transmitted Signal Desired output

Y (t) € CNaXNe | Received Signal Input

Y € CNaXNeXT | Stacked tensor of received signal Input

10

training in this evaluation. According to (20), the critical
condition for this task becomes,

N, + NyNg == 2N, + N, 7' + N.T'
N, + NrNg == 2Ny + N, T’ + N.T'

When we only change parameters 7”7 and N, while fixing
the rest based on our default setup, the critical conditions
become 130 == 87" + N,. This condition is plotted as the
dashed red line in Fig. 0] and Fig. [I0] Meanwhile, we also plot
the contours of the log-loss as well as the BER in the same
(Ns,T') plane. As shown in Fig.[9] the loss is guaranteed to
be greater than a threshold, e.g., —4.00, when the uniqueness
condition holds. On the other hand, when the condition is
violated, the loss tends to be close to zero. In this case, the
RC model overly fits to the training data which brings a high
risk of over-fitting. This result is also consistent with the BER
contour plotted in Fig. 0] Note that even though satisfying the
uniqueness condition can potentially avoid overfitting, it may
cause underfitting as we can observe the high BER below the
condition line in Fig. [T0}

log(loss)
22.51
20.01 N
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17.5 1 % ‘1%20002
0
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2.59 ——- Theoretical Sufficient Uniqueness Condition
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Fig. 9. Log loss contour in (Ng,T”) plane in training stage

C. Comparison with State-of-Art Detection Strategies

We now investigate the BER versus SNR using differ-
ent approaches. In Fig. [TI] the compared methods are: 1)

BER Contour

22.54
20.04
17.54
15.01
- 12,59
~
10.04
7.5

5.0 1

2.5~~~ Theoretical Sufficient Uniqueness Condition

T T

T T T T T T
0 20 40 60 80 100 120 140 160
Nn

Fig. 10. BER contour in (Ns,T”) plane in testing stage

BER in multi-user massive MIMO

-

LMMSE+LMMSE-CSI

N, \*
Large-window RC X~
-¥- Ridge-Large-window RC ‘:\\
10-2{ —#- Multi-Mode RC N \.
—-®- Ridge-Multi-Mode RC N
-m- SD+LMMSE-CSI N
T T T T T T T T
0 2 4 6 8 10 12 14

Fig. 11. BER in a multi-user massive MIMO system with 64 antennas at the
BS (8 x 8 antenna array).

LMMSE+LMMSE-CSI which uses linear minimum mean
square error (LMMSE) based symbol detection under the
LMMSE estimated CSI. 2) SD+LMMSE-CSI which uses
sphere decoding for symbol detection based on the LMMSE
estimated CSI. 3) Large-window RC refers to the windowed
echo state network (WESN) introduced in [15]] by vectorizing
the input as a vector and setting the input buffer size as
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BER in multi-user massive MIMO

10-1

—%- LMMSE+LMMSE-CSI in 8x8 array
Multi-Mode RC in 8x8 array
—¥- Large-window RC in 8x8 array
—— LMMSE+LMMSE-CSI in 10x10 array
1072 { —— Multi-Mode RC in 10x10 array
-
0

Large-window RC in 10x10 array

T T T T T T T
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Fig. 12. BER in multi-user massive MIMO with 64 (8 x 8) and 100 (10 x 10)
antennas at the BS.

TABLE IV
CPU TIME OF DIFFERENT ALGORITHMS FOR SYMBOL DETECTION AT
SNR =15 DB

Approaches Training\Channel Estimation | Testing\Symbol Detection
LMMSE+LMMSE-CSI 0.15s 0.10s
SD+LMMSE-CSI 0.15s 13.625s
Large-Window RC 127.87 s 1639 s
Multi-Mode RC 71.84 s 7.812s

52. 4) Ridge-large-window RC refers to the same WESN
but using l norm as a penalty term to the output weights
in the loss function. 5) Multi-Mode RC is the introduced
method. 6) Ridge-Multi-Mode RC standards for the same
Multi-Mode RC but also adding a [ norm as the regularization
on the output weights in the loss objective. Fig. [IT] clearly
demonstrates the performance gain of the Multi-Mode RC
over the signal processing-based methods (LMMSE+LMMSE-
CSI and SD+LMMSE-CSI). Meanwhile, we can see that the
Multi-Mode RC is more robust than the single-mode RC as
the multi-mode feature of MIMO-OFDM signals is leveraged
for the symbol detection.

In addition, we investigate the BER performance by increas-
ing the array size. Fig. [I2] shows that when the number of
antennas increases (e.g improve the antenna array from 8 x 8
to 10 x 10), the BER curves of all methods are improved.
On the other hand, the Multi-Mode RC continues showing
its advantage over other methods. We also show the CPU
time of different algorithms under the 8 x 8 BS antenna
scenario on a desktop with Intel i5-9400 CPU @ 2.90 Hz and
16G RAM. As shown in Table the LMMSE algorithm
is the fattest one since it is implemented by leveraging the
highly optimized broadcasting feature in the Python Numpy
package. We want to highlight further that due to limitations
on the usage of Python packages, this comparison cannot fully
reveal the computational advantage of Multi-Mode RC over
conventional methods. However, we can observe that Multi-
Mode RC indeed performs faster than traditional RC in terms
of the learning speed due to the reduced degree of freedom in
its output layers as discussed in Sec.

11

BER in multi-user one-bit massive Massive MIMO
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Fig. 13. BER in one-bit multi-user massive MIMO systems with different
antenna numbers.

D. Performance Evaluation under Receiving Non-linearity —-
Low Resolution ADCs

To show the advantage of RC-based approach in other
model mismatch scenarios, we evaluate the BER performance
when low precision quantization is added in the link which
is extremely relevant to massive MIMO systems. We consider
the extreme case of using one-bit ADC which quantizes the
in-phase and quadrature components to 1 or -1. The definition
of the quantizer for any one of the components is,

q(z) = Apas - sign(z) (24)

where A4, is the maximum magnitude of the quantizer
where we set it as 0.6 in the evaluation. Fig. clearly
shows that the Multi-Mode RC is the most robust method
in this scenario. Meanwhile, we can observe the saturation
phenomena of the BER curve when the antenna number
increases. This is because the quantization level on each
antenna is set as a fixed value. Intuitively, the performance
can be further improved by optimizing the quantization level
on each antenna. This will be considered as our future work.

E. Comparison with Model-based Learning Approaches

In this section, we compare the Multi-Mode RC against
a state-of-the-art model-based symbol detection NN, MMNet
[10]. MMNet is a deep NN structure based on unfolding
iterative soft-thresholding algorithms, which adds degrees of
flexibility on certain parameters in the NN for training. In our
evaluation, MMNet is configured using the aforementioned
training dataset associated with the LMMSE-estimated CSI.
As the legends shown in Fig. [[4] we choose three MMNet
operation modes as the benchmark methods: 1) MMNet-
Online-I contains only scalar trainable parameters. It assumes
the channel additive noise in both testing and training stages
are with homogeneous distributions. The “Online” scheme
refers to a training framework described in the paper, by
which a NN for conducting symbol detection on the first
subcarrier is trained from scratch using 1000 iterations and
Ng pilot symbols, while other NNs with respect to the
remaining sub-carriers are fine-tuned based on the first NN
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Fig. 14. BER in a multi-user massive MIMO system with 64 antennas at the
BS (8 x 8 antenna array).

with 3 additional iterations using their individual training
symbols. 2) MMNet-Online-II has matrix-form parameters as
noise variance estimators per layer, which is considered as an
advanced structure of MMNet-Online-I using the same training
strategy. 3) MMNet-Pretraining-Online-II adds a pre-trained
training stage to MMNet-Online II. The NNs are initialized
with pre-trained weights using 256 pilot symbols from histor-
ical training datasets with different channel realizations.

Note that, while MMNet achieves notable performance on
both i.i.d Gaussian channels and spatially-correlated channels
in [10]], the utilized training symbols are relatively larger than
the setup in this paper (e.g. 500 pilot symbols associated with
perfect CSIs which is not consistent to the online over-the-
air scenario as in our paper). Furthermore, the computation
and memory requirements on MMNet are significantly higher
than the introduced method. To be specific, MMNet requires
N, NNs to estimate symbols on all subcarriers, each of which
stacks 10 layers of neurons. Therefore, the number of training
iterations significantly increases. In our method, we only use
4 pilot symbols and a single NN to jointly accomplish the
symbol detection task. Our evaluation results demonstrate that
the Multi-Mode RC outperforms MMNet in the multi-user
massive MIMO scenario with a steep performance improve-
ment slope. Overall, Reg-Multi-Mode RC shows 5—6 dB gain
in SNR compared with MMNet.

VI. CONCLUSION

In this paper, we presented a NN structure, Multi-Mode RC,
for symbol detection in massive MIMO-OFDM systems. We
elaborated on the NN architecture and its configuration for
the symbol detection task. The introduced Multi-Mode RC
framework is shown to be able to effectively cope with the
model mismatch, waveform distortion as well as interference
in the systems. Numerical results demonstrated the advantages
of Multi-Mode RC in the following aspects: It can offer lower
BER than conventional single-mode RC frameworks in low
SNR regime while achieving reduced computational com-
plexity. Compared to other model-based learning approaches,
the introduced method can operate on a subframe-basis thus
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completely relying on the limited over-the-air pilots/reference
symbols. This attractive feature enables us to train the symbol
detection task using a compatible signal overhead as modern
cellular networks.

In our future work, we will consider the optimization
of the quantization thresholds at each antenna port. Since
quantization is an irreversible process, adaptive quantization
strategies are a promising approach to preserve the waveform
information. Furthermore, incorporating gradient-free learning
algorithms into RC framework is another interesting direction.

APPENDIX
PROOF OF THEOREM 1

Lemma 1: Given two full-rank matrices X € CM1*Mz and
G € CH*M: where H > M;, the following least squares
problem has a unique solution if and only if rank(X) =
rank(W™), where W* is the optimum.

min | X - WG| (25)
w
Proof: Based on the assumptions, we have rank(X) =
min{ M, M} and rank(G) = min{H, M, }. In general, (23)
has a unique solution if and only if rank(G) = H [40].
rank(G) = H implies My > H. Accordingly, the so-
lution is given by XG™, where G represents the Moor-
Penrose inverse of matrix G. Since X is with full row
rank, G is with full column rank and H > Mj, we
have rank(XG™) = rank(X). Thus, we have rank(W?*) =
rank(XG ™) =rank(X).

On the contrary, suppose rank(W*) = rank(X) holds.
We have H < Ms, otherwise there exists W* + H which
is also a minimum of , where H is a non-zero solution
of HG = 0. Since G is assumed with full rank, we have
rank(G) = H. [ |

Lemma 2: Given the same assumption as Lemma [T} the
sufficient and necessary condition for the uniqueness of
can be expressed as

My, > H (26)

Proof: Since the necessary and sufficient condition for
the uniqueness is rank(G) = H. Therefore, the uniqueness
condition can be alternatively written as @]) is My > H.

|
Before proceeding on the proof of Theorem 1, we introduce
the following concepts to characterize rank properties of
tensor [40].

Definition 1: The mode-n rank of a tensor G is the mode-n
unfolding of G, i.e., G(n).

Definition 2: A N-order tensor G is with rank-
(Mq,Ms,--- ,My) when its mode-1 rank, mode-2 rank to
mode-N rank are equal to M;, Mo, and My, respectively.

Lemma 3: Given X € CMixMexxMn apnd G ¢
CHixHzxxHn = which are with rank-(My, Mo, -, My)
and rank-(H,, Ho, - - , Hy) respective, and H,, > M,,, N >
2, the minimization of

min

|X —G x1 W1 xa Wa---xy Wyllp  (27)
Wi, Wy
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is unique if

rank(X () = rank(W7,) (28)

where W7, -+, W7 is the optimum.

Proof: We prove this theorem by mathematical induction.
According to Lemma 1, the uniqueness holds for minyy, || X —
G x1 W ||p. Then, we assume it holds for N order tensor X
and G with N — 1 factor matrices.

Now, we consider the case with N factor matrices,

min ||X—g><1W1 X2W2"'XNWNHF
15 WhN
min

= min{
Wi, Wi

tuy 1X )= Wn G (W1 @- - -@ W) ||}
N -1

We denote W as one of the optima of the above problem.
Since W7 is with full row rank based on the assumption,
we have tensor G Xy W7 with rank-(H;, Ho, -+, My).
This is because G(n) is with full row rank. Therefore, (W7,
o+, W_y) as an optimum of minw, ... w,_, ||X — G X1
Wi X9 Wy--- xy WX ||F is unique based on the inductive
assumption. We then assert W7 is unique. Otherwise it
contracts to Lemma 1.

|

Remarks:

o The proof does not conduct the mathematical induction
on the tensor mode. This is because the uniqueness does
not hold for matrix decomposition, i.e., minwy, w, || X —
W.GW .

o This theorem is only a sufficient condition for the unique-
ness of (27).

Theorem 2: Under the same condition as Lemma 3, using

ALS to solve by initializing the factor matrices with full

rank, the achieved solution is unique when

Z M, > H,,.
Proof: If we solve the optimization problem through
ALS as well as initializing factor matrices as full rank, updated
factor matrices are with full rank at each iteration if we assume

> M; > H,
i#n
due to Lemma 2. Here, the prerequisite of Lemma 2 is met
because in the updating rule for W, rank(G,) (W1 ®
W, 1 @ W, ®@ -+ @ Wx)T) = H, is guaranteed
by the full rank initialization assumption on factor matrices.
Therefore, when ALS terminated at an optimum of (27), we
can assert this optimum is the unique by using Lemma 3. H
With minor revisions on the statement of the above Theorem,
we can arrive at Theorem 1.

APPENDIX
Low COMPLEXITY FACTOR MATRIX CALCULATION IN
ALS
At each step of using alternating least squares to solve the
factor matrices Wgt)t and W&)f in , suppose we directly
solve the following sub-problem to obtain w'l

out?
Wi, =arg ‘fvn(lg 1Z0)~WEhG oy (W@ In, @ In )T || -

out
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The resulting memory costs on ng)t ® In; ® Iy, are very

large. To cope with the bottleneck from memory units, we
alternatively solve W,(i)t via the following approach,

W Wi

out— U

argnﬂ}ilr)l 12 -G x1 W), 2

out

(k) x2 W, (k)|

out

@ argmin | Z — Z g® x, wi)
Wf’:i)t k
. 1 k 2
=argmin| Z) ) WL ()G xa W, (k) )
out k
. 1 ) 2
=argmin | Zy~ WG Wi W+ @ Wi K)o |
where (a) comes from the partition definition of Tucker
decomposition in (), W) (k) is the kth sub-block of matrix
W(l), and K := N!+ 1. As the above calculation suggests,
we can first calculate mode-2 product between each partitioned
core tensor and factor matrix, then concatenate them as a big
matrix to calculate a pseudoinverse to reach a least squares

solution of W;B Similar tricks can be apply to calculate
ng)t, e Wogt in general multi-mode RC.
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