3126

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 5, MAY 2022

Reservoir Computing Meets Extreme Learning
Machine in Real-Time MIMO-OFDM
Receive Processing

Lianjun Li"™, Lingjia Liu™, Senior Member, IEEE, Zhou Zhou, and Yang Yi"“, Senior Member, IEEE

Abstract— In this paper, we consider a real-time deep learning-
based symbol detection approach for MIMO-OFDM systems.
To exploit the temporal correlation of the wireless channel
and the time-frequency structure of OFDM signals, a recurrent
neural network (RNN) with deep feedforward output layers is
introduced, where the recurrent layers and feedforward output
layers are designed to process time-domain and frequency-
domain information respectively. Reservoir computing (RC),
a special type of RNN, and extreme learning machine (ELM),
a special type of feedforward neural network, are chosen as the
corresponding building blocks to facilitate over-the-air training.
An online training loss objective is introduced to recursively
update the neural weights in real-time. We believe this is the
first work in the literature to realize real-time machine learning
for MIMO-OFDM symbol detection, i.e., conducting NN-based
symbol detection on an OFDM symbol basis. We demonstrate
that (1) the IEEE standardized WiFi training sequence can be
directly applied as the real-time training sequence (2) the symbol
detection performance can be further improved by using our
theoretically derived pilot pattern. Evaluation results show that
our RC-ELM-based symbol detection method outperforms tradi-
tional model-based techniques as well as state-of-the-art learning-
based approaches in highly dynamic channel environments for
real-time symbol detection.

Index Terms— MIMO-OFDM, Wi-Fi, symbol detection, reser-
voir computing, extreme learning machine, limited training,
online training, pilot design, real-time machine learning.

I. INTRODUCTION

EURAL networks (NNs) have shown great success in the

areas of human-computer interaction, such as computer
vision, natural language processing and gaming. Motivated by
this fact, the applications of NN to wireless communications
gain growing attention in recent years. Conventional signal
processing techniques in wireless systems are often based
on using explicit model assumptions, in which the optimal
solutions are analytically derived. However, next generation
wireless networks are defined with 10-times larger volumes on
data services, which poses big challenges on the computation
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architecture and operation mode in current cellular systems [1].
Therefore, applying NNs to wireless systems is a promising
research area which is anticipated to expand the footprint of
NNs beyond its conventional focuses (e.g., computer vision,
gaming, and robotics).

Learning-based methods have been studied and developed
to replace traditional methods in many areas of communication
systems, such as channel estimation [2], channel state infor-
mation (CSI) compression for feedback [3], and precoding
matrix design [4]. In this article, we investigate the symbol
detection problem in Wi-Fi systems [5], where multi-input-
multi-output (MIMO) with orthogonal frequency division mul-
tiplexing (MIMO-OFDM) is configured. It is important to note
that MIMO-OFDM is a widely adopted waveform in modern
communications systems, such as LTE and 5G NR. Rather than
the classification problems in conventional machine learning
application domains, such as in computer vision, the symbol
detection task in wireless systems is posed with the following

unique challenges:
1) Wireless environment changes dynamically over time

showing strong temporal correlation.

2) The OFDM signals have a special time-frequency struc-
ture. Incorporating this domain knowledge into NN
design is critical to improve the learning performance.

3) Over-the-air (OTA) training of wireless systems is costly
thus limited making it difficult to directly utilize conven-
tional machine learning tools developed for big data sets.

A. Learning for MIMO-OFDM Detection: Offline, Online,
and Real-Time Learning

In this section we discuss existing learning-based symbol
detection methods. To better understand the differences among
them, we define learning terminologies used in this paper
as follows. Offline learning: NN is trained by artificially
generated offline data which contains the same statistical
information as the online test one. Online learning: NN is
only trained by limited OTA training data, such as existing
pilot signals in wireless systems. Real-time learning: in
addition to meet online learning requirements, the algorithm
should also be able to update NN weights on an OFDM symbol
basis for real-time adaptation to the environment dynamics.

A neural network (NN)-based approach for symbol detec-
tion in OFDM systems was introduced by [6], where a
three hidden layer multi-layer perceptron (MLP) was adopted.
In [7], convolutional neural network (CNN) was adopted to
utilize the convolution feature of wireless channel. An extreme
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learning machine (ELM)-based method is introduced in [8]
to expedite the training process. In [9], model-based and
data-driven OFDM receivers are introduced and evaluated by
simulation and the OTA test. For MIMO systems, a deep
NN designed by unfolding the iterations of projected gradient
descent algorithm called DetNet was introduced in [10] to
work under simplified Gaussian channels. Meanwhile, MMNet
was introduced in [11] to utilize iterative soft-thresholding
algorithm to build its NN architecture showing promising
performance under more realistic channel models. The perfor-
mance of CNN-based and DNN-based methods with and with-
out perfect CSI are compared in [12]. Note that most of these
methods combine online and offline training for symbol detec-
tion where the online training overhead can be reduced through
leveraging the same statistical features from the offline training
dataset. In modern wireless systems such as 4G/5G MIMO-
OFDM systems, there exist many transmission modes with
resource scheduling operating on a symbol/subframe/frame
basis [13]. This makes it challenging to adopt offline training-
based approaches since the performance of symbol detection
will deteriorate significantly when the offline training dataset is
statistically different from the online testing ones. Accordingly,
purely online learning-based approaches that only utilizes the
limited available OTA training dataset have been introduced
for symbol detection to mitigate the issue of “uncertainty in
generalization” for robust and adaptive communications [1].

Efficient online learning strategies have been introduced in
our previous work [14]-[18]. To be specific, the efficiency
of reservoir computing (RC)-based MIMO-OFDM symbol
detection was conducted in [14]. A sliding window was
introduced to the input of the RC to improve the detection
performance [15]. The deep NN version, RCNet, was intro-
duced in [16] and [17] to further improve the performance
through the boosting mechanism of the NNs. Note that the
purely online learning-based approaches in these methods
were trained on a subframe/frame basis where the weights
of the NNs are learned using the initial OFDM symbols
(training sequence) within a subframe/frame. Once learnt,
the NNs will be used to conduct symbol detection for all
the data OFDM symbols within the subframe/frame. Even
though these methods can work in cases where the wireless
environment is dynamically evolving within a subframe/frame,
the underlying NN design does not consider the dynamic
nature of the environment since the NN weights are fixed
within the subframe/frame. To further improve the adaptability
of MIMO-OFDM symbol detection, it is critical to introduce
real-time approach where symbol detection can be done on an
OFDM symbol basis. Reference [18] is our preliminary work
on RC-based real-time symbol detection, which is designed
for single-input-single-output OFDM (SISO-OFDM) systems
and focusing on software defined radio (SDR) platform
implementation.

B. Our Contributions

In this paper, we introduce the customized NN design to
achieve real-time MIMO-OFDM receive processing to address
the three challenges listed in Section I. To address the first
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challenge, we utilize the recurrent neural network (RNN)
as the basic time-domain functional block to capture the
inherent temporal correlation, because RNNs are universal
approximations of dynamic systems [19]. To address the
second challenge, we extend the output layer of RNN to a deep
feedforward neural network (FFNN) to process the frequency
information. To address the third challenge, we specifically
choose RC [20], [21] and ELM [22] as the realizations of
the aforementioned NN modules. RC is a special type of
RNN, where only the output layer weights are trainable.
This differentiates RC from other RNNs such as long short-
term memory (LSTM) and gated recurrent unit (GRU), which
are known for high complexity due to the back propagation
through time (BPTT) training of recurrent weights. Whereas
the recurrent weights of RC are initialized according to certain
distributions and remain fixed, the training are only required
for the output weights and can be done by least square-based
methods using closed-form solutions with low computation
complexity. ELM can be seen as the counterpart of RC with
a FFNN structure adopting the same strategy to select its
neural weights [8], [23]. With RC in the time domain and
ELM in the frequency domain, the training overhead can be
greatly reduced, making them the ideal training framework for
the symbol detection task in OFDM systems. Furthermore,
we design a training framework to enable our NN with
real-time learning capability. To be specific, by introducing
recursive methods for RC and ELM training, and devising
pilot extraction method for training data preparation, the NN
is able to update its weights on an OFDM symbol basis using
the scattered pilot patterns defined in Wi-Fi standards. Our
main contributions can be summarized as the following:

1) We introduce a real-time machine learning framework to
conduct MIMO-OFDM symbol detection on an OFDM
symbol basis. The introduced framework utilizes recur-
sive training methods to update NN weights using limited
available pilot symbols. To the best of our knowledge, this
is the first work in the literature to conduct NN-based
MIMO-OFDM symbol detection in a real-time OFDM
symbol-by-symbol fashion.

2) A mathematically rigorous pilot information extraction
method is introduced to enable training data preparation
on each OFDM symbol without increasing the pilot
overhead.

3) The time-domain RC method has been extended to
the time-frequency domain to explore the OFDM chan-
nel structure to further improve the symbol detection
performance.

C. Notation

We use non-bold letter for scalar, bold lowercase letter
for column vector, bold uppercase letter for matrix, except
for letter  and y, whose lowercase and uppercase are used
to differentiate time-domain and frequency-domain signals as
specified in section II. (-)7 is matrix transpose operator, ()
is the Moore-Penrose matrix inversion. R™ is n-dimensional
real number space. C" is n-dimensional complex number
space.
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Fig. 1. MIMO-OFDM transmitter and receiver procedures.

II. MIMO-OFDM SYSTEM AND SYMBOL
DETECTION PROBLEM

In this section we briefly introduce the procedure of gen-
erating, transmitting, and receiving MIMO-OFDM signals,
which brings insight into understanding the symbol detection
problem, as well as the real-time training framework design.

A. MIMO-OFDM

The sequential MIMO-OFDM signal is usually termed as
an OFDM frame, which is comprised of OFDM symbols.
The system procedure of MIMO-OFDM is depicted in Fig. 1.
At transmitter ¢, denotes the ¢th OFDM symbol in frequency-
domain as:

Xi £ [Xf(O), 7Xf(k)a aXit(Nsc - 1)]T S (CNM (1)

where N is the total number of sub-carriers in the system;
X!(k) is the QAM symbol carried on sub-carrier k. Next,
an inverse fast Fourier transform (IFFT) is performed on
X! to convert it to time-domain. Then the last N., samples
of the time domain signal is copied and inserted to the
beginning of the signal as cyclic prefix (CP). We denote the ¢th
time-domain OFDM symbol at transmitter ¢ as:

gct 2 [3;?(0)7 . ,qﬂ?(n), . amf(Ntd _ 1)]T e CNw )

3 (2

where z!(n) is the nth sample of the ith time-domain OFDM
symbol, and Ny £ N, -+ N¢p is total number of time-domain
samples per OFDM symbol. Note that the first and last N,
samples of x! are the same: x{[0 : N, — 1] = @![Ny :
Nia —1]. And X! can be reversely obtained by removing the
CP of @} and conducting a fast Fourier transform (FFT). The
time-domain OFDM frame at transmitter ¢ is a concatenation

of OFDM symbols, denoted as:

ot & [(ah)" (@)

, (5

S (why_ )T e CcVNa (3)

where N is the total number of OFDM symbols in an OFDM
frame. Then x! is transmitted over the wireless channel to
receivers. In MIMO system, all transmitters transmit simul-
taneously, so the received signal is a superposition of all
transmitted signals. At receiver r, the received time-domain
OFDM frame y" can be expressed as:

Ny—1
y' = Z ux ®h™ +n, 0<r <N, )
t=0
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Wi-Fi frame structure and pilot patterns illustrating the training

where N;, N, respectively represents the total number of
transmitters and receivers; u(-) is a non-linear function repre-
sents the signal distortion caused by transmitter circuits, such
as power amplifier (PA) [24]; ® is the convolution operator; 1
is Gaussian noise; A" = [h{", 7!, (AR 1T € CWentl)
stands for the channel between receiver r and transmitter ¢.
In general h™' is gradually changing over time due to the
dynamic nature of the wireless environment. In this paper
we adopt a widely accepted assumption that h"™" stays the
same within one OFDM symbol, and changes across OFDM
symbols. The channel adopted in this paper follows 3GPP
multi-path fading propagation channel model [25].

At receiver r, the ith received time-domain OFDM symbol
is denoted as:

yi 2[5 (0), - yi(n), - yf (Neg = 1)]T € CMa,(5)
and its frequency-domain counterpart:

Y: £ [Yir(o)a T vY'T(k)v T vY'T(NSC - 1)]T € CNee. (6)

7 7

B. Training Overhead in Wi-Fi System for
Symbol Detection

Symbol detection is performed at receiver to recover trans-
mitted frequency-domain OFDM symbols X! from received
time-domain observations y;. To facilitate symbol detection,
MIMO-OFDM systems embed known information into the
OFDM symbols X?¥ for conventional methods to conduct
channel training. For example, in Wi-Fi systems, as specified
in standard 802.11 [5], the first Nyg OFDM symbols in
a frame are designated as training sequences, and scattered
pilots are placed among the remaining OFDM symbols. The
training overhead pattern is illustrated in Figure 2. In this
paper, we name the first N7 OFDM symbols in a frame as
training sequence (TS), and the rest Np £ N — Ny¢ OFDM
symbols as data symbols. IV, out of N, sub-carriers are used
for pilot transmission. Therefore, the training overhead for
one OFDM frame is 22sNeetNoNp - Aj) potations related to

NN..
MIMO-OFDM system are summarized in Table 1.
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TABLE I
MIMO-OFDM SYSTEM NOTATIONS

Symbols | Data type & shape Definitions
N, RY Number of receiver antennas
Nt R? Number of transmitter antennas
Nse RY Number of sub-carriers
Ny R! Number of pilot sub-carriers
Nep RT Length of Cyclic Prefix (CP)
N, td Rl N. cp + N, sc
Nrg RT Number of OFDM symbols used as training sequence (TS) in one OFDM frame
Np RT Number of data OFDM symbols in one OFDM frame
N RT Number of OFDM symbols in one OFDM frame
X f CNse The ith OFDM symbol in frequency domain at transmitter ¢
T; CNtXNtd The ith transmitted MIMO-OFDM symbol in time domain
:cf CHNVtd The ith OFDM symbol in time domain at transmitter ¢
Y’" CNse The ith OFDM symbol in frequency domain at receiver r
Yi CNrxNta The ith received MIMO-OFDM symbol in time domain
y; CNta The ith OFDM symbol in time domain at receiver r
Z.T’t CNta The ith OFDM symbol in time domain at receiver 7 from transmitter ¢
Xi(k) C!? The QAM symbol on sub-carrier k of X
zi(n) C! The nth sample of x!
Y (k) CT The QAM symbol on sub-carrier k of Y,”
Yl (n) C! The nth sample of y7
h"t CNep I The channel vector between receiver 7 and transmitter ¢
ht ct The nth tap of channel vector A"

III. RESERVOIR COMPUTING AND EXTREME
LEARNING MACHINE

A. Echo State Network

As discussed earlier in Sec. I, RC is a special type of RNN
where the recurrent neurons are treated as a reservoir of very
high dimensional dynamic states. An input layer maps input
signals to dynamic states, and an output layer maps those
states to desired outputs. In general, there are two types of
RC: echo state network (ESN) [26] and liquid state machine
(LSM) [27]. ESN is adopted in our symbol detection methods,
whose network dynamics is governed by the following state
update equation,

s(n) = f(Ws(n— 1)+ W™i(n) +

w'lo(n 1)) +g(n)

@)

where s(n) € RM: is the reservoir state, N is the number
of neurons in the reservoir. i(n) € R is the ESN input,
N; is the input size. o(n) € R™- is the ESN output, N,
is the output size. W & RNs*N: is the state transition
matrix, W € RV=xNi ig the input weight matrix, wit ¢
RN=xNo ig the output feedback matrix, which can be nulled
when feedback is not required. g(n) is the noise regulation
term. f is the state activation function. The reservoir state is
concatenated with input signal to form the extended system
states z(n) = [s(n),%(n)]. And the ESN output is obtained
by o(n) = W z(n), where W* ¢ RNo*N= is the output
weights matrix. Table II summarizes all NN related notations.

B. Learning Methods

1) Least Square: Assuming training data with size Ny qin
is collected, passing training input I € RMi*Nirain through
the network we have the output set O € RNoXNtrain  then
the output weights W°"* can be obtained by minimizing the

Frobenius norm loss between O and training label set L:

WUl — argmin | L — OHF = argmln 1L — WoufZHz (8)
Wo’uf

where Z € RN:*Nirain jg the set of extended states. This
is a linear regression problem can be solved by least square
estimation in a closed form:

W = LZT. 9)

Note when using this one-shot matrix inversion method, the
output weights can only be obtained after all training samples
are collected. However, in real-time applications such as wire-
less communications, in order to adapt to the dynamics of the
underlying environment, recursive learning method is needed
to update the output weights promptly. Next we introduce two
recursive learning methods for ESN, recursive least square
(RLS) [28], [29], and its generalized version — generalized
adaptive weighted recursive least squares (GAW-RLS) [30].

2) Recursive Least Square (RLS): RLS is designed to find
the optimal output weights at current training sample n such
that the sum of discounted previous errors is minimized

Wo’“t(n) = argmin Z AL (m)
weut(n) 5

— W (n)z(m)]3
(10)

where A € (0,1] is known as the forgetting factor. When
A < 1, the minimization problem (10) gives more weight to
errors associated with recent samples than old ones. In other
words, RLS emphasizes recent observations and tends to forget
the past, making it an adaptive algorithm. This is exactly
what we need in wireless communication scenarios where the
underlying environment is gradually changing.

As suggested by the algorithm name, the current output
weights are updated recursively with previous output weights
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and current prediction error

Wout (n) = Wout (n - 1) + en—l(n)kT (n) (1D

where e, 1(n) = l(n) — W (n — 1)z(n) is the current

prediction error based on previous output weights, and k(n)

is calculated as:

T ln—1

k(n) (ni1 )2(n)
A+ 2T (n)P " (n—1)z(n)

vin) = (Xn_, /\”_"”z(m)zT(m))_1 is the inverse

of weighted correlation matrix of extended states, which is

updated recursively by

T ') = A" (T (n—1) — k(n)[zT(n) T (n - 1)]).
(13)

12)

3) Generalized Adaptive Weighted RLS (GAW-RLS): The
input samples of NN are usually corrupted by noise, new
training samples may have different level of importance for
the NN, i.e., highly corrupted sample may not help much with
the training. Therefore, it is reasonable to generalize RLS by
adding a weighting factor w € [0,1] to new training sample,
as a result the minimization problem in (10) becomes:

n
W (n) = argmin Z AT w(m)||L(m)
Wout (n) m—0

— W m)z(m)ll3. (14)

This problem can be solved the same way as (11), with the
only modification that replace the calculation of k(n) (12) by:

k(n) w(n)‘I’fl(n_—ll)z(n) .
A+ wn)zl(n)® " (n—1)z(n)
Usually the weighting factor w is set to be inversely propor-

tional to the prediction error, i.e., w(n) < 1/|le,—1(n)|2 [30],
[31]. RLS is a special case of GAW-RLS when w = 1.

5)

C. Extreme Learning Machine

ELM is a special type of FFNN, which has an input layer,
a single or multiple hidden layers, and an output layer. Similar
as RC, only the output layer weights are trainable. Which
makes ELM training-efficient, thus can be used in training-
limited scenarios where no strong temporal correlation exists.
Without losing generality, here we illustrate the training pro-
cedure of a single hidden layer ELM. The hidden layer output
can be expressed as

Z = f(W"I + Bias), (16)

where I € RVNiXNerain ig the input of ELM, N; is
the input size, Ny.qin 1S the number of training samples;
W' € RNv*Ni ig hidden weight matrix, Ny, is the number of
hidden neurons; Bias € RV»*Ntrain ig the bias matrix with
each column equals to the bias vector of the hidden layer. f(-)
is the activation function, in this paper we use the sigmoid
function. The ELM output:

O=wW™"Z, (17

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 5, MAY 2022

where W ¢ RNo*Nn g the output weight matrix, NN, is
the output size. W°"" is obtained by minimizing the loss
between O and the training label L € RNoXNtrain  when
we use Frobenius norm as the loss function, the minimization
problem is

W = argmin ||L — W' Z||%,
Wo'u,t

(18)

which is exactly the same as (8), so we can use the same
online methods discussed in section III-B to calculate the
output weights.

IV. RC-BASED SYMBOL DETECTION

In this section, our RC-based symbol detection method
is introduced. We select the most advanced design among
our previous work - RCNet [16], [17] - as the baseline NN
architecture, and extend it with the symbol-by-symbol real-
time detection capability through the novel training framework
introduced in this paper. We name the new method Real-
Time-RCNet (T-RCNet). The goal is to utilize existing training
overhead defined in MIMO-OFDM systems to design NN
training framework for T-RCNet so that there is no increase
in system overhead for our methods. Note that in conventional
model-based approaches, these training overheads are used
to conduct channel training. As illustrated in Figure 2, the
training overhead is comprised of two parts: TS and pilots.
So the training is also divided into two parts. For the TS
part, the training is straightforward because the whole received
OFDM symbol can be used as training input at receiver.
However, the training with pilots is not easy because pilots are
embedded in OFDM data symbols, i.e., the received symbol
y; is a mixture of pilots related and data related information
but only pilots related information can be used as training
input. Therefore, in order to conduct training with OFDM data
symbols, the pilots related information needs to be extracted
from the received symbol. In the following, we introduce
the extraction method and design a special pilot pattern to
facilitate it.

A. Extract Training Information From OFDM Data Symbols

In this section, we derive the method that extracts pilots
related information from received OFDM data symbol.
To make it more concrete, we follow the Wi-Fi standard
and set the number of sub-carriers Ny, = 64 and length of
CP N, = 16. For derivation clarity, we show the single
input single output (SISO) case (i.e., Ny = N, = 1),
and omit the transmitter index -* and receiver index -" in
following derivation. Other scenarios, such as MIMO and/or
different settings of [Ny, Np|, can be easily extended from
this example.

Next, we define notations that are needed in the derivation.
The ith transmitted frequency-domain OFDM data symbol
X; (Nrs < i < N) can be written as the summation of

pilots part P; and data part D),
X;=P;+D; (19)

where P; € CMs has non-zero values only at pilot sub-
carrier positions, and D; € C:¢ has non-zero values only
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NN type Symbols | Data type & shape Definitions Symbols | Data type & shape Definitions
N; RT Input size N, RT Output size
RC & ELM Ntirain RT Number of training samples I RNiXNtrain NN training input
o] RNoXNtrain NN training output L RNoXNtrain NN training label
Ng R number of recurrent neurons N, RI Ns + N;, extended state length
RC Z RNz XNtrain Set of extended states w RVs X Ns Recurrent weight
win RNsXNi Input weight wout RNo XNz Output weight
ELM Ny, RT Number of hidden layer neurons wh RNnXN; Hidden layer weight
Z RVeXNtrain Set of hidden layer output wout RNoXNn Output weight
at data sub-carrier positions. Thus, P; and D, are orthogonal HCP g Cl6%32 ] 0
with each other. Denote the 64-point inverse Fourier transform | =~ = '_ _________
matrix as F'1 € C4%%4 and partition it as :
H |
1.7‘1 0 I Huep e ([:64><80
H I
o |F2 H 1664 !
Fi2a "2\ pHeCo® j—1234 (20) :
F 3
FH Fig. 3. Structure of the Toeplitz matrix H € C80*96,
4

Recall at transmitter side, the CP part and the tail part of

time domain symbol are identical, so the time domain OFDM

symbol can be expressed as

a | Licp _ Ff X,
Li ncp FH ‘

r; =

F{
= FH (P;+D;) (21)
where x; ., € C6 is the CP part of x;; Tinep € C%* is the
non-CP part of a;. We further partition the non-CP part of

i1
symbol as: x; cp = wL’Q ,@;; € C j=1,234. Note
i3
. Li 4
by the CP definition, ; ¢p = @; 4.
Similarly, at receiver side we denote =
Yia
[y“‘p] yand Y, .0, = Yi2| Note that Yiep 7 Yia due
yi,ncp yi;3

to the effect of convolutio’!{f’&). By rearranging the wireless
channel A € C!7 into a Toeplitz matrix H € (C80%96  the
convolution in (4) can be expressed in a matrix multiplication
form, and the received OFDM symbol becomes

| Yiep | _ Ti—1,4
Yi _yi,ncp:| H |: T :|
-h16 h15 ho 0 . 0 . 0
| 0 hig hi he - 0 0 [®i-1,4
_0 0 . 0 0 h16 ho

(22)

The goal is to extract pilots related training information from

A qi,cp

y,, denote the extracted signal as q; = , Where

i,nc
q;., € C'% and g, .., € C%. In other words, g, can be seen
as the received signal when transmitter only sends pilots P;
instead of P; + D; over the air. In general, q; ., # @, ,,[48 :
63] due to the convolution effect of wireless channel. Next,

we show when pilots P of each OFDM symbol follows a
specific pattern, equation g; ., Qi nepld8  63] can be
satisfied, and we can perfectly extract q; from y,.

Theorem 1: When the pilot P of each OFDM symbol
follows the pattern

P, =A"'P;_,, (23)
then q; ., can be obtained by
Biney = FIEFY, 0 (24)
and q; ., can be obtained by
Qicp = qi,ncp[48 1 63], (25)

where A is a diagonal matrix with diagonal entries
diag(A) = [E16><07E16><17'” ’E16><63]7E A e—jg—g; s
also a diagonal matrix, the diagonal entries are 0 at data
sub-carrier locations, and 1 on pilot sub-carrier locations.
Proof: We start with the derivation of extracting training

information on non-CP part, and then utilize the non-CP part
result to obtain the CP part training information.

1) Extract Training Information on Non-CP Part:
From (22) and the special structure of Toeplitz matrix H
(Fig. 3), we can rewrite y; ., as

= H" g, (26)

yi,ncp

where H™? € C64*80 js the sub-matrix located on the right
bottom corner of H. By utilizing the fact that x; ., = ®; 4,
(26) can be rewritten as

Yinep = Cwi,ncp 27)
where C € C54%64 is a circulant matrix defined as
ho 0 - 0 hig his hy
C— hi ho O . 0 his ho (28)
0 - 0 hig his hi  ho
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Circulant matrix can be diagonalized by Fourier transform
matrix [32], so (27) becomes

= Cwi,ncp - FHAF:‘Ci,ncp
= FEAFF? (P, + D;) =

yi,ncp
FYA(P; + D;) (29)

where A is a diagonal matrix with diagonal entries the FFT
of h. Now we can see in the non-CP part of received symbol
Y, ncp» the pilots related and data related information are still
orthogonal in frequency domain, we can extract the pilots
related information g, ,,.,, by converting y; ., to frequency
domain, set the values at data sub-carriers locations to zeros,
then convert it back to time domain. i.e.,

= F"SFy,,. = F'SFF'A(P; + D;)
= FPSA(P; + D;) = FPAP,.

qi,ncp

where 3 is a diagonal matrix defined in Theorem 1.

2) Extract Training Information on CP Part: Similar
as (26), y; ., can be rewritten as
— HP Ti—1,4 A(A B Ti—1,4
Yi P |: Licp [ } Licp
=Ax; 14+ Bz
= AF(P,_,+ D, )+ BFY (P, + D))
= AF?P, , + BFYP,+ AFY'D, , + BF{'D,
pilot related data related
(30)

where H? ¢ C'6%32 is the sub-matrix located on the left
top corner of H; A,B € C'6%16 are the left and right
sub-matrices of HP. The first term of (30) is pilots related
information g; ., needs to be extracted from y, .,,. However,
because g; ., is not orthogonal with data related information
(the second term of (30)), the extraction cannot be done
directly. However, g, .,, can be obtained indirectly with the
help of non-CP part result. Note that y,; , can be expressed in
similar form as (30) (again, we utilize the structural property
of Toeplitz matrix H):
w4 B2
= AFYP,+ BFI'P,+ AFI D, + BFI'D,; 31)

pilot related data related

where the first term AF? P; + BFf P; is pilots related
information, which is nothing but gq; ., [48 : 63]. Compare
it with the first term of (30) we can see, if

Fi{P;=FJP; ,, (32)

then we can directly use g ,.,[48 : 63] as the extracted

information for the CP part. It is not hard to show the Fourier

transform matrix has below property
Fi = FIA, (33)

where A is a diagonal matrix defined in Theorem 1. By plug-

ging (33) into (32), we have

Fip,=Fi'P, , = FIAP,=FP, .= P;
=AT'P,_,.
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Now we have proven that the training information of CP
part g;., can be obtained by copying the tail portion
of q; peps 1€,

qi7cp == qi,ncp[48 : 63],

when pilots in each OFDM symbol follow the pattern defined
in (23). 0

Remark 1: The pilot pattern defined in (23) only requires
minimum system design change and can be easily implemented
in communication systems.

B. Extension to MIMO

Now we extend Theorem 1 to MIMO scenario. Recall
the goal is at each receiver r, extract the piloted related
information g; from received signal y;. Denote the pilot
related information need to be extracted at recelver r as

r A L yz ,cp

T
qi,cp
[ r

, and the received signal y;
7,ncp yz ,ncp
Theorem 2: In MIMO scenario, if the pilot pattern of each
transmitter t follows equation (23), then the pilot related
information can be extracted by performing the operations
defined in equation (24) and (25) at each receiver r.

Proof: The proof is straightforward due to the superposi-
tion property of MIMO signals showed in equation (4). Denot-
ing y;’ " as the received signal at receiver 7 from transmitter
t, the total received signal at receiver r can be expressed as:

N¢—1

= >yt

perform the operation defined in equation (24) on y; ., we
have

(34)

N;—1 Ng—1
H r H H r,t
FUsFy! = FY'SF Z Y, = Z FUsSFy)
t=0 t=0

N¢—1

2 : qz nep qz ,nep*

When the pilot pattern of each transmitter ¢ follows equa-
tion (23), apply operation defined in equation (25) on ¢q; ,,.,
we have

(35)

N¢—1
Z q;y.,[48 : 63] =

N —1
E :qch_qch

(36)
O

[48 : 63] =

T
qi,ncp

C. The Symbol Detection Procedure of T-RCNet

The architecture of T-RCNet is shown in Fig. 4, we can
see it’s a deep NN with V' layers, each layer performs a
different level of interference cancellation for the received
signal. Following the same methodology as RCNet [17], layers
of the deep network are trained in a sequential manner: the
input of vth layer is the inferred output of the previous layer,
ie., i@ =z=b,

The symbol detection procedure is summarized in Algo-
rithm 1 and described as follows: the training procedure is
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Fig. 4. Architecture of T-RCNet.

divided into two parts. First, TS is used to train the initial ESN
output weights. Then, pilots in each data symbol are utilized
to update those weights on real-time. The pilot pattern defined
in (23) is adopted in the system.

Algorithm 1 Symbol Detection Procedure of T-RCNet

1: for Each OFDM frame do
2:  for T-RCNet layer v = 1 : V do
3: Initialize the input and recurrent weights of ESN

4: Collect initial training data 75 from TS part of received signal, as defined
in (37)

5: Utilizing @75 to obtain initial weights of ESN by matrix inversion described
by (9)

ESN infers ﬁgm ,0 < i < Nrg, feeds it to the input of next T-RCNet layer

6:
7:  for OFDM symbol ¢ = N7s + 1 : N do
8 for T-RCNet layer v = 1 : V do

9: Extract training input from received symbol y; when v = 1, or a‘cf.,vfl)
when v > 1, as described in (24) and (25)

10: Prepare training label from pilots P;, as described in (45)

11: Train and update ESN weights by GAW-RLS

12: ESN infers the ith transmitted symbol igm, feeds it to the next

T-RCNet layer

1) Training Through TS: The training dataset can be
expressed as following tuples,

®rs = {Irs,Lrs}

= {[y17y27 e 5yNTs]a [581, T2, - awNTs]}- (37)

where
yi & [yl y) T e e (38)
N e Y A (39)

The initial ESN output weights are obtained through the least
square method described by (9).

2) Training Through Pilots: For each data symbol (the ith
symbol, i > Nrg), the training tuple is prepared as:

®; 2 {I;,L;} = {[Li.cp, Lincp) [ Li,cps Linep)}  (40)
where

Iy 2 [I) - I 1T € N Ner, (41)

Linep & (I 0o INn 1T € CNNee - (42)

Licy 2 LY.+ LT e CNoxNer - (43)

Liney = [L pepr - L] € CNNee 44y

Training input I7,., = g}, can be obtained by (24);

I = qf}cp can be obtained by (25); Training label Lt

1,Cp ,ncp
and L’;Cp can be obtained by

L.,.,=F'P, L! =L, [48:63] (45)
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We can see both the training input and label are only related
with pilot information. In terms of the training method, instead
of the one-shot matrix inversion used for initial training,
real-time recursive method is more suitable here, because it
gradually updates the ESN weights based on new training
samples, which learns the channel dynamics promptly. After
the output weights have been updated by new training sample
®;, ESN will take the ¢th received symbol y; as input to infer
the transmitted symbol.

V. RC-ELM-BASED SYMBOL DETECTION

While OFDM signals have a special time-frequency struc-
ture, T-RCNet introduced above only works in time domain.
Therefore, it is natural to extend the symbol detection method
into time-frequency domain. As we know in frequency domain
OFDM breaks the whole channel into sub-channels, which
makes the frequency-selective channel flat in each sub-carrier,
thus eliminates the temporal correlation in frequency domain.
Based on this fact, also consider its low-complexity and
promising performance demonstrated in other wireless com-
munication applications [8], [23], we adopt ELM as the NN
model in frequency domain, in an effort to further improve
the symbol detection performance. We name the new time-
frequency method as T-RCNet-Xtreme, and illustrate its archi-
tecture in Fig. 5. As can be seen the output of T-RCNet is
converted into frequency domain, then the frequency symbols
at each sub-carrier are fed into its corresponding ELM to infer
the transmitted symbols. The symbol detection procedure of
T-RCNet-Xtreme is summarized in Algorithm 2. The training
and inference procedure of T-RCNet part is the same as
described in section IV. The ELM part training and inference
are described as follows:

A. Initial Training

ELM is initially trained offline by artificially generated data.
Unlike offline training adopted in other literatures, this one
doesn’t need any prior knowledge of the underlying system,
therefore, adds zero channel training overhead on the wireless
communications system. To be specific, the training labels
are randomly generated QAM symbols M € CNexNini
where Nj;,; is the initial training sample size. The training
inputs are noise corrupted version of M, i.e., M + G, where
G € CNt*Nini j5 Gaussian noise. In this way the initial ELM
learns to perform minimum distance decision, which makes
the T-RCNet-Xtreme’s initial performance no worse than T-
RCNet. Note in the system architecture we need N, ELMs,
one for each sub-carrier. On this stage all ELMs are created
identically by copying the initially trained ELM.

B. Train Through TS

Denoting the output of T-RCNet as &; € CNt*Ned where i
represents the ith OFDM symbol. After CP removal and FFT,
we have X; € CNt*Nee | the corresponding frequency-domain
OFDM symbol. Unfold X; along the sub-carrier dimension
we have:

~

X;=[Xi(0),- -+, X;(k), -+, X;(Nye —

D], (46)

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 23,2022 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.



3134

ELM
(@D) Subcarricr 0 g
I yO T-RCNet —) “
o
(R
ELM
| N1 Subcarrier Noc = 1 | @
o
°
Fig. 5. Architecture of T-RCNet-Xtreme.

then X ;(k) € CN is used as the input of the kth ELM. When
current OFDM symbol belongs to TS (i.e., 0 < ¢ < Npg),
ELM is trained by the input-label tuple:

®;(k) 2 {I;(k), Li(k)} = {X(k), X:(k)},

where X ;(k) € C™t is transmitted frequency-domain symbol.
The output weights of ELM are updated by RLS. Regarding
the number of ELMs, while from architecture point of view,
there are Ny, ELMs, in actual implementation we can reduce
the number by sharing. That is, every Npgi.rn, ELMs share
the same weights, so the number of ELMs can be reduced to

Nec  1In this way the system complexity is reduced and the

batch

training data per ELM is increased.

(47)

C. Train Through Pilots and Inference

When current OFDM symbol is data symbol (i.e.,
Nrs < © < N), the received frequency-domain sym-
bols on pilot sub-carriers are used to train ELM online
by RLS. Then symbols on data sub-carriers are fed into
ELM to inference the transmitted symbols. In our imple-
mentation the number of pilot sub-carriers Npjo¢ is used to
decide the possible values of Nyqicp, by following: Npgicn €

Nee o1_Nse 92 Nee . :

leot,Q N,,,;,,,,,,’Q Ny , Nsc|. For example in Wi-Fi
system, Ny. = 64, Npiior = 4, Npaten can be set to 16, 32,
or 64.

Algorithm 2 Symbol Detection Procedure of T-RCNet-Xtreme

1: Train initial ELM weights offline by artificial data
2: for Each OFDM frame do
for T-RCNet layer v =1 : V do
Initialize the input and recurrent weights of ESN
Collect initial training data ®7s from TS part of received signal, as defined
in (37)
Utilizing @75 to obtain initial weights of ESN by matrix inversion described
by (9)
7: ESN infers 2{"),0 < i < Nps, feed it to the input of next T-RCNet layer
8:  Obtain X, by removing CP and performing FFT on 5:5‘/) ,0<i< Nrg
9:  Instantiate ELMs by copying the initially trained ELM
10:  Train ELMs through RLS by data prepared from X ;, as in (47)
11:  for OFDM symbol i = Nrs + 1 : N do

SANE A

12: for T-RCNet layer v = 1 : V do

13: Extract training input from received symbol y, when v = 1, or
2D Wwhen v > 1, as described in (24) and (25)

14: Prepare training label from pilots P;, as described in (45)

15: Train and update ESN weights by GAW-RLS

16: ESN infers the ith transmitted symbol a”:gm, feed it to the next
T-RCNet layer

17: Obtain X ; by removing CP and performing FFT on ﬁgv)

18: Train ELMs through pilots by RLS

19: ELMs infer transmitted data symbols

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on June 23,2022 at 19:29:57 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 5, MAY 2022

VI. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity
of introduced T-RCNet, T-RCNet-Xtreme, and compare them
with our previous method RCNet. The main elements that
contribute to computational cost are matrix multiplication
and pseudo inverse, compared to which the cost of matrix
addition is negligible, so we ignore it in our analysis. Based
on the knowledge that 1) the complexity of multiplication
of one n x m matrix and one m x p matrix is O(nmp),
and 2) the pseudo inverse of a m X n matrix (m > n)
is implemented by singular value decomposition thus has
complexity of O(mn?), we start the analysis with RC related
components, and then talk about ELM related components.
The training and forward pass complexities of all methods
are summarized in Table III, IV, and detailed in following
subsections. The complexity of two conventional methods,
linear minimum mean square (LMMSE) symbol detection and
sphere decoding (SD), are also summarized in Table V.

A. RC Components

o State update is the first step for both RC training and
inference. From equation (7) we can see the computa-
tional complexity per input sample is O(N2 + N;Nj).!

e Training with LS, as shown in equation (9), con-
sists of one matrix pseudoinverse and one multipli-
cation, the complexity with training size Nypgin 18
O(NtrainNZQ + NirainNoN.). So the per sample com-
plexity is O(N2 + N,N.).

o Training with RLS, as explained in section III-B, has
three steps to update the output weights for each training
sample: 1). the update of ¥~ '(n) as in equation (13)
has complexity of O(3N?2); 2). the update of k(n) as in
equation (12) has complexity of O(N2 + N,); 3). the
update of W°“! as in equation (11) has complexity of
O(N,N,). So the total complexity is O(4N2 + N, N, +
N,) ~ O(4N? + N,N,).

o GAW-RLS, compared with RLS, has two more multi-
plications on the numerator and denominator of equa-
tion (15), which has complexity of O(N, + 1), so the
total complexity is O(4N? + N,N, + 2N, + 1) =~
O(4N? + N,N,).

o Inference, which is matrix multiplication, has complexity
of O(N,N,) per input sample.

B. ELM Components

Similar as RC, we can show the per sample complexity of
ELM components:
o The state update (hidden layer output) as defined by
equation (16) has complexity of O(NyN;).
e Training ELM with RLS has complexity of
O(4N}% + N,Nj, + Nh) ~ 0(4]\7}? + NoNh).
o ELM inference has complexity of O(N,Ny,).

!Feedback weight WP related computation cost is not included because
it is nulled in our implementation.
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TABLE IIT
TRAINING COMPLEXITY

. OFDM Training Sequence OFDM Data Symbols .
Algorithm Method Complexity/sample #Samples Method Complexity/sample #Samples Complexity per OFDM frame
RCNet (V layers) LS O(V(N2 4+ N,N.)) NrsNyg - - - O(V(NZ+ NoN:)N7sNia)
T-RCNet (V layers) LS O(V(NZ+ No,N;)) NrsNiya | GAW-RLS  O(V(4NZ + No,N.))  NpNyg | O(V(NZ(N 4+ 3Np)Nia + NoN.NNya))
ELM RLS O(4NZ + NoNp)  NrsNsce RLS O(4NZ + NoNp) NpN, O((4NZ + NoNp)(NrsNsc + NpNp))
T-RCNet-Xtreme Sum of T-RCNet and ELM
TABLE IV
FORWARD PASS COMPLEXITY

Algorithms Complexity per sample Number of samples Complexity per OFDM frame

RCNet (V' layers) O(V(NZ + N;Ns + N,N.)) NNyg O(V(st + N;Ns + NONZ)NNM)

T-RCNet (V layers) | O(V(NZ + N;Ns + N,N.)) NN,.q O(V(NZ+ NiN; + NoN.)NNyq)

ELM O(NhN.L +N0Nh)

NTSNsc +NDNp

O((NpNi + NoNp)(NrsNse + NpNp))

T-RCNet-Xtreme

Sum of T-RCNet and ELM

TABLE V
CONVENTIONAL METHODS COMPLEXITY

Algorithms

Complexity per OFDM frame

LMMSE with LMMSE CSI

O((NrsN2 + NpN2 + TNp(Nec — Np))NZ + Np(Nsc — Np)(N§ + N2 + No))

SD with LMMSE CSI

O((NrsNZ. + NpNZ +TNp(Nse — Np)) N3 + Np(Nsc — Np)[CINe (2NZ + 2N, — 1))

C. Summary

Now we summarize the training and forward pass complex-
ity of all algorithms. For training analysis, the state update cost
is negligible, so it is not included for simplicity. While in the
forward pass analysis, both state update and inference costs
are included.

e RCNet (V' layers) is trained by LS with per sample
complexity of O(V(N2? + N,N.)). It only utilizes TS
symbols for training, so the total number of training
samples is NpgNy. Combining them gives the total
training complexity of O(V(Nf + NUNZ)NTsNtd) per
OFDM frame.

o T-RCNet needs extra training along OFDM data symbols,
with training method GAW-RLS and number of training
samples Np Ny, the total training complexity per OFDM
frame becomes O(V(Nf (N+3ND)Ntd+NoNZNNtd)).

o T-RCNet-Xtreme needs further training in frequency
domain, which has NprgN,. + NpN, training sam-
ples and per sample complexity of O(4N? + N,Np).
By adding the frequency-domain training cost on top of
T-RCNet, we have the total complexity of O (V (NZ(N +
3ND)Nia + NoN.NNyg) 4+ (AN7 + NoNp)(NpsNse +
NpN,)) per OFDM frame.

e As for forward pass, T-RCNet and RCNet have the
same complexity of O(V (N2 + N; N, + N,N.)NN,4)
per frame. T-RCNet-Xtreme needs an extra O((N nIN; +
NoNp)(NpsNge + NDNp)) cost on top of T-RCNet.

From above analysis we can see that T-RCNet has higher
complexity than RCNet because it needs further training along
OFDM data symbols. T-RCNet-Xtreme has higher complex-
ity than T-RCNet due to the additional frequency domain
procedure. However, they are still on the same order of
magnitude. Furthermore, unlike gradient decent-based training

methods, LS-based methods only need one iteration to reach
the optimal point, therefore, they have much lower computa-
tion cost than other learning-based methods. Simulation results
in section VII-B also verify this point.

Regarding conventional symbol detection methods,
LMMSE is a linear method that requires prior knowledge
of noise variance and channel statistics. It is widely used in
wireless communications systems due to the low complexity.
SD [33] is a non-convex solver that performs optimal
maximum likelihood (ML) detection under ideal assumptions.
It has a much higher computation complexity making it rarely
adopted in practical communication systems. Both methods
require estimated CSI as the input, for which we use LMMSE
channel estimation on TS part of a frame and then update the
channel estimates on each OFDM symbol based on the comb
pilot interpolation method [34]. Their complexities including
channel estimation and symbol detection have been analyzed
in our previous work [15], [35] where we summarize them
in Table V. To simplify the expression and align notations
with learning-based methods, we assume number of antennas
N, = N, and use the NN output size N, to represent
them. Here, |C| represents the QAM modulation constellation
size.

VII. NUMERICAL EXPERIMENTS

In this section the performance of introduced symbol detec-
tion methods is evaluated by numerical simulations. We first
describe the experiments settings and then present the perfor-
mance results against conventional model-based approaches
and state-of-the-art learning strategies.

A. Experiment Settings

For the MIMO-OFDM system, we set the number of
transmitters IN; = 4, and the number of receivers N, = 4.
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TABLE VI
BER PERFORMANCE (Eb/NO = 15 dB)

T-RCNet
6.07%

T-RCNet-Fix-Pilot
8.83%

T-RCNet-No-CP
7.74%

RCNet
6.93%

BER

The frame structure and sub-carrier settings follow the Wi-Fi
standard [5]. To be specific, length of training sequence
Nrgs = 8, frame length N = 100. Total number of sub-
carriers Ng. = 64, among them 4 sub-carriers carry pilots,
48 sub-carriers carry data, the rest are null sub-carriers.
The CP length N, = 16. 16-QAM modulation is used to
generate information symbol X/ (k). The wireless channels
h are generated by MATLAB following 3GPP multipath
fading propagation channel model [25], where the delay profile
follows Extended Pedestrian A model (EPA), channel evolves
across OFDM symbols with 20Hz Doppler frequency. In terms
of the T-RCNet settings, the number of layers V' = 2, for ESN
in each layer, the number of recurrent neurons is Ny = 32,
these two hyper-parameters determine the size of the NN,
which are chosen based on simulation result that shows the
best balance between under-fitting and over-fitting. As has
been proven in [15] that windowed input can effectively
improve the short-term memory capacity of ESN allowing it
to perform better interference cancellation, a sliding window
of size 4 is added to the ESN input layer.> The input weights
W™ is randomly generated from a uniform distribution, the
state transition matrix W is also randomly generated, and the
spectrum radius of the matrix is set to be 0.2 to satisfy the echo
state property [36]. Because simulation shows feedback does
not improve the BER performance, WP is nulled to reduce
computation complexity. The forgetting factor \ determines
how fast it forgets past samples, in GAW-RLS it is set to
0.9995 based on simulation performance. And the weighting
factor is set as w(n) = 1/(1+exp (o + Blog(|len—1(n)|3))).
where o« = 27, f = 15 are empirical values that show
good performance. Regarding ELMs, they are set to have
one hidden layer with 256 neurons, which is larger than the
input and output layer size to extract sufficient features. The
hidden layer weights W" and bias are randomly generated
from uniform distribution. Number of initial offline training
samples is set to N;,;, = 320 X 103, for each sample the
Eb/No is randomly chosen from 0dB to 15dB with step size
3dB. Note those training samples are generated by random
QAM symbols and Gaussian noise, therefore, do not require
any prior knowledge of the channel. The forgetting factor of
RLS is set as A = 0.9992. The number of ELMs sharing
common weights is set to Npgen = 32.

B. Performance Results

1) The Pilot Pattern: In Theorem 1 we introduced the pilot
change pattern (23) that facilitates the training of T-RCNet.
Now we compare the symbol detection performance 1) with
the pilot change pattern (T-RCNet), 2) without the pattern

2Meaning ESN input includes current and three previous received samples.
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Fig. 6. Training and testing error of T-RCNet with and without pilot change
pattern.

(T-RCNet-Fix-Pilot),> 3) without the CP (T-RCNet-No-CP),
meaning only use the non-CP part extracted by equation (24)
for training, and 4) the baseline RCNet, which has no real-time
learning capability. In this example we set the bit energy to
noise ratio Eb/No = 15 dB. The bit error rate (BER) results of
four methods are shown in Table VI. From the results we can
see when training the NN without the CP part or without the
pilot change pattern, the performance is even worse than the
baseline RCNet, which totally defeats the purpose of updating
NN weights through pilots. In contrast, when pilot pattern is
adopted, T-RCNet outperforms RCNet. This is because the
time domain correlation is conveyed continuously by both CP
and non-CP part of OFDM symbols, ignore CP part creates
discontinuation in the correlation, and the information learned
by T-RCNet-No-CP is incorrect. On the other hand, when
training without the pilot change pattern, equation (25) cannot
be satisfied, the extracted training information on CP part is
not accurate, which degrades the performance of T-RCNet-Fix-
Pilot. To make this point clear, the training and testing mean
square error (MSE) of T-RCNet and T-RCNet-Fix-Pilot are
plotted in Figure 6. We can see T-RCNet-Fix-Pilot has much
higher training error than T-RCNet, and the periodic spikes
in training error appear exactly on the CP part of training
data. As a result, T-RCNet-Fix-Pilot fails to adapt to the
environment dynamics and the testing error keeps increasing.
On the contrary, T-RCNet is trained on accurate data and able
to keep the testing error low across the whole OFDM frame.

2) Performance Under Linear and Non-Linear Region of
PA: Now we show the performance of symbol detection
methods under the linear and non-linear region of PA. The
PA model adopted is RAPP [37], the output of PA is u(z) =
W where z is the input of PA, x,; is the PA
saturation level, and p is the smoothing parameter. We can see
when |z| < %54, u(x) = z, meaning the PA is working in
linear region and the signal has no distortion. On the other
hand, when |z| — x4, PA works in non-linear region and

3According to Wi-Fi standard, the pilot sub-carrier locations are
11, 25, 39, and 53. So the corresponding elements in A1 are
[E_16X11,E_16X25,E_IGXSQ,E_IGXSS} — [7]"]'7 7]"]'}’ which are
used as multipliers to generate the pilots of next OFDM symbol. When pilot
change pattern is not used, we set the multipliers to be [1,1,1,1].
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Fig. 7. BER performance of symbol detection methods under linear region.

the signal is highly compressed. In our simulation, we set
ZTsq¢ = 1 and following [37] set p = 3.

We compare the performance of multiple learning-based
methods, among them T-RCNet and T-RCNet-Xtreme are
methods introduced in this paper. Vanilla-RC [14] is our first
work to apply RC on symbol detection. Shallow-RC [15] is
a later work that adds a sliding window to the RC input
to increase the short-term memory. Both of them adopt sin-
gle layer ESN as the underlying NN. On the other hand,
RCNet [16], [17] adopts a deep structure with multiple ESN
layers showing the best symbol detection performance among
our previous work. Applying the training framework introduce
in section IV on those methods to enable the symbol-by-
symbol real-time learning capability, we have T-Vanilla-RC,
T-Shallow-RC, and T-RCNet respectively. Two conventional
methods, LMMSE and SD are also included in the comparison.

First we show the performance under the linear region of
PA. In this case, we make sure the input back-off (IBO),
which is defined as the ratio between PA’s saturation power
to the input power, is greater than 8§ dB. Fig. 7 shows the
BER performance, we choose the Eb/No range from 0 dB to
15 dB because practical communication systems are mostly
operating under this condition.* From the results we can see
learning-based methods outperform model-based methods in
low to median Eb/No regime. This is because conventional
model-based methods need estimated channel as input, which
is not accurate when noise is high. While learning-based
method directly learn a mapping from received symbols to
transmitted ones without the need of intermediate channel
estimation step. When Eb/No is high, with a better estimated
channel, SD outperforms learning-based methods, however
its computation complexity is much higher, which will be
shown later. Among learning-based methods from our previous
work, as expected, Shallow-RC is better than Vanilla-RC, and
RCNet outperforms Shallow-RC. Adding real-time learning
capability improves the performance of all methods, when
Eb/No increases, meaning compere with noise, the channel
changing becomes the main challenge for symbol detection,

4Given this Eb/No setting, we can see the BER in our simulation (without
channel coding) is around 10~ ! to 10~2, which is the typical BER range
specified by the 3GPP [38], [39]. For example, UE CQI calculation is based on
target BLER (after channel coding) of 10% [38], while radio link monitoring
out-of-sync BLER is also set to be 10% [39].
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the performance gain becomes more obvious. To be specific,
in high SINR regime, T-Vanilla-RC has 1dB gain, T-Shallow-
RC has 1.5dB gain, and T-RCNet has 2.5 dB gain over their
corresponding baselines. T-RCNet-Xtreme further improves
the performance gain by 1dB over T-RCNet by utilizing the
time-frequency structure of OFDM signals.

Next, we show the performance when input signal power is
close to PA saturation region. In this case, we make sure the
output of PA is distorted. To be specific, the distortion occurs
when the peak-to-average-power-ratio (PAPR) of OFDM sig-
nal is higher than the IBO value. In our simulation, the OFDM
PAPR is between 6 dB to 9 dB, so we set the IBO to be
smaller than 5.5 dB. From Fig. 8 we can see learning-based
methods work better than conventional methods when IBO
is low, meaning they can learn and compensate the non-
linearity of the PA. And similar as linear case, enable real-time
learning capability improves the performance of all learning-
based methods. Among them T-RCNet-Xtreme has the best
performance.

3) Comparison With Other Learning-Based Approaches:
In this section, we present the BER comparison between our
methods and three state-of-the-art learning-based methods —
DetNet [10], MMNet [11], and OAMPNet [40]. DetNet is a
deep NN designed by unfolding the iterations of projected
gradient descent algorithm, it shows good performance under
independent and identically distributed (iid) Gaussian channel
and low-order modulation schemes. MMNet is a deep NN
build on the theory of iterative soft-thresholding algorithms,
which outperforms DetNet under more realistic channel and
high-order modulation schemes. OAMPNet is designed to
learn the optimal parameters of the orthogonal AMP algorithm,
which shows good performance under Kronecker model-based
correlated MIMO channel. In our evaluation, DetNet, MMNet
and OAMPNet are trained and tested by the same dataset as
RC-based methods. In addition, LMMSE channel estimation
is used to provide estimated CSI to DetNet, MMNet, and
OAMPNet. The implementation detail of each method is as
follow: 1) DetNet has 30 layers as specified in the paper, the
training iteration is tuned to 2,000 for the best performance.
2) MMNet-iid has scalar trainable parameters as it assumes
all received data streams have the same noise distribution.
The NN contains 10 layers and trained by 5,000 iterations for
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Fig. 9. BER performance comparison against other learning-based methods.

the best performance. 3) MMNet has matrix form trainable
parameters, the matrix size is proportion to the number of
transmitter and receiver antennas. It contains 10 layers and
trained by 5,000 iterations. 4) OAMPNet has 10 layers and
trained by 5,000 iterations. From Fig. 9 we can see DetNet,
MMNet-iid, MMNet, and OAMPNet perform poorly under
the practical online training scenario adopted in this paper,
as they are designed to work under much larger training
dataset. Among them, DetNet is hardly functioning under
3GPP channel model because it is designed for iid Gaussian
channel, MMNet has the best performance in low to medium
SNR regime, and OAMPNet achieves the lowest BER in high
SNR regime, but they still have a 6 dB to 9 dB performance
gap compared to RC-based methods.

4) Training Convergence: RLS is a well-known algorithm
and its convergence has been thoroughly studied, it has been
shown [29] once the number of training iterations exceeds the
filter length (in T-RCNet case, filter length corresponds to the
extended state length IV,), the MSE converges at a very fast
rate. After the fast convergence period, RLS converges to its
steady state at a slower rate. This two-step convergence pattern
can also be seen in Fig. 6, where the T-RCNet training MSE
initially decreases sharply below 1072, and then gradually
reaches its steady state. Accordingly, the T-RCNet output
weight, as depicted in Fig. 10 a), shows the same convergence
pattern. In Fig.10 b), the T-RCNet output between test sample
300 to 1000 is plotted, where we can see it matches the
ground truth well. Similarly for ELM, the training MSE and
output weight are depicted in Fig. 10 c¢) and d). Because ELM
is initially trained offline, the steady state has already been
reached when RLS starts, as a result, the MSE and output
weights experience minor variation.

5) Parameter Size and Empirical Complexity of Symbol
Detection Methods: First we compare the trainable parameter
size of learning-based methods. As shown in Table VII, RC-
based methods have relatively small parameter size, because
in time domain they process all OFDM sub-carriers at the
same time with only one NN, and in frequency domain ELM
can be shared among multiple sub-carriers. While MMNet and
DetNet need one NN for each sub-carrier, the network size
increases linearly as the number of sub-carriers. MMNet-iid
has parameter size comparable to RC-based methods, however,
it is designed under an over-simplified homogeneous noise
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Fig. 10. Training convergence of T-RCNet-Xtreme.

TABLE VII

PARAMETER S1ZE AND CPU RUN TIME OF
SYMBOL DETECTION METHODS

Detection Method  Trainable Parameter  Train Iteration = CPU Run Time (Sec.)

T-RCNet 1,024 1 1.14

T-RCNet-Xtreme 5,120 1 1.90

RCNet 1,024 1 0.84

LMMSE - - 0.63

SD - - 8.64
MMNet 19,200 5,000 1,732.70
MMNet-iid 4,320 5,000 1,639.53
DetNet 1,683,360 2,000 1,828.72

model which shows poor performance under more realistic
settings.

Next we show the CPU run time of each symbol detection
method, which empirically reflects their computational com-
plexity. The simulations are conducted on a desktop computer
with Intel Core i7-9700 @3.6GHz CPU (8 cores), and 32G
RAM. No GPU is used.’ The average CPU run time (in
second) for training and testing one OFDM frame is shown
in Table VII. We can see between conventional methods,
SD has more than 10-times run time than LMMSE, which
is coherent with its high complexity mentioned before. All
RC-based methods have run time on par with LMMSE,
owing to the special architecture of RC/ELM and the LS-
based training methods. Among them, RCNet has the lowest
run time of 0.84 second. T-RCNet need more processing
time than RCNet, because the training continues after TS. T-
RCNet-Xtreme adds a frequency layer on top of T-RCNet,
so the processing time almost doubled. Nevertheless, all three
RC-based methods achieve much better BER performance than
LMMSE. On the other hand, MMNet and DetNet are trained
through backpropagation, which requires large iterations to
reach acceptable performance. As a result, their CPU run times
are around 30 minutes.

SWe also use GeForce RTX 2080 GPU to train DetNet and MMNet,
however, the run time is even longer than CPU only, this is because the
training dataset in symbol detection is much smaller than other machine
learning applications such as computer vision, so the parallel processing gain
obtained by GPU is not enough to compensate the time cost of moving data
back and force between CPU and GPU memory. This shows another difference
between applying machine learning to communication applications and other
conventional applications.
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VIII. CONCLUSION AND FUTURE WORK

In this paper we design a training-efficient method for
MIMO-OFDM symbol detection by integrating RC with a
real-time learning framework, and extends it to time-frequency
domain by adopting ELM in the frequency layer. Numerical
experiments demonstrate the outstanding BER performance
and low computation complexity of our methods. Our future
research direction is to implement the introduced symbol
detection methods in a real Wi-Fi MIMO-OFDM system
by utilizing software defined radio, and verify the symbol
detection performance over the air.
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