

Fighting the inevitable: infrastructure investment and coastal community adaptation to sea level rise

Sierra Woodruff

Texas A&M University

Department of Landscape Architecture and Urban Planning
College Station, TX 77843-3137

Todd K. BenDor*

Department of City and Regional Planning
University of North Carolina at Chapel Hill
New East Building, Campus Box #3140
Chapel Hill, NC 27599-3140

Aaron L. Strong

Marine Policy Program, School of Marine Sciences and Climate Change Institute
University of Maine
5741 Libby Hall #227A
Orono, ME 04469

*Corresponding Author – email: bendor@unc.edu, phone: 919-962-4760

Short title: Coastal community trajectories and sea level rise adaptation

Keywords: climate adaptation; coastal protection; coastal hazards; managed retreat; sea level rise; global change; climate change; dynamic hypothesis

Acknowledgements: This paper is based upon work graciously supported by the National Science Foundation under Coastal SEES Grant No. 1427188 and Geography and Spatial Sciences Grant No. 1660450. We additionally thank attendees of the 35th International Conference of the System Dynamics Society in Cambridge, MA.

37 **Abstract**

38 Coastal communities are crafting adaptation strategies to confront sea level rise (SLR).
39 Unfortunately, cost-benefit analyses assessing SLR risks often fail to capture important political
40 and social feedbacks. For example, adaptation measures (e.g. beach nourishment) can trigger
41 greater development, undermining the value of adaptation infrastructure, incentivizing
42 development, and increasing risks. We integrate diverse literature and data to develop a
43 hypothesis and system dynamics model of coastal community responses to SLR. We apply the
44 model to two U.S. communities, showing how political influence drives trajectories of
45 infrastructure provision, cost, and vulnerability. We find that delayed feedbacks between
46 perceived SLR risk and infrastructure investments mediate relationships between political
47 capital, migration, and economic development. Community wealth and political influence may
48 only delay the overshoot and collapse of its population and economy, as the “virtuous cycles”
49 linking growth with infrastructure investment give way to “vicious cycles” of mounting
50 infrastructure costs, political resistance to additional investment, and greater vulnerability.

51

52

53

54 **Introduction**

55 Sea level rise (SLR) poses a significant risk to coastal populations, infrastructure, and
56 economies. Nearly 40 percent of the world's population lives within 100 km of the coastline
57 (Moser, Williams, and Boesch 2012), and more than 50 percent of the U.S. population resides in
58 coastal areas that may be affected by rising sea levels. SLR has already begun to transform low-
59 lying coasts, disrupting daily life and economic activity. For example, coastal Virginia has
60 experienced an increase in the frequency of "sunny-day" flooding (or "nuisance" flooding) from
61 1.7 days in 1960 to 7.3 days of flooding in 2014 (Behr et al. 2016). While these floods are often
62 just 20-60 cm (1-2 ft.) deep, they can stop traffic, swamp basements, damage cars, kill forests,
63 and contaminate wells with salt (Gillis 2016).

64

65 Significant research seeks to forecast the impacts of SLR (Hauer et al. 2016). Typically, this
66 research has focused on future "end states," driven by rising sea levels that are understood to
67 slowly inundate coastal communities (Horton et al. 2014; Rahmstorf 2007). By combining
68 projections of a specific future amount of SLR with property values and other socio-
69 demographic data, researchers have developed models and tools to determine which areas will
70 likely be protected and which will likely be abandoned (Neumann et al. 2010). Such approaches
71 to modeling usually estimate the adoption of protection and abandonment strategies by
72 comparing the cost of building and maintaining protective physical infrastructure, such as
73 seawalls, to the value of the property and assets at risk of inundation. Basing infrastructure
74 investment decisions on cost alone, however, exacerbates existing inequalities by encouraging
75 protection of the largest, wealthiest communities and abandoning small, disadvantaged
76 communities (Martinich et al. 2013).

77

78 Several studies have begun to document the feedbacks between hazard protection and
79 development (see McNamara, Murray, and Smith 2011), noting that efforts to protect coastal
80 properties from hazard damage can have the unintended effect of encouraging more development
81 in hazardous locations (Armstrong et al. 2016). As the economic value of vulnerable urban and
82 economic infrastructure (roads, houses, commercial buildings, etc.) increases, the political and
83 economic cases for protection are strengthened (Armstrong et al. 2016). As we will demonstrate
84 in this paper, these political structures and behaviors create a powerful reinforcing feedback
85 loop. The tendency for the initial “solution” to create additional challenges – increasing the
86 number of people and assets at risk – suggests that coastal protection should be approached as a
87 system dynamics problem (Moser, Williams, and Boesch 2012; Meadows and Wright 2008)

88

89 In this paper, we assess the dynamic feedbacks surrounding investment in coastal infrastructure
90 (CI) protection to address two key questions: (1) How will infrastructure investment policies
91 change in the face of climate change? and (2) How are both the social and natural hazard
92 vulnerability of coastal communities affected by different infrastructure investment patterns in
93 the face of unabated SLR? To do so, we integrate a broad range of community climate-response
94 literature to establish a dynamic hypothesis that allows us to explore alternative trajectories of
95 community vulnerability, economic activity, population, political influence, and infrastructure
96 investment in the face of SLR. This hypothesis suggests the opportunity for several un-expected
97 dynamic patterns to emerge, including over-shoot and collapse behavior, lagged political
98 feedbacks, and nuanced links between population, migration, and infrastructure investment. We

99 then construct a small, quantitative system dynamics simulation model (e.g., Fiddaman 2002) to
100 test our hypothesis.

101

102 Our primary goal in this paper is to present a broader picture of the feedbacks affecting coastal
103 community adaptation, infrastructure investment, and SLR risk. We endeavor to use system
104 dynamics to consider the joint effects of several, independent causal relationships that have been
105 identified in the rapidly-expanding coastal adaptation literature. However, it is important to
106 highlight the complexity of this problem; previous studies, including work by Franck (2009) and
107 Deegan et al. (2014), have demonstrated the complex model structures needed to realistically
108 represent important aspects of adaptation dynamics, including differentiated CI (e.g., beach
109 nourishment, sea walls), public finance mechanisms (e.g., bond ratings), and many other factors.
110 In this paper, we use available data and literature to propose simplified causal structures around
111 the complex feedbacks of community adaptation dynamics. Significant further work is needed to
112 understand the nuances of CI construction, operations and maintenance, and the linkages
113 between community tax-base and infrastructure investment, among other factors.

114

115 We begin by reviewing literature on coastal climate adaptation, CI investment strategies, and
116 dynamic adaptive pathways. Next, we construct and explore a dynamic hypothesis that captures
117 the causal relationships suggested by these literatures. We apply this hypothesis to two coastal
118 regions with differing wealth, growth characteristics, and political influence. These study regions
119 include North Carolina's Outer Banks barrier islands (Dare County, NC; high population growth

120 and economic activity) and Dorchester County, Maryland (low population growth and economic
121 activity).¹

122

123 Finally, we construct a relatively simple, system dynamics model² to test vulnerability
124 trajectories associated with investment strategies in these coastal regions. These applications aim
125 to refine our understanding of the positive and negative feedback loops that drive CI investment
126 strategies. We conclude with a discussion of insights that can be transferred to other regions
127 facing unabated SLR. As coastal regions worldwide transform in advance of rising seas, the
128 sustainability of these coastal landscapes, now and for decades to come, hinges on a well-
129 grounded understanding of the strategies that communities can use to reduce their vulnerability
130 to SLR.

131

132 **Overview of climate adaptation policies**

133 Adaptation behaviors in the face of SLR are typically classified into three categories, *retreat*,
134 *protection*, and *accommodation* (Moser, Williams, and Boesch 2012; Butler, Deyle, and
135 Mutnansky 2016; IPCC et al. 1990).

136

137 *Retreat* (sometimes called *abandonment*) typically occurs using construction setbacks
138 (requirements to move construction away from hazard areas) and public land buyouts (Zavar
139 2015). Strong evidence suggests that long-term losses of shorefront development can only be

¹ In Supplementary Material 1, we apply our dynamic hypothesis to two additional regions with higher population densities, including the City of Chester, Pennsylvania (low income, high density) and New York, NY (high income, high density).

² The model is intended to be relatively simple compared to more sophisticated simulations of coastal community adaptation, such as that by Franck (2009).

140 avoided if retreat is incorporated into adaptation measures (Moser 2005). Retreating from
141 hazardous areas eliminates risk rather than reducing it (Butler, Deyle, and Mutnansky 2016),
142 making it an attractive, and perhaps the only, option over longer timeframes (Hino, Field, and
143 Mach 2017). Comparing the costs and benefits of managed retreat and structural hardening in an
144 English estuary, Turner et al. (2007) found that retreat was more economically efficient when
145 considering timeframes of 25 years or longer. Nonetheless, many communities eschew retreat
146 based on the high and immediate opportunity costs of foregone development (National Research
147 Council 2014), as well as political and legal opposition to retreat policies (Butler, Deyle, and
148 Mutnansky 2016).

149

150 *Accommodation* measures do not prevent floodwaters from entering a community, but instead
151 aim to reduce the negative impacts of flooding. While local governments are generally hesitant
152 to adopt retreat strategies, many propose or have implemented measures to reduce the risks
153 caused by SLR through accommodation (Berrang-Ford, Ford, and Paterson 2011; Butler, Deyle,
154 and Mutnansky 2016). Accommodation measures include flood insurance, efforts to elevate
155 structures, and alterations to building codes to improve flood performance for new construction
156 or, in some cases, modifications to existing structures. Local governments are well equipped to
157 adopt and implement accommodation strategies since many of these approaches have been used
158 for decades to reduce the risk of flooding (Butler, Deyle, and Mutnansky 2016). Perhaps as a
159 consequence, Sahin and Mohamed (2013) found that local politicians generally prefer
160 accommodation measures.

161

162 *Protection* includes the establishment of hardened infrastructure such as seawalls and “soft”

163 structural protection measures such as beach nourishment. Along highly developed shorelines,
164 structural protection has historically been the preferred option to prevent coastal flooding
165 (Moser, Williams, and Boesch 2012; National Research Council 2014). Structural protection
166 measures, such as seawalls, levees, dikes, have been found to protect property and lives (Brody
167 et al. 2007; Zahran et al. 2008).

168

169 Some researchers argue that investments in protection strategies have been inadequate, leaving
170 trillions of dollars of assets located in coastal areas exposed to flood damage from rising seas
171 (Aerts et al. 2014). However, others argue that the benefits of structural measures come at high
172 costs. Hardening shorelines can also lead to the loss of beaches and wetlands in front of
173 protective structures, negatively affecting recreation and ecosystem services, such as fish
174 nurseries, storm buffers, and bird habitat (Moser, Williams, and Boesch 2012). Additionally,
175 structural flood protection measures can encourage further development in areas vulnerable to
176 flooding. As a result, when a flood event does exceed the capacity of a flood control structure,
177 the resulting costs of flood damages can be significantly higher (Brody et al. 2007). This
178 phenomenon, which we discuss further below, is a prime example of a “moral hazard” and is
179 commonly referred to as the “safe development” paradox (Burby 2006; Cutter and Emrich 2006),
180 which we discuss further below.

181

182 Assessments of adaptation efforts globally have found that communities are currently prioritizing
183 protection and accommodation measures, with relatively few pursuing retreat strategies
184 (Berrang-Ford, Ford, and Paterson 2011). Table 1, adapted from Butler, Deyle, and Mutnansky

185 (2016), provides an overview of major land-use related adaptation planning strategies in the face
186 of SLR.

187 [Insert Table 1 about here]

188

189 *Considering vulnerability in the broader hazard context*

190 Regardless of the approach adopted, local coastal adaptation planning processes often begin with
191 an initial vulnerability assessment. Vulnerability carries multiple context-based definitions
192 (Nguyen et al. 2016). We distinguish two-types: natural hazard vulnerability (bio-physical) and
193 socio-economic vulnerability. For our purposes, we consider natural hazard vulnerability as an
194 index connecting the probability of the hazard occurring (risk) and the exposure of assets (or
195 population) to the hazard (population multiplied by probability). Socio-economic vulnerability is
196 inversely related to the degree to which an individual or a community can respond to a hazard,
197 which is highly correlated with both income and political power (Cutter and Finch, 2008). Given
198 the vast literature on the inequities formed by emigration away from urban disamenities (e.g.,
199 Pulido 2000) and coastal hazards (Cutter and Emrich, 2006), we also consider the per-capita
200 value of the natural hazard vulnerability index to be a proxy for socio-economic vulnerability. In
201 both cases, we proxy vulnerability using the relationship between infrastructure supply and
202 relative SLR, whether or not that infrastructure is protective or accommodative.

203

204 **Case studies and data**

205 We selected two coastal communities as case studies to aid us in developing our dynamic
206 hypothesis. Data from these areas will also help calibrate and apply our dynamic model. We
207 chose these study areas – as well as two additional areas discussed in Supplementary Material 1

208 – as the climate adaptation efforts or concerns in each have been a topic of detailed study
209 (Woodruff and Stults 2016; Payne 2016). Dorchester County (Maryland) has notably engaged in
210 local climate adaptation planning (Woodruff and Stults 2016), while the Outer Banks barrier
211 islands, part of Dare County, North Carolina, have created hazard and coastal area management
212 plans (Dare County 2017). These case study areas have different wealth levels and economic
213 activities, growth rates, political power, and cultural values (Table 2).

214 [Insert Table 2]

215

216 *Dorchester County, Maryland (low population growth and economic activity)*
217 Dorchester County is located on Maryland's Eastern Shore. Compared to many other counties in
218 Maryland, Dorchester County is more rural and has lower income (US Census 2016). Population
219 has declined since 1970 in all but two of the incorporated towns in Dorchester; some areas have
220 experienced more than 30 percent population loss. Since 1986, there has been a steady decline in
221 manufacturing and warehouse jobs. Dorchester's limited economic, social and political resources
222 constrain options for adapting to SLR (Miller Hesed and Paolisso 2015).

223

224 Approximately 60 percent of Dorchester County lies in the current 100-year floodplain, the vast
225 majority of which is tidal. Due to the flat landscape, sea level increases as small as 7.6 cm could
226 result in inundation over a hundred meters inland (Titus and Richman 2001). With Boesch et al.
227 (2013) projecting a 110 cm increase in mean sea level by the end of the century, the bay shores
228 may retreat up to ten kilometers inland (Miller Hesed and Paolisso 2015). In some low-lying
229 areas, roads and homes are already at risk of flooding during high tides (Miller Hesed and
230 Paolisso 2015). Road flooding forces residents to take alternative routes, while high water levels

231 have also led to septic tank failures. Although these homes can still be occupied, a functional
232 septic system is required to obtain a mortgage; tank failures drive down market value and make
233 these homes virtually impossible to sell (Titus and Richman 2001). Consequently, abandoned
234 homes are not uncommon.

235

236 In Dorchester, vulnerability to SLR is compounded by social and political isolation that inhibits
237 access to sources of adaptive capacity (Miller Hesed and Paolisso 2015). Local action to reduce
238 risk from SLR has thus far been limited. Proposals to require elevation of new construction have
239 been introduced to the county council four times since 1990 and failed every time (Goldman
240 2010). In opposing elevation requirements, county councilmen cite concerns about restricting
241 property rights, the cost of elevation, and limiting growth. To aid local government adaptation,
242 the state has provided grant assistance, technical information, and has developed county specific
243 sea level guidance. The guidance for Dorchester discusses the possibility of abandoning roads
244 and other infrastructure that may be inundated. Maintenance, let alone elevation, of rural roads
245 costs more than the value of the properties they service. The state recommends the establishment
246 of policies to guide when abandonment will occur.

247

248 *Dare County, North Carolina (high population growth and economic activity)*
249 In contrast to Dorchester County, Dare County and North Carolina's Outer Banks barrier islands
250 continue to receive state and federal funding to maintain infrastructure. For example, since the
251 early 1990s, taxpayers have spent more than \$30 million in state and federal funding to repair
252 NC Highway 12, which runs the length of the Outer Banks and connects the island chain to the
253 mainland (Browder 2012). Maintaining the road over the next century is estimated to cost more

254 than \$1 billion (Browder 2012). Currently, the high cost of maintaining this infrastructure may
255 be warranted based on the \$1 billion tourists spend annually in Dare County (Walker 2016), for
256 which NC Highway 12 is vital.

257

258 Beyond their economic contribution, the Outer Banks are a cultural symbol of the State of North
259 Carolina, giving them significant clout in comparison to inner coastal areas in the State, which
260 have lower land values and less tourism. Dare County has also used its political clout to protect
261 their development and economic interests, lobbying the state legislature to place a moratorium on
262 the use of official rates of SLR for regulatory purposes (Bulla et al. 2017).

263

264 *Demographic, infrastructure, and infrastructure cost data*

265 To understand community responses to rising sea levels, we collected demographic, economic,
266 and coastal hardening data for each case study community. Total population and per capita
267 income were collected from the 1980, 1990, and 2000 decennial census. For 2005, 2010, and
268 2015, the data were collected from the American Community Survey (US Census 2016).
269 Population and per capita income were multiplied to calculate “local area personal income,” a
270 proxy for GDP we use in our model.

271

272 To operationalize the concept of “coastal infrastructure,” we used the US National Oceanic and
273 Atmospheric Administration’s (NOAA) Office of Response and Restoration Environmental
274 Sensitivity Index (ESI) Maps (NOAA 2018) to estimate “coastal hardening” in each community.
275 The ESI summarizes coastal resources, including shoreline conditions, to identify risks of oil
276 spills. Since ESI is a national dataset, it provides a consistent source to assess whether the

277 shoreline is “hardened” (i.e., harbor structures, riprap, and seawalls) or “natural” (i.e., sandy,
278 rocky, intertidal marsh) for our study areas. We downloaded the ESI Geographic Information
279 Systems (GIS) data, which consists of a linear layer (a GIS line feature with type of shoreline)
280 for each case study region. Using ArcGIS 10.5, we then clipped the ESI lines to the community
281 boundary, calculated the length of each line segment (using the 2016 length as the baseline
282 coastline length), and summed the length of the hardened shoreline segments. In all of our case
283 study communities, data were available for at least two dates (1996 and 2016); however, dates
284 varied by community (see Figure 1).

285

286 [Insert Figure 1 about here]

287 Operationalizing and estimating the cost of construction and maintenance for CI is difficult given
288 the wide range of potential costs. At the extreme high end, the City of Charleston, SC estimated
289 the 2015 cost of replacing a sea wall at approximately \$22,840 per foot of wall (\$74,915 per m;
290 JMT 2015), while the 2013 replacement of the Elliot Bay seawall in Seattle, WA is estimated to
291 cost \$75,000 per linear ft (\$246,000 per m; Beavers, Babson, and Schupp 2016). On the lower
292 end, the 2016 Coastal Adaptation Strategies Handbook released by the US National Park Service
293 estimates the cost of shore-parallel structures such as sea walls and bulkheads as \$2,000 to
294 \$3,000 per linear ft (~\$6,560—\$9,840 per m; Beavers, Babson, and Schupp 2016). The NC
295 Coastal Federation’s handbook on shoreline erosion (Seachange Consulting 2011) suggests that
296 bulkhead construction can range from \$100–\$1,200 per linear foot (\$328-\$3940 per m), with
297 residential prices around \$135 per ft (~\$445 per m).

298

299 For brevity, in this paper we assume constant (real) construction and annual maintenance costs
300 on the lower end of this spectrum, at \$900 per m and \$100 per m, respectively. However, it is
301 certainly possible that *marginal* construction and replacement costs could rise as SLR forces
302 infrastructure to grow in size and sophistication. For instance, repair and replacement costs of
303 deteriorating seawalls and bulkheads are often greater than new construction (Beavers, Babson,
304 and Schupp 2016), suggesting the cost of CI will rise over time. Deegan et al. (2014) offer an
305 excellent discussion of these costs and a more sophisticated effort to estimate cost accrual.

306

307 **A dynamic hypothesis for the evolution of coastal community vulnerability**

308 Since 1980, modeling which areas should be protected and which should be abandoned has been
309 an active area in SLR research (Yohe and Schlesinger 1998; Fankhauser 1995). However, little
310 work has comprehensively addressed the many feedback effects of conditioning whether, how,
311 and why communities adapt to SLR. By integrating the feedbacks described in the literature, we
312 can present a novel, more complete description of the dynamics of coastal community adaptation
313 and vulnerability.

314

315 We iteratively construct a dynamic hypothesis using causal loop diagrams. The theory describes
316 two sets of feedback loops, encompassing (1) the relationship between migration, economic
317 activity, and CI development (the “safe development” paradox described above), and (2) the
318 political feedbacks that constrain or enable future infrastructure spending and drive natural
319 hazard and socio-economic vulnerability.

320

321 *Migration, economic activity, and CI development feedbacks*

322 Many early studies simplified analysis of coastal protection by assuming the choice is between
323 abandonment and protection, ignoring accommodation options (Fankhauser 1995; Butler, Deyle,
324 and Mutnansky 2016). Studies evaluating the “optimal” level of coastal protection further
325 simplify the problem by ignoring changes in economic and demographic characteristics (Moser
326 2005; Sahin and Mohamed 2013; Balica, Wright, and van der Meulen 2012; Tol et al. 2004). For
327 example, studies frequently overlay future scenarios of biophysical change on current
328 demographic and socio-economic data, implicitly assuming these characteristics are stationary
329 (Preston, Yuen, and Westaway 2011; Berry and BenDor 2015). Studies that fail to incorporate
330 projected population and economic growth will underestimate the total population and value of
331 assets at risk from future climate impacts, which can lead to non-adaptive or even maladaptive
332 outcomes (Kashem et al. 2016).

333

334 Several studies attempted to model future population growth including migration to better
335 estimate the number of people that will be exposed to future natural hazards (Neuman et al.
336 2015; Kleinosky, Yarnal and Fisher 2007). However, a major challenge in such studies is
337 accounting for the interactions and feedbacks between environmental change and migration
338 (Neuman et al. 2015). When vulnerability assessments do account for population growth, they
339 usually rely on separate models of population growth and predicted flooding that are decoupled
340 from models of infrastructure investment and decision-making. Typically, these studies assume
341 past trends will continue, and that coastal cities will continue to grow; that is, growth is assumed
342 to be unaffected by climate change (Balica 2012).

343

344 However, increased flooding and extreme events may reverse in-migration and discourage future
345 investment in coastal areas. Migration and housing location decisions in flood hazard areas have
346 been shown to be directly linked to perceptions of future risk (e.g., Bin and Landry 2013;
347 Tripathi et al. 2014). A simple representation of this relationship is shown in Figure 2. Risk
348 perception directly affects demand for CI (again, considered here generically as any structural
349 investment or policy intervention). We refer readers to Franck (2009) for a much more in-depth
350 discussion around modeling SLR risk perception and its relationship to storm frequency and
351 other factors.

352

353 A factor missing from many of these models is the delay between increases in risk and resulting
354 changes in migratory patterns and infrastructure investment. Increasing risk is abstract compared
355 to the realization of risks after large scale events (e.g., hurricanes, storm surges; Adger et al.
356 2009).

357 [Insert Figure 2 about here]

358

359 *Flood protection and development feedbacks*

360 Several relevant studies treat some of the feedbacks that might lead to the aforementioned “safe
361 development” paradox, in which structural flood protection measures can incentivize more
362 development flood-vulnerable areas and drive up future costs of flood damages (Brody et al.
363 2007). The safe development paradox is an example of the general phenomenon of “moral
364 hazard,” in which actions to mitigate a risk or transfer its costs to others (such as providing
365 insurance) create incentives for agents to increase their risk exposure (Arrow 1963; Pauly 1968).
366 For example, in an analysis of beach nourishment and residential development in Florida,

367 Armstrong et al. (2016) found that new development is concentrated in nourished zones. The
368 results of resource investment can then lead to further wealth concentration that permits more
369 focused application of resources in a positive feedback loop. This phenomenon mirrors long-
370 standing problems with the United States' National Flood Insurance Program (NFIP), which
371 provides subsidized flood insurance for homes built in floodplains, even those that are repeatedly
372 lost to flooding (Shively, 2017). In both cases, CI construction and the NFIP program, designed
373 to protect existing residents from the risk of catastrophic loss, increases risky behavior by
374 discouraging existing residents from relocating to somewhere safer and encouraging new
375 development and in-migration in hazard-prone areas, all at great cost to taxpayers elsewhere.

376

377 Research also suggests that the “development begets infrastructure” phenomenon should be
378 augmented by a “damage begets infrastructure” dynamic. For example, Werner and McNamara
379 (2007) modeled the construction (and costs) of new flood protection measures in New Orleans,
380 as responses to damage from recent flooding. The authors represented the state of the landscape,
381 the state of the local economy (modeling population growth, the supply, demand, and price of
382 products, and the revenues for economic actors), feedbacks representing the impact of the
383 landscape on the economy (via both repeated rapid damage events like hurricanes and slowly
384 varying changes to the landscape), and feedbacks representing the impact of economic
385 development on the landscape (via market-driven alterations to the landscape to mitigate
386 damage).

387

388 Their coupled model accurately replicates the development of New Orleans over time, including
389 spatial patterns of development and the location of flood protection measures. These feedbacks

390 mirror Jay Forrester's hypothesis in his landmark 1969 *Urban Dynamics* study, in which growth
391 begets growth as population attracts additional population and drives housing and job creation.
392 However, as Forrester demonstrated for cities, these reinforcing feedbacks eventually break
393 down as the city exhausts its undeveloped land; at that point, the reinforcing feedbacks can
394 become vicious cycles as existing housing and businesses age and decay, reducing attractiveness
395 and business formation still further, trapping the poor in substandard housing and
396 underemployment. In our case, we will explore how infrastructure costs can slow population
397 growth and shift these feedbacks from growth towards decline.

398

399 These studies illustrate the importance of capturing the feedback between flood protection and
400 development (Figure 3). Protection from small scale floods encourages additional development
401 in areas prone to disaster. The result is greater damage from low frequency flood events. In
402 effect, small-scale floods that might deter settlement of the floodplain are suppressed, leading to
403 additional development that amplifies the damage from less frequent, large floods. Figure 3 also
404 expands our initial hypothesis into a more realistic representation that distinguishes private- and
405 public-sector institutional perceptions and actions towards SLR risk (Grothmann and Patt, 2005).

406 [Insert Figure 3 about here]

407

408 Many of the studies we reviewed suggest an additional set of feedbacks in which “wealth begets
409 infrastructure” through political relationships, whereby wealthy areas are seen as worthier of
410 protection and have greater influence with the state and federal agencies and legislatures that
411 fund CI. Because the cost of coastal protection via sea walls, beach nourishment, etc. are roughly
412 constant per meter, traditional cost-benefit analysis will always find it worthwhile to protect

413 highly developed areas in lieu of low-value lands, which will then need to be abandoned. These
414 decision heuristics mean that the economic value of cities can be high enough to warrant full
415 protection in virtually all SLR scenarios (Fankhauser 1995; Titus et al. 2009; Titus and Richman
416 2001; Martinich et al. 2013; Neumann et al. 2010).

417

418 Additional studies have attempted to better understand when coastal residents choose to retreat
419 by using agent-based approaches that incorporate feedbacks related to investment (Werner and
420 McNamara 2007; Smith et al 2009; Williams et al 2013). As one would expect, property values
421 fall more rapidly and abandonment occurs much sooner under high SLR scenarios compared to
422 low ones. More interesting, higher rates of SLR incentivize higher investments in protective
423 infrastructure in the near term as the community seeks to protect itself, but even substantial
424 investments do not significantly delay the time until abandonment, in part because extreme storm
425 events with higher SLR can quickly overwhelm newly built protective CI, causing loss of assets
426 and a financial decision to abandon rather than rebuilding and investing in yet additional
427 protections (McNamara and Keeler 2013).

428

429 Furthermore, Martinichi et al. (2013) found that if decisions about protection and abandonment
430 are based solely on property value, more land area is likely to be abandoned than protected in
431 areas with lower economic value and high socio-economic vulnerability, while more land is
432 likely to be protected in areas with higher economic value and lower socio-economic
433 vulnerability. Because protection enhances economic value, the result is a reinforcing feedback
434 through which many socially disadvantaged Americans living in coastal areas could be
435 disproportionately affected by SLR.

436

437 These ideas are captured in the expanded dynamic hypothesis in Figure 4, which incorporates
438 power differentials, the compounding effects of damage, non-linearity in the accumulation of
439 infrastructure construction and maintenance costs, and the impacts of continued maintenance on
440 the effectiveness of protective infrastructure. Figure 4 additionally incorporates our two types of
441 vulnerability described by social (per-capita) and natural hazard vulnerability (biophysical).

442 [Insert Figure 4 about here]

443

444 *Applying dynamic hypothesis to case studies*

445 We selected Dorchester County to test our dynamic hypothesis based on the County's low
446 population density and low political capital to leverage external infrastructure investment. As a
447 result, we view this case as the simpler of our two case studies: all signs point to the long-term
448 inability of Dorchester County to invest in infrastructure and promote a "virtuous cycle" of in-
449 migration, economic activity (EA), and further protective CI investment. As shown in Panel A of
450 Figure 5, continued SLR will lead to small investments in coastal hardening. We depict these
451 investments as large and lumpy; as they come on, line they temporarily decrease hazard and
452 socio-economic vulnerability and induce greater population and economic growth for a short
453 period.

454 [Insert Figure 5 about here]

455 As infrastructure requirements increase, we theorize that political power will drop considerably,
456 after which infrastructure investments will fall, increasing social and hazard vulnerability and
457 causing an ensuing drop in population and EA (abandonment). As population falls, natural
458 hazard vulnerability declines; however, we also theorize that socio-economic vulnerability

459 (measured on a per-capita basis) will skyrocket for the remaining population as the infrastructure
460 gap widens and the region becomes more susceptible to unabated hazards from SLR. Feedbacks
461 linking the absence of political capital to limited development are frequently seen in urban
462 planning, but our dynamic hypothesis suggests that it may also influence vulnerability to SLR.

463

464 More complex dynamics arise in applying our dynamic hypothesis to Dare County. First, we
465 expect that, given the demonstrated ability of the region to demand external protective
466 investment, the “virtuous cycle” of CI investments, development, greater need for protection and
467 still more protective infrastructure will continue in the region. Compared to Dorchester county,
468 we expect to see more protective investments, inducing greater development that drives hazard
469 vulnerability higher over time (Figure 5, Panel B).

470

471 We expect that investment will continue until the incredibly high costs of maintaining protective
472 infrastructure begin to overwhelm Dare County’s economically-created political power.

473 Combined with its relatively low population, the County will begin to be unable to continue to
474 attract funds to construct new infrastructure. Unprotected from hazards, immigration declines
475 and emigration increases, leading to population decline. As we saw in Dorchester County,
476 population decline eventually causes hazard vulnerability to fall —because fewer people will be
477 living in the flood zone—while socio-economic vulnerability rises for the remaining residents—
478 because housing values, employment opportunities, and the local economy will shrink. The long-
479 term growth of the Outer Banks may have inter-regional impacts; while continued development
480 will likely increase the natural hazard vulnerability of the tourist-focused Outer Banks, protective
481 infrastructure development may displace hazard impacts into neighboring, inner coastal areas,

482 where most of the workforce serving the islands live. This could have the effect of exacerbating
483 socio-economic vulnerability into this area lower income.

484

485 **A system dynamics model of coastal community adaptation**

486 To test these predictions, we develop a formal system dynamics model using the datasets
487 described earlier. Figure 6 shows the model structure and Supplementary Material 2 provides full
488 documentation. To consider changes in CI, we focus on the extent of coastal hardening (we will
489 use the terms “coastal infrastructure (CI)” and hardening interchangeably). We measure an area’s
490 “economic activity (EA)” as “local area personal income,” defined as the “...income received
491 by, or on behalf of, all persons from all sources: from participation as laborers in production,
492 from owning a home or unincorporated business, from the ownership of financial assets, and
493 from government and business in the form of transfer receipts. It includes income from domestic
494 sources as well as from the rest of the world” (BEA 2016).

495 [Insert Figure 6 here]

496 We characterize SLR over time using the median of the Representative Concentration Pathway
497 (RCP) 2.6 scenario (a low emissions scenario) from Kopp et al. (2015), which assessed SLR
498 along the North Carolina coast. This scenario predicts 22 cm of SLR over 2000 levels in 2030,
499 37 cm in 2050, and 70 cm in 2100. Assuming the current distribution of property and EA,
500 Houser et al. (2015) estimate that by 2100, average annual insurable flood losses in North
501 Carolina would very likely increase by 20-150 percent, while the ‘1-in-100 year’ flood would be
502 expected in 17 of 50 years after 2050 (Kopp et al. 2015). We use the same SLR scenario for both
503 the Dare and Dorchester County study areas.

504

505 To abstract the relationship between SLR and EA and migration, we define a “SLR risk index”
506 as the ratio of sea level rise to the fraction of hardened coastline (normalized by the 1985 values).
507 The index increases as sea level rises and falls as the coastline is increasingly hardened.
508 However, given the mixed metrics of SLR and coastline hardening, we need to scale each of
509 these factors relative to their baseline values, such that we normalize values relative to the
510 beginning of our study period:

$$511 \quad SLR \text{ risk index} = \frac{\frac{Current \text{ sea level}}{\text{Baseline sea level in 1985}}}{\frac{\% \text{ of coast hardened}}{\text{Baseline \% of coast hardened in 1985}}}$$

512 The SLR risk index affects the net rates of change of population and EA whereby lower risk
513 increases growth. This occurs through hypothesized negative relationship linking risk to
514 multipliers on population and economic growth rates. Population and EA are both modeled as
515 stocks, each of which are altered through net flows determined by base rates, the SLR risk
516 multiplier, and the stocks themselves:

517 *Net change in Economic Activity (EA)*
518 $= EA * Baseline EA growth rate * EA growth rate multiplier from SLR$
519 The level of EA (total local area personal income) helps to determine the demand for coastal
520 hardening, capturing the development-begets-infrastructure loop relationship from Figure 4.
521 Additionally, demand is a function of the risk index – capturing the risk-begets-infrastructure
522 relationship – as well as a baseline “level of service” measurement (BenDor et al., 2013) that
523 aims to maintain a baseline level of infrastructure to EA:

524 Demand for coastal infrastructure (CI) = EA * Baseline CI to EA ratio * SLR risk index
525 While the stock of CI is determined by construction and deterioration (we hypothesize a 100-
526 year lifetime), coastal hardening is inherently limited by the length of a region’s coastline as
527 marginal coastal hardening becomes increasingly difficult due to technical, legal, or practical

528 implementation problems. Therefore, construction is taken as an effort to close the gap between
529 current and demanded infrastructure that is slowed by construction delay and diminished by the
530 coastline that is already hardened:

$$531 CI\ construction = (1 - Fraction\ of\ coast\ hardened) \frac{CI\ and\ CI\ demand\ gap}{Base\ delay\ to\ close\ CI\ gap * Political\ hesitance\ to\ close\ CI\ gap}$$

532

533 Construction delay is influenced by a stock of “political hesitance” to close the CI gap, which
534 changes based on the relationship between the current and baseline values of the cost of CI
535 relative to EA in a region:

$$536 Political\ hesitance\ to\ close\ CI\ gap = \int \frac{CI\ cost\ to\ EA\ ratio}{Baseline\ CI\ cost\ to\ EA\ ratio} / Time\ to\ change\ hesitancy$$

537 As a region’s EA increases relative to investments in CI, political hesitancy towards new
538 infrastructure decreases (i.e., it becomes “worth it” to continue investing). Changes to the
539 hesitancy stock are slowed by the time taken by political and funding entities to change their
540 views towards constructing new infrastructure.

541

542 Finally, we model natural hazard vulnerability as the product of EA to SLR risk index due to the
543 strong interaction effect on risk between SLR and EA in coastal areas. We represent
544 socioeconomic vulnerability as the per-capita natural hazard vulnerability:

$$545 Natural\ hazard\ vulnerability = EA * SLR\ risk\ index$$

$$546 Socioeconomic\ vulnerability = Natural\ hazard\ vulnerability / Population$$

547

548 **Model calibration and results**

549 We calibrated the model to each case study area. We calibrated our model iteratively, aiming to
550 determine a structure that reasonably and simply approximated a working relationship between

551 SLR risk index and population and EA. We hypothesized that increasing SLR risk would rapidly
552 decrease net migration, eventually flattening as it turned negative to encourage out-migration.
553 These qualitative relationships between the SLR risk index and economic and population growth
554 resemble exponentially declining relationships, approximated by several theorized points. We
555 estimated interpolated functions to roughly match (and smooth) these points, resulting in the
556 logistic functions shown in Panels A and B of Figure 7.

557

558 We additionally explored differential inputs to two highly sensitive variables, including the base
559 delay to close the GI gap and the baseline value (1985) for the political hesitance stock, which
560 acts as a multiplier on the delay placed on constructing new CI. Based on our historical
561 understanding of historic difficulties in obtaining funding for CI, we estimated this stock's initial
562 value to be 225 and 1 for Dorchester and Dare Counties, respectively. For the same reasons, we
563 also estimated the base delays for closing the GI gap to be 4 years and 3 years, respectively.

564

565 Calibration runs of our model between 1985 and 2015 (Figure 7, Panels C and D) matched fairly
566 well with available data on economic activity (EA), population (P), and coastal hardening (%H;
567 percentage of coastline) for both study areas. For each of these variables, we calculated the
568 mean absolute deviation (MAD) and mean absolute percentage error (MAPE) between available
569 data and calibration simulations for Dorchester and Dare Counties, respectively: $MAD_{EA} =$
570 7.20×10^7 and 4.37×10^7 ; $MAPE_{EA} = 13.17\%$ and 6.12% ; $MAD_P = 1027.7$ and 1663.4 ; $MAPE_P =$
571 3.33% and 5.68% ; $MAD_{\%H} = 4.1515 \times 10^{-3}$ and 2.88×10^{-2} ; $MAPE_{\%H} = 0.42\%$ and 29.72% . We
572 note that our calibration of the model on the fraction of the coast that has been hardened was
573 much more accurate for Dorchester County than Dare County; we hypothesize that this is the

574 result of undershooting our estimate of the baseline 1985 value for Dare County, which was
575 extrapolated from much later 1996 and 2011 values as there appeared to be a linear growth of
576 coastal hardening in this region.

577

578 [Insert Figure 7 here]

579

580 After calibration we simulated Dorchester and Dare Counties from 1985 through 2100.

581

582 *Dorchester County, Maryland*

583 The Dorchester County simulation tells a similar story to that of our dynamic hypothesis, save
584 for socioeconomic vulnerability, which decreases along with natural hazard vulnerability (Figure
585 8, Panel A).

586 [Insert Figure 8 here]

587 That pattern is primarily the result of slow, but continual, infrastructure increases initiated prior
588 to the start of the collapse but were delayed due to high political hesitance to protective
589 investment. We estimate that political resistance to protective investments is initially high in
590 Dorchester due to the low initial level of EA and per capita income, and the low political
591 influence of the county. Consequently, Dorchester has difficulty obtaining funding for
592 infrastructure construction. Stagnating population leads to an early decline in infrastructure,
593 which leads to additional population decline as SLR risk is perceived to rise. Increasing SLR risk
594 in the face of continued difficulties in constructing infrastructure eventually triggers economic
595 and population collapse. Eventually, as EA and population fall, SLR risk continues to rise—not

596 because protection decreases, but simply because SLR increases at a rate that overwhelms any
597 lingering efforts to continue infrastructure construction.

598

599 *Dare County, North Carolina*

600 Our simulation of Dare County shows continued increases in EA well past the point at which
601 Dorchester County begins to decline (Panel B, Figure 8). EA continues to grow even though
602 population growth slows before 2015. Population reaches just over 44,000 and remains nearly
603 flat for almost two decades even as EA slowly begins to fall. The extent of CI stops growing as
604 investment falls and only approximately offsets deterioration. SLR risk remains low due to the
605 high growth in protective infrastructure facilitated by the low political resistance to funding
606 protection for the region. However, as EA begins to decline, infrastructure construction slows,
607 and population declines soon after. Natural hazard and socio-economic vulnerability decline,
608 with natural hazard vulnerability declining faster as EA begins to collapse at an increasing rate
609 after the late-2050s. Because Dare County is already highly developed, rising sea level induces
610 significant investment in protection, which, by reducing the perceived risk level, induces
611 additional growth. However, the inexorable rise in sea level eventually increases risk, even as the
612 maintenance burden of the increased protective infrastructure raises the costs of additional
613 protection. Thus, high rates of protective investment not only delay the inevitable, but by
614 drawing more people and development in, lead to a larger loss of wealth and population when
615 abandonment becomes inevitable.

616

617 **Discussion and Conclusions**

618 If we consider how hazard vulnerability is associated with encouraging larger populations to
619 locate in high hazard areas, the “virtuous cycle” created as a result of the safe development
620 paradox should be viewed as a trap. While the positive feedback loop linking development and
621 coastal protection can operate as a virtuous cycle of asset protection and investment that
622 increases the damage from extreme events, it inevitably hides an eventual, vicious cycle of
623 disinvestment that reflects the unsustainability of defending communities against constant SLR.
624 At some point, the on-going cost of protection will simply become too high, leading to eventual
625 decline, collapse, and retreat. Furthermore, continued investment in CI could lead to widening
626 inequalities between larger, wealthier communities and small, disadvantaged communities.

627

628 How can we break these cycles? The first major consideration concerns the scale of coastal
629 protection decision-making (Moser 2005; McNamara, Murray, and Smith 2011). Currently, each
630 municipality or local government operates by considering what is best for itself. The
631 decentralized approach results in decisions focused on short-term and local benefits and the
632 inequitable use of public resources. If decisions were made on a state level, investments in highly
633 exposed coastal areas may not be appealing. The battle between municipal and state action is
634 illustrated well in the Dorchester County case.

635

636 Second, traps created by reinforcing feedbacks involving protective investment, risk, and
637 development are not unique to coastal issues. Similar dynamics occur in leveed river systems
638 with developed floodplains (e.g. Flavelle 2018) and wildland-urban interfaces with wildfire
639 suppression (Armstrong et al. 2016). In areas that are politically unable to adapt their
640 communities to SLR hazards, recovery plans may be an opportunity for communities to rethink

641 their priorities, explore alternative development patterns, or explore their understanding of the
642 long-term effects of SLR. When taken as a whole, our theory and model demonstrate that our
643 understanding of chosen community approaches to the threat of SLR – protection,
644 accommodation, or retreat – are a function of socio-economic forces and political power
645 dynamics. Key to many of the feedbacks within these systems are infrastructural and socio-
646 economic vulnerabilities, as well as perceptions of both a community's economic value and of
647 the risks posed by inundation. We argue that vulnerability assessments – an increasingly popular
648 tool used by coastal states and governments to assess the impacts of SLR – are more likely to be
649 helpful in guiding community decision-making if they are developed and situated within a
650 broader political and social understanding of the patterns of development and socio-economic
651 vulnerability within coastal communities.

652

653 Our primary goal in this paper has been to expand how we jointly consider the feedbacks
654 affecting coastal community adaptation, infrastructure investment, and SLR risk. We have used
655 system dynamics to consider the joint effects of multiple causal relationships that have been
656 identified in the rapidly-expanding coastal adaptation literature. However, it is clear that more
657 needs to be done to assess the consequences and more effectively model these multiple
658 feedbacks.

659

660 First, we used dramatically simplified representations of the relationships between an SLR risk
661 index and population and economic multipliers. Several factors were omitted from our
662 simulation model. Specifically, more investigation needs to explore the precise mechanisms by
663 which SLR risk affect insurance rates, immigration and emigration patterns, financial

664 investments in infrastructure, and EA in coastal regions. Furthermore, additional steps could be
665 taken to test our model more thoroughly against empirical evidence from communities that have
666 experienced substantial investments in adaptation infrastructure due to SLR associated flooding
667 already. Such tests would include both empirical investment and demographic data, but also a
668 greater incorporation of qualitative assessments of risk perception and community adaptation
669 decision-making processes. Finally, future work should also consider several SLR scenarios, not
670 just the relatively low future emissions scenario that we employed (RCP 2.6), but infrastructure
671 investment dynamics under higher emissions scenarios with more rapid SLR. These extensions
672 would be helpful for not only addressing shortcomings of our model, but would be useful for
673 specific policy analysis, testing and design. As communities both large and small, urban and
674 rural respond to the impacts of rapid SLR, they must make adaptation decisions with large
675 financial and social consequences that are challenging to understand. Models that address the
676 feedbacks involved in the social-economic-policy-climate change interface are needed to provide
677 policy support to make more effective community adaptation decisions.

678

679

680 **References**

681 Adger, W. Neil, Suraje Dessai, Marisa Goulden, Mike Hulme, Irene Lorenzoni, Donald R.
682 Nelson, Lars Otto Naess, Johanna Wolf, and Anita Wreford. 2009. "Are there social
683 limits to adaptation to climate change?" *Climatic change* 93(3): 335-354.

684 Aerts, Jeroen C. J. H., W. J. Wouter Botzen, Kerry Emanuel, Ning Lin, Hans de Moel, and
685 Erwann O. Michel-Kerjan. 2014. "Evaluating Flood Resilience Strategies for Coastal
686 Megacities." *Science* 344 (6183): 473–75. doi:10.1126/science.1248222.

687 Armstrong, Scott B., Eli D. Lazarus, Patrick W. Limber, Evan B. Goldstein, Curtis Thorpe, and
688 Rhoda C. Ballinger. 2016. "Indications of a Positive Feedback between Coastal
689 Development and Beach Nourishment: Coastal Development Beach Nourishment."
690 *Earth's Future*, December. doi:10.1002/2016EF000425.

691 Arrow, Kenneth (1963). "Uncertainty and the Welfare Economics of Medical Care". *The*
692 *American Economic Review*. American Economic Association. 53 (5): 941–73.

693 Balica, S. F., N. G. Wright, and F. van der Meulen. 2012. "A Flood Vulnerability Index for
694 Coastal Cities and Its Use in Assessing Climate Change Impacts." *Natural Hazards* 64
695 (1): 73–105. doi:10.1007/s11069-012-0234-1.

696 BEA. "Local Area Personal Income: 2016." U.S. Department of Commerce Bureau of Economic
697 Analysis, 2017. https://www.bea.gov/newsreleases/regional/lapi/lapi_newsrelease.htm.

698 Beavers, Rebecca, Amanda Babson, and Courtney Schupp, eds. "Coastal Adaptation Strategies
699 Handbook." National Park Service, 2016.
<https://www.nps.gov/subjects/climatechange/coastalhandbook.htm>.

700 BenDor, Todd, James Westervelt, Yan Song, and Joseph O. Sexton. 2013. "Modeling Park
701 Development through Regional Land Use Change Simulation." *Land Use Policy* 30 (1):
702 1–12.

703 Berry, M. and BenDor, T.K. (2015). Integrating sea level rise into development suitability
704 analysis. *Computers, Environment and Urban Systems* 51, 13–24.

705 Berrang-Ford, Lea, James D. Ford, and Jaclyn Paterson. 2011. "Are We Adapting to Climate
706 Change?" *Global Environmental Change* 21 (1): 25–33.
707 doi:10.1016/j.gloenvcha.2010.09.012.

708 Bin, Okmyung, and Craig E. Landry. "Changes in Implicit Flood Risk Premiums: Empirical
709 Evidence from the Housing Market." *Journal of Environmental Economics and*
710 *Management* 65, no. 3 (May 1, 2013): 361–76.
<https://doi.org/10.1016/j.jeem.2012.12.002>.

711 Boesch, D.F., L.P. Atkinson, W.C. Boicourt, J.D. Boon, D.R. Cahoon, R.A. Dalrymple, T. Ezer,
712 B.P. Horton, Z.P. Johnson, R.E. Kopp, M. Li, R.H. Moss, A. Parris, C.K. Sommerfield.
713 2013. *Updating Maryland's Sea-Level Rise Projections: Special Report of the Scientific
714 and Technical Working Group to the Maryland Climate Change Commission*.
715 Cambridge, MD: University of Maryland Center for Environmental Science.

716 Brady, A.F. 2015. "Buyouts and Beyond: Politics, Planning, and the Future of Staten Island's
717 East Shore After Superstorm Sandy." Masters, Boston, MA: Massachusetts Institute of
718 Technology. <https://dspace.mit.edu/bitstream/handle/1721.1/98926/921852544-MIT.pdf>.

719 Brody, Samuel D., Sammy Zahran, Praveen Maghelal, Himanshu Grover, and Wesley E.
720 Highfield. 2007. "The Rising Costs of Floods: Examining the Impact of Planning and
721 Development Decisions on Property Damage in Florida." *Journal of the American
722 Planning Association* 73 (3): 330–45.

723

724

725 Browder. 2012. "Rebuilding NC 12: Saving a Vital Link or Throwing Money in the Ocean? :"
726 *WRAL.com*, November 19. <http://www.wrал.com/rebuilding-nc-12-saving-a-vital-link-or-throwing-money-in-the-ocean-11784177/>.

727

728 Bulla, Brian R., Elizabeth A. Craig, and Toddi A. Steelman. 2017. "Climate change and adaptive
729 decision making: Responses from North Carolina coastal officials." *Ocean & Coastal
730 Management* 135: 25-33.

731 Burby, R. J. 2006. "Hurricane Katrina and the Paradoxes of Government Disaster Policy:
732 Bringing About Wise Governmental Decisions for Hazardous Areas." *The ANNALS of
733 the American Academy of Political and Social Science* 604 (1): 171–91.
734 doi:10.1177/0002716205284676.

735 Butler, W. H., R. E. Deyle, and C. Mutnansky. 2016. "Low-Regrets Incrementalism: Land Use
736 Planning Adaptation to Accelerating Sea Level Rise in Florida's Coastal Communities."
737 *Journal of Planning Education and Research* 36 (3): 319–32.
738 doi:10.1177/0739456X16647161.

739 Cutter, Susan L., and Christina Finch. "Temporal and spatial changes in social vulnerability to
740 natural hazards." *Proceedings of the National Academy of Sciences* 105, no. 7 (2008):
741 2301-2306.

742 Cutter, Susan L., and Christopher T. Emrich. 2006. "Moral hazard, social catastrophe: The
743 changing face of vulnerability along the hurricane coasts." *The Annals of the American
744 Academy of Political and Social Science* 604(1): 102-112.

745 Dare County. 2017. CAMA Rules. <http://www.darenc.com/departments/planning/cama>

746 Deegan, Michael, Krystyna Stave, Rod MacDonald, David F. Andersen, Minyoung Ku, and Eliot
747 Rich. 2014. "Simulation-Based Learning Environments to Teach Complexity: The
748 Missing Link in Teaching Sustainable Public Management." *Systems* 2 (2): 217–36.
749 <https://doi.org/10.3390/systems2020217>.

750 Delaware County Planning Department. 2014. "Delaware River Watershed Conservation Plan."
751 <http://www.co.delaware.pa.us/planning/pubs/DelRiverWatershedConservationPlan.pdf>.

752 Fankhauser, S. 1995. "Protection versus Retreat: The Economic Costs of Sea-Level Rise."
753 *Environment and Planning A* 27: 299–319.

754 Fiddaman, Thomas S. 2002. "Exploring Policy Options with a Behavioral Climate–economy
755 Model." *System Dynamics Review* 18 (2): 243–67. doi:10.1002/sdr.241.

756 Flavelle, Christopher. 2018. "America's Last-Ditch Climate Strategy of Retreat Isn't Going So
757 Well." *Bloomberg.Com*, May 2, 2018. <https://www.bloomberg.com/news/features/2018-05-02/the-u-s-climate-strategy-of-total-retreat-is-failing>.

758

759 Forrester, Jay W. 1969. *Urban Dynamics*. Waltham, MA: Pegasus Communications.

760 Francis, Royce, and Behailu Bekera. 2014. "A Metric and Frameworks for Resilience Analysis
761 of Engineered and Infrastructure Systems." *Reliability Engineering & System Safety* 121
762 (January): 90–103. <https://doi.org/10.1016/j.ress.2013.07.004>.

763 Franck, Travis Read. 2009. "Coastal Communities and Climate Change: A Dynamic Model of
764 Risk Perception, Storms, and Adaptation." PhD Thesis, Massachusetts Institute of
765 Technology.

766 Goldman, Erica. 2010. "Before the Next Flood." *Chesapeake Quarterly*.
767 <https://www.climate.gov/news-features/features/next-flood>.

768 Grothmann, Torsten, and Anthony Patt. 2005. "Adaptive capacity and human cognition: the
769 process of individual adaptation to climate change." *Global Environmental Change*
770 15(3): 199-213.

771 Hauer, Mathew E., Jason M. Evans, and Deepak R. Mishra. 2016. "Millions projected to be at
772 risk from sea-level rise in the continental United States." *Nature Climate Change* 6(7):
773 691-695.

774 Hino, Miyuki, Christopher B. Field, and Katharine J. Mach. 2017. "Managed Retreat as a
775 Response to Natural Hazard Risk." *Nature Climate Change* 7 (5): 364–70.
776 doi:10.1038/nclimate3252.

777 Horton, Benjamin P., Stefan Rahmstorf, Simon E. Engelhart, and Andrew C. Kemp. 2014.
778 "Expert Assessment of Sea-Level Rise by AD 2100 and AD 2300." *Quaternary Science
779 Reviews* 84 (January): 1–6. doi:10.1016/j.quascirev.2013.11.002.

780 Houser T, Hsiang S, Kopp R, Larsen K. 2015. *Economic Risks of Climate Change: An American
781 Prospectus*. Columbia University Press, New York

782 Intergovernmental Panel on Climate Change, John Theodore Houghton, G. J. Jenkins, J. J.
783 Ephraums, and Intergovernmental Panel on Climate Change, eds. 1990. *Climate Change:
784 The IPCC Scientific Assessment*. Cambridge ; New York: Cambridge University Press.

785 JMT. "Charleston Seawall Repairs: The Low Battery Seawall Rehabilitation Project." City of
786 Charleston, 2015. <https://www.charleston-sc.gov/DocumentCenter/View/12229>.

787 Kashem, S. B., Wilson, B. and Van Zandt, S. (2016). Planning for climate adaptation: Evaluating
788 the changing patterns of social vulnerability and adaptation challenges in three coastal
789 cities. *Journal of Planning Education and Research* 36, 304-318.

790 Kleinosky, L.R., Yarnal, B. and Fisher, A. (2007). Vulnerability of Hampton Roads, Virginia to
791 storm-surge flooding and sea-level rise. *Natural Hazards* 40, 43–70.

792 Kopp, Robert E., Benjamin P. Horton, Andrew C. Kemp, and Claudia Tebaldi. "Past and Future
793 Sea-Level Rise along the Coast of North Carolina, USA." *Climatic Change* 132, no. 4
794 (October 1, 2015): 693–707. <https://doi.org/10.1007/s10584-015-1451-x>.

795 Martinich, Jeremy, James Neumann, Lindsay Ludwig, and Lesley Jantarasami. 2013. "Risks of
796 Sea Level Rise to Disadvantaged Communities in the United States." *Mitigation and
797 Adaptation Strategies for Global Change* 18 (2): 169–85. doi:10.1007/s11027-011-9356-
798 0.

799 McNamara, Dylan E., and Andrew Keeler. 2013. "A Coupled Physical and Economic Model of
800 the Response of Coastal Real Estate to Climate Risk." *Nature Climate Change* 3 (6): 559.
801 doi:10.1038/nclimate1826.

802 McNamara, Dylan E., A. Brad Murray, and Martin D. Smith. 2011. "Coastal Sustainability
803 Depends on How Economic and Coastline Responses to Climate Change Affect Each
804 Other." *Geophysical Research Letters* 38 (7): n/a – n/a. doi:10.1029/2011GL047207.

805 Meadows, Donella H., and Diana Wright. 2008. *Thinking in Systems: A Primer*. White River
806 Junction, Vt: Chelsea Green Pub.

807 Miller Hesed, Christine D., and Michael Paolisso. 2015. "Cultural Knowledge and Local
808 Vulnerability in African American Communities." *Nature Climate Change* 5 (7): 683–87.
809 doi:10.1038/nclimate2668.

810 Moser, Susanne C. 2005. "Impact Assessments and Policy Responses to Sea-Level Rise in Three
811 US States: An Exploration of Human-Dimension Uncertainties." *Global Environmental
812 Change* 15 (4): 353–69. doi:10.1016/j.gloenvcha.2005.08.002.

813 Moser, Susanne C., S. Jeffress Williams, and Donald F. Boesch. 2012. "Wicked Challenges at
814 Land's End: Managing Coastal Vulnerability Under Climate Change." *Annual Review of
815 Environment and Resources* 37 (1): 51–78. doi:10.1146/annurev-environ-021611-
816 135158.

817 National Research Council, ed. 2014. *Reducing Coastal Risk on the East and Gulf Coasts*.
818 Washington, D.C: National Academies Press.

819 Neumann, B., Vafeidis, A.T., Zimmermann, J. and Nicholls, R.J. (2015). Future coastal
820 population growth and exposure to sea-level rise and coastal flooding - A global
821 assessment. *PLOS ONE* 10, 1-34.

822 Neumann, James E., Daniel E. Hudgens, John Herter, and Jeremy Martinich. 2010. "Assessing
823 Sea-Level Rise Impacts: A GIS-Based Framework and Application to Coastal New
824 Jersey." *Coastal Management* 38 (4): 433–55. doi:10.1080/08920753.2010.496105.

825 Nguyen, T. T., Bonetti, J., Rogers, K., & Woodroffe, C. D. (2016). Indicator-based assessment of
826 climate-change impacts on coasts: a review of concepts, methodological approaches and
827 vulnerability indices. *Ocean & Coastal Management*, 123, 18-43.

828 NOAA. 2018. "Environmental Sensitivity Index (ESI) Maps." Office of Response and
829 Restoration. 2018.<https://response.restoration.noaa.gov/esi>.

830 Pauly, Mark V (1968). "The economics of moral hazard: comment". *The American Economic
831 Review* 58 (3): 531–37.

832 Payne, Hannah Hanna Susan. 2016. "Engaging the Public in Climate Adaptation Planning:
833 Lessons from Sixteen American Cities." Master's Thesis. Massachusetts Institute of
834 Technology. <https://dspace.mit.edu/handle/1721.1/105058>.

835 Preston, B.L., Yuen, E.J. and Westaway, R.M. (2011). Putting vulnerability to climate change on
836 the map: A review of approaches, benefits, and risks. *Sustainability Science* 6, 177–202.

837 Pulido, Laura. 2000. "Rethinking environmental racism: White privilege and urban development
838 in Southern California." *Annals of the Association of American Geographers* 90(1): 12-
839 40.

840 Rahmstorf, Stefan. 2007. "A Semi-Empirical Approach to Projecting Future Sea-Level Rise."
841 *Science* 315 (5810): 368–70. doi:10.1126/science.1135456.

842 Sahin, Oz, and Sherif Mohamed. 2013. "A Spatial Temporal Decision Framework for Adaptation
843 to Sea Level Rise." *Environmental Modelling & Software* 46 (August): 129–41.
844 doi:10.1016/j.envsoft.2013.03.004.

845 Seachange Consulting. 2011. *Weighing Your Options: How to Protect Your Property from
846 Shoreline Erosion: A handbook for estuarine property owners in North Carolina*. Raleigh,
847 NC: N.C. Division of Coastal Management - North Carolina National Estuarine Research
848 Reserve

849 Shively, David. 2017. "Flood Risk Management in the USA: Implications of National Flood
850 Insurance Program Changes for Social Justice." *Regional Environmental Change* 17 (6):
851 1663–72. <https://doi.org/10.1007/s10113-017-1127-3>.

852 Smith MD, Slott JM, McNamara DE, and Murray AB (2009) Beach nourishment as a dynamic
853 capital accumulation problem. *Journal of Environmental Economics and Management*
854 58(1): 58–71.

855 Titus, James G., and Charlie Richman. 2001. "Maps of Lands Vulnerable to Sea Level Rise:
856 Modeled Elevations Along the US Atlantic and Gulf Coasts." *Climate Research* 18: 205–
857 28.

858 Titus, J G, D E Hudgens, D L Trescott, M Craghan, W H Nuckols, C H Hershner, J M
859 Kassakian, et al. 2009. "State and Local Governments Plan for Development of Most
860 Land Vulnerable to Rising Sea Level along the US Atlantic Coast." *Environmental
861 Research Letters* 4 (4): 044008. doi:10.1088/1748-9326/4/4/044008.

862 Tol, Richard S.J, Thomas E Downing, Onno J Kuik, and Joel B Smith. 2004. "Distributional
863 Aspects of Climate Change Impacts." *Global Environmental Change* 14 (3): 259–72.
864 doi:10.1016/j.gloenvcha.2004.04.007.

865 Tripathi, Raghav, Sidharth Krishnan Sengupta, Adarsh Patra, Heejun Chang, and Il Won Jung.
866 "Climate Change, Urban Development, and Community Perception of an Extreme Flood:
867 A Case Study of Vernonia, Oregon, USA." *Applied Geography* 46 (January 1, 2014):
868 137–46. <https://doi.org/10.1016/j.apgeog.2013.11.007>.

869 Turner, R.K., D. Burgess, D. Hadley, E. Coombes, and N. Jackson. 2007. "A Cost–benefit
870 Appraisal of Coastal Managed Realignment Policy." *Global Environmental Change* 17
871 (3-4): 397–407. doi:10.1016/j.gloenvcha.2007.05.006.

872 US Census. 2016. "American Community Survey (ACS)." <http://www.census.gov/programs-surveys/acs/>.

873 Vensim. 2015. Ventana Systems, Inc. <http://vensim.com/>

874 Walker, Sam. 2016. "Tourism-Related Spending in Dare County Tops \$1 Billion Again." *The Outer Banks Voice*, August 19. <https://outerbanksvoice.com/2016/08/18/tourism-related-spending-in-dare-county-tops-1-billion-again/>.

875 Werner, B.T., and D.E. McNamara. 2007. "Dynamics of Coupled Human-Landscape Systems." *Geomorphology* 91 (3-4): 393–407. doi:10.1016/j.geomorph.2007.04.020.

876 Williams ZC, McNamara DE, Smith MD, Murray AB, and Gopalakrishnan S (2013) Coupled
877 economic-coastline modeling with suckers and free riders. *Journal of Geophysical
878 Research: Earth Surface* 118: 887–899.

879 Woodruff, Sierra C. 2016. Planning for an unknowable future: uncertainty in climate change
880 adaptation planning. *Climatic Change* 139(3-4):445–459.

881 Woodruff, Sierra C. and Missy Stults. 2016. Numerous strategies but limited implementation
882 guidance in US local adaptation plans. *Nature Climate Change* 6: 796–802.

883 Yohe, G.W., and M.E. Schlesinger. 1998. "Sea-Level Change: The Expected Economic Cost of
884 Protection or Abandonment in the United States." *Climatic Change* 38: 447–72.

885 Zahran, Sammy, Samuel D. Brody, Walter Gillis Peacock, Arnold Vedlitz, and Himanshu
886 Grover. 2008. "Social Vulnerability and the Natural and Built Environment: A Model of
887 Flood Casualties in Texas." *Disasters* 32 (4): 537–60.

888 Zavar, Elyse. "Residential perspectives: the value of Floodplain-buyout open space.
889 *Geographical Review* 105.1 (2015): 78-95.

890

891

892

893

894

895

896

897 **Table 1.** Summary of adaptation strategies for sea level rise (SLR). Adapted from Butler, Deyle,
 898 and Mutnansky (2016).

899

Adaptation Approach	Strategies	Description
Protection Hard or soft engineering works designed to prevent flooding from SLR	Shoreline armoring Green infrastructure for shoreline stabilization Beach and dune Nourishment Flood works	Seawalls, bulkheads, revetments to protect structures from higher flood elevations Vegetated buffers, living shorelines, plants, reefs, restored natural features Beach and dune building and re-nourishment projects to counteract erosion Dams and levees to protect vulnerable assets
Accommodation Alter existing assets to reduce vulnerability	Elevate Flood proof Storm water system enhancements Retrofit	Raising the first floor of structures above current design flood elevations Changes to structures to reduce or eliminate flood damage Structures to counteract reduced storm water head differentials and backflow into storm water discharge pipes, e.g., tide gates, storm water discharge pumps Retrofit public facilities and infrastructure to enable continued functioning
Retreat Relocating existing assets to places less likely to be exposed to SLR	Post-disaster down zoning Post-disaster relocation Rolling easements	Down zone built-out land in storm surge flood zones to prohibit redevelopment of properties damaged by flooding Relocate public facilities and infrastructures in anticipation of advancing hazards Prohibit shoreline armoring and require that structures be moved landward or removed when mean high water line reaches a specified threshold

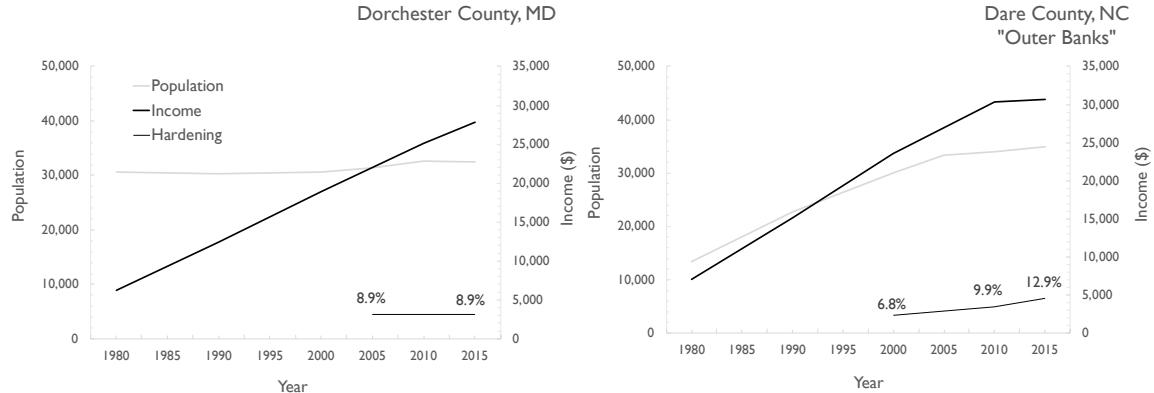
900
901
902

903 **Table 2.** Comparison of wealth, demographics, and densities of case study areas (Source: US
904 Census 2016)

905

Dare County, North Carolina

Population: 35,663
Population Density: 35/km²
Population Change: 19.0%
Median HH Income: \$54,496
Percent African American: 2.5%

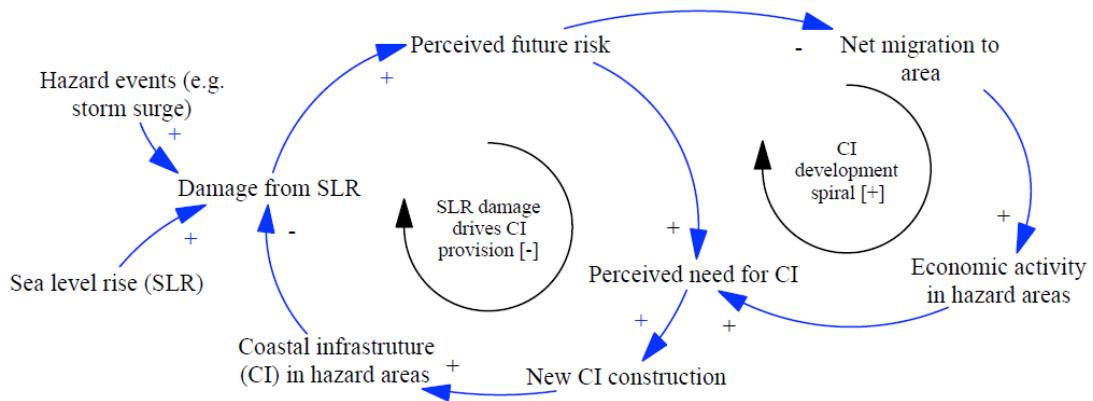

Dorchester County, Maryland

Population: 32,384
Population Density: 23/km²
Population Change: 5.6%
Median HH Income: \$47,093
Percent African American: 27.7%

906
907

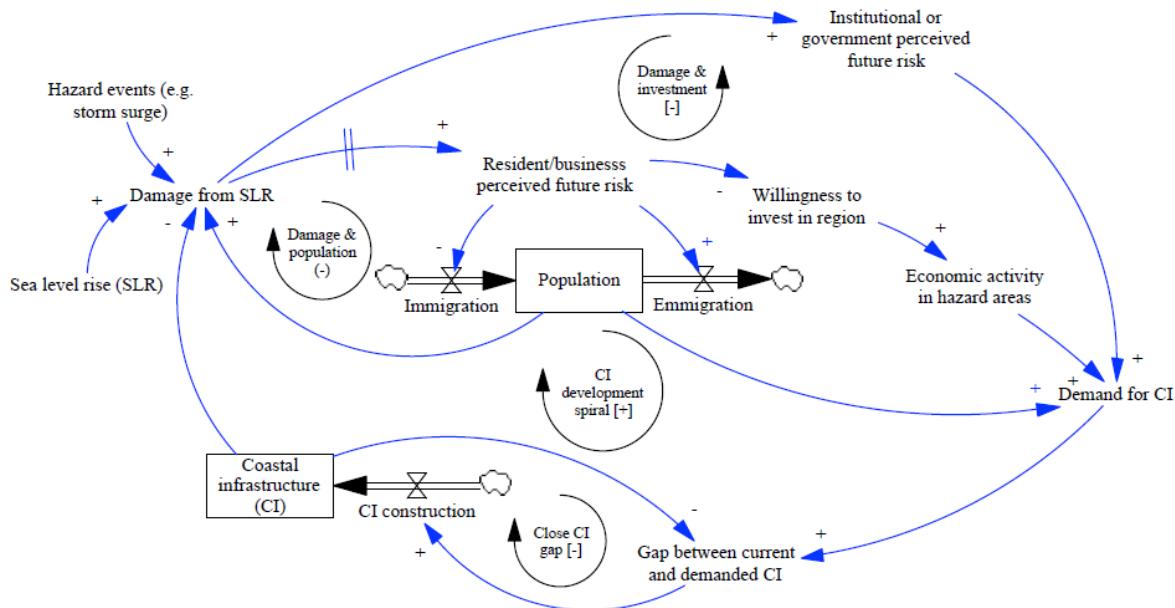
908
909
910
911

Figure 1: Historic population, per-capita income, and coastal hardening (percentage of 2016 coastline length) for (A) Dorchester and (B) Dare Counties.



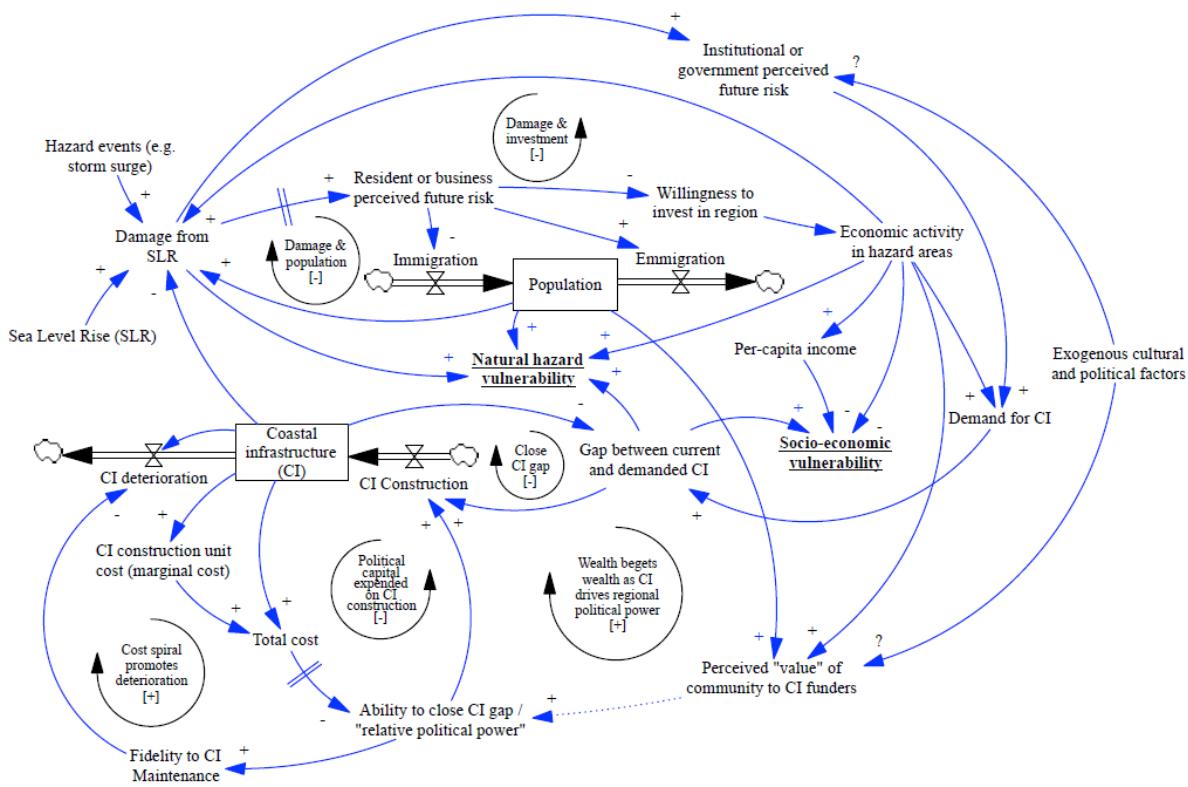
912
913

914


915 **Figure 2:** Feedbacks among hazards, perception, and coastal infrastructure (CI). [+] reinforcing
916 (positive) feedback loop; [-]: balancing (negative) feedback loop.

917

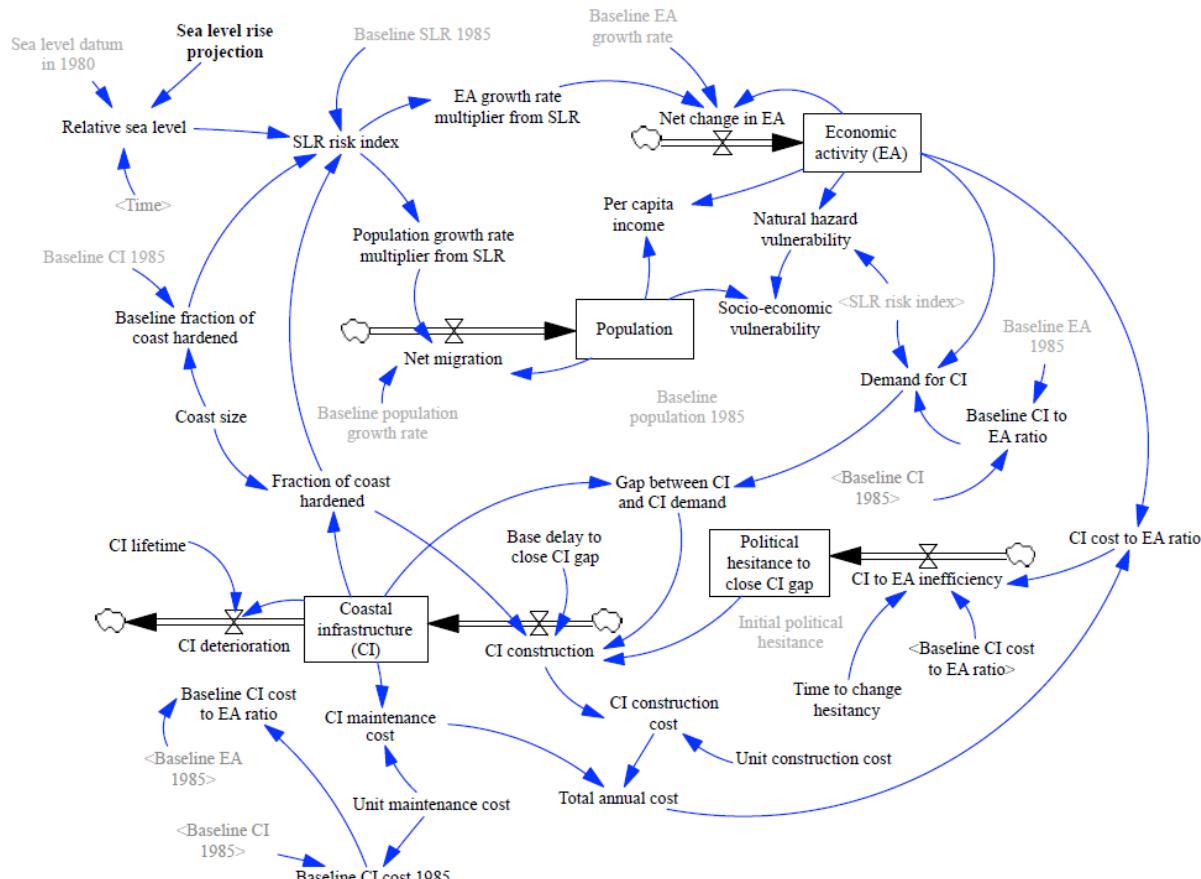
918


919 **Figure 3:** Feedbacks linking SLR hazards, migratory patterns, risk perception, and the stock of
 920 coastal protective infrastructure (CI).

921

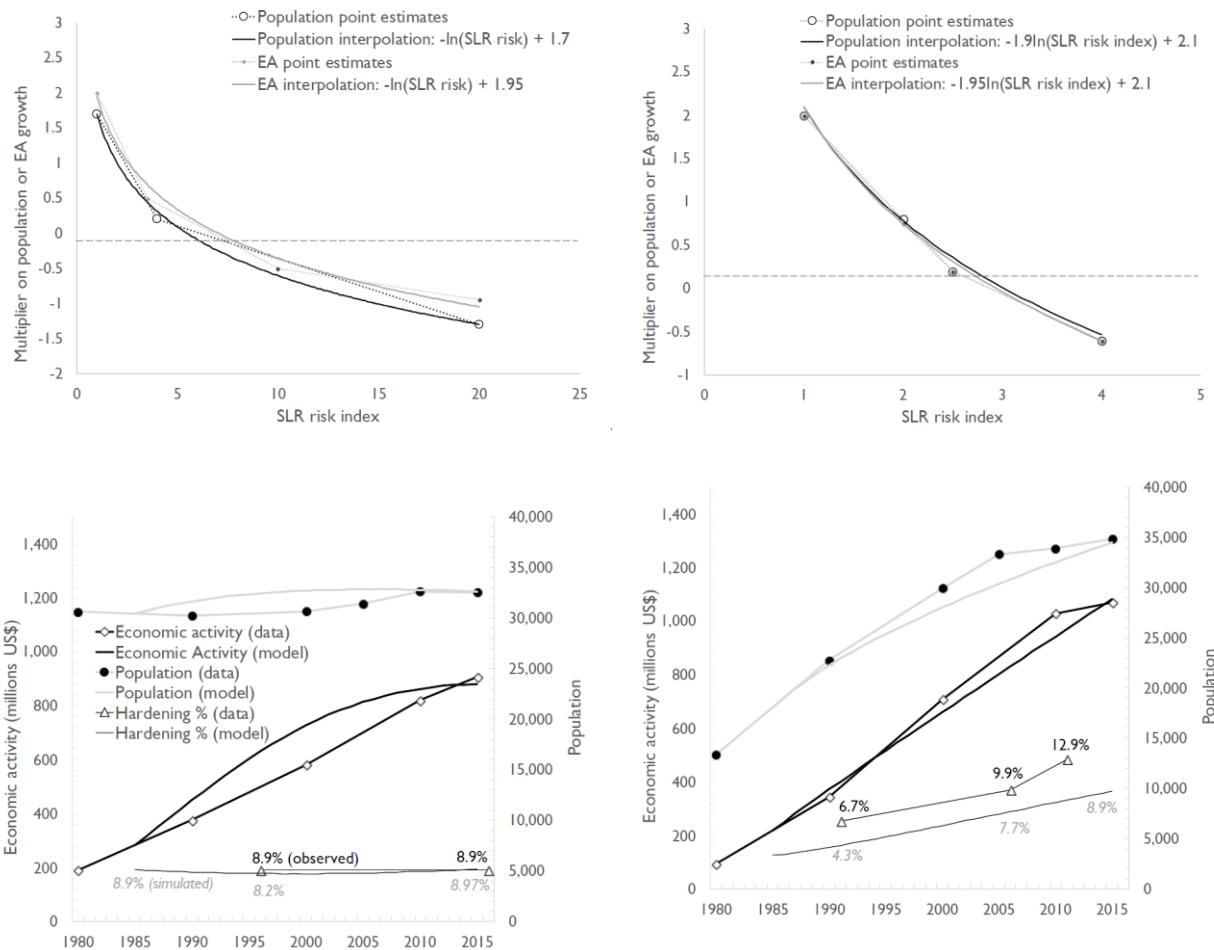
922

923 **Figure 4:** Full dynamic hypothesis, including impacts of political capital and perception of
 924 community cultural and economic value on ability to generate new CI and structures describing
 925 social and natural hazard vulnerability.

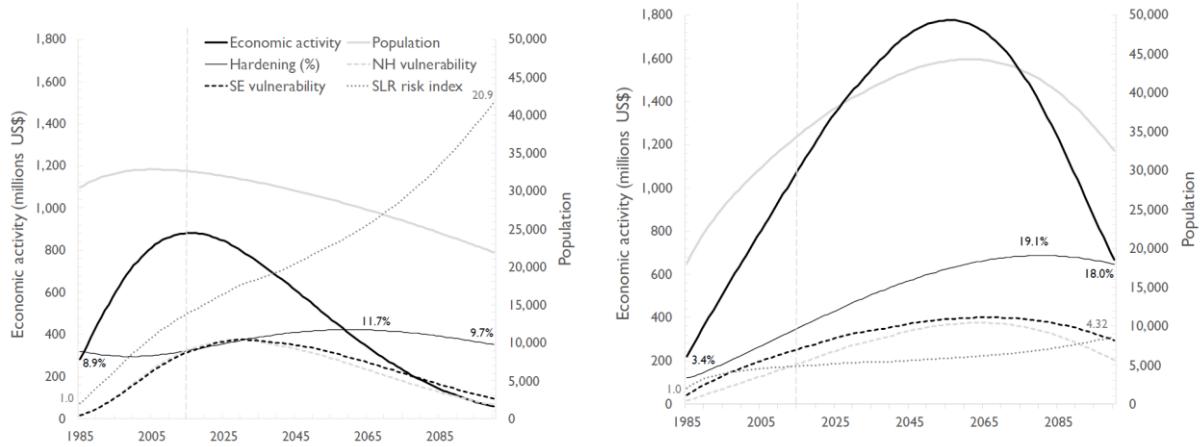

926

927

928 **Figure 5:** Hypothesized qualitative vulnerability trajectories for (A) Dorchester County,
929 Maryland, (B) Outer Banks, North Carolina.



931 **Figure 6:** Simulation model capturing relationships among SLR risk, economic activity (EA),
932 population, CI, infrastructure cost, and political perception of infrastructure investments. Gray
933 variables are baseline inputs and italicized variables are model parameters.


934
935
936

937 **Figure 7:** Initial point estimates and calibrated log-linear functions linking sea level rise (SLR)
 938 risk index and population and economic growth for (A) Dorchester County, Maryland and (B)
 939 Dare County, North Carolina. The model was calibrated for the 1985-2015 period on population,
 940 economic activity (EA), and percentage of coastline hardened for each region. Panels C and D
 941 compare model calibration to data for Dorchester and Dare counties, respectively.

943
944

945 **Figure 8:** Simulated population, EA, coastal hardening, and vulnerability 1985-2100 for (A)
 946 Dorchester County and (B) Dare County. Dotted vertical line shows 2015 calibration endpoint.
 947 Initial, final, and maximum values are shown for percentage of coastline hardened (black), as
 948 well as initial and final values for SLR risk index (gray).

949

950