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Abstract

In this paper, we revisit a singular bulk potential in the Landau-de Gennes free energy
that describes nematic liquid crystal configurations in the framework of the Q-tensor
order parameter. This Maier—Saupe type singular potential was originally introduced
in Katriel et al. (Mol Cryst Liquid Cryst 1:337-355, 1986), which is considered as a
natural enforcement of a physical constraint on the eigenvalues of symmetric, traceless
Q-tensors. Specifically, we establish blowup rates of both this singular potential and
its gradient as Q approaches its physical boundary. All of the proofs are elementary.
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1 Introduction

Liquid crystals are an intermediate state of matter between the commonly observed
solid and liquid that has no or partial positional order but do exhibit an orientation
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order, and the simplest form of liquid crystals is called nematic type. Broadly speaking,
there are two types of models to describe nematic liquid crystals, namely the mean field
model and the continuum model. In the former one, the local alignment of liquid crystal
molecules is described by a probability distribution function on the unit sphere (de
Gennes and Prost 1993; Maier and Saupe 1959; Virga 1994). Let n be a unit vector in
IR3, representing the orientation of a single liquid crystal molecule, and p(x; n) be the
density distribution function of the orientation of all molecules at a point x € Q C R3.
The de Gennes Q-tensor, defined as the deviation of the second moment of p from its
isotropic value, reads

1
Q:/SZ <n®n—§]l3>,o(n)d5. (1.1

Note that de Gennes Q-tensor vanishes in the isotropic phase, and hence it serves
as an order parameter. Meanwhile, it follows immediately from (1.1) that any de
Gennes Q-tensor is symmetric, traceless, and all its eigenvalues satisfy the constraint
—1/3=2i(Q)=2/3,1 =i <3.

In the continuum model, instead, a phenomenological Landau-de Gennes theory is
proposed (Ball 2012; de Gennes and Prost 1993; Mottram and Newton 2014) such that
the alignment of liquid crystal molecules is described by the macroscopic Q-tensor
order parameter, which is a symmetric, traceless 3 x 3 matrix without any eigenvalue
constraint. In contrast with the de Gennes Q-tensor in the mean field model, this
microscopic order parameter in the Landau-de Gennes theory is at times referred to as
the mathematical Q-tensor. In this framework the free energy functional is derived as
a nonlinear integral functional of the Q-tensor and its spatial derivatives (Ball 2012;
Majumdar 2010):

£1Q] =/ F(Q()) dx, (1.2)
Q
where Q is the basic element in the so-called Q-tensor space (Ball 2012)
QdéfHMeRm ‘ w(M) = 0, MT=M]. (1.3)
The free energy density functional F is composed of the elastic part F,; that depends
on the gradient of Q, as well as the bulk part Fp, that depends on Q only. The bulk

part Fpk is typically a truncated expansion in the scalar invariants of the tensor Q
(Majumdar and Zarnescu 2010; Paicu and Zarnescu 2011, 2012)

_a 2y I_’ 3y, .22
Fouk = 2tr(Q ) 3tr(Q )~I-4tr (99, (1.4)
where a, b, ¢ are assumed to be material-dependent coefficients. While the simplest
form of the elastic part F,; that is invariant under rigid rotations and material symmetry
is (Ball 2012; Ball and Majumdar 2010; Longa et al. 1987)
Fou=L1IVOP + L20;QirokQij + L30;Qijok Qir + LaQudk Qij01 Qij. (1.5)

Here, 0y Q;; stands for the k-th spatial derivative of the ij-th component of Q,
Ly, --- L4 are material dependent constants, and Einstein summation convention over
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repeated indices is used. It is noted that the retention of the L4 cubic term is that it
allows complete reduction to the classical Oseen—Frank energy of liquid crystals with
four elastic terms (Berreman and Meiboom 1984; Dickmann 1995; Iyer et al. 2015).
On the other hand, however, this cubic term makes the free energy £[ Q] unbounded
from below (Ball and Majumdar 2010).

To overcome this issue, a singular bulk potential {5 that was originally introduced
in Katriel et al. (1986) was used in Ball and Majumdar (2010) to replace the regular
potential Fp,;x. Specifically, the potential f is defined by

| | >
w| it /Szpm)lnp(n)ds, S <H@ <5 1sis3

Q)= (1.6)

+o00, otherwise,

where the admissible set A is

1
Ag = {p e PEY)| pm) = p(—m), / (n@n—-15)pmds = Q} .
S2 3

In other words, we minimize the Boltzmann entropy over all probability distributions
p with given normalized second moment Q. Correspondingly,

Vvr(0) = f(Q) —a|0)? (1.8)

is used to replace the commonly employed bulk potential F,;. Note that the last poly-
nomial term involves the intermolecular interaction kernel (Maier and Saupe 1959)
and it represents anisotropic contribution to the energy per particle (Katriel et al. 1986).
Further, it is added to ensure the existence of local energy minimizers, where o > 0
is a constant. As a consequence, g imposes a natural enforcement of a physical con-
straint on the eigenvalues of the mathematical Q-tensor. Further, the elastic energy
part F,; could be kept under control under mild assumptions on L1, - - - L4 (Davis and
Gartland 1998; Iyer et al. 2015; Kitavtsev et al. 2016). Interested readers may also see
Golovaty et al. (2020a,b) where a new Landau-de Gennes model with quartic elastic
energy terms is proposed.

Analysis of this singular potential is undoubtedly not straightforward, and there
has been some development in recent years. Concerning dynamic configurations, in a
non-isothermal co-rotational Beris—Edwards system whose free energy consists of one
elastic constant term, namely L term and this singular potential, the existence of global
in time weak solutions is established in Feireisl et al. (2014, 2015), and the convexity
of f is proved in Feireisl et al. (2015). The existence, regularity and strict physicality
of global weak solutions of the corresponding isothermal co-rotational Beris—Edwards
system in a 2D torus is investigated in Wilkinson (2015), while global existence and
partial regularity of a suitable weak solution to this system in 3D is established in Du
et al. (2020). The eigenvalue preservation of the co-rotational Beris—Edwards system
with the regular bulk potential is studied in Wu et al. (2019) by virtue of f. On the
other hand, in static configurations, the Holder regularity of global energy minimizer
in 2D is established in Bauman and Phillips (2016), while partial regularity results
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for the global energy minimizer are given in Evans et al. (2016), and further improved
in Evans et al. (2016) under various assumptions of the blowup rates of f and its
gradient as Q approaches its physical boundary. However, such assumptions are yet
to be verified.

In static settings, the absolute minimizer of the free energy & satisfies the Euler—
Lagrange equation

2
2L1AQ; + (Lo + L) (0 Qik + 040 Ok — gakaszzsij) + 2La 0 (Ot Qi)

L4|VO|? F} 1 9
4VOr S +7tr<—f>8,-j+2aQij=0, 1<i,j<3.

40; Ol ijl+ 3 ij aQij 3 30

While in dynamic settings, a solution to an L? gradient flow generated by £ satisfies

2
%0Qij = 2L1AQ)) + (La + La) (9 Qs+ 04 Q¢ — 50601 Quudiy ) +2Ladk (Quedt i)

L4|VQ/? 3 I
4|3Q| 5,']'— f +7tr(l)5,‘j+2(¥Q,’j, 1<i,j<3.

— L40; Q0 Qs + 90;;i 3 00
ij
(1.10)

If Q stays away from its physical boundary, then both f and 0 f/9dQ are bounded
functions. As a consequence, under mild smallness assumption of L4 both the elliptic
problem (1.9) and the parabolic problem (1.10) admit unique smooth solutions by
direct methods in classical PDE theory. As Q approaches its physical boundary, both
the elliptic and parabolic equations become tensor-valued variational obstacle prob-
lems, while both f and d f /9 Q tends to infinity. Therefore, it is an indispensable step
to achieve their blowup rates for the corresponding PDE analysis in both the elliptic
and the parabolic problems, which is a fundamental issue to be solved.

Motivated by all the existing work, especially the aforementioned studies in both
static and dynamic configurations, as well as future consideration of numerical approx-
imations (see Remark 1.3 for details), in this paper we revisit the singular potential
f, and aim to establish the blowup rates of f(Q), as well as its gradient V f (Q) near
the physical boundary of Q. In view of (1.6), here and after we always assume Q is
physical, in the sense that

1 2
—§<k,-(Q)<§, 1<i<3. (1.11)

First, we provide a result regarding the blowup rate of f(Q) as Q approaches its
physical boundary.

Theorem 1.1 For any physical Q-tensor, assume ,1(Q) < A2(Q) < A3(Q). Then the
functional f defined in (1.6) is bounded above by

1 N1 1
(Q) < —In8v3 — Sln (M(Q) + §) —5n (Az(Q) + 5). (1.12)
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Furthermore, there exists a small computable constant &9 > 0, whenever Q
approaches its physical boundary in the sense that »>(Q) + 1/3 < &, it holds

In16 — 81 L S NG ) - 1.13
n16—8lnx — T — I (1(Q) + 3) — 510 (12(Q) + 3) = £(Q). (L13)

Remark 1.1 It is noted that the result in Theorem 1.1 is consistent with
1 1
— In [ 3 i
2 L@am)de(m(0) + 3)

|=r@=m] (1.14)

— ]
() + 5

obtained by Ball and Majumdar which is described in Ball (2018) and will appear in
Ball and Majumdar (2010).

Remark 1.2 Note that the upper bound in Theorem 1.1 applies to any physical Q-tensor,
while the lower bound is valid when A, (Q) gets close to —1/3 (which automatically
implies 11(Q) gets close to —1/3). Theorem 1.1 indicates that as Q approaches its
physical boundary in the uniaxial direction

1
—=+e& 0 0
3 1
0= 0 —4+¢ O , ek,
3
2
0 0 =-—-2¢
3

f(Q) blows up in the order of — In(A;(Q) + 1/3). Alternatively, when Q is “near” the
uniaxial direction, that is, if 12 (Q) is close (but not equal) to 11 (Q), then any blowup
order of —aIn(A1(Q) + 1/3), 1/2 < o < 1 could be attained. On the other hand,
when A, (Q) stays away from —1/3, f(Q) is of the order —1/21In(A;(Q) + 1/3) as
X1(Q) approaches —1/3.

Remark 1.3 Theorem 1.1 will be of significance for numerics as well, because it implies
that the function

@+ 5 (1@ +5) + 31 (1202) + 5)

is a well-defined, bounded function in the domain of A, A». Hence, by interpolating
this well-defined function, we can obtain an accurate numerical approximation of

F(Q).

Moreover, the next theorem gives a precise blowup rate of V f near the physical
boundary of Q.

Theorem 1.2 For any physical Q-tensor, assume A (Q) < A(Q) < A3(Q). Then
there exists a small computable constant ey > 0, whenever L1(Q) + 1/3 < &, the
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gradient of the functional f defined in (1.6) satisfies

C1 CZ
— 1 = Vof( Q)| = ——. (1.15)
2(Q) + 3 | | M(Q) + 3
with the constants C1 and Cy given by
3 =3 — &Yy (8
cr= 3 i - 0(‘? =0, Cy=+/6me-sup M. (1.16)
IWame 20 .71(5) g=0exp (— 3)lo(3)
Here
af 1 af
Vof =——-tr(=)Is,

and 1o (+) is the zeroth-order modified Bessel function of first kind.

Remark 1.4 We want to point out that (1.15) is consistent with

1 /3 2 1 1

e[ =] =IVer@)| = In | |

2V2 Lre(rm(Q) + 1) | | (0 + 4 Lamde(n(0) +1)
(1.17)

that is obtained by Ball and Majumdar in Ball (2018) and will also appear in Ball and

Majumdar (2010).

This paper is organized as follows. In Sect. 2, we present a proof of Theorem 1.1.
Then, in Sect. 3, we give a proof of Theorem 1.2.

2 Blowup Rate of f

Note that (1.11) is equivalent to Q € D( f), namely the effective domain of f where f
assumes finite values. As proved in Feireisl et al. (2014), f is smooth for Q € D(f).
Since f is rotation invariant (Ball 2012), here and after, we always assume that any
considered physical Q-tensor is diagonal:

>

100 1 2
0= M 0], —§<K1§X2513<§, M+ A+ 23 =0. 2.1

0 A3

o o

Note that as Q approaches its physical boundary, we have A1 — —1/3.
Correspondingly the optimal density function pp € Ap that satisfies f(Q) =
fSQ 0o In pp dS is given by (Ball 2012; Ball and Majumdar 2010)

exp(uix? + puoy? + psz?)

. (0,2 €S 4 pr+p3=0.
Z(ur, h2, 13)

(2.2)

po(x,y,2) =
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Here in (2.2), Z (1, 12, p3) is given by

Z(ur, o, 13) = /S exp(uir® + 2y + sz ds, 23)
which satisfies
Loz _ .+l 1oio; 2.4)
—— =\ + -, <i<3. .
Zowi 3

To begin with, we have

Lemma 2.1 Forany physical Q-tensor (2.1), its optimal probability density p g defined
in (2.2) satisfies

M1 = M2 = U3.
And w; = wj provided A; = Aj for 1 <i # j < 3.
Proof By symmetry, it suffices to prove that u; is strictly increasing in A;, i.e., 1 < w2

whenever A1 < .
Consider eigenvalues A1 < A;. Then it holds

1 1
/ xszdS=M+— <A2+—=/ yszdS 2.5)
S2 3 3 S2

From (2.2) we get

exp {i1x? + pay? — (w1 4+ p2) (1 — x* — yH)}

p =
© 7 Joexpur® + puay? — (1 + p2)(1 —x2 — y2))dS
= m*exp {Qu1 + p2)x® + (1 + 2u2)y},
where
. 1
m (2.6)

 feexp{@ui + p2)x? + (uy 4 2p2)y2} dS

Assume, by contradiction, that ;| > wo. Using spherical coordinates

X = sinf cos ¢
y = sinf sin ¢ 0<¢p<2m 0<60<m,

z =cosf
we get from (2.5) that

A— A

=f oo dS*f ¥’ po ds
S2? S2?

73
= Sm*/ / (C052¢ — sin? b) cxp{(ul — u2) sin290032¢}d¢ exp{(ul +2;/,2)sin20} sin® 6 do
0 0
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= 8m*|:/ : /4 (cos2¢) — sin? ¢) exp {(;1,1 — u2) sin29cosz¢>} do exp{(p.l +2u12) sin20} sin® 6 do
0 0

+ / ’ / ’ (cos® ¢ — sin® @) exp [ (i1 — p12) sin® O cos” d} dep exp { (1 + 242) sin® 6} sin® 6 d9i|
o Jz

=8m* /7 /j(cosqu —sin? @) (exp {(u1 — p2) sin? @ cos? p} — exp { (1 — 12) sin® O sin’ $}) dop
o Jo

>0

exp | (11 + 2u2) sin® 0} sin’ 6 do
>0

due to the assumption that ;11 > wo, which contradicts the fact that 11 < X,. O

Next we can see that the index 1 in (2.2) satisfies
1
Lemma2.2 As A| — —3, np — —oQ.

Proof First, observe that

dln(r + 1) B

— = ln/ xZexp(uix? + puoy? + paz?) dS — In Z(uy, o, 13)
i du s2

_ Je xtexp(uix® + poy? + p3z?) dS ( 1)

= — (A + =
Jeo X2 exp(u1x? + pay? + p3z?) ds !

3

- <M+%)_l[/Szx4deS/gzdeS_(/SzxszdS)z} >0
&

=1

due to Schwarz’s inequality, and the fact that p¢ is not a perfect alignment of molecules
as Q approaches the physical boundary. Hence, as A1 \ —1/3, u is strictly decreas-
ing. It remains to prove | is unbounded as A; — —1/3. Suppose there exists a
constant M > 0, such that u; > —M as Ay — —1/3, then by (2.2) and Lemma 2.1
we see that —M < 1 < pup < u3z < 2M. As a consequence, together with the basic
inequality

26 . T
— <sinf <6, V0<b < —, 2.7
T 2
we obtain
1 5 Jsz x2exp{@u1 + p2)x? + (11 +2u2)y?} dS
rME- = xX“po ds = 3 3
30 g2 Jep exp{ Qui 4+ p2) X2 + (u1 +2u2) y2} dS
——— ———

<0 <0

x x
- Js x2exp {- 3M(x2 + yz)} s 8 f02 cos? ¢ dgp fOz exp{—3M sin? 0} sin3 6 do
- Js2 dS a 4m

T
2”% Jo* exp(=3M6%67do 4 —3Mz?\ (5 4 T —3Mn?
> z—exp( ) 0 d6=—exp( ),
47 73 4 0 16 4
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which is a contradiction. Therefore, such lower bound —M cannot exist, and the proof
is complete. O

Remark 2.1 1t follows from the proof of Lemma 2.2 that in order to ensure ;| < —M
for any M > 0, it suffices to assume

N (Q)+1 T (—3MTL’2>
- < — —).
! 3 16 P\ 4

Now we are ready to prove Theorem 1.1.

2.1 Proof of Upper Bound of f

Proof To this end, we consider Q of the form

1 &2
—3+5 00 e
0= 30 3A20 , _§+?§AZ§A3,O<851. (2.8)
0 0 A3
Using the coordinate system
x =cosf
y = sinf sin ¢ 0<¢p<2m 0<6 <m,

z =sinf cos ¢
we consider the domain

S*=1(1,6,0) €S*| ¢ €[0,b)U [ — b, 71U [x, 7 +b]U 27 — b, 27],
6 € [arccos e, m — arccos 8]}, 2.9)

where 0 < b < /2 is to be determined. Meanwhile, let

1

Pe = %XS*-

Then it is easy to check

4 b T —arccos &
/ ,ogdSz—/ d¢/ sinf do = 1,
s? 8be Jo arccos &

and the second moments with respect to p, are given by

1 (b 3 &2
2 20
/ x,oedSz—/ d¢ cos“fsinfdf = —,
S2 be 0 3

arccos ¢
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1 [? 7 1 /b sin2b e
2 .2 .. 3
dS = — d 0do = —(= — - —
/Sz P be /(.) s g dg arccos & o be <2 4 ><8 )
2

-G-"0-5)

1 [P 5 1 /b sin2b g
2 _ 2 -3 _ o _
/SZZ pe dS = _bs/(; cos” ¢ do sin” 6 dO (2 + )(8 )

arccos & be 4
. (1 n sian)(l 82)
2 4b 3/
/ xy,ogdS:/ yz,ogdS:/ zxp,dS = 0.
§? S2? S2

Therefore, p, € Ag with

2

bpe 0 0
3 3
po| o L_smm 1 _smme 0
6 4b 2 4b 7 3
1 sin 2b 1 sin2b . &2
0 0 -+ — —

6 ' 4b (§+ 4b)3

We need to find a suitable 0 < b < /2, such that

1 sin2b ( 1 sin 2b) &2

Z Z_ =,
6 4 2 4 )3 "
which is equivalent to
sin 2b 2(r2+ %)
T 1-— _—§ (2.10)

Note that sin (x)/x is monotone decreasing in (0, 7], with

. sin x
lim =1,
x—0t X

hence we know (2.10) is solvable with b € (0, 7/2]. As a consequence, R = Q and
using mean value theorem we get

3
x—%<sinx, VO < x <m; —>14y, VO<y<l.
Hence, after inserting x = 2b, y = £2/3 into (2.10) we obtain

2

2 _sin2b 2<1+8 )(A + 1) 2.11)
-— < <1- — =), i
3 2b 3\ 73
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which further implies

b >0G+ 82)(,\2 i %) > 3()\2 n %) (2.12)

In conclusion, we see p, € Ag for Q defined in (2.8), where A1(Q) + 1/3 = 82/3,
and

8 [P 3 1 1
f(Q)f/ pglogpgng—/ d¢/ In—sinfdd =In — = —In8 —Inb —1Ine
s? 8be Jo arccos & be 8be
1 1 1 1
< —ln8f—§1n (AI(Q)+§)—§1n (AZ(Q)+§>. (2.13)

2.2 Proof of Lower Bound of f
There is no doubt that the proof of lower bound (1.13) is far more difficult than that
of (1.12), because we can no longer utilize any specific probability density p in the

admissible set Ag. To accomplish the goal, more delicate analysis is needed.
In this subsection we denote

1 1
8=M(Q)+§, 82)»2(Q)+§. (2.14)

By (2.2)-(2.4), we get

L S epux® + pay? + 1a?)dS _ fo x? exp(-vix? — v2y?) dS

 Jeexp(uix? 4 uay? 4+ u3z2)dS  fpexp(—vix2 — 1y ds
(2.15)
s o y? expGux? + poy? + 132 dS [ y2exp(vix? — v2y?) dS
Js2 exp(u1x? 4+ pu2y? + p3z?)ds Jez exp(—vix? —12y?)dS
(2.16)
where
vi = —QCuir+p2), va=—(ur+2u2). (2.17)

By (2.2) and Lemma 2.1, we see
Vi > vy =u3 —u2 > 0. (2.18)
Besides, it follows from (2.2), Lemma 2.1 and Lemma 2.2 that
V] = —u1 + u3 > —pg — +oo, as &€ — 0. (2.19)
Actually, we can establish a stronger result in the following sense
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Lemma 2.3 There exists a small computable constant 69 > O such that

5> 267

Vs < 8. 2.20
e =0 (2.20)

As a consequence,
(2e —5)
" szz—lnS-i—ln[—], V5 < 8. 2.21)
24e
Proof Using (2.16) and (2.18) we have

Je2 y? exp(—vix? — 1p) dS _ Je2 v exp(—vix?) dS

S > = .
- Jeo exp(—vix2)dS Jeo exp(—vix2)dS

(2.22)

We proceed to estimate the numerator and denominator of R.H.S. in (2.22), respec-
tively. By Remark 2.1,

v > —u > provided § <

g 6o
Together with (2.7) and spherical coordinates

Xx = sinf cos ¢,

y = siné sin @, 0<0=<m 0<¢ <2nm,

7 = cos6,

we have

) 2 % 2 0 cos? 2t % — 4 0% cos? ¢
/ exp(—vix2)dS = 2/ [ sinfe V18I 0cos"d 4o < 2/ / fe 2V dodg
s? 0 0

21 | e cos? z 1 —eM sin? ¢
7/ d¢ = 712/ —_— d¢
0

S vicostd V1 sin? ¢

pig

<4/Wl Lot d¢>+4/2 do.
~ Jo vip? v vip?
N — v
—_—

=J
! =Jp

Note that
1 — V19’ v, — 2 1
sup 6—2—1:11<— and Jzzug—.
pe.1/ iy V1P Vv Vi Vv
Hence, o
exp(—vix )d — (2.23)
/s =y
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Meanwhile, using (2.7) and integration by parts we obtain
/ y2 exp(—v1x2) ds
S2
27 z - )
=2 / sin’ ¢ / sin® e V1870 C0s" ¢ 4o ¢
0 0

2\3 [ z ,
=2(=) / sin2¢>/2 0310700 g
0 0

T
4\3 [P sin ¢ 72 72
=(— _— 1—(—v cos® +1)ex (——v cos? )]d
(7T>/0 21)120054(;)[ 4! ¢ P 4 ! ¢)|de
(4>3/2” cos® ¢ [1 (712 . 2¢+1> ( 2 2¢)]d¢>
=(— ——+—|1—(—v;sin exp( — —v;sin .
T 0 2v%sin4¢ 4! P 4!
(2.24)
Note that
d/m? x2 2 2
&[(%vlz + 1>€_TV1Z] = —%vlze_T”” <0, Vz=>0.
Hence,
w2 2
1— (Tvl sin® ¢ + 1) exp(— - sin2¢> >0, V¢ el0,2n),
and (2.24) continues as
/yzexp(—lez)dS
S2
- 4\3 % cos2¢ 1 72 .2 1 72 .2 4
_<;> /zf 2vlzsin4¢[ _(TVISIH ¢+ )exp(—fvlsm ¢)] ¢
Ty
4\3 (7 1 o, o,
> (;) /} m[l—(TV] s ¢>+l>exp(—7m s ¢)]d¢
vy
4\3 (% 1 2, S
> <;> /7% 74v]25in4¢[] *(TVI sin 7 +l>exp<* S visin ”ﬁlﬂ d¢
43 (7 1 72 )
Z(;) /zf 4vlzsm4¢[l—2exp(—fv1%m - vl)]d¢ (2.25)
Evn
By (2.19),
2 2 w2

2 1
lim exp 7 Visin i ,Lm exp 7 visin —~ »
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Thus, by Remark 2.1 there exists a small computable constant §g > 0, such that

2,2 5
1—2exp(——v1sm )zl——, Vi < .
4 TV} 2

This further implies

/sz Y exp(-vix’) s = (1 - 2%)(;)2 /4} mw = (1- 2%)(%)% /; @dqﬁ
™ TV

V8 < 8. (2.26)

To sum up, we conclude

= g dmyiepnatds /
Je exp(—vix2)dS  ~ 3ef1 Vv
_ 2e —5) o2
24e

, Vé < do,

completing the proof. O

Remark 2.2 Lemma 2.3 implies thatas A (Q) — —1/3, thatis § — 01, we have both
Vi, Vp — —+00.

Next, we denote
A(}) =vicos’d +vsin®p, 0<¢ <2r. (2.27)
We can establish the following estimates

Lemma 2.4 There exists a small computable constant 8y > 0 such that

2 2
- — 2 -
/ A(‘f’) d¢ < f exp(—vix? —1yy?)dS < / A((b) do, vV < 8o, (2.28)
4 cos? ¢ s 74 [ cos? ¢
posc} /0 A2) d¢ < / xZexp(—vix? — 1py?)ds < I3 220 d¢, V8 <o,
(2.29)
4 (7 sin?¢ a* (27 sin? ¢
=) A2 d¢ < / v exp(—vix® —1y?)dS < — 6 2% dp, V8 <.
(2.30)

Proof To begin with, by (2.18) we have
A($) > vy cos® ¢ + vy sin® ¢ = vy.
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This together with Lemma 2.3 implies that there exists a small computable constant

80 > 0 such that

—22A0) —n2uy

e 4 <e4§

Q| =

. V8 <. 2.31)

N =

Using (2.7) and integration by parts, we obtain

2 z
f exp(—vix2 — vy ds =2 / / sin® exp [ — A(¢) sin® 6] dod¢
S? 0 0

IA

2 z
2 / / "0 exp[ — 4A(p)m20%] dodg
0 0

2 712 o 7T2€_A(¢) ].[2 2 1
= / T dp < / —dg,
0 4A(¢) 4 Jo AP

and together with (2.31) we have

2 %
/ exp(—vix? —1yy?)ds = 2/ / sin@ exp [ — A(¢) sin® 0] d0dg
S? 0 0

4 [27 z 5
> _/ / Oexp[ — A($)0”] dode
T 0

0

27 —A@)?/4
_E/o Apl " Jdo

[
TJo A@@)

v

concluding the proof of (2.28).
To proceed, using (2.7) and integration by parts again, we get

2 z
/ xZexp(—vix? — my?)dS = 2/ / cos® ¢ sin® 6 exp [— A(p) sin’ 0] dode
s2 o Jo

2 z
<2 / / " cos? ¢ 03 exp [ — A(p)am 26 dodp
0 0

74 27 cos2 b

_ _ »—A@)
=% | gl @ + 1)}

74 2 cos?
=T | W

and similarly
/ x? exp(—v1x2 — v2y2) ds
S2
2t %
= 2/ / cos® ¢ sin® @ exp [ — A(¢) sin® 0] ddd¢
0o Jo
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2 z
>2 3)3/ /2 cos? ¢ 0% exp [ — A()62] dodg
v 0 0

b4 AZ(¢) 4
8 [ cos?¢
=], T

8 [ cos?p T2A() —72A(p)
D)y AXg) 4 exp | 4 Jas

I

27 cos? ¢ 7r2A(¢)
I

6]

CY [0 Lot s o

Hence, to attain (2.29), it remains to estimate /| and I». First, observe that ze % €

[0, 1/e] for z > 0, hence

1 [ cos?¢
L < - ———do.
2o T

Besides, it follows from (2.31) that

1 1 27 cos? ¢

To sum up, we conclude

4 [ cos? ¢
2 2 2
\/SZ.X exp(—le — 0y )dS > F/(; md¢,

hence the proof of (2.29) is complete. The proof of (2.30) is completely analogous to

that of (2.29).

O

As a matter of fact, all the bounds in Lemma 2.4 can be achieved explicitly in terms

of vy, vo.

Lemma 2.5 For any vy, vy > 0, the following identities are satisfied:

/2” L /7 L gp— 2%
0o AP 0o Al T S
27 sin? ¢ 7 sin ¢ b
2V g =4 dp = ,
Alww¢ Alwm¢ vafoivs

/2”cosz¢d¢_4/§cos2¢d¢_ b4
o AX¢) T Jo A% T vy
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Proof The proof relies on direct derivation of these anti-derivatives. Note that

1 sec? ¢ 1 1 V)
— _dp = dp = a(. |2
/A(¢) ? /V1+V2tan2¢> ¢ «/—vwz/H( % ng)’ (\/:ta“‘b)

1 %)
= arctan( /—tan¢>) + C.
A/ V1V2 V1

Hence,

/2”;d¢_4/§ : d¢ = ! arctan(\/Etan¢)g— 2
o A T Jo Al T Jvim vy 0 S

Next,

sin? ¢
d
/A2(¢>) ¢

_/ tan® ¢ sec? ¢ Ao — 1 (v1 + vo tan? ) sec? ¢ vlf sec? ¢

dp— -

(v1 + vy tan? )2 T w (v1 + vy tan? ¢)2 vy

= ! / ! d(\/gtanqb)
= /Vivavy 1+( %tan¢)2 V1

1 1 v
T v / [1 +(\/%tan¢)2]2 d(\/vj?tantb)

(v1 + vy tan? )2 do

1 1 1
= m arctan (\/%tanzﬁ) — Jovan / [1 B (\/%tand))zr d(\/zj?[anqb) .

I

. _m .
By setting u = /7% tan ¢ we obtain

1 (0=tanu) / 5 sin(20) 0 1 u arctan u
I = du O 0do = Jic=o 4 e o
! /(1+u2)2 " cos s trtCEgiyaet ot

Thus,

. 2 .
1 / 1
/Slg—(pd¢>=—arctan( 2tantb)—— COS¢SIH¢. >— +C,
A%(9) 2/vivav V1 2v2 vy cos2 ¢ + v sin® ¢

and henceforth

s

/‘271@@5_4/’5 sin” ¢ d¢ = #arctan(\/gtanqb) . _r
o A2¢) T o A2 T Jvimwm Vi 0 Vi
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Similarly,

/ cos? )
A2()

kel tan qb)

1 /‘ 1 d(
Vi/Viv2 [1 T (\/%tanq&)z]z V]

1 Vv 1
= ———  arct =t —
2. /vivavy arctan (\/ Vi anqb) +

2v1 vy cos? ¢ + vo sin? @

sec” ¢ _
9= /(V1+V2tan 2¢)? 1=

I
cos ¢ sin ¢

Hence,
2 2 z 2 z
cos” ¢ 2 cos” ¢ 2 V) 2 T
—d¢=4/ ¢ = ———arctan (/| — tan ¢ = —.
/(; A2(¢) 0o A%(9) NI <\' vy ) 0o Vv

m}

By virtue of Lemmas 2.3, 2.4, and 2.5, we are ready to prove the lower bound (1.13)
in Theorem 1.1.

Proof of (1.13)

Let §p > 0 be the minimum threshold from the previous lemmas. By (2.15), (2.16),
Lemma 2.4, and Lemma 2.5 we have

_Je x% exp(—vix® — 1py?) dS 7{_2 f()zﬂ iXo;(ij)) o 7 1 (2.35)
~ Jeexp(—vix? —vpy?2)dS 1 02” ﬁ(p) dé VRN ’
_ Je x2exp(—vix? — vpy?)dS % 0271 Zozs(z(;; de 81 2.36)
- Je2 exp(—vix? —12y?)dS = 02” ﬁ de TSy’ ’
5= Jo2 y? exp(—vix? — vpy?) dS _ 16 ()ZH 22(2;; do 77_5L @37
Je2 exp(—vix? — 12y?)dS 1 02” ﬁ@ de 320, ’
S YR T T o L T N
Jeexp(—vix? —vpy?)dS 2 per ﬁ dp v

These estimates (2.35)-(2.38) together with (2.2), (2.17), Lemma 2.4, and Lemma 2.5

yield

1
f(Q)=—an+ZM()”.+§) _

—InZ —evy — 2 — (U1 + @2)

3

i=1

—InZ +epuy +8p2+ (1 —e—38)(—u1

— K2)

=—1In [/y exp(it1 + o) exp(pix? + puay? + psz?) dS] — eV — 81
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7T2 2 1
= —ln/ exp(—le2 — vzyz) dS —evy —d8vy > —1In [—/ q&]
2 0

4 A($)
—&ev] — 6y
1 2 7
> Eln(vlvz) —In27 —In T 16
1 T
> —Eln(f;S)—i—ln 16—81n71—%, V3 < &, (2.39)

concluding the proof of (1.13).
Remark 2.3 Actually, (2.39) also provides a proof of the upper bound of the order

1 1 1 1
C— -1 (A -)—-1 (A -)
5 n 1(Q)+3 7 2(Q)+3
for an explicit constant C. However, it requires A, (Q) to be sufficiently close to —1/3,
which is not necessary in the argument regarding the upper bound of f provided in
the previous subsection.

3 Blowup Rate of Vf

In this section, we shall finish the proof of Theorem 1.2, which plays a crucial role
in the proofs regarding regularity results of the relevant solutions in both static and
dynamic configurations (Evans et al. 2016; Geng and Tong 2020; Lu et al. 2020). The
argument in the proof of (1.13) is no longer valid here in that now we only assume
X1(Q) is sufficiently close to —1/3.

To this end, we shall compute all five components of Vg f(Q), and state that only
the “radial” and “tangential” components of Vg f are nonzero. Then we will be focused
on the estimate of its “radial” component only.

Lemma 3.1 For any physical Q-tensor of form (2.1), it holds

2df (0t 3
Vrudf(Q)=\/; fff) _ \/;m, 3.1

||
Vian f(Q) = \/; f(m + 2u2). (3.2)

Here Vyqaq f(Q) (resp. Vian f(Q)) is defined in (3.3) (resp. in (3.4)) as follows.

Proof Recall from Geng and Tong (2020, Lemma C.1) that for a given physical Q-
tensor of form (2.1), its projection on the physical boundary is

0 0
O )

1
3

o' =

0 0
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and their distance is

e 6 1
d(Q)=10- 0" = %(/\1 +3).

Let us introduce

M O ¢ X 00
oo Elomo), o= [0 e
e 0 A3 0 & A3

And for the sake of convenience, we refer to le) — Q (resp. ng) — Q) as the
radial direction (resp. tangential direction). Note that these five directions Qg) -0,

1 <i < 5 are orthogonal to one another in the sense that their inner product

(09 —0): (0¥ —0)=0, 1<i#j<5.

Step 1: radial component. We first calculate

- ONE (1)
w SO~ F(Q) _ @M (3.3)

Vradf(Q) = lim
e—0 |Q§l) — Q| de

e=0

Let us denote pél) the associated Boltzmann distribution function of f (le)):

1 1 1
o et @22 + 1l @y + 1f @2
log - Zé])

1 1 1
z{ = /S Coxp {ui @ + 15" (0)y” + s (0} ds,

. (x,y,2) € S%

1wVe) + 18 @) + i’ e) =0,

(1)

1 0Z 1

— fl) =A§‘)(g)+§, 1<i<3.
Zg o O,

Here A;l)(e)/s, 1 <i < 3 are eigenvalues of Qél). Clearly, pg (resp. ui,i=1,2,3)is
the optimal Boltzmann distribution (2.2) (resp. Lagrange multipliers) associated with
Q. Note that

e

2

&

AWey=r—e, AP =1+ 5

e =a +
As a consequence, direct computations give
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(1 (1) 3
df(Q:") dIn Zg d ) [ (1 1}
=— + — E : Al —

de de de : i @2 ) 3

_ aang (1) 0 m o »
) m()ds ()+Z de i (6)[)‘ (&) + }+ZM (6) i (e)

=0

0] 0]
_ _M(ll)(g) + My (&) -; 3 (8)’
which gives (3.1) after evaluating at ¢ = 0.
Step 2: tangential component. We proceed to calculate

@) 2)
f(Q ) — f(Q)Z\/;df(Q ) (3.4)

def .

e=0

Analogously, we denote p, ) the associated Boltzmann distribution function of

F(0P):

@) @) ) (.2

exp{ui” (@)x% + u5” (€)y? + uy (e)z
,05(2) - { 1 20 } (x,y,7) € S%,
Zéz)zfg exp {1? ()x% + 1P )y + uf ()22} dS,

1P e) + 1P @) + uf ) =0,

1 az®
72 ou (2)

<2)(>+ 1<i<3.

Here )»52) (e)'s, 1 < i < 3 are eigenvalues of Q§2). Apparently pg (resp. ui,i=1, 2,
3) is the optimal Boltzmann distribution (2.2) (resp. Lagrange multipliers) associated
with Q. Note that
2 2 2
Wey=r, 2@ =r+e 2@ =1 —e

Then direct computations give

df(Q (2)) _9ln z& (2) e @ 1
e 1? (e )de (e )+Z Hi (8)[Ai (8)+§]

=0

3
d
DN NOE ORI T ORI O}

i=1
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which leads to (3.2) after evaluating at e = 0.
Step 3: other components. We show that all three other components are identically
zero. We first calculate

w o FO) = fQ) V240
V3f(Q) = 1 W =T 4 8:0. 3.5)

Analogously, we denote p,  the associated Boltzmann distribution function of

F(09):

3 3
G) _ eXp {.ul )(S)x + M( )(5)}’ + M( )(5)22}
Pe 70

Z£3)=/S exp{ul3)(s)x +,u(3)(s)y +,u(3)(s)z2}dS

. (x,y,2) €S

1w Pe) + u“) &)+ ui(e) =0,

1 azd

(3) .
()+ 1<i<3.
Zma(%

Here k§3) (e)’s, 1 <i < 3 are eigenvalues of Q§3). Once again, pg (resp. ui,i=1, 2,
3) is the optimal Boltzmann distribution (2.2) (resp. Lagrange multipliers) associated
with Q. Note that

A A — /(A — )2 2 A A A — Ao)? 2
A?)(s): 1+ A2 \/(21 2)"+e a)»(zB)(S)Z 1+ 2+v(21 2)”+e¢ 7)%‘3)(8):%3
Then direct computations give
drfy = amzd 19 ) + Z 3)(6)|:)»(3)(8) n }+Z (3)(5) )»(2)(8)
de - BMG)( ) dg M

=0

nt? (s)—A“)(e) + N(s)—x@) ().
Case 1: A1 # Ap. Then

ar@eM | ude e
de oo 2 Ju—r)?+e?

3
') e _

+ =
e=0 2 YV (S )\2)2 + g2 e=0

Case 2: A1 = Ap. Then A(13)(8) =Al—&, A(23)(8) = A1 + &, and correspondingly

drf”)

= _ =0,
T de u1+ u2
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due to 2.1 and the assumption A; = A». In a similar way we can show that the other
two components are identically zero. Hence, V f(Q) — 1/3tr(V f)I3 depends on

Viad f(Q) and Vg, £(Q) only. ]
As an immediate consequence, we have

Corollary 3.1 For any physical Q-tensor of form (2.1), it holds

Lo er@|

3.6
" Vaa f(O) T G0

Proof It suffices to prove the upper bound. It follows directly from Lemma 3.1 that

2 2 > 3 1
Vo /(O = [Vraa (DI + [Vian f (D) = S] + 5 (1 +212)".
By (2.2) and Lemma 2.1, it is easy to check
3ur < pup +2p2 <0,

which implies

> 3 1
Vol (@) = St +5Gm)* = 6ui,
and further together with (3.1) yields

_ Ver@f _ el

T Vead f(Q1P T 303

Remark 3.1 It follows from Lemma 3.1 and Corollary 3.1 that, to estimate the blowup
rate of Vg f(Q)| as A1(Q) — —1/3, it suffices to estimate fi1.

[Proof of Theorem 1.2] The proof of Theorem 1.2 consists of the following two
propositions, which provides the upper bound and lower bound of |V f, respectively.

Proposition 3.1 For any physical Q-tensor of form (2.1), there exists a small com-
putable constant gy > 0, such that

C

At

1
Vo f (@] = provided 0 < 11 + 3 < &, (3.7

where Cq is given in (1.16).
Proof To begin with, we see from Lemma 3.1 that

3
Vo fO) = [Viaa f(Q) = S (3.8)
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where 11 is the Lagrange multiplier associated with the Boltzmann distribution func-
tion of f(Q) given in (2.2). Hence, it remains to estimate 1 in terms of A1 (Q) +1/3,
as A1(Q) approaches —1/3. From (2.15), (2.16) we see

1 Jo2 % exp(—vix? — 1oy dS

A - = . 3.9
D)+ 3 Je2 exp(—vix? — 12y?)dS (3-9)

Here vy, vy are given in (2.17). Recall that
vi>1, v >0. (3.10)

Step 1: Estimating the numerator in (3.9)
Using the coordinate system

v, 0) E (x, V1 —x2cos0,v/1 —x2sinf), 0<x<1,0<0<2m, @310

whose surface element is given by |% X g—g| =1, we get

/ xZexp(—vix? — 1y ds = 2/ xZexp(—vix? — 1y?)dsS
§2 $2n{x>0)
1 2 2 9 2
_ 2/ 2o Vix [/ o~ v2(1—x)cos "d@] dr.
0 0

(3.12)

Note that the zeroth modified Bessel function of first kind (Olver et al. 2010) is
represented by

1" - 1 Eom
10(5)=; \ exp(Ecos@)d@:ZW(z) , (3.13)
and Ip(&) = Ip(—£&), hence we have
2 2 2 2
oy (lox?)ycost 6 1p —u(1 —x?%) / —v2(1 — x%) cos(26)
[) e 2 dG—exp{72 }0 exp{—2 }d@
(1=20) —n(=xH)) (7=l —x?)cos(n)
= exp{f}/o exp | = an
_ 42 T _ 42 . T 42 .
:exp{ Vz(l2 x )}[/0 exp{ va(l ;)COS(n)}dnJr/O exp{l)z(l xz)COS(n)}dn]
—o(] — 2 _ 2
=2ﬂexp{ v2(12 o )}IO[VZ(IZ i )].

Inserting the above identity into (3.12), together with (3.10), we obtain
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/ %2 exp(—le2 — vzyz) ds

_471/1)626 vi? {_UZ(I =) }I [UZ(I;XZ)]dx

an [ g [P 20D,
> dre lx‘)ﬁxzexp{—vz(g—x )}IO[VZ(IZ_XZ)]dx (3.14)

Meanwhile, since (Olver et al. 2010)

d [T
3 —[e ¥ T0(®)] = e F L) —10(®)] = e—/ (cosf — 1) exp(& cos6)df < 0,
§ 7 Jo

the function & > e =51y (£) is strictly decreasing. Correspondingly we have

_ 1— 2 1— 2
X exp{ va( 5 a )}IO[UZ( 5 a )] is strictly increasing for x € [0, 1].
(3.15)
By virtue of (3.15), we get
. —n( =x) | rnd —x?) —vy, (12
inf  exp { }IO[ ] = exp (—)Io(—),
xel0,1/ V1] 2 2 2 2
which together with (3.14) implies
5 4 v r 2
by exp( VX< — 1y 2yds > — exp (—)Io(—) dx
S2 e 2 2 0
4 -V v\ -3
= S (T>Io(?)vl 2 (3.16)

Step 2: Estimating the denominator in (3.9)
Similar to the last step, we have

1 _ 1 — 1 — 2
/ exp(—vix? —1py?)ds = 4nf e ¥ exp{ UZ( x) }IO[VZ( al )] dx
S? 0

2
1
7 —1(1 — x? 1 -
:471/\/26_””‘2 exp{ felCint )}IO[UZ( a )]dx
) 2 2

+ 4 /1 1 exp { —va(l — %) }10[”2(1 — xz)] dx (3.17)

L 2 2

S
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Recall (3.15), then we see

1 _ 42 42 1 v — v
/ e,mzexp{ vy (1 x)}lo[vg(l x)]dng e*%dx:2 fzeﬁ,’
il 2 2 il

V2 V2

/0% e—Wz exp { _VZ(IZ_ ) }IO[VZ(] 2_ XZ)] dx <exp (%)Io(%) /0% e‘””‘z dx

< exp (%)Ig(%) /OOO e*lez dx = exp (%)lo(%)\/%

Since & > e §/*y(&/4) is decreasing, while & +— Iy(£/4) is increasing for & > 0,
and vy < v, v1 > 1, there exists a computable, universal constant Ag such that

Z—ﬁ -y - (—v1> T - (—vl)l (Ul) T
2 ¢ = exp 4 4v; — P 4 0 4 4y

<exp (%)h(%) l, Vv > Agp.

S

To sum up, we conclude

[ exp(—v1x2 — vzyz) dS < 4mexp (_—\)2>Io(£) 1 Vv > Ag. (3.18)
S2 4 4 V1

Step 3: Combining both estimates in (3.9)
We get immediately from (3.16) and (3.18) that

Since —3u; > v > —% W1, it remains to bound the last fraction in (3.19). Since
e 5Ip(€) > 0,VE > 0, and is equal to 1 at & = 0, it suffices to show

)1
M(Q)+l— L exp(52)To(

= Yy > Ap. 3.19
3 Bey/mvrexp (52)1o( =0 @19

INNISN

>0 (3.20)

The Taylor expansion of e £Iy(€), for £ > 1, is (Olver et al. 2010)

e = —[e b+ 1ot et s 06 h]
V21 8 128 :

hence the limit in (3.20) is equal to 1/+/2. Thus, one can establish from (3.19) and the
fact —3u; > vy > —%m that

A1(0) +

2_

n . Yy = Ay,
=&
1 SKﬁ SZOe 5 IO(%)

11 .fe*m@)
V
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which further gives

1 1 1 —£7 2A
A(0) + 3 > inf & 0(5), provided u; < —TO. (3.21)

1 9ey/T €20 03y (§)

In view of Remark 2.1, there exists a small computable constant &y > 0, such that

2Ag ) 1
i < — 3 provided 0 < A1(Q) + 3 < &.

In all, using (1.16) we conclude that from (3.21) that

V6 C
Vof(Q)| = |Viaa f(Q)| =2 ——p1 > ———, provided
Vor @)= Vs @2 T2 ity
1
0 <1i(0) + 3 < ¢o, (3.22)
completing the proof. O

Proposition 3.2 For any physical Q-tensor of form (2.1), there exists a small com-
putable constant gy > 0, such that

C
A+

1
Vo f(Q)| < . provided 0 < Ay + 3 < &0, (3.23)

1
3
where C» is given in (1.16).

Proof In contrast to the proof of Proposition 3.1, we need to obtain suitable upper
bound on the numerator of (3.9), but lower bound on the denominator of (3.9).
Step 1: Estimating the numerator in (3.9)

Using the coordinate system (3.11), similar to the proof of Proposition 3.1 one can
establish

1 2 2
2 —v (1 — 1-—

/ xZexp(—vix? — vzyz)dS=4n/ xZemVix exp{ v2(2 al )}IO[UZ( al )]dx

SZ

0 2
=47 /% x2e1 ex {_UZ(I —x?) }I [UZ(I — x2)] dx
= P 2 o0
1 _ 1— 2 1— 2
. fL JEpE exp{ 1J2(2 x )}IOI:VZ( - x )]dx,
7
= 4 (J; + J). (3.24)
In view of (3.15), we get
1
2—42 _v
b < / Ca%e dy = zfe—z‘, (3.25)
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and

Vl 1
e 2 1 2 2
—_—t — e " dx
|: 2«/51)1 21)lw/() j|
vy
e 2 1 +oo 2
=) - — 4+ — e V¥ dx:l
[ 2\/51)1 2v; /()
vy
v %) e 2 ﬁ -3
_ AT <_)[__ aid 2], 3.26
exp 4)0 T2, T (3.26

Since vy < vy, and & > e 51y(&) is decreasing, we have

0< 7 =
exp ( — f)lo(%)ﬁ/4vf exp ( - Tl) (Tl) /4U1
4v1%
- —> 0, as vy - 400
() v

Hence, there exists a computable constant Ag > 0, such that

1%} 1953 \/_ _3
Frewn (= (P55 T
PAT )0y 2¢§U1
3
< 47 exp ( - Z>IO< )J_vl 2. VY > Ag,

which inserts into (3.24) yields

/ x?exp(—vix? —vyH)dS <4 (Jy + Jo) < 4n
S2

< exp(— Z)Io<”2)fvl . Yo > Ao (3.27)

Step 2: Estimating the denominator in (3.9)
Using (3.10), the coordinate system (3.11) and (3.15), we get

1 _ 1— 2 1— 2
/ exp(—lez—vzyz)dS:4rr/ eV exp{ vl = x )}Io[vz( 3 a )]dx
S2 0

2
>4n /0ﬁ ey’ exp { —U2(12— x%) }Io[vz(l 2— xz)] dx
> e% exp [ - %]Io(%z) (3.28)
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Step 3: Completing the proof
Combining (3.27) and (3.28), we see that

_ £ &
ﬁ sup M, Yvr > Ap (3.29)
2 2

>

) = 1o©)

sup
£>0 exp

exp(—$)o(5) _ 1o0)
3 £
2 2

Therefore, together with the fact that ;] < uy < —p1/2, we know

— )b(3)

)o(

1 exp
—p1 < =21 — pa =V < —————e/msup

s Vv1 > A().
)»1(Q)+ £=0 exp ( —

N|m .b|xn-r
NI RN
N—

Then following the same argument in the proof of Proposition 3.2, we conclude from
Corollary 3.1 that as A1 (Q) — —1/3, it holds

C

V 2|Vyq :—«/6 =T .1
V()] < 2%, (@) = ~Vour =

(3.30)

where C3 is given in Theorem 1.16, completing the proof. O

Remark 3.2 Using similar argument, it is expected that the estimate for second-order
derivatives of f near its physical boundary could be achieved.
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