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Abstract
In this paper, we revisit a singular bulk potential in the Landau-de Gennes free energy
that describes nematic liquid crystal configurations in the framework of the Q-tensor
order parameter. This Maier–Saupe type singular potential was originally introduced
in Katriel et al. (Mol Cryst Liquid Cryst 1:337–355, 1986), which is considered as a
natural enforcement of a physical constraint on the eigenvalues of symmetric, traceless
Q-tensors. Specifically, we establish blowup rates of both this singular potential and
its gradient as Q approaches its physical boundary. All of the proofs are elementary.

Keywords Liquid crystals · Q-tensor · Singular potential · Blowup rate

MSC codes 35B44 · 35Q82

1 Introduction

Liquid crystals are an intermediate state of matter between the commonly observed
solid and liquid that has no or partial positional order but do exhibit an orientation
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order, and the simplest form of liquid crystals is called nematic type. Broadly speaking,
there are two types ofmodels to describe nematic liquid crystals, namely themean field
model and the continuummodel. In the former one, the local alignment of liquid crystal
molecules is described by a probability distribution function on the unit sphere (de
Gennes and Prost 1993; Maier and Saupe 1959; Virga 1994). Let n be a unit vector in
R
3, representing the orientation of a single liquid crystal molecule, and ρ(x;n) be the

density distribution function of the orientation of all molecules at a point x ∈ � ⊂ R
3.

The de Gennes Q-tensor, defined as the deviation of the second moment of ρ from its
isotropic value, reads

Q =
∫
S2

(
n ⊗ n − 1

3
I3

)
ρ(n) dS. (1.1)

Note that de Gennes Q-tensor vanishes in the isotropic phase, and hence it serves
as an order parameter. Meanwhile, it follows immediately from (1.1) that any de
Gennes Q-tensor is symmetric, traceless, and all its eigenvalues satisfy the constraint
−1/3 ≤ λi (Q) ≤ 2/3, 1 ≤ i ≤ 3.

In the continuum model, instead, a phenomenological Landau-de Gennes theory is
proposed (Ball 2012; de Gennes and Prost 1993;Mottram and Newton 2014) such that
the alignment of liquid crystal molecules is described by the macroscopic Q-tensor
order parameter, which is a symmetric, traceless 3× 3 matrix without any eigenvalue
constraint. In contrast with the de Gennes Q-tensor in the mean field model, this
microscopic order parameter in the Landau-de Gennes theory is at times referred to as
the mathematical Q-tensor. In this framework the free energy functional is derived as
a nonlinear integral functional of the Q-tensor and its spatial derivatives (Ball 2012;
Majumdar 2010):

E[Q] =
∫

�

F(Q(x)) dx, (1.2)

where Q is the basic element in the so-called Q-tensor space (Ball 2012)

Q
def=

{
M ∈ R

3×3
∣∣∣ tr(M) = 0, MT = M

}
. (1.3)

The free energy density functional F is composed of the elastic part Fel that depends
on the gradient of Q, as well as the bulk part Fbulk that depends on Q only. The bulk
part Fbulk is typically a truncated expansion in the scalar invariants of the tensor Q
(Majumdar and Zarnescu 2010; Paicu and Zarnescu 2011, 2012)

Fbulk = a

2
tr(Q2) − b

3
tr(Q3) + c

4
tr2(Q2), (1.4)

where a, b, c are assumed to be material-dependent coefficients. While the simplest
form of the elastic partFel that is invariant under rigid rotations andmaterial symmetry
is (Ball 2012; Ball and Majumdar 2010; Longa et al. 1987)

Fel = L1|∇Q|2 + L2∂ j Qik∂k Qi j + L3∂ j Qi j∂k Qik + L4Qlk∂k Qi j∂l Qi j . (1.5)

Here, ∂k Qi j stands for the k-th spatial derivative of the i j-th component of Q,
L1, · · · L4 are material dependent constants, and Einstein summation convention over
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repeated indices is used. It is noted that the retention of the L4 cubic term is that it
allows complete reduction to the classical Oseen–Frank energy of liquid crystals with
four elastic terms (Berreman and Meiboom 1984; Dickmann 1995; Iyer et al. 2015).
On the other hand, however, this cubic term makes the free energy E[Q] unbounded
from below (Ball and Majumdar 2010).

To overcome this issue, a singular bulk potential ψB that was originally introduced
in Katriel et al. (1986) was used in Ball and Majumdar (2010) to replace the regular
potential Fbulk. Specifically, the potential f is defined by

f (Q)
def=

⎧⎨
⎩

inf
ρ∈AQ

∫
S2

ρ(n) ln ρ(n) dS, −1

3
< λi (Q) <

2

3
, 1 ≤ i ≤ 3

+∞, otherwise,
(1.6)

where the admissible set AQ is

AQ =
{
ρ ∈ P(S2)

∣∣∣ ρ(n) = ρ(−n),

∫
S2

(
n ⊗ n − 1

3
I3

)
ρ(n) dS = Q

}
. (1.7)

In other words, we minimize the Boltzmann entropy over all probability distributions
ρ with given normalized second moment Q. Correspondingly,

ψB(Q) = f (Q) − α|Q|2 (1.8)

is used to replace the commonly employed bulk potential Fel. Note that the last poly-
nomial term involves the intermolecular interaction kernel (Maier and Saupe 1959)
and it represents anisotropic contribution to the energy per particle (Katriel et al. 1986).
Further, it is added to ensure the existence of local energy minimizers, where α > 0
is a constant. As a consequence, ψB imposes a natural enforcement of a physical con-
straint on the eigenvalues of the mathematical Q-tensor. Further, the elastic energy
partFel could be kept under control under mild assumptions on L1, · · · L4 (Davis and
Gartland 1998; Iyer et al. 2015; Kitavtsev et al. 2016). Interested readers may also see
Golovaty et al. (2020a, b) where a new Landau-de Gennes model with quartic elastic
energy terms is proposed.

Analysis of this singular potential is undoubtedly not straightforward, and there
has been some development in recent years. Concerning dynamic configurations, in a
non-isothermal co-rotational Beris–Edwards systemwhose free energy consists of one
elastic constant term, namely L1 termand this singular potential, the existence of global
in time weak solutions is established in Feireisl et al. (2014, 2015), and the convexity
of f is proved in Feireisl et al. (2015). The existence, regularity and strict physicality
of global weak solutions of the corresponding isothermal co-rotational Beris–Edwards
system in a 2D torus is investigated in Wilkinson (2015), while global existence and
partial regularity of a suitable weak solution to this system in 3D is established in Du
et al. (2020). The eigenvalue preservation of the co-rotational Beris–Edwards system
with the regular bulk potential is studied in Wu et al. (2019) by virtue of f . On the
other hand, in static configurations, the Hölder regularity of global energy minimizer
in 2D is established in Bauman and Phillips (2016), while partial regularity results
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for the global energy minimizer are given in Evans et al. (2016), and further improved
in Evans et al. (2016) under various assumptions of the blowup rates of f and its
gradient as Q approaches its physical boundary. However, such assumptions are yet
to be verified.

In static settings, the absolute minimizer of the free energy E satisfies the Euler–
Lagrange equation

2L1�Qi j + (L2 + L3)
(
∂k∂ j Qik + ∂k∂i Q jk − 2

3
∂k∂l Qklδi j

)
+ 2L4∂k(Qlk∂l Qi j )

− L4∂i Qkl∂ j Qkl + L4|∇Q|2
3

δi j − ∂ f

∂Qi j
+ 1

3
tr
( ∂ f

∂Q

)
δi j + 2αQi j = 0, 1 ≤ i, j ≤ 3.

(1.9)

While in dynamic settings, a solution to an L2 gradient flow generated by E satisfies

∂t Qi j = 2L1�Qi j + (L2 + L3)
(
∂k∂ j Qik + ∂k∂i Q jk − 2

3
∂k∂l Qklδi j

)
+ 2L4∂k(Qlk∂l Qi j )

− L4∂i Qkl∂ j Qkl + L4|∇Q|2
3

δi j − ∂ f

∂Qi j
+ 1

3
tr
( ∂ f

∂Q

)
δi j + 2αQi j , 1 ≤ i, j ≤ 3.

(1.10)

If Q stays away from its physical boundary, then both f and ∂ f /∂Q are bounded
functions. As a consequence, under mild smallness assumption of L4 both the elliptic
problem (1.9) and the parabolic problem (1.10) admit unique smooth solutions by
direct methods in classical PDE theory. As Q approaches its physical boundary, both
the elliptic and parabolic equations become tensor-valued variational obstacle prob-
lems, while both f and ∂ f /∂Q tends to infinity. Therefore, it is an indispensable step
to achieve their blowup rates for the corresponding PDE analysis in both the elliptic
and the parabolic problems, which is a fundamental issue to be solved.

Motivated by all the existing work, especially the aforementioned studies in both
static and dynamic configurations, aswell as future consideration of numerical approx-
imations (see Remark 1.3 for details), in this paper we revisit the singular potential
f , and aim to establish the blowup rates of f (Q), as well as its gradient ∇ f (Q) near
the physical boundary of Q. In view of (1.6), here and after we always assume Q is
physical, in the sense that

− 1

3
< λi (Q) <

2

3
, 1 ≤ i ≤ 3. (1.11)

First, we provide a result regarding the blowup rate of f (Q) as Q approaches its
physical boundary.

Theorem 1.1 For any physical Q-tensor, assume λ1(Q) ≤ λ2(Q) ≤ λ3(Q). Then the
functional f defined in (1.6) is bounded above by

f (Q) ≤ − ln 8
√
3 − 1

2
ln

(
λ1(Q) + 1

3

)
− 1

2
ln

(
λ2(Q) + 1

3

)
. (1.12)
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Furthermore, there exists a small computable constant δ0 > 0, whenever Q
approaches its physical boundary in the sense that λ2(Q) + 1/3 < δ0, it holds

ln 16 − 8 ln π − π5

16
− 1

2
ln

(
λ1(Q) + 1

3

)
− 1

2
ln

(
λ2(Q) + 1

3

)
≤ f (Q). (1.13)

Remark 1.1 It is noted that the result in Theorem 1.1 is consistent with

1

2
ln

[ 1

(2π)3e
(
λ1(Q) + 1

3

)
]

≤ f (Q) ≤ ln
[ 1

λ1(Q) + 1
3

]
(1.14)

obtained by Ball and Majumdar which is described in Ball (2018) and will appear in
Ball and Majumdar (2010).

Remark 1.2 Note that the upper bound inTheorem1.1 applies to anyphysicalQ-tensor,
while the lower bound is valid when λ2(Q) gets close to −1/3 (which automatically
implies λ1(Q) gets close to −1/3). Theorem 1.1 indicates that as Q approaches its
physical boundary in the uniaxial direction

Q =

⎛
⎜⎜⎜⎜⎝

−1

3
+ ε 0 0

0 −1

3
+ ε 0

0 0
2

3
− 2ε

⎞
⎟⎟⎟⎟⎠ , ε 	 1,

f (Q) blows up in the order of− ln(λ1(Q)+1/3). Alternatively, when Q is “near” the
uniaxial direction, that is, if λ2(Q) is close (but not equal) to λ1(Q), then any blowup
order of −α ln(λ1(Q) + 1/3), 1/2 < α < 1 could be attained. On the other hand,
when λ2(Q) stays away from −1/3, f (Q) is of the order −1/2 ln(λ1(Q) + 1/3) as
λ1(Q) approaches −1/3.

Remark 1.3 Theorem1.1will be of significance for numerics aswell, because it implies
that the function

f (Q) + 1

2
ln

(
λ1(Q) + 1

3

)
+ 1

2
ln

(
λ2(Q) + 1

3

)

is a well-defined, bounded function in the domain of λ1, λ2. Hence, by interpolating
this well-defined function, we can obtain an accurate numerical approximation of
f (Q).

Moreover, the next theorem gives a precise blowup rate of ∇ f near the physical
boundary of Q.

Theorem 1.2 For any physical Q-tensor, assume λ1(Q) ≤ λ2(Q) ≤ λ3(Q). Then
there exists a small computable constant ε0 > 0, whenever λ1(Q) + 1/3 < ε0, the
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gradient of the functional f defined in (1.6) satisfies

C1

λ1(Q) + 1
3

≤ ∣∣∇Q f (Q)
∣∣ ≤ C2

λ1(Q) + 1
3

, (1.15)

with the constants C1 and C2 given by

C1 =
√
3

9
√
2πe

· inf
ξ≥0

e−ξ I0(ξ)

e
−ξ
2 I0(

ξ
2 )

> 0, C2 = √
6πe · sup

ξ≥0

exp
( − ξ

4

)
I0
(

ξ
4

)
exp

( − ξ
2

)
I0
(

ξ
2

) . (1.16)

Here

∇Q f = ∂ f

∂Q
− 1

3
tr
( ∂ f

∂Q

)
I3,

and I0(·) is the zeroth-order modified Bessel function of first kind.

Remark 1.4 We want to point out that (1.15) is consistent with

1

2

√
3

2
ln

[ 2

πe
(
λ1(Q) + 1

3

)
]

≤ ∣∣∇Q f (Q)
∣∣ ≤ 1

λ1(Q) + 1
3

ln
[ 1

2π3e
(
λ1(Q) + 1

3

)
]
,

(1.17)
that is obtained by Ball and Majumdar in Ball (2018) and will also appear in Ball and
Majumdar (2010).

This paper is organized as follows. In Sect. 2, we present a proof of Theorem 1.1.
Then, in Sect. 3, we give a proof of Theorem 1.2.

2 Blowup Rate of f

Note that (1.11) is equivalent to Q ∈ D( f ), namely the effective domain of f where f
assumes finite values. As proved in Feireisl et al. (2014), f is smooth for Q ∈ D( f ).
Since f is rotation invariant (Ball 2012), here and after, we always assume that any
considered physical Q-tensor is diagonal:

Q =
⎛
⎝λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ , −1

3
< λ1 ≤ λ2 ≤ λ3 <

2

3
, λ1 + λ2 + λ3 = 0. (2.1)

Note that as Q approaches its physical boundary, we have λ1 → −1/3.
Correspondingly the optimal density function ρQ ∈ AQ that satisfies f (Q) =∫

S2
ρQ ln ρQ dS is given by (Ball 2012; Ball and Majumdar 2010)

ρQ(x, y, z) = exp(μ1x2 + μ2y2 + μ3z2)

Z(μ1, μ2, μ3)
, (x, y, z) ∈ S

2, μ1 + μ2 + μ3 = 0.

(2.2)
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Here in (2.2), Z(μ1, μ2, μ3) is given by

Z(μ1, μ2, μ3) =
∫
S2
exp(μ1x

2 + μ2y
2 + μ3z

2) dS, (2.3)

which satisfies
1

Z

∂Z

∂μi
= λi + 1

3
, 1 ≤ i ≤ 3. (2.4)

To begin with, we have

Lemma 2.1 For any physical Q-tensor (2.1), its optimal probability densityρQ defined
in (2.2) satisfies

μ1 ≤ μ2 ≤ μ3.

And μi = μ j provided λi = λ j for 1 ≤ i �= j ≤ 3.

Proof By symmetry, it suffices to prove thatμi is strictly increasing inλi , i.e.,μ1 < μ2
whenever λ1 < λ2.

Consider eigenvalues λ1 < λ2. Then it holds

∫
S2

x2ρQ dS = λ1 + 1

3
< λ2 + 1

3
=

∫
S2

y2ρQ dS (2.5)

From (2.2) we get

ρQ = exp
{
μ1x2 + μ2y2 − (μ1 + μ2)(1 − x2 − y2)

}
∫
S2
exp(μ1x2 + μ2y2 − (μ1 + μ2)(1 − x2 − y2)) dS

= m∗ exp
{
(2μ1 + μ2)x

2 + (μ1 + 2μ2)y
2},

where

m∗ = 1∫
S2
exp

{
(2μ1 + μ2)x2 + (μ1 + 2μ2)y2

}
dS

(2.6)

Assume, by contradiction, that μ1 ≥ μ2. Using spherical coordinates

⎧⎪⎨
⎪⎩
x = sin θ cosφ

y = sin θ sin φ

z = cos θ

0 ≤ φ < 2π, 0 ≤ θ ≤ π,

we get from (2.5) that

λ1 − λ2

=
∫
S2

x2ρQ dS −
∫
S2

y2ρQ dS

= 8m∗
∫ π

2

0

∫ π
2

0
(cos2 φ − sin2 φ) exp

{
(μ1 − μ2) sin

2 θ cos2 φ
}
dφ exp

{
(μ1 + 2μ2) sin

2 θ
}
sin3 θ dθ

123



6 Page 8 of 30 Journal of Nonlinear Science (2022) 32 :6

= 8m∗
[ ∫ π

2

0

∫ π
4

0
(cos2 φ − sin2 φ) exp

{
(μ1 − μ2) sin

2 θ cos2 φ
}
dφ exp

{
(μ1 + 2μ2) sin

2 θ
}
sin3 θ dθ

+
∫ π

2

0

∫ π
2

π
4

(cos2 φ − sin2 φ) exp
{
(μ1 − μ2) sin

2 θ cos2 φ
}
dφ

︸ ︷︷ ︸
ψ= π

2 −φ

exp
{
(μ1 + 2μ2) sin

2 θ
}
sin3 θ dθ

]

= 8m∗
∫ π

2

0

∫ π
4

0
(cos2 φ − sin2 φ)

(
exp

{
(μ1 − μ2) sin

2 θ cos2 φ
} − exp

{
(μ1 − μ2) sin

2 θ sin2 φ
})

︸ ︷︷ ︸
≥0

dφ

exp
{
(μ1 + 2μ2) sin

2 θ
}
sin3 θ dθ

≥ 0

due to the assumption that μ1 ≥ μ2, which contradicts the fact that λ1 < λ2. ��
Next we can see that the index μ1 in (2.2) satisfies

Lemma 2.2 As λ1 → −1

3
, μ1 → −∞.

Proof First, observe that

∂ ln(λ1 + 1
3 )

∂μ1
= ∂

∂μ1

[
ln

∫
S2
x2 exp(μ1x

2 + μ2y
2 + μ3z

2) dS − ln Z(μ1, μ2, μ3)

]

=
∫
S2

x4 exp(μ1x2 + μ2y2 + μ3z2) dS∫
S2

x2 exp(μ1x2 + μ2y2 + μ3z2) dS
−

(
λ1 + 1

3

)

=
(
λ1 + 1

3

)−1
[ ∫

S2
x4ρQ dS

∫
S2

ρQ dS
︸ ︷︷ ︸

=1

−
( ∫

S2
x2ρQ dS

)2]
> 0

due to Schwarz’s inequality, and the fact thatρQ is not a perfect alignment ofmolecules
as Q approaches the physical boundary. Hence, as λ1 ↘ −1/3, μ1 is strictly decreas-
ing. It remains to prove μ1 is unbounded as λ1 → −1/3. Suppose there exists a
constant M > 0, such that μ1 ≥ −M as λ1 → −1/3, then by (2.2) and Lemma 2.1
we see that −M ≤ μ1 ≤ μ2 ≤ μ3 ≤ 2M . As a consequence, together with the basic
inequality

2θ

π
≤ sin θ < θ, ∀ 0 < θ ≤ π

2
, (2.7)

we obtain

λ1 + 1

3
=

∫
S2

x2ρQ dS =
∫
S2 x

2 exp
{
(2μ1 + μ2)x

2 + (μ1 + 2μ2)y
2} dS∫

S2 exp
{
(2μ1 + μ2)︸ ︷︷ ︸

≤0

x2 + (μ1 + 2μ2)︸ ︷︷ ︸
≤0

y2
}
dS

≥
∫
S2 x

2 exp
{ − 3M(x2 + y2)

}
dS∫

S2 dS
= 8

∫ π
2
0 cos2 φ dφ

∫ π
2
0 exp

{ − 3M sin2 θ
}
sin3 θ dθ

4π

≥
2π 8

π3

∫ π
2
0 exp(−3Mθ2)θ3 dθ

4π
≥ 4

π3 exp
(−3Mπ2

4

) ∫ π
2

0
θ3 dθ = π

16
exp

(−3Mπ2

4

)
,
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which is a contradiction. Therefore, such lower bound−M cannot exist, and the proof
is complete. ��
Remark 2.1 It follows from the proof of Lemma 2.2 that in order to ensure μ1 < −M
for any M > 0, it suffices to assume

λ1(Q) + 1

3
<

π

16
exp

(−3Mπ2

4

)
.

Now we are ready to prove Theorem 1.1.

2.1 Proof of Upper Bound of f

Proof To this end, we consider Q of the form

Q =

⎛
⎜⎜⎝

−1

3
+ ε2

3
0 0

0 λ2 0
0 0 λ3

⎞
⎟⎟⎠ , −1

3
+ ε2

3
≤ λ2 ≤ λ3, 0 < ε ≤ 1. (2.8)

Using the coordinate system

⎧⎪⎨
⎪⎩
x = cos θ

y = sin θ sin φ

z = sin θ cosφ

0 ≤ φ < 2π, 0 ≤ θ ≤ π,

we consider the domain

S∗ def= {
(1, φ, θ) ∈ S

2
∣∣ φ ∈ [0, b] ∪ [π − b, π ] ∪ [π, π + b] ∪ [2π − b, 2π ],

θ ∈ [arccos ε, π − arccos ε]}, (2.9)

where 0 < b ≤ π/2 is to be determined. Meanwhile, let

ρε = 1

8bε
χS∗ .

Then it is easy to check

∫
S2

ρε dS = 4

8bε

∫ b

0
dφ

∫ π−arccos ε

arccos ε

sin θ dθ = 1,

and the second moments with respect to ρε are given by

∫
S2

x2ρε dS = 1

bε

∫ b

0
dφ

∫ π
2

arccos ε

cos2 θ sin θ dθ = ε2

3
,
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∫
S2

y2ρε dS = 1

bε

∫ b

0
sin2 φ dφ

∫ π
2

arccos ε

sin3 θ dθ = 1

bε

(b
2

− sin 2b

4

)(
ε − ε3

3

)

=
(1
2

− sin 2b

4b

)(
1 − ε2

3

)
,

∫
S2

z2ρε dS = 1

bε

∫ b

0
cos2 φ dφ

∫ π
2

arccos ε

sin3 θ dθ = 1

bε

(b
2

+ sin 2b

4

)(
ε − ε3

3

)

=
(1
2

+ sin 2b

4b

)(
1 − ε2

3

)
,

∫
S2

xyρε dS =
∫
S2

yzρε dS =
∫
S2

zxρε dS = 0.

Therefore, ρε ∈ AR with

R =

⎛
⎜⎜⎜⎜⎜⎝

−1

3
+ ε2

3
0 0

0
1

6
− sin 2b

4b
− (1

2
− sin 2b

4b

)ε2
3

0

0 0
1

6
+ sin 2b

4b
− (1

2
+ sin 2b

4b

)ε2
3

⎞
⎟⎟⎟⎟⎟⎠

We need to find a suitable 0 < b ≤ π/2, such that

1

6
− sin 2b

4b
−

(1
2

− sin 2b

4b

)ε2

3
= λ2,

which is equivalent to
sin 2b

2b
= 1 − 2

(
λ2 + 1

3

)
1 − ε2

3

. (2.10)

Note that sin (x)/x is monotone decreasing in (0, π ], with

lim
x→0+

sin x

x
= 1,

hence we know (2.10) is solvable with b ∈ (0, π/2]. As a consequence, R = Q and
using mean value theorem we get

x − x3

6
< sin x, ∀ 0 < x ≤ π; 1

1 − y
> 1 + y, ∀ 0 < y < 1.

Hence, after inserting x = 2b, y = ε2/3 into (2.10) we obtain

1 − 2b2

3
<

sin 2b

2b
< 1 − 2

(
1 + ε2

3

)(
λ2 + 1

3

)
, (2.11)
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which further implies

b2 > (3 + ε2)
(
λ2 + 1

3

)
> 3

(
λ2 + 1

3

)
. (2.12)

In conclusion, we see ρε ∈ AQ for Q defined in (2.8), where λ1(Q) + 1/3 = ε2/3,
and

f (Q) ≤
∫
S2

ρε log ρε dS ≤ 8

8bε

∫ b

0
dφ

∫ π
2

arccos ε

ln
1

8bε
sin θ dθ = ln

1

8bε
= − ln 8 − ln b − ln ε

≤ − ln 8
√
3 − 1

2
ln

(
λ1(Q) + 1

3

)
− 1

2
ln

(
λ2(Q) + 1

3

)
. (2.13)

2.2 Proof of Lower Bound of f

There is no doubt that the proof of lower bound (1.13) is far more difficult than that
of (1.12), because we can no longer utilize any specific probability density ρ in the
admissible set AQ . To accomplish the goal, more delicate analysis is needed.

In this subsection we denote

ε = λ1(Q) + 1

3
, δ = λ2(Q) + 1

3
. (2.14)

By (2.2)-(2.4), we get

ε =
∫
S2

x2 exp(μ1x2 + μ2y2 + μ3z2) dS∫
S2
exp(μ1x2 + μ2y2 + μ3z2) dS

=
∫
S2

x2 exp(−ν1x2 − ν2y2) dS∫
S2
exp(−ν1x2 − ν2y2) dS

,

(2.15)

δ =
∫
S2

y2 exp(μ1x2 + μ2y2 + μ3z2) dS∫
S2
exp(μ1x2 + μ2y2 + μ3z2) dS

=
∫
S2

y2 exp(−ν1x2 − ν2y2) dS∫
S2
exp(−ν1x2 − ν2y2) dS

,

(2.16)

where
ν1 = −(2μ1 + μ2), ν2 = −(μ1 + 2μ2). (2.17)

By (2.2) and Lemma 2.1, we see

ν1 ≥ ν2 = μ3 − μ2 ≥ 0. (2.18)

Besides, it follows from (2.2), Lemma 2.1 and Lemma 2.2 that

ν1 = −μ1 + μ3 ≥ −μ1 → +∞, as ε → 0. (2.19)

Actually, we can establish a stronger result in the following sense
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Lemma 2.3 There exists a small computable constant δ0 > 0 such that

δ ≥ (2e − 5)

24e
e−ν2 , ∀ δ < δ0. (2.20)

As a consequence,

ν1 ≥ ν2 ≥ − ln δ + ln
[ (2e − 5)

24e

]
, ∀ δ < δ0. (2.21)

Proof Using (2.16) and (2.18) we have

δ ≥
∫
S2

y2 exp(−ν1x2 − ν2) dS∫
S2
exp(−ν1x2) dS

= e−ν2

∫
S2

y2 exp(−ν1x2) dS∫
S2
exp(−ν1x2) dS

. (2.22)

We proceed to estimate the numerator and denominator of R.H.S. in (2.22), respec-
tively. By Remark 2.1,

ν1 ≥ −μ1 >
4

π2 , provided δ <
π

16e3
.

Together with (2.7) and spherical coordinates

⎧⎪⎨
⎪⎩
x = sin θ cosφ,

y = sin θ sin φ,

z = cos θ,

0 ≤ θ ≤ π, 0 ≤ φ < 2π,

we have

∫
S2

exp(−ν1x
2) dS = 2

∫ 2π

0

∫ π
2

0
sin θe−ν1 sin2 θ cos2 φ dθdφ ≤ 2

∫ 2π

0

∫ π
2

0
θe

− 4
π2

ν1θ
2 cos2 φ dθdφ

= π2

4

∫ 2π

0

1 − e−ν1 cos2 φ

ν1 cos2 φ
dφ = π2

∫ π
2

0

1 − e−ν1 sin2 φ

ν1 sin2 φ
dφ

≤ 4
∫ 1√

ν1

0

1 − e−ν1φ
2

ν1φ2 dφ
︸ ︷︷ ︸

:=J1

+4
∫ π

2

1√
ν1

1

ν1φ2 dφ

︸ ︷︷ ︸
:=J2

.

Note that

sup
φ∈(0,1/

√
ν1)

1 − e−ν1φ
2

ν1φ2 = 1 �⇒ J1 ≤ 1√
ν1

, and J2 =
√

ν1 − 2
π

ν1
≤ 1√

ν1
.

Hence, ∫
S2
exp(−ν1x

2) dS ≤ 8√
ν1

. (2.23)
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Meanwhile, using (2.7) and integration by parts we obtain

∫
S2

y2 exp(−ν1x
2) dS

= 2
∫ 2π

0
sin2 φ

∫ π
2

0
sin3 θe−ν1 sin2 θ cos2 φ dθdφ

≥ 2
( 2

π

)3 ∫ 2π

0
sin2 φ

∫ π
2

0
θ3e−ν1θ

2 cos2 φ dθdφ

=
( 4

π

)3 ∫ 2π

0

sin2 φ

2ν21 cos
4 φ

[
1 −

(π2

4
ν1 cos

2 φ + 1
)
exp

(
− π2

4
ν1 cos

2 φ
)]

dφ

=
( 4

π

)3 ∫ 2π

0

cos2 φ

2ν21 sin
4 φ

[
1 −

(π2

4
ν1 sin

2 φ + 1
)
exp

(
− π2

4
ν1 sin

2 φ
)]

dφ.

(2.24)

Note that

d

dz

[(π2

4
ν1z + 1

)
e− π2

4 ν1z
]

= −π2

4
ν1ze

− π2
4 ν1z ≤ 0, ∀ z ≥ 0.

Hence,

1 −
(π2

4
ν1 sin

2 φ + 1
)
exp

(
− π2

4
ν1 sin

2 φ
)

≥ 0, ∀φ ∈ [0, 2π),

and (2.24) continues as

∫
S2

y2 exp(−ν1x
2) dS

≥
( 4

π

)3 ∫ π
4

2
π

√
ν1

cos2 φ

2ν21 sin
4 φ

[
1 −

(π2

4
ν1 sin

2 φ + 1
)
exp

(
− π2

4
ν1 sin

2 φ
)]

dφ

≥
( 4

π

)3 ∫ π
4

2
π

√
ν1

1

4ν21 sin
4 φ

[
1 −

(π2

4
ν1 sin

2 φ + 1
)
exp

(
− π2

4
ν1 sin

2 φ
)]

dφ

≥
( 4

π

)3 ∫ π
4

2
π

√
ν1

1

4ν21 sin
4 φ

[
1 −

(π2

4
ν1 sin

2 2

π
√

ν1
+ 1

)
exp

(
− π2

4
ν1 sin

2 2

π
√

ν1

)]
dφ

≥
( 4

π

)3 ∫ π
4

2
π

√
ν1

1

4ν21 sin
4 φ

[
1 − 2 exp

(
− π2

4
ν1 sin

2 2

π
√

ν1

)]
dφ. (2.25)

By (2.19),

lim
δ→0

exp
(

− π2

4
ν1 sin

2 2

π
√

ν1

)
= lim

ν1→∞ exp
(

− π2

4
ν1 sin

2 2

π
√

ν1

)
= 1

e
.
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Thus, by Remark 2.1 there exists a small computable constant δ0 > 0, such that

1 − 2 exp
(

− π2

4
ν1 sin

2 2

π
√

ν1

)
≥ 1 − 5

2e
, ∀ δ < δ0.

This further implies

∫
S2

y2 exp(−ν1x
2) dS ≥

(
1 − 5

2e

)( 4

π

)3 ∫ π
4

2
π

√
ν1

1

4ν21 sin
4 φ

dφ ≥
(
1 − 5

2e

)( 4

π

)3 ∫ π
4

2
π

√
ν1

1

4ν21φ
4
dφ

≥ 2e − 5

3e
√

ν1
, ∀ δ < δ0. (2.26)

To sum up, we conclude

δ ≥ e−ν2

∫
S2

y2 exp(−ν1x2) dS∫
S2
exp(−ν1x2) dS

≥ e−ν2
(2e − 5)

3e
√

ν1

/ 8√
ν1

= (2e − 5)

24e
e−ν2 , ∀ δ < δ0,

completing the proof. ��
Remark 2.2 Lemma 2.3 implies that as λ2(Q) → −1/3, that is δ → 0+, we have both
ν1, ν2 → +∞.

Next, we denote

A(φ) = ν1 cos
2 φ + ν2 sin

2 φ, 0 ≤ φ < 2π. (2.27)

We can establish the following estimates

Lemma 2.4 There exists a small computable constant δ0 > 0 such that

1

π

∫ 2π

0

1

A(φ)
dφ ≤

∫
S2

exp(−ν1x
2 − ν2y

2) dS ≤ π2

4

∫ 2π

0

1

A(φ)
dφ, ∀ δ < δ0, (2.28)

4

π3

∫ 2π

0

cos2 φ

A2(φ)
dφ ≤

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS ≤ π4

16

∫ 2π

0

cos2 φ

A2(φ)
dφ, ∀ δ < δ0,

(2.29)

4

π3

∫ 2π

0

sin2 φ

A2(φ)
dφ ≤

∫
S2

y2 exp(−ν1x
2 − ν2y

2) dS ≤ π4

16

∫ 2π

0

sin2 φ

A2(φ)
dφ, ∀ δ < δ0.

(2.30)

Proof To begin with, by (2.18) we have

A(φ) ≥ ν2 cos
2 φ + ν2 sin

2 φ = ν2.
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This together with Lemma 2.3 implies that there exists a small computable constant
δ0 > 0 such that

e
−π2 A(t)

4 ≤ e
−π2ν2

4 ≤ 1

2
− 1

e
, ∀ δ < δ0. (2.31)

Using (2.7) and integration by parts, we obtain

∫
S2
exp(−ν1x

2 − ν2y
2) dS = 2

∫ 2π

0

∫ π
2

0
sin θ exp

[ − A(φ) sin2 θ
]
dθdφ

≤ 2
∫ 2π

0

∫ π
2

0
θ exp

[ − 4A(φ)π−2θ2
]
dθdφ

=
∫ 2π

0

π2 − π2e−A(φ)

4A(φ)
dφ ≤ π2

4

∫ 2π

0

1

A(φ)
dφ,

and together with (2.31) we have

∫
S2
exp(−ν1x

2 − ν2y
2) dS = 2

∫ 2π

0

∫ π
2

0
sin θ exp

[ − A(φ) sin2 θ
]
dθdφ

≥ 4

π

∫ 2π

0

∫ π
2

0
θ exp

[ − A(φ)θ2
]
dθdφ

= 2

π

∫ 2π

0

1

A(φ)

[
1 − e−A(φ)π2/4] dφ

≥ 1

π

∫ 2π

0

1

A(φ)
dφ,

concluding the proof of (2.28).
To proceed, using (2.7) and integration by parts again, we get

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS = 2
∫ 2π

0

∫ π
2

0
cos2 φ sin3 θ exp

[ − A(φ) sin2 θ
]
dθdφ

≤ 2
∫ 2π

0

∫ π
2

0
cos2 φ θ3 exp

[ − A(φ)4π−2θ2
]
dθdφ

= π4

16

∫ 2π

0

cos2 φ

A2(φ)

{
1 − e−A(φ)

[
A(φ) + 1

]}
dφ

≤ π4

16

∫ 2π

0

cos2 φ

A2(φ)
dφ

and similarly

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS

= 2
∫ 2π

0

∫ π
2

0
cos2 φ sin3 θ exp

[ − A(φ) sin2 θ
]
dθdφ
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≥ 2
( 2

π

)3 ∫ 2π

0

∫ π
2

0
cos2 φ θ3 exp

[ − A(φ)θ2
]
dθdφ

=
( 2

π

)3 ∫ 2π

0

cos2 φ

A2(φ)

{
1 − 1

4
e−π2A(φ)/4[π2A(φ) + 4

]}
dφ

= 8

π3

∫ 2π

0

cos2 φ

A2(φ)
dφ

− 8

π3

∫ 2π

0

cos2 φ

A2(φ)

π2A(φ)

4
exp

[−π2A(φ)

4

]
dφ

︸ ︷︷ ︸
I1

− 8

π3

∫ 2π

0

cos2 φ

A2(φ)
exp

[−π2A(φ)

4

]
dφ

︸ ︷︷ ︸
I2

Hence, to attain (2.29), it remains to estimate I1 and I2. First, observe that ze−z ∈
[0, 1/e] for z ≥ 0, hence

I1 ≤ 1

e

∫ 2π

0

cos2 φ

A2(φ)
dφ.

Besides, it follows from (2.31) that

I2 ≤
(1
2

− 1

e

) ∫ 2π

0

cos2 φ

A2(φ)
dφ.

To sum up, we conclude

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS ≥ 4

π3

∫ 2π

0

cos2 φ

A2(φ)
dφ,

hence the proof of (2.29) is complete. The proof of (2.30) is completely analogous to
that of (2.29). ��

As a matter of fact, all the bounds in Lemma 2.4 can be achieved explicitly in terms
of ν1, ν2.

Lemma 2.5 For any ν1, ν2 > 0, the following identities are satisfied:

∫ 2π

0

1

A(φ)
dφ = 4

∫ π
2

0

1

A(φ)
dφ = 2π√

ν1ν2
, (2.32)

∫ 2π

0

sin2 φ

A2(φ)
dφ = 4

∫ π
2

0

sin2 φ

A2(φ)
dφ = π

ν2
√

ν1ν2
, (2.33)

∫ 2π

0

cos2 φ

A2(φ)
dφ = 4

∫ π
2

0

cos2 φ

A2(φ)
dφ = π

ν1
√

ν1ν2
. (2.34)
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Proof The proof relies on direct derivation of these anti-derivatives. Note that

∫
1

A(φ)
dφ =

∫
sec2 φ

ν1 + ν2 tan2 φ
dφ = 1√

ν1ν2

∫
1

1 + (√
ν2
ν1
tan φ

)2 d
(√ν2

ν1
tan φ

)

= 1√
ν1ν2

arctan
(√ν2

ν1
tan φ

)
+ C .

Hence,

∫ 2π

0

1

A(φ)
dφ = 4

∫ π
2

0

1

A(φ)
dφ = 4√

ν1ν2
arctan

(√ν2

ν1
tan φ

)∣∣∣
π
2

0
= 2π√

ν1ν2
.

Next,

∫
sin2 φ

A2(φ)
dφ

=
∫

tan2 φ sec2 φ

(ν1 + ν2 tan2 φ)2
dφ = 1

ν2

∫
(ν1 + ν2 tan2 φ) sec2 φ

(ν1 + ν2 tan2 φ)2
dφ − ν1

ν2

∫
sec2 φ

(ν1 + ν2 tan2 φ)2
dφ

= 1√
ν1ν2ν2

∫
1

1 + (√
ν2
ν1

tan φ
)2 d

(√ν2

ν1
tan φ

)

− 1√
ν1ν2ν2

∫
1[

1 + (√
ν2
ν1

tan φ
)2]2 d

(√ν2

ν1
tan φ

)

= 1√
ν1ν2ν2

arctan
(√ν2

ν1
tan φ

)
− 1√

ν1ν2ν2

∫
1[

1 + (√
ν2
ν1

tan φ
)2]2 d

(√ν2

ν1
tan φ

)

︸ ︷︷ ︸
I1

.

By setting u =
√

ν2
ν1
tan φ we obtain

I1 =
∫

1

(1 + u2)2
du

(θ=tan u)=
∫

cos2 θ dθ = sin(2θ)

4
+ θ

2
+ C = 1

2

u

1 + u2
+ arctan u

2
+ C .

Thus,

∫
sin2 φ

A2(φ)
dφ = 1

2
√

ν1ν2ν2
arctan

(√ν2

ν1
tan φ

)
− 1

2ν2

cosφ sin φ

ν1 cos2 φ + ν2 sin2 φ
+ C,

and henceforth

∫ 2π

0

sin2 φ

A2(φ)
dφ = 4

∫ π
2

0

sin2 φ

A2(φ)
dφ = 2√

ν1ν2ν2
arctan

(√ν2

ν1
tan φ

)∣∣∣∣
π
2

0
= π√

ν1ν2ν2
.
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Similarly,

∫
cos2 φ

A2(φ)
dφ =

∫
sec2 φ

(ν1 + ν2 tan2 φ)2
dφ = 1

ν1
√

ν1ν2

∫
1[

1 + (√
ν2
ν1

tan φ
)2]2 d

(√ν2

ν1
tan φ

)

︸ ︷︷ ︸
I1

= 1

2
√

ν1ν2ν1
arctan

(√ν2

ν1
tan φ

)
+ 1

2ν1

cosφ sin φ

ν1 cos2 φ + ν2 sin2 φ
+ C .

Hence,

∫ 2π

0

cos2 φ

A2(φ)
dφ = 4

∫ π
2

0

cos2 φ

A2(φ)
dφ = 2√

ν1ν2ν1
arctan

(√ν2

ν1
tan φ

)∣∣∣∣
π
2

0
= π√

ν1ν2ν1
.

��
By virtue of Lemmas 2.3, 2.4, and 2.5, we are ready to prove the lower bound (1.13)

in Theorem 1.1.
Proof of (1.13)
Let δ0 > 0 be the minimum threshold from the previous lemmas. By (2.15), (2.16),

Lemma 2.4, and Lemma 2.5 we have

ε =
∫
S2

x2 exp(−ν1x2 − ν2y2) dS∫
S2
exp(−ν1x2 − ν2y2) dS

≤
π4

16

∫ 2π
0

cos2 φ

A2(φ)
dφ

1
π

∫ 2π
0

1
A(φ)

dφ
= π5

32

1

ν1
, (2.35)

ε =
∫
S2

x2 exp(−ν1x2 − ν2y2) dS∫
S2
exp(−ν1x2 − ν2y2) dS

≥
4
π3

∫ 2π
0

cos2 φ

A2(φ)
dφ

π2

4

∫ 2π
0

1
A(φ)

dφ
= 8

π5

1

ν1
, (2.36)

δ =
∫
S2

y2 exp(−ν1x2 − ν2y2) dS∫
S2
exp(−ν1x2 − ν2y2) dS

≤
π4

16

∫ 2π
0

sin2 φ

A2(φ)
dφ

1
π

∫ 2π
0

1
A(φ)

dφ
= π5

32

1

ν2
, (2.37)

δ =
∫
S2

y2 exp(−ν1x2 − ν2y2) dS∫
S2
exp(−ν1x2 − ν2y2) dS

≥
4
π3

∫ 2π
0

sin2 φ

A2(φ)
dφ

π2

4

∫ 2π
0

1
A(φ)

dφ
= 8

π5

1

ν2
. (2.38)

These estimates (2.35)-(2.38) together with (2.2), (2.17), Lemma 2.4, and Lemma 2.5
yield

f (Q) = − ln Z +
3∑

i=1

μi
(
λi + 1

3

) = − ln Z + εμ1 + δμ2 + (1 − ε − δ)(−μ1 − μ2)

= − ln Z − εν1 − δν2 − (μ1 + μ2)

= − ln
[ ∫

S2
exp(μ1 + μ2) exp(μ1x

2 + μ2y
2 + μ3z

2) dS
]

− εν1 − δν2
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= − ln
∫
S2
exp(−ν1x

2 − ν2y
2) dS − εν1 − δν2 ≥ − ln

[π2

4

∫ 2π

0

1

A(φ)
dφ

]

− εν1 − δν2

≥ 1

2
ln(ν1ν2) − ln 2π − ln

π2

4
− π5

16

≥ −1

2
ln(εδ) + ln 16 − 8 ln π − π5

16
, ∀ δ < δ0, (2.39)

concluding the proof of (1.13).

Remark 2.3 Actually, (2.39) also provides a proof of the upper bound of the order

C − 1

2
ln

(
λ1(Q) + 1

3

)
− 1

2
ln

(
λ2(Q) + 1

3

)

for an explicit constantC . However, it requires λ2(Q) to be sufficiently close to−1/3,
which is not necessary in the argument regarding the upper bound of f provided in
the previous subsection.

3 Blowup Rate of∇Qf

In this section, we shall finish the proof of Theorem 1.2, which plays a crucial role
in the proofs regarding regularity results of the relevant solutions in both static and
dynamic configurations (Evans et al. 2016; Geng and Tong 2020; Lu et al. 2020). The
argument in the proof of (1.13) is no longer valid here in that now we only assume
λ1(Q) is sufficiently close to −1/3.

To this end, we shall compute all five components of ∇Q f (Q), and state that only
the “radial” and “tangential” components of∇Q f are nonzero. Thenwewill be focused
on the estimate of its “radial” component only.

Lemma 3.1 For any physical Q-tensor of form (2.1), it holds

∇rad f (Q) =
√
2

3

d f (Q⊥
ε )

dε

∣∣∣∣
ε=0

= −
√
3

2
μ1, (3.1)

∇tan f (Q) =
√
1

2

d f (Q‖
ε)

dε

∣∣∣∣
ε=0

=
√
1

2
(μ1 + 2μ2). (3.2)

Here ∇rad f (Q) (resp. ∇tan f (Q)) is defined in (3.3) (resp. in (3.4)) as follows.

Proof Recall from Geng and Tong (2020, Lemma C.1) that for a given physical Q-
tensor of form (2.1), its projection on the physical boundary is

Q⊥ =
⎛
⎜⎝

− 1
3 0 0

0 λ2 + λ1+ 1
3

2 0

0 0 λ3 + λ1+ 1
3

2

⎞
⎟⎠ ,
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and their distance is

d(Q)
def= |Q − Q⊥| =

√
6

2

(
λ1 + 1

3

)
.

Let us introduce

Q(1)
ε

def=
⎛
⎝λ1 − ε 0 0

0 λ2 + ε
2 0

0 0 λ3 + ε
2

⎞
⎠ , Q(2)

ε
def=

⎛
⎝λ1 0 0

0 λ2 + ε 0
0 0 λ3 − ε

⎞
⎠ ,

Q(3)
ε

def=
⎛
⎝λ1 ε 0

ε λ2 0
0 0 λ3

⎞
⎠ , Q(4)

ε
def=

⎛
⎝λ1 0 ε

0 λ2 0
ε 0 λ3

⎞
⎠ , Q(5)

ε
def=

⎛
⎝λ1 0 0

0 λ2 ε

0 ε λ3

⎞
⎠ .

And for the sake of convenience, we refer to Q(1)
ε − Q (resp. Q(2)

ε − Q) as the
radial direction (resp. tangential direction). Note that these five directions Q(i)

ε − Q,
1 ≤ i ≤ 5 are orthogonal to one another in the sense that their inner product

(
Q(i)

ε − Q
) : (Q( j)

ε − Q
) = 0, 1 ≤ i �= j ≤ 5.

Step 1: radial component. We first calculate

∇rad f (Q)
def= lim

ε→0

f (Q(1)
ε ) − f (Q)

|Q(1)
ε − Q|

=
√
2

3

d f (Q(1)
ε )

dε

∣∣∣∣
ε=0

. (3.3)

Let us denote ρ
(1)
ε the associated Boltzmann distribution function of f (Q(1)

ε ):

ρ(1)
ε = exp

{
μ

(1)
1 (ε)x2 + μ

(1)
2 (ε)y2 + μ

(1)
3 (ε)z2

}
Z (1)

ε

, (x, y, z) ∈ S
2,

Z (1)
ε =

∫
S2
exp

{
μ

(1)
1 (ε)x2 + μ

(1)
2 (ε)y2 + μ

(1)
3 (ε)z2

}
dS,

μ
(1)
1 (ε) + μ

(1)
2 (ε) + μ

(1)
3 (ε) = 0,

1

Z (1)
ε

∂Z (1)
ε

∂μ
(1)
i

= λ
(1)
i (ε) + 1

3
, 1 ≤ i ≤ 3.

Here λ
(1)
i (ε)′s, 1 ≤ i ≤ 3 are eigenvalues of Q(1)

ε . Clearly, ρ0 (resp. μi , i = 1, 2, 3) is
the optimal Boltzmann distribution (2.2) (resp. Lagrange multipliers) associated with
Q. Note that

λ
(1)
1 (ε) = λ1 − ε, λ

(1)
2 (ε) = λ2 + ε

2
, λ

(1)
3 (ε) = λ3 + ε

2
.

As a consequence, direct computations give
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d f (Q(1)
ε )

dε
= −d ln Z (1)

ε

dε
+ d

dε

3∑
i=1

μ
(1)
i (ε)

[
λ

(1)
i (ε) + 1

3

]

= − ∂ ln Z (1)
ε

∂μ
(1)
i (ε)

d

dε
μ

(1)
i (ε) +

3∑
i=1

d

dε
μ

(1)
i (ε)

[
λ

(1)
i (ε) + 1

3

]

︸ ︷︷ ︸
=0

+
3∑

i=1

μ
(1)
i (ε)

d

dε
λ

(1)
i (ε)

= −μ
(1)
1 (ε) + μ

(1)
2 (ε) + μ

(1)
3 (ε)

2
,

which gives (3.1) after evaluating at ε = 0.
Step 2: tangential component. We proceed to calculate

∇tan f (Q)
def= lim

ε→0

f (Q(2)
ε ) − f (Q)∣∣Q(2)
ε − Q

∣∣ =
√
2

3

d f (Q(2)
ε )

dε

∣∣∣∣
ε=0

. (3.4)

Analogously, we denote ρ
(2)
ε the associated Boltzmann distribution function of

f (Q(2)
ε ):

ρ(2)
ε = exp

{
μ

(2)
1 (ε)x2 + μ

(2)
2 (ε)y2 + μ

(2)
3 (ε)z2

}
Z (2)

ε

, (x, y, z) ∈ S
2,

Z (2)
ε =

∫
S2
exp

{
μ

(2)
1 (ε)x2 + μ

(2)
2 (ε)y2 + μ

(2)
3 (ε)z2

}
dS,

μ
(2)
1 (ε) + μ

(2)
2 (ε) + μ

(2)
3 (ε) = 0,

1

Z (2)
ε

∂Z (2)
ε

∂μ
(2)
i

= λ
(2)
i (ε) + 1

3
, 1 ≤ i ≤ 3.

Here λ
(2)
i (ε)′s, 1 ≤ i ≤ 3 are eigenvalues of Q(2)

ε . Apparently ρ0 (resp. μi , i = 1, 2,
3) is the optimal Boltzmann distribution (2.2) (resp. Lagrange multipliers) associated
with Q. Note that

λ
(2)
1 (ε) = λ1, λ

(2)
2 (ε) = λ2 + ε, λ

(2)
3 (ε) = λ3 − ε.

Then direct computations give

d f (Q(2)
ε )

dε
= − ∂ ln Z (2)

ε

∂μ
(2)
i (ε)

d

dε
μ

(2)
i (ε) +

3∑
i=1

d

dε
μ

(2)
i (ε)

[
λ

(2)
i (ε) + 1

3

]

︸ ︷︷ ︸
=0

+
3∑

i=1

μ
(2)
i (ε)

d

dε
λ

(2)
i (ε) = μ

(2)
2 (ε) − μ

(2)
3 (ε),
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which leads to (3.2) after evaluating at ε = 0.
Step 3: other components. We show that all three other components are identically
zero. We first calculate

∇3 f (Q)
def= lim

ε→0

f (Q(3)
ε ) − f (Q)∣∣Q(3)
ε − Q

∣∣ =
√
2

2

d f (Q(3)
ε )

dε

∣∣∣∣
ε=0

. (3.5)

Analogously, we denote ρ
(3)
ε the associated Boltzmann distribution function of

f (Q(3)
ε ):

ρ(3)
ε = exp

{
μ

(3)
1 (ε)x2 + μ

(3)
2 (ε)y2 + μ

(3)
3 (ε)z2

}
Z (3)

ε

, (x, y, z) ∈ S
2,

Z (3)
ε =

∫
S2
exp

{
μ

(3)
1 (ε)x2 + μ

(3)
2 (ε)y2 + μ

(3)
3 (ε)z2

}
dS,

μ
(3)
1 (ε) + μ

(3)
2 (ε) + μ

(3)
3 (ε) = 0,

1

Z (3)
ε

∂Z (3)
ε

∂μ
(3)
i

= λ
(3)
i (ε) + 1

3
, 1 ≤ i ≤ 3.

Here λ
(3)
i (ε)′s, 1 ≤ i ≤ 3 are eigenvalues of Q(3)

ε . Once again, ρ0 (resp. μi , i = 1, 2,
3) is the optimal Boltzmann distribution (2.2) (resp. Lagrange multipliers) associated
with Q. Note that

λ
(3)
1 (ε) = λ1 + λ2 − √

(λ1 − λ2)2 + ε2

2
, λ

(3)
2 (ε) = λ1 + λ2 + √

(λ1 − λ2)2 + ε2

2
, λ

(3)
3 (ε) = λ3.

Then direct computations give

d f (Q(3)
ε )

dε
= − ∂ ln Z (3)

ε

∂μ
(3)
i (ε)

d

dε
μ

(3)
i (ε) +

3∑
i=1

d

dε
μ

(3)
i (ε)

[
λ

(3)
i (ε) + 1

3

]

︸ ︷︷ ︸
=0

+
3∑

i=1

μ
(3)
i (ε)

d

dε
λ

(3)
i (ε)

= μ
(3)
1 (ε)

d

dε
λ

(3)
1 (ε) + μ

(3)
2 (ε)

d

dε
λ

(3)
2 (ε).

Case 1: λ1 �= λ2. Then

d f (Q(3)
ε )

dε

∣∣∣∣
ε=0

= −μ
(3)
1 (ε)

2

ε√
(λ1 − λ2)2 + ε2

∣∣∣∣
ε=0

+ μ
(3)
2 (ε)

2

ε√
(λ1 − λ2)2 + ε2

∣∣∣∣
ε=0

= 0

Case 2: λ1 = λ2. Then λ
(3)
1 (ε) = λ1 − ε, λ(3)

2 (ε) = λ1 + ε, and correspondingly

d f (Q(3)
ε )

dε

∣∣∣∣
ε=0

= −μ1 + μ2 = 0,
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due to 2.1 and the assumption λ1 = λ2. In a similar way we can show that the other
two components are identically zero. Hence, ∇ f (Q) − 1/3 tr(∇ f )I3 depends on
∇rad f (Q) and ∇tan f (Q) only. ��

As an immediate consequence, we have

Corollary 3.1 For any physical Q-tensor of form (2.1), it holds

1 ≤
∣∣∇Q f (Q)

∣∣
|∇rad f (Q)| ≤ 2. (3.6)

Proof It suffices to prove the upper bound. It follows directly from Lemma 3.1 that

∣∣∇Q f (Q)
∣∣2 = ∣∣∇rad f (Q)

∣∣2 + ∣∣∇tan f (Q)
∣∣2 = 3

2
μ2
1 + 1

2
(μ1 + 2μ2)

2.

By (2.2) and Lemma 2.1, it is easy to check

3μ1 ≤ μ1 + 2μ2 ≤ 0,

which implies

∣∣∇Q f (Q)
∣∣2 ≤ 3

2
μ2
1 + 1

2
(3μ1)

2 = 6μ2
1,

and further together with (3.1) yields

1 ≤
∣∣∇Q f (Q)

∣∣2
|∇rad f (Q)|2 ≤ 6μ2

1
3
2μ

2
1

= 4.

Remark 3.1 It follows from Lemma 3.1 and Corollary 3.1 that, to estimate the blowup
rate of |∇Q f (Q)| as λ1(Q) → −1/3, it suffices to estimate μ1.

[Proof of Theorem 1.2] The proof of Theorem 1.2 consists of the following two
propositions, which provides the upper bound and lower bound of |∇Q f |, respectively.
Proposition 3.1 For any physical Q-tensor of form (2.1), there exists a small com-
putable constant ε0 > 0, such that

∣∣∇Q f (Q)
∣∣ ≥ C1

λ1 + 1
3

, provided 0 < λ1 + 1

3
< ε0, (3.7)

where C1 is given in (1.16).

Proof To begin with, we see from Lemma 3.1 that

∣∣∇Q f (Q)
∣∣2 ≥ ∣∣∇rad f (Q)

∣∣2 = 3

2
μ2
1, (3.8)
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where μ1 is the Lagrange multiplier associated with the Boltzmann distribution func-
tion of f (Q) given in (2.2). Hence, it remains to estimate μ1 in terms of λ1(Q)+1/3,
as λ1(Q) approaches −1/3. From (2.15), (2.16) we see

λ1(Q) + 1

3
=

∫
S2

x2 exp(−ν1x2 − ν2y2) dS∫
S2
exp(−ν1x2 − ν2y2) dS

. (3.9)

Here ν1, ν2 are given in (2.17). Recall that

ν1 � 1, ν2 ≥ 0. (3.10)

Step 1: Estimating the numerator in (3.9)
Using the coordinate system

v(x, θ)
def= (x,

√
1 − x2 cos θ,

√
1 − x2 sin θ), 0 ≤ x ≤ 1, 0 ≤ θ ≤ 2π, (3.11)

whose surface element is given by | ∂v
∂x × ∂v

∂θ
| = 1, we get

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS = 2
∫
S2∩{x≥0}

x2 exp(−ν1x
2 − ν2y

2) dS

= 2
∫ 1

0
x2e−ν1x2

[ ∫ 2π

0
e−ν2(1−x2) cos2 θ dθ

]
dx .

(3.12)

Note that the zeroth modified Bessel function of first kind (Olver et al. 2010) is
represented by

I0(ξ) = 1

π

∫ π

0
exp(ξ cos θ) dθ =

+∞∑
m=0

1

(m!)2
(ξ
2

)2m
, (3.13)

and I0(ξ) = I0(−ξ), hence we have

∫ 2π

0
e−ν2(1−x2) cos2 θ dθ = exp

{−ν2(1 − x2)

2

} ∫ 2π

0
exp

{−ν2(1 − x2) cos(2θ)

2

}
dθ

(η=2θ)= exp
{−ν2(1 − x2)

2

} ∫ 2π

0
exp

{−ν2(1 − x2) cos(η)

2

}
dη

= exp
{−ν2(1 − x2)

2

}[ ∫ π

0
exp

{−ν2(1 − x2) cos(η)

2

}
dη +

∫ π

0
exp

{ν2(1 − x2) cos(η)

2

}
dη

]

= 2π exp
{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
.

Inserting the above identity into (3.12), together with (3.10), we obtain
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∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS

= 4π
∫ 1

0
x2e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

≥ 4π
∫ 1√

ν1

0
x2e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

≥ 4πe−1
∫ 1√

ν1

0
x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx (3.14)

Meanwhile, since (Olver et al. 2010)

d

dξ

[
e−ξ I0(ξ)

] = e−ξ
[
I1(ξ) − I0(ξ)

] = e−ξ

π

∫ π

0
(cos θ − 1) exp(ξ cos θ) dθ < 0,

the function ξ �→ e−ξ I0(ξ) is strictly decreasing. Correspondingly we have

x �→ exp
{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
is strictly increasing for x ∈ [0, 1].

(3.15)
By virtue of (3.15), we get

inf
x∈[0,1/√ν1]

exp
{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
= exp

(−ν2

2

)
I0
(ν2

2

)
,

which together with (3.14) implies

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS ≥ 4π

e
exp

(−ν2

2

)
I0
(ν2

2

) ∫ 1√
ν1

0
x2 dx

= 4π

3e
exp

(−ν2

2

)
I0
(ν2

2

)
ν

− 3
2

1 . (3.16)

Step 2: Estimating the denominator in (3.9)
Similar to the last step, we have

∫
S2
exp(−ν1x

2 − ν2y
2) dS = 4π

∫ 1

0
e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

= 4π
∫ 1√

2

0
e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

+ 4π
∫ 1

1√
2

e−ν1x2 exp
{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx (3.17)
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Recall (3.15), then we see

∫ 1

1√
2

e−ν1x2 exp
{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx ≤

∫ 1

1√
2

e− ν1
2 dx = 2 − √

2

2
e− ν1

2 ,

∫ 1√
2

0
e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx ≤ exp

(−ν2

4

)
I0
(ν2

4

) ∫ 1√
2

0
e−ν1x2 dx

≤ exp
(−ν2

4

)
I0
(ν2

4

) ∫ ∞

0
e−ν1x2 dx = exp

(−ν2

4

)
I0
(ν2

4

)√ π

4ν1

Since ξ �→ e−ξ/4I0(ξ/4) is decreasing, while ξ �→ I0(ξ/4) is increasing for ξ ≥ 0,
and ν2 ≤ ν1, ν1 � 1, there exists a computable, universal constant A0 such that

2 − √
2

2
e− ν1

2 ≤ exp
(−ν1

4

)√ π

4ν1
≤ exp

(−ν1

4

)
I0
(ν1

4

)√ π

4ν1

≤ exp
(−ν2

4

)
I0
(ν2

4

)√ π

4ν1
, ∀ν1 ≥ A0.

To sum up, we conclude

∫
S2
exp(−ν1x

2 − ν2y
2) dS ≤ 4π exp

(−ν2

4

)
I0
(ν2

4

)√ π

ν1
, ∀ν1 ≥ A0. (3.18)

Step 3: Combining both estimates in (3.9)
We get immediately from (3.16) and (3.18) that

λ1(Q) + 1

3
= 1

3e
√

πν1

exp
(−ν2

2

)
I0
(

ν2
2

)
exp

(−ν2
4

)
I0
(

ν2
4

) , ∀ν1 ≥ A0. (3.19)

Since −3μ1 ≥ ν1 ≥ − 3
2μ1, it remains to bound the last fraction in (3.19). Since

e−ξ I0(ξ) > 0, ∀ξ ≥ 0, and is equal to 1 at ξ = 0, it suffices to show

lim inf
ξ→+∞

e−ξ I0(ξ)

e
−ξ
2 I0(

ξ
2 )

> 0 (3.20)

The Taylor expansion of e−ξ I0(ξ), for ξ � 1, is (Olver et al. 2010)

e−ξ I0(ξ) = 1√
2π

[
ξ− 1

2 + 1

8
ξ− 3

2 + 9

128
ξ− 5

2 + O(ξ− 7
2 )
]
,

hence the limit in (3.20) is equal to 1/
√
2. Thus, one can establish from (3.19) and the

fact −3μ1 ≥ ν1 ≥ − 3
2μ1 that

λ1(Q) + 1

3
≥ 1

ν1

1

3e
√

π
inf
ξ≥0

e−ξ I0(ξ)

e
−ξ
2 I0(

ξ
2 )

, ∀ν1 ≥ A0,
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which further gives

λ1(Q) + 1

3
≥ − 1

μ1

1

9e
√

π
inf
ξ≥0

e−ξ I0(ξ)

e
−ξ
2 I0(

ξ
2 )

, provided μ1 < −2A0

3
. (3.21)

In view of Remark 2.1, there exists a small computable constant ε0 > 0, such that

μ1 < −2A0

3
, provided 0 < λ1(Q) + 1

3
< ε0.

In all, using (1.16) we conclude that from (3.21) that

∣∣∇Q f (Q)
∣∣ ≥ ∣∣∇rad f (Q)

∣∣ ≥
√
6

2
μ1 ≥ C1

λ1(Q) + 1
3

, provided

0 < λ1(Q) + 1

3
< ε0, (3.22)

completing the proof. ��
Proposition 3.2 For any physical Q-tensor of form (2.1), there exists a small com-
putable constant ε0 > 0, such that

∣∣∇Q f (Q)
∣∣ ≤ C2

λ1 + 1
3

, provided 0 < λ1 + 1

3
< ε0, (3.23)

where C2 is given in (1.16).

Proof In contrast to the proof of Proposition 3.1, we need to obtain suitable upper
bound on the numerator of (3.9), but lower bound on the denominator of (3.9).
Step 1: Estimating the numerator in (3.9)

Using the coordinate system (3.11), similar to the proof of Proposition 3.1 one can
establish

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS = 4π
∫ 1

0
x2e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

= 4π
∫ 1√

2

0
x2e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

+ 4π
∫ 1

1√
2

x2e−ν1x2 exp
{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx,

.= 4π(J1 + J2). (3.24)

In view of (3.15), we get

J2 ≤
∫ 1

1√
2

x2e−ν1x2 dx = 2 − √
2

2
e− ν1

2 , (3.25)
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and

J1 ≤
∫ 1√

2

0
x2e−ν1x2 exp

(
− ν2

4

)
I0
(ν2

4

)
dx

= exp
(

− ν2

4

)
I0
(ν2

4

)[
− e− ν1

2

2
√
2ν1

+ 1

2ν1

∫ 1√
2

0
e−ν1x2 dx

]

≤ exp
(

− ν2

4

)
I0
(ν2

4

)[
− e− ν1

2

2
√
2ν1

+ 1

2ν1

∫ +∞

0
e−ν1x2 dx

]

= exp
(

− ν2

4

)
I0
(ν2

4

)[
− e− ν1

2

2
√
2ν1

+
√

π

4
ν

− 3
2

1

]
. (3.26)

Since ν2 ≤ ν1, and ξ �→ e−ξ I0(ξ) is decreasing, we have

0 <
e− ν1

2

exp
( − ν2

4

)
I0
(

ν2
4

)√
π
/
4ν

3
2
1

≤ e− ν1
2

exp
( − ν1

4

)
I0
(

ν1
4

)√
π
/
4ν

3
2
1

= 4ν
3
2
1

e
ν1
4 I0

(
ν1
4

)√
π

−→ 0, as ν1 → +∞.

Hence, there exists a computable constant A0 > 0, such that

J1 + J2 ≤ 2 − √
2

2
e− ν1

2 + exp
(

− ν2

4

)
I0
(ν2

4
)
[

− e− ν1
2

2
√
2ν1

+
√

π

4
ν

− 3
2

1

]

≤ 4π exp
(

− ν2

4

)
I0
(ν2

4

)√
πν

− 3
2

1 , ∀ν1 > A0,

which inserts into (3.24) yields

∫
S2

x2 exp(−ν1x
2 − ν2y

2) dS ≤ 4π(J1 + J2) ≤ 4π

≤ exp
(

− ν2

4

)
I0
(ν2

4

)√
πν

− 3
2

1 , ∀ν1 > A0. (3.27)

Step 2: Estimating the denominator in (3.9)
Using (3.10), the coordinate system (3.11) and (3.15), we get

∫
S2

exp(−ν1x
2 − ν2y

2) dS = 4π
∫ 1

0
e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

≥ 4π
∫ 1√

ν1

0
e−ν1x2 exp

{−ν2(1 − x2)

2

}
I0
[ν2(1 − x2)

2

]
dx

≥ 4π

e
√

ν1
exp

[
− ν2

2

]
I0
(ν2

2

)
(3.28)
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Step 3: Completing the proof
Combining (3.27) and (3.28), we see that

λ1(Q) + 1

3
≤ exp

( − ν2
4

)
I0
(

ν2
4

)√
πν

− 3
2

1
1

e
√

ν1
exp

( − ν2
2

)
I0
(

ν2
2

) ≤ e
√

π

ν1
sup
ξ≥0

exp
( − ξ

4

)
I0
(

ξ
4

)
exp

( − ξ
2

)
I0
(

ξ
2

) , ∀ν1 > A0 (3.29)

where

sup
ξ≥0

exp
( − ξ

4

)
I0
(

ξ
4

)
exp

( − ξ
2

)
I0
(

ξ
2

) ≥ I0(0)

I0(0)
= 1.

Therefore, together with the fact that μ1 ≤ μ2 ≤ −μ1/2, we know

−μ1 ≤ −2μ1 − μ2 = ν1 ≤ 1

λ1(Q) + 1
3

e
√

π sup
ξ≥0

exp
( − ξ

4

)
I0
(

ξ
4

)
exp

( − ξ
2

)
I0
(

ξ
2

) , ∀ν1 > A0.

Then following the same argument in the proof of Proposition 3.2, we conclude from
Corollary 3.1 that as λ1(Q) → −1/3, it holds

∣∣∇Q f (Q)
∣∣ ≤ 2|∇rad f (Q)| = −√

6μ1 = C2

λ1(Q) + 1
3

, (3.30)

where C2 is given in Theorem 1.16, completing the proof. ��
Remark 3.2 Using similar argument, it is expected that the estimate for second-order
derivatives of f near its physical boundary could be achieved.
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