
Leaky Buddies: Cross-Component Covert Channels
on Integrated CPU-GPU Systems

Sankha Baran Dutta
Department of CSE

University of California, Riverside
Riverside, California, USA

sdutt004@ucr.edu

Hoda Naghibijouybari
Department of Computer Science

Binghamton University
Binghamton, New York, USA

hnaghibi@binghamton.edu

Nael Abu-Ghazaleh
CSE and ECE Departments

University of California, Riverside
Riverside, California, USA

nael@cs.ucr.edu

Andres Marquez
Pacific Northwest National Laboratory

Richland, WA, USA
Andres.Marquez@pnnl.gov

Kevin Barker
Pacific Northwest National Laboratory

Richland, WA, USA
Kevin.Barker@pnnl.gov

Abstract—Graphics Processing Units (GPUs) are ubiquitous

components used across the range of today’s computing plat-

forms, from phones and tablets, through personal computers, to

high-end server class platforms. With the increasing importance

of graphics and video workloads, recent processors are shipped

with GPU devices that are integrated on the same chip. Integrated

GPUs share some resources with the CPU and as a result, there

is a potential for microarchitectural attacks from the GPU to

the CPU or vice versa. We consider the potential for covert

channel attacks that arise either from shared microarchitectural

components (such as caches) or through shared contention

domains (e.g., shared buses). We illustrate these two types of

channels by developing two reliable covert channel attacks.

The first covert channel uses the shared LLC cache in Intel’s

integrated GPU architectures. The second is a contention based

channel targeting the ring bus connecting the CPU and GPU

to the LLC. This is the first demonstrated microarchitectural

attack crossing the component boundary (GPU to CPU or vice

versa). Cross-component channels introduce a number of new

challenges that we had to overcome since they occur across

heterogeneous components that use different computation models

and are interconnected using asymmetric memory hierarchies.

We also exploit GPU parallelism to increase the bandwidth of

the communication, even without relying on a common clock. The

LLC based channel achieves a bandwidth of 120 kbps with a low

error rate of 2%, while the contention based channel delivers up

to 400 kbps with a 0.8% error rate. We also demonstrate a proof-

of-concept prime-and-probe side channel attack that probes the

full LLC from the GPU.

I. INTRODUCTION

In recent years, micro-architectural covert and side channel
attacks have been widely studied on modern CPUs, exploiting
optimization techniques and structures to exfiltrate sensitive
information. A preponderance of these studies exploit CPU
structures examining channels through a variety of contention
domains including caches [27], [32], [41], [45], [49], branch
predictors [9], random number generators [8], and others [5],
[28]. Modern computing systems are increasingly heteroge-
neous, consisting of a federation of the CPU with GPUs,
NPUs, other specialized accelerators, as well as memory and
storage components, using a rich interconnect. It is essential

to understand how micro-architectural attacks manifest within
such complex environments (i.e., beyond just the CPU).

In this paper, we demonstrate for the first time covert
channel attacks between a CPU and integrated GPU. Although
covert channels have been demonstrated on a variety of CPU
structures, as well as on discrete GPUs [23], [24], [36], [37],
we believe our attacks are significantly different from prior
work because they operate across heterogeneous components.
Specifically, to the best of our knowledge, all prior demon-
strated covert channels are symmetric, with both the sender
and receiver being identical: typically threads or processes
access a resource that they use to create contention. In contrast,
cross-component attacks occur between two entities that can
have substantially different computational models, and that
share have asymmetric views of the resources. As a result, not
only does the attacks necessitate careful reverse engineering
of asymmetric views of the resource from both side, it also
requires solutions to new problems that arise due to the
asymmetry in sharing the resources. Moreover, we believe
this is the first attack demonstrated on heterogeneous environ-
ments, providing important insights into how this threat model
manifests in such systems, and extend our understanding of the
threat model and guide further research into defenses.

An iGPU is integrated on the die with the CPU and
shares resources such as the last level cache and memory
subsystem with it. This integration creates the potential of new
attacks that exploit common resources to create interference
between these components, leading to cross-component micro-
architectural attacks. Specifically, we develop covert channels
(secret communication channels that exploit contention) on
integrated heterogeneous systems in which two malicious
applications, located on two different components (CPU and
iGPU) transfer secret information via shared hardware re-
sources. Section II provides an overview of the integrated
CPU-GPU systems architecture and our threat model.

We demonstrate for the first time the vulnerability of these
types of widely-used systems to microarchitectural attacks.

���

�����"$.�*&&&���UI�"OOVBM�*OUFSOBUJPOBM�4ZNQPTJVN�PO�$PNQVUFS�"SDIJUFDUVSF�	*4$"

����������������������������¥�����*&&&
%0*���������*4$"����������������

These cross-component attacks require solving new problems
due to the asymmetric nature of the two communication ends
(one on the CPU, and the other on the GPU). These problems
include the different views of the memory hierarchy, the
need for synchronization across heterogeneous components
with frequency disparity, reconciling different computational
models and memory hierarchies, and creating reliable fine-
grained timing mechanisms. We also demonstrate the pos-
sibility of the more dangerous side-channel attacks. These
new attacks provide concrete examples for the first time of
cross-component attacks in heterogeneous systems, expanding
our understanding of microarchitectural attacks and guiding
mitigation strategies.

We consider two possibilities for creating covert channels
in cross-component systems: (1) Contention through directly
shared microarchitecture resources. In the case of the inte-
grated CPU-GPU system we use in our experiments, the lowest
level of the cache (the LLC) is shared and serves as our
example of this type of channel; and (2) Contention through
time multiplexed resources such as shared buses, cache ports,
computational units and similar resources. In such resources,
if both components use the resource at the same time, there is
a perceived delay as their requests contend for the use of the
limited resource. We illustrate this type of channel by building
a covert channel attack on the ring-bus interconnect the CPU
and GPU to the LLC cache. We construct two covert channel
attacks: (1) A Prime+Probe covert channel attack using the
shared LLC (Section III); and (2) a contention based covert
channel using contention on the shared bus to reach the LLC
(Section IV). For each attack, we had to solve a number of
unique challenges that arise due to the asymmetric nature
of the channels (e.g., the view of the memory hierarchy is
different from the two sides, with critical implications on how
we can build a successful attack). The LLC based channel
achieves a bandwidth of 120 kbps with an error rate of 2%
while the ring-bus based channel achieves a bandwidth of 400
kbps with a 0.8% error rate. We also demonstrate a prime and
probe side channel attack where the GPU is able to spy on
LLC accesses generated by the CPU. We discuss the potential
mitigations in Section VII and compare our work to other
related attacks in Section VIII.

In summary, the contributions of this paper are:
• We present a new class of attacks that span different

components within a heterogeneous system.
• We show a number of new challenges that arise in cross-

component attacks due to the asymmetry between the
two communication ends. These include matching the
attack cycle from two different computational models
with different clock cycles, and reverse engineering and
understanding asymmetric views of the memory hierar-
chy, as well as others. We believe that some of these
issues generalize beyond our specific environment.

• We build and characterize two real covert channel attacks
on an integrated CPU-GPU system.

• We build a proof of concept prime-probe side-channel
attack with GPU spying on the cache activity of the CPU.

Section IX discusses possible future research and presents our
concluding remarks.

II. BACKGROUND AND THREAT MODEL

In this section, we introduce the organization of Intel’s
integrated GPU systems, to provide the background necessary
to understand our attack. We also present the threat model,
outlining our assumptions on the attacker’s capabilities.

A. Intel Integrated CPU-GPU systems
Traditionally, discrete GPUs are connected with the rest of

the system through PCIe bus, and have access to a separate
physical memory (and therefore memory hierarchy) than that
of the CPU. However, starting with Intel’s Westemere in 2010,
Intel’s CPUs have integrated GPUs (iGPU) incorporated on
the same die with the CPU, to support increasingly multi-
media heavy workloads without the need for a separate (bulky,
expensive, and power hungry) GPU. This GPU support has
continued to evolve with every generation providing more
performance and features; for example the Iris Plus on Gen11
Intel Graphics Technology [17] offers up to 64 execution
units (similar to CUDA cores in Nvidia terminology) and at
the highest end, over 1 Teraflop of GPU performance.

For general purpose computing on integrated GPUs, the
programmer uses OpenCL [1] (equivalent to CUDA pro-
gramming model on Nvidia discrete GPUs [38]). Based on
the application, programmers launch the required number of
threads that are grouped together into work-groups (similar to
thread blocks in Nvidia terminology). Work-groups are divided
into groups of threads executing Single Instruction Multiple
Data (SIMD) style in lock step manner (called wavefronts,
analogous to warps in Nvidia terminology). In integrated
GPUs the SIMD width is variable, changing depending on
the register requirements of the kernel.

iGPUs reside on the same chip and connect to the same
memory hierarchy as the CPU (typically at the LLC level).
Figure 1 shows the architecture of an Intel SoC processor,
integrating four CPU cores and an iGPU [15]. The iGPU is
connected with CPUs and the rest of the system through a
ring interconnect: a 32 byte wide bidirectional data bus. The
GPU shares the Last Level Cache (LLC) with the CPU, which
serves as the last level of the GPUs cache hierarchy. The GPU

Fig. 1: Intel SoC architecture

���

Fig. 2: Intel integrated GPU architecture

and CPU can access the LLC simultaneously. However, there
is an impact on the access latency due to factors such as delays
in accessing the bus and access limitations on the LLC ports.
We characterize the contention behavior in Section IV. The
GPU and CPU share other components such as the display
controller, the PCIe controller, the optional eDRAM controller,
and the memory controller.

The architecture of the iGPU is shown in Figure 2. A group
of 8 EUs (analogous to CUDA cores) is consolidated into
a single unit which is called a Subslice (similar to SM in
Nvidia terminology) and typically 3 subslices create a Slice.
The number of slices varies with the particular SoC model
even within the same generation, as the slices are designed
in a modular fashion allowing different GPU configurations
to be created. Experimentally, we discovered that multiple
work-groups are allocated to different subslices in a round-
robin manner. The global thread dispatcher launches the work-
groups to different subslices. A single SIMD width equivalent
number of threads in a single subslice is launched to EUs in a
round-robin manner as well. A fixed functional pipeline (not
shown in the figure) is dedicated for graphics processing.

The iGPU uses three levels of cache (in addition to the
shared LLC). The first two levels, L1 and L2, are called
sampler caches and are used solely for graphics. The third level
cache, L3, is universal and can be used for both graphics and
computational applications. We explain the organization of the
L3 cache in more detail in Section III-D. In each slice, there
is also a shared local memory (SLM), a structure within the
L3 complex that supports programmer managed data sharing
among threads within the same work-group [15].

B. Threat Model

In this paper, we build two covert channel attacks originat-
ing from an integrated GPU to the CPU or vice versa. We also
demonstrate a proof-of-concept side channel attack allowing
the GPU to spy on the CPU. In a covert channel, two processes

(a Trojan sending data to a Spy) communicate covertly using
an indirect channel. Previously established covert channels
were between similar processes and within the same physical
device, either a CPU [35] or GPU [36], but not spanning
both. In contrast, our covert channel differs in that the trojan
and the spy processes communicate across different heteroge-
neous components, each featuring a different execution model,
memory hierarchy and clock domains. Specifically, the trojan
process launches a kernel on the GPU and the spy process
operates completely on the CPU during communication. We
also demonstrate the communication in the other direction (in
fact, we implement bidirectional covert channels). We explore
two different covert channels, one using a Prime+Probe style
attack on the LLC, and another that uses contention as the two
processes concurrently access a shared resource to implement
the communication.

We assume that the trojan and spy processes are both
separate user-level processes without additional privileges,
one running on the GPU and another on CPU. There is no
explicit sharing between them (for example sharing of memory
objects). The communication on the LLC occurs over pre-
agreed sets in the cache. Such agreement is not required in
a contention based attack and can be relaxed by dynamically
identifying sets to communicate (but we do not pursue such
an implementation). On the GPU side of our attacks, the
program uses the GPU through user-level OpenCL API calls
(we suspect that channels could also be established using
OpenGL or other graphics calls). All of our experiments are on
a Kaby Lake i7-7700k processor, which features an integrated
Intel’s Gen9 HD Graphics Neo. We use OpenCL version 2.0
(Driver version 18.51.12049), running Ubuntu version 16.04
LTS (which uses Linux Kernel version 4.13). The attacks were
developed and tested on an unmodified but generally quiet
system (not running additional workloads) on the GPU side of
the attack. Current iGPUs are not capable of running multiple
computation kernels from separate contexts concurrently and
therefore no noise is expected on the GPU side.

III. LLC-BASED COVERT CHANNEL

This section presents the first covert channel attack:
a Prime+Probe channel using the shared LLC cache.
Prime+Probe is one of the most common strategies of cache-
based attacks [41]; it is also one of the most general strategies
because it does not require sharing of parts of the address
space as required by other strategies, for example, those
requiring sharing to be able to flush data out of the caches. In
Prime+Probe, first the spy process accesses its own data and
fills up the cache (priming). Next, the trojan either accesses its
own data (replacing the Spy’s) to communicate a ”1”, or does
nothing to communicate a ”0”. Finally, the spy can detect this
transferred bit by re-accessing its data (probe) and measuring
the access time. If the time is high, indicating a cache miss,
it detects a ”1”, otherwise a ”0”.

���

A. Attack Overview and Challenges
In this attack, the CPU and GPU communicate over the

LLC cache sets. Figure 3 depicts the overview of the attack.
We illustrate the attack at a high level using a trojan process
launched on the GPU, communicating the bits to the CPU
but the opposite is also possible. The Spy process which is
receiving the bits is launched on the CPU. Communication
from GPU to CPU is a 3 step process. The first two steps are
for handshaking before the communication to make sure that
the two sides are synchronized, which is especially important
for heterogeneous components that can have highly disparate
communication rates. The GPU initiates the handshake by
priming the pre-agreed cache set and letting the CPU know
that it is ready to send. Once the CPU receives the signal by
probing the same cache set, the CPU acknowledges it back
by priming a different cache set and sending ready to receive
signal back to GPU in the second phase. GPU receives ready
to receive signal by probing the same cache set that was
primed by CPU. This ends the handshaking phase and the
attack moves to the third step when GPU sends the data bit to
CPU. For sending 1, GPU primes the LLC cache set that is
probed by CPU. If GPU wants to send 0, it doesn’t prime the
cache set but CPU still probes. This 3 phase communication
repeats communicating the secret bits covertly from the GPU
process to the CPU process.

Fig. 3: LLC based CPU-GPU covert channel overview

Although at a high level this attack strategy is similar to
other covert channel attacks, there are a number of unique
challenges that occur when we try to implement the channel
between the CPU and GPU. The challenges generally arise
from the heterogeneous nature of the computational models
on the two components, as well as the different memory
hierarchies they have before the shared LLC. We overview
these challenges and our approach to them briefly next.

• Lack of a GPU timer: Prime+Probe attacks rely on the
ability to time the difference between a cache hit and
a cache miss to implement communication. Usually, a
user-level hardware counter is available on the system to
measure the access latency. While this is true on the CPU
side, unfortunately, OpenCL on iGPUs does not provide
any such means to the programmer. We describe this
problem and the custom user-level timer we develop to
overcome it in Section III-B.

• Using SVM to reverse engineering the shared LLC

from the GPU: Modern GPUs come with their own page
tables and paging mechanisms. When a CPU process
initializes and launches the GPU kernel, the CPU page
table is shared with the GPU in this scenario. This sharing
allows us to reverse engineer the cache from the CPU
using established techniques [51] and use these results
on the GPU.

• Asymmetric view of LLC from GPU cache hierarchy:

We discover that the view of the LLC from the GPU is
substantially different from the CPU–this is a type of
problem that arises due to the asymmetric nature of the
channel. Within the iGPU, there are three more levels
of cache. We discover that the GPU caches are not
inclusive relative to the LLC (unlike the CPU caches),
which requires us to understand the GPU L3 (L1 and L2
are disabled by OpenCL) in detail in order to control
evictions from it rather than relying on inclusivity to
cause evictions. Another unique problem arising in this
environment is that the indexing of the GPU L3 is
dissimilar to that of the LLC: the eviction set for the GPU
L3 can map to different LLC sets and cause significant
noise, which is atypical in modern cache hierarchies. We
needed to find controlled eviction sets (which we call
pollution sets) at L3 level such that the targeted LLC
sets are evicted from L3 by the pollution sets without
causing spurious accesses to the sets we are using in the
LLC. We describe this challenge in Section III-D.

• Matching the communication rate across heteroge-

neous components: Since the spy and the trojan use
completely different computation models operating at
substantially different clock rates, determining how to
best implement the channel to improve bandwidth and
reduce noise is also a new problem introduced by asym-
metry. We address this problem by a combination of
trying to match the access rate by using the parallelism
on the GPU, but also by optimizing the length of the
prime-probe loop on the two communication ends.

B. Building Custom Timer

Access to a high-resolution timer is essential to the ability
to carry out cache based covert channels; without it we are
unable to discriminate a cache hit from a cache miss, which is
the primary phenomena used in the communication. Although
Intel based integrated GPUs have a timer, by default, the
manufacturer does not provide an interface to query it in
OpenCL based applications. OpenCL programs executing on
Intel devices are compiled using the Intel graphics compiler
(IGC) [4], [16]. In debug mode, it is possible to query an
overloaded timer function in the program. This is not available
to the programmer in default mode and requires a superuser’s
permission for installation. In our end-to-end covert channel
threat model, the attacker has no privileged access. Therefore,
we need to come up with an alternative approach to measure
the access latency within the GPU application.

���

We leverage GPU parallelism and hardware Shared Local
Memory (SLM) to build the custom timer. Shared local mem-
ory in Intel based iGPUs is a memory structure, shared across
all EUs in a subslice. 64 Kbytes of shared local memory is
available per subslice. Shared local memory is private to all
the threads from a single work-group. We launch a work-group
for which a certain number of threads are used to conduct
the attack and the rest of the threads are used to increment
a counter value stored in shared memory. The threads that
are responsible for carrying out the attack read the shared
value as timestamps before and after the access to measure
the access time (the principle of this technique was used in
CPU attacks on the ARM where the hardware time is not
available in user mode [30]). Due to branch divergence within
the wavefronts (SIMD width of threads), the execution of two
groups of threads in a single wavefront gets serialized. To
avoid such effects, we use the threads in the first wavefront
to access the cache, and threads in other wavefronts of the
same work-group to count. Note that all of these threads (from
several wavefronts) form a single work-group, assigned to the
same subslice, and are able to use the same shared memory.

Each LLC cache set consists of 16 ways that can be probed
in parallel from the GPU using 16 threads (thread id 0 - 15).
However, the timer should start from wavefront boundary i.e.
above 32 threads (thread ID>31) to avoid branch divergence.
Accordingly, the threads involved in conducting the attack are
threads 0 to 15 while the counter increment is implemented by
threads 32 and above to the end of work-group. Ideally only 2
wavefronts can be used one for probing and one for the timer.
However, we found out that the timer resolution obtained by
using a single wavefront is not adequate to distinguish between
access latency of different memory hierarchy levels; we used
all remaining 224 threads to implement the counter.

Fig. 4: Custom Timer Characterization

Algorithm 1 demonstrates the custom timer code inside the
GPU kernel. Data accessed from the iGPU, using OpenCL,
can get cached into the LLC and the L3. To conduct a covert
channel attack, the attacker needs to distinguish 3 levels of
access time, i.e. system memory, LLC and L3. In line 1 of
algorithm 1, the variable volatile local counter is declared,
which is used as the timer. The volatile keyword makes sure
that the counter variable is not cached inside the thread’s
registers. The timer variable is declared in the shared memory
of the device using the local keyword. Shared memory uses
a separate data path than that used for accessing L3, which

Algorithm 1: Custom Timer Algorithm
1 volatile local counter
2 cl uint start,end,idxVal
3 cl ulong average
4 cl float access time
5 if thread ID>SIMD length then

6 for i = 0; i < n; i = i+ 1 do

7 atomic add(counter,1)
8 end

9 else

/* Measure time over x accesses */
10 if thread ID<16 then

11 average= 0
12 idxVal = idx buffer[thread ID]
13 for i = 0; i < x; i = i+ 1 do

14 start = atomic add(counter,0)
15 idxVal = data buffer[idxVal]
16 end = atomic add(counter,0)
17 average + = end � start
18 end

19 access time = (cl float)(average/x)
/* Clear data from L3 but not LLC

*/
/* Repeat 5 to 19 for LLC access */
/* Repeat 5 to 19 again for L3

access */

makes sure that there is no resource contention that can lead to
erratic counter updates. To test the custom timer, we launched
a kernel with 1 work-group consisting of the max number of
threads per work-group. Threads over a single wavefront are
used to increment the counter atomically as shown in lines 5
- 8 in the if section of the algorithm. Atomic operation on the
variable ensures that the variable is accessed and incremented
properly. In lines 9 - 18, the data is accessed and the value
of the counter is read atomically. A number (x) of memory
accesses is timed and averaged. The first access represents the
measurement from the system memory. To measure the access
time from the LLC, the data is cleared from the L3 but made
sure that it is not cleared from the LLC and then 5 - 19 is
repeated to measure the access time from LLC. Now as the
data is both cached in LLC and L3, repeating steps 5 - 19
yields the L3 access time.

Figure 4 shows our experiment with the timer measuring
access time from the different levels of the hierarchy (shown
in different colors). The access times obtained from the counter
values are clearly separated enabling us to distinguish between
accesses from the three levels of hierarchy.

C. Building LLC Conflict Sets from both CPU and GPU

The next challenge in the attack is the formation of eviction
sets (addresses which has the same cache set) to be able to
prime and probe the sets used in the attack [43]. We first briefly
describe this process from the CPU side which is similar to

���

other attacks on the LLC. However, building an eviction set
from the GPU side in a way that is compatible with the sets
built on the CPU side presents challenges that we overcome by
leveraging OpenCL Shared Virtual Memory (SVM) and zero
copy feature.
Deriving LLC conflict sets from the CPU: Modern LLCs
are divided into a number of slices that vary with the pro-
cessor architecture. The cache slice selection depends on a
complex index hashing scheme designed to evenly distribute
the addresses across the slices. The Intel architecture that we
are using has 8 MB last level cache divided into 4 slices of
2 MB each. The cache is 16-way set associative, with 64-
byte cache lines (a total of 2048 cache sets per slice). We
use approaches proposed by prior work [20], [27], [34], [51]
to reverse engineered index hashing. On our processor, we
discover that the index hashing algorithm selects a slice using
2 bits computed as follows. We use huge pages, which are
available to user-level code, to avoid having to resolve the
virtual to physical mapping and simplify the attack.

S0 = b36 � b35 � b33 � b32 � b30 � b28 � b27 � b26

�b25 � b24 � b22 � b20 � b18 � b17 � b16

�b14 � b12 � b10 � b6

(1)

S1 = b37 � b35 � b34 � b33 � b31 � b29 � b28 � b26

�b24 � b23 � b22 � b21 � b20 � b19 � b17

�b15 � b13 � b11 � b7

(2)

Building GPU LLC conflict sets using SVM: Deriving the
conflict set from the GPU side is complicated by the fact that
the GPU has its own page tables [18] which are different from
the CPU ones. Therefore, we need to form the LLC eviction set
from GPU side as well. To simplify this problem, we observe
that OpenCL on intel GPUs allows the programmer to allocate
memory with the same virtual address space using Shared
Virtual Memory (SVM) [14] and the same physical address
space through zero-copy buffers [13] from the user level.
Specifically, when a CPU process initializes and launches the
GPU kernel, on shared pages the eviction set identified from
the CPU side also holds for the GPU after the GPU kernel is
launched. Please note that this sharing is within the address
space of the process launching the GPU side of the attack; no
sharing is required between the Spy and Trojan.

D. Bypassing GPU Caches and handling memory view asym-
metry

One of the challenges of generating the Prime+Probe pattern
from the GPU is that memory accesses are filtered through
the L3 cache on the GPU side (L1 and L2 are used only for
graphics workloads on this system, or otherwise they have to
be bypassed as well). We address this problem by generating
an access pattern to remove the LLC conflict set addresses
from the GPU cache so that when they are accessed again
they cause an access in the LLC (which is necessary to carry
out the Prime+Probe). Thus, to be able to create such reference

patterns, we must first reverse engineer the L3 cache on the
GPU.

A standard approach to last level caches leverages the cache
inclusiveness property [51]; in fact, relaxing inclusion has been
even proposed as a defense against these attacks [26]. With
inclusive caches, data evicted from the lower level of caches
also gets evicted from the higher level caches. As a first step of
understanding the L3, we first determine whether it is indeed
inclusive: we discover that it is not, providing another example
of the challenges posed due to the asymmetric nature of cross-
component channels. Next, we reverse engineer the structure
of the cache, and finally, develop conflict sets that allow us to
control the traffic that gets presented to the LLC. We discover
another problem that occurs due to the asymmetry of the
caches: the hash function used to index the L3 GPU cache is
incompatible with the hash function for the LLC. Specifically,
addresses that cause eviction in a single set in the GPU cache
may hash to multiple sets in the LLC, causing unexpected
self-interference. We had to understand this effect to come up
with access patterns that avoid self-interference. We describe
our reverse engineering experiments next.
L3 inclusiveness: To check whether the L3 is inclusive, we
carried out the following experiment. We create a buffer shared
by the CPU and the GPU and identify a set of n addresses that
are accessed first by the GPU. Initially, the caches are cold,
and the data is brought from memory and cached in both LLC
and L3. Next, the CPU accesses the same data bringing it into
its caches, and then flushes the data removing it from all the
cache levels using clflush. If the LLC is inclusive of the L3
cache, the removal of the flushed data from the LLC will cause
back-invalidations to evict the data from the L3 cache of the
GPU as well. Repeating and timing the accesses on the GPU,
we observed that the data is accessed from L3, indicating that
the L3 cache is not inclusive.
Constructing L3 Conflict Sets considering effect on LLC:

Due to the GPU parallel execution model, the associativity of
the L3 cache is substantially higher than the LLC (64-way, vs
16-way for the LLC). Due to this mismatch in size, and in
the index hashing (how addresses get mapped to sets in the
caches), coming up with a conflict set for LLC introduced a
novel challenge: we had to find a way to spill addresses from
the L3 to the LLC without causing self-interference due to
the additional addresses necessary to cause eviction from the
higher associativity L3. We describe our reverse engineering
effort of the L3, and how we addressed this problem, next.

The L3 is organized into slices with slice of size 768 KB.
A slice is further divided into 4 cache banks each configured
into 128 KB of L3 cache and 64 KB of Shared Local Memory
(SLM). As shown earlier in Figure 2, when SLM is declared,
SLM has a dedicated access pathway, which is separated from
L3–this facility was critical to enable us to build the counter
in SLM without interfering with the cache accesses.

During the attack phase on the LLC, we start with the
addresses that are in the same LLC set and slice (selected
from the LLC eviction set earlier). In both priming and the
probing phases, these addresses need to be evicted from the

���

L3 so that they can be observed at the LLC level during the
implementation of the prime and probe. Given that the L3 is
non-inclusive, the addresses cannot be evicted from the CPU
counterpart, and instead need to create an eviction set on L3
from the GPU side to conduct a successful attack, we call this
L3 eviction sets as pollution sets to discriminate them from
the conflict sets needed to evict values from the LLC.

Due to the larger associativity of the GPU L3, we need a
larger set of addresses in the pollution set to cause the eviction
of the LLC target addresses. During these experiments, we
discovered that the hash indexing function of the GPU L3
is inconsistent with that of the LLC: the pollution set for a
cache set on the L3 can map to different LLC sets, causing
a mismatch between the pollution set and eviction set, and
introducing self-interference in the attack. We reverse engineer
the relationship between them to discover that the 64 ways of
the L3 are strided across 4 different sets in the LLC across the
4 LLC slices. If we blindly produce the pollution set, many of
the addresses in it would also cause accesses to the target LLC
set, causing self-interference and failure of the attack. Consider
the target addresses t0, t1 to t15 as shown in Figure 5 that are
mapped to the same LLC cache set (A) which resides on slice
(0) of the LLC. These addresses also map to the same cache
set in L3. During the attack phase, these addresses need to be
evicted from L3 (and eventually the LLC). If we simply create
an eviction set for L3, these addresses have an equal chance
to hash into any of the 4 slices in the LLC at the same set
position. Without controlling where they hash, this will cause
interference with the target LLC set (addresses p0, p1 . . . p64
on the figure also accessing the target LLC set.)

To understand the relationship between the mapping within
the L3 cache and the corresponding mapping within the LLC,
we first conduct a standard pointer chasing experiment to
derive conflict sets within the L3 similar to prior work [22].
Once we have conflict sets in the L3 we study how they hash
across the cache banks in both the L3 and LLC. The L3 cache
is partitioned into 4 banks and each bank is again partitioned
into 8 sub-banks. The number of sets per cache bank is 32
that requires 5 bits in the address bits for mapping. There are
4 cache banks which require additional 2 bits in the address
for mapping. Each cache bank is again divided into 8 cache
sub-banks which require additional 3 bits in the address. As
a result, a total of 10 bits (5 bits for cache set + 2 bits for
cache bank + 3 bits for sub-banks) determine the set of the
L3 in which a cache line resides. We discovered that these
bits are the LSB bits of the address after accounting for the
cache line offset bits–that is, there is no index hashing in L3.
To verify the eviction set, we gathered the addresses with the
same 16 bits in the LSB and conducted the eviction set test. As
the replacement policy is pseudo-LRU (pLRU) [19], accessing
the other addresses multiple times (5 times or more in our
experiments) guarantees stable eviction of the target address
through the pLRU.

To evict target addresses from both L3 and LLC without
causing interference to the LLC, we constrict the target ad-
dresses for the pollution set to hash to a different slice than the

Fig. 5: LLC and L3 eviction set mapping. In this figure,
we show a single set on the GPU L3 which is 64-way set
associative. The target addresses need to be evicted which
requires us to come up with the eviction set shown in blue.
The cache lines in this set can hash into any one of 4 sets
in the four slices of the LLC cache set; each LLC set is 16-
ways. We have to make sure that only the target address set
hash to the slice where the target set resides to avoid creating
self-interference.

slice where the target LLC line resides. We accomplish this by
working with the index hashing function for the LLC presented
in Equations 1 and 2. That is, addresses from the LLC conflict
set all hash to the same slice per these two equations; we pick
the addresses in the pollution set such that they hash to the
other three slices as shown in Figure 5.

E. Putting it all together–LLC Channel
As shown in Figure 6, the spy process is launched on the

CPU side (CORE 0). CPU CORE 1 launches the GPU trojan
process in step 1. Before each bit transfer, a handshaking
takes place in steps 2 - 5 to ensure synchronization of spy
and trojan. The actual bit transmission is done in steps 6 and
7. A separate LLC cache set is used in each phase of the
attack. To conduct the attack, we launched one work-group
that is allocated to a sub-slice. The implementation requires
synchronization between threads which can only be obtained
within a work-group. We launch the maximum number of
threads (256 threads) permissible within a single work-group.
The first 16 threads are used to perform the prime+probe
attack. The threads above the wave-front boundary (32) are
used to perform the custom counter increment.

The GPU initiates handshaking as data is transferred to the
CPU. First, the GPU trojan process signals that it is ready to
send the data. Step 2 indicates that GPU primes LLC set SA

and then probing is done from the CPU side as shown in step
3. After GPU priming is over, the CPU spy process probes the
same set SA as shown in 3.

The second phase of the handshaking indicates to the GPU
trojan process by the CPU spy process that it is ready to

���

Fig. 6: LLC based CPU-GPU covert channel details

receive. The CPU primes the LLC set SB in step 4. The GPU
then probes SB in step 5. Probing on the LLC from the GPU
side requires eviction on the L3 level again. We use our custom
timer to measure the delay as described in subsection III-B.

The two sides are now ready to exchange the data bit over
LLC set SC as shown in steps 6 and 7. The priming step 6
on the GPU side is similar to step 2 in the first phase of the
handshaking. The probing step 7 on the CPU side is similar
to step 3. Step 1 is conducted once to launch the kernel on
the GPU side. Steps 2 - 7 are conducted within the kernel in
a for all loop for the number of bits that are required to be
transferred.

We also built a reverse channel where the Trojan is on the
CPU communicating to a Spy on the GPU. The attack details
are similar to the opposite direction channel described above,
but with the roles reversed. Specifically, the CPU initiates the
handshake by priming set SA while the GPU receives it by
probing the same set. Next, the GPU sends a ready to receive
signal by priming set SB , and the CPU probes the same set
to receive it. Finally, the CPU sends the communication bit to
the GPU using set SC .

IV. CONTENTION COVERT CHANNEL

Even with absent direct sharing of stateful microarchitec-
tural components (such as the LLC), contention may arise
when the two components share a bandwidth or capacity
limited microarchitectural structure such as buses or ports. In
such situations, measurable contention can also be achieved if
the two processes running on the two components access the
same structure concurrently (observing slowdowns). Although
there are likely to be a number of such shared contention
domains on our system, we implement an attack based on
contention on the ring bus connecting the CPU and GPU to
the LLC. Specifically, when both the CPU and GPU generate
traffic to the LLC, they each observe delays higher than when
only one of them does, providing a way to communicate two
states by either creating contention or not.

Since contention relates to concurrent use of the shared
resource, it requires accurate synchronization between the
two sides, which is challenging in the presence of the clock

frequency disparity between CPU and GPU. The CPU runs
at 4x the speed of the GPU and the data access delay cannot
be observed if the GPU data access is lower than a limit.
Through our systematic study, we identified the parameters
that contribute in creating a robust contention based channel
with a low error rate and high bandwidth. We also devised
a parameter that controls the frequency disparity between the
computational resources. We describe the attack in more detail
in the remainder of this section.
Attack Overview: The attack creates contention on the ring
bus between the CPU and GPU used to access the LLC.
During the attack, the CPU and GPU generate addresses
chosen from their own pre-allocated memory buffers. The
CPU and GPU buffers are chosen to map to different LLC
sets to avoid LLC conflicts distorting the contention signal.
With the two processes accessing disjoint sets in the cache,
the contention occurs strictly on the shared resources leading
to the LLC.

The attack overview is present in Figure 7. The CPU process
is launched in CORE 0 and a GPU process is launched in
CORE 1 as shown in steps 1 and 2. The processes launch
each carries out data allocation and initialization. The trojan
process launched on CORE 1 launches the GPU kernel as
shown in step 3. The data is accessed by the CPU and GPU
simultaneously. The first access will warm up the cache and
bring the CPU and GPU data to the LLC, steps 4 and 5.
Subsequent memory accesses would hit the LLC and generate
contention among the shared resources as shown in step 6. This
contention among the shared resources gets reflected during
the data access by the CPU.

Fig. 7: Contention channel attack methodology

Contention Channel Implementation: To build the covert
channel, we need to identify different parameters that con-
tribute towards building the channel to be able to systemat-
ically create and optimize the attack. For the CPU, TCPU

is the time required to access SCPU bytes of data. With
the simultaneous access from the GPU, the access time is
increased by TOV . The total time TTOTALCPU required to
access the data from the CPU during the simultaneous GPU
access is given in Equation 3. The overhead created due to
simultaneous access is a function of the SGPU bytes of data

���

accessed by GPU, a number of threads launched NUMThreads

and an Iteration Factor IF reflecting how many iterations the
data is accessed as shown in Equation 4. One constraint is to
keep both, CPU and GPU data, in the last level cache. The
total of SGPU and SCPU has to be less than the total size of the
last level cache, as shown in Equation 5. Another constraint is
that the LLC sets that are mapped to the CPU buffer should
not coincide with the sets that are mapped to the GPU buffer,
as shown in equation 6. The last two constraints ensure that
we avoid LLC misses and only measure the latency due to
contention on the ring bus. Communicating 1 and 0 through
the contention based channel is also related to the iteration
factor IF . When 1 needs to be communicated then the GPU
accesses SGPU bytes of data for IF number of times to create
the contention. To communicate 0 the GPU does no access.

TTOTALCPU = TCPU + TOV (3)
TOV = f(IF).f(SGPU).f(NUMThreads) (4)

s.t. SCPU + SGPU ⌧ SLLC (5)
SCPU \ SGPU = ; (6)

On the CPU side of the attack, a buffer size of SCPU bytes
has been created. The accesses are done at an offset of cache
line size of 64b. So the number of accesses is equivalent to
the number of cache lines in the allocated buffer. The data
is accessed in a random pointer chasing manner to lower
prefetching effects that may cause replacements of either the
CPU or GPU data in the LLC. First, LLC is warmed up. The
subsequent accesses would be serviced from the LLC. The
size of the buffer is chosen to ensure that the data is evicted
from local caches but not from the LLC. Each access time is
measured by clock gettime().

On the GPU side, the number of cache lines needed to be
accessed is divided among the number of threads launched.
The number of memory addresses that each thread needs to
access, numElsPerThread, is shown in Equation 7.

numElsPerThread =
number of cache lines

number of threads
(7)

One of the novel problems presented by asymmetric covert
channels is that the two sides have an asymmetric view of
the resource; for example, the GPU and CPU operate at
different frequencies, and the GPU must overflow the L3
cache to generate an access to the LLC, which unlike the
CPU side requires deriving different conflict sets due to the
different indexing scheme. Without calibration, this mismatch
can lead to inefficient communication, reducing bandwidth and
increasing errors. We introduce the notion of Iteration Factor
IF to allow us to align the two ends of the channel as shown
in equation 4. For a given GPU buffer size, the execution time
varies based on the number of work-groups launched. IF (the
number of iterations the data is accessed on the GPU) ensures
that the ratio of GPU to CPU execution time is near 1.

V. EVALUATION

In this section, we evaluate the two covert channels in terms
of channel bandwidth and error rate.

Fig. 8: LLC bandwidth (different L3 eviction strategies)
LLC-based Covert Channel: The GPU L3 cache is non-
inclusive which requires it to be filled to overflow and access
the LLC. Figure 8 shows the bandwidth of the channel on both
directions (CPU-to-GPU and GPU-to-CPU channels) based
on different strategies to overflow the L3. The naive way to
establish the covert channel can be performed by clearing the
whole L3 cache (we can use the GPU parallelism to accelerate
this process); the advantage here is that we do not have to
reverse engineer the L3 organization. However, clearing up
the whole L3 data cache of 512 KB, even with thread-level
parallelism, substantially reduces bandwidth. Figure 8 shows
the bandwidth of the LLC based covert channel is 1 kb/s,
when the whole L3 is cleared in every iteration. We improved
this with our precise conflict set construction that eliminates
interference from L3 to LLC which we described earlier in
the paper. This bandwidth we achieved using this technique,
is 70 kb/s for GPU-to-CPU channel (67 kb/s for CPU-to-GPU
channel). Further optimization was achieved by carrying out
the complete L3 reverse engineering and creating its eviction
sets, determining the addresses that are in the same L3 set for
precise eviction of the target addresses increasing bandwidth
to 120 kb/s (118 kb/s for CPU-to-GPU channel). The error
percentage observed was 2% (6% for CPU-to-GPU channel).
We achieved a stable channel with a low error rate and high
bandwidth through our optimization of precise L3 set eviction.
However, the error rate is higher in the case of CPU-to-GPU
channel.

Fig. 9: Error and BW with number of LLC sets
To reduce the error rate and increase channel resilience

we used multiple LLC sets. Monitoring cache misses over
multiple sets provides us with better resolution than using

���

a single set for communication. However, the redundancy
causes a reduction in available bandwidth; potentially we could
have used these multiple sets to communicate multiple bits in
parallel. Figure 9 shows the bandwidth and error rate with
respect to the increasing of number of LLC sets. When we
are using only 1 set then the error rate is 7% for GPU-
to-CPU channel (9% for the CPU-to-GPU channel), which
reduces to 2% as the number of sets doubled. For CPU-to-
GPU channel that error rate reduces to 6%. However, the
bandwidth reduces by 6.25% from 128 Kb/s to 120 Kb/s which
is an acceptable reduction given the error rate reduces by more
than 71%. The bandwidth reduces to 118 Kb/s from 125 Kb/s
by doubling the cache set in the cases of CPU-to-GPU based
channel. Increasing the number of sets does not provide any
improvement in the error rate. However, the bandwidth reduces
at a steady rate. In our attacks, we used 2 sets for all the 3
stages of attack resulting in using 6 LLC cache sets.

Fig. 10: Iteration Factor for different buffer sizes
Contention-based Covert Channel: CPU and GPU access the
LLC using asymmetric pathways and computational models.
This impacts the success rate of the communication between
the two asymmetric sides. We introduce the concept of Iter-
ation Factors to match the rate of communication between
the two sides (as discussed in Section IV). Figure 10 shows
the optimal iteration factor: keeping the CPU buffer size
constant, as the GPU buffer size increases, the factor reduces
correspondingly to enable overlap between the two sides.

Fig. 11: Bandwidth and error for bus-based channel
As discussed in Section IV, in our contention based covert

channel, buffer size on both CPU and GPU side and the
number of work-groups that access to the GPU buffer, affect

the contention pattern and consequently the channel bandwidth
and error rate. We perform a search on the parameter space
to obtain a channel with a low acceptable error rate and
high bandwidth. Figure 11 shows the evaluation results of the
contention based covert channel. The different graphs are for
different GPU buffer size and a constant CPU buffer size of
512 KB. The GPU buffer sizes that we considered are 1 MB
and 2 MB. Each result shows a confidence interval of 95%
over 1000 runs of the experiment. The bandwidth and the
error rate are shown for different number of work-groups (in
the X-axis). We obtained an error rate that is lower than 2%
for more than 90% of the configuration space. The lowest error
rate that we obtained is 0.82% for CPU buffer size of 512 KB,
GPU buffer size of 2 MB, and number of work-groups of 2.
We can observe that the bandwidth follows the pattern of the
error rate (lower bandwidth for low error rate).

VI. TRACKING USER’S CACHE ACTIVITY

To demonstrate the efficacy of our attack model we designed
a proof of concept prime+probe based side-channel attack that
spies on the LLC sets from the GPU side and observes the
CPU side cache activities. We represent the cache activities
in the form of memorygram [39] where the cache misses
distribution are demonstrated over a period of time. In our
experimental design, we have monitored cache sets in parallel
from the GPU side measuring the cache activities occurring
on the CPU side. A thread block is assigned a cache set under
observation. On the CPU side, we have accessed 2 cache sets
in a loop. Cache set 4 is accessed first in a loop with almost
no delay in the subsequent accesses. After that cache set 2 is
accessed with a fixed delay in the subsequent accesses of the
cache set. Figure 12 shows the memorygram of 4 LLC sets.
The X-axis represents time steps and Y-axis represents the
cache set number. Each of the yellow vertical lines represents
cache miss on that particular time step. The memorygram
shows the interested sets as well as it’s neighboring sets to
better visualize the rate of cache activities.

Fig. 12: Memorygram of the cache activities of 4 cache sets

The cache activity pattern of the application is seen in the
memorygram. For example, a high number of accesses occurs
in a shorter number of time steps (500-3000) in cache set
number 4. This due to high frequency access of the set in a
loop without any delay in between accesses. After time step
3000, the activity reduces in cache set number 4 as the CPU

���

side application now starts accessing cache set number 2 with
a delay in subsequent accesses. The access starts after 3000
and continue till time step 10000. Other accesses observed
are due to noise from other activities in the system. From the
memorygram it is evident that the user-level activities can be
monitored from the GPU side.

VII. POSSIBLE MITIGATIONS

We believe classes of defenses that have been developed
against other microarchitectural covert channels can also po-
tentially apply to cross-component attacks on heterogeneous
systems. These solutions include: (1) Static or dynamic parti-
tioning of resources [6], [21], [29], [31], [46], specifically the
LLC. These partitioning schemes can be extended to support
different processors in heterogeneous systems. If the Spy and
Trojan use different partitions of the cache, they are not
able to replace each other’s cache lines; and (2) Eliminating
the contention among processes by traffic control in memory
controllers [42], [44], such that memory requests from each
processor are grouped into the same queue and possibly access
the same memory bank/port. Prior work [25] demonstrated that
an efficient memory scheduling strategy and isolating the CPU
memory requests from the GPU memory requests will improve
the system performance, since memory requests from the GPU
seriously interfere with the CPU memory access performance.
Such isolation can be applied to the ring bus connecting the
CPU and GPU to the LLC (with LLC partitioning in place).
Other solutions such as adding noise to the timer may also
apply [33]. However, we build our customized timer using
hardware resource (shared memory) available on GPU, so
interfering with timing is not straightforward.

VIII. RELATED WORK

Microarchitectural covert-channel and side-channel attacks
have been widely studied on different resources on CPUs
including the L1 cache [3], [7], [41] and shared LLC in multi-
core CPUs [11], [27], [30], [32], [50], [52]. A concurrent
work [40] develops contention based side channel attacks on
the CPU ring interconnect between multiple cores.

Some recent works demonstrates that GPUs are also vul-
nerable to microarchitectural covert and side-channel attacks.
These works have been proposed on discrete GPUs with a
dedicated memory. Jiang et al. [23], [24] present architectural
timing attacks from the CPU to the GPU by exploiting key
dependent memory coalescing behavior. Naghibijouybari et
al. [36] construct several types of covert channels on different
resources within a GPU. Naghibijouybari et al. also demon-
strate a series of end-to-end GPU side channel attacks covering
the different threat scenarios on both graphics and computa-
tional stacks, as well as across them [37]. They implement
website fingerprinting, through GPU memory utilization API
or GPU performance counters, track user activities as they
interact with a website or type characters on a keyboard. In ad-
dition, they develop a neural network model extraction attack.
On the defense side, Xu et al. [48] proposed a GPU-specific
intra-SM partitioning scheme to isolate contention between

victim and spy and eliminate contention based channels after
detection.

All of these microarchitectural attacks and defenses have
been proposed on a single processor (CPU or discrete GPU).
In this paper, for the first time, we develop microarchitectural
covert channels in more widely used integrated CPU-GPU
systems. There have been a limited number of Rowhammer
attacks on heterogeneous systems (but not timing attacks):
Weissman et al. [47] study rowhammer attacks on heteroge-
neous FPGA-CPU platforms. The integrated GPU is available
through APIs such as WebGL [2] even for remote Javascript
programs. Frigo et al. [10] use WebGL timing APIs to imple-
ment rowhammer attack on integrated GPUs in mobile SOCs.
They use WebGL timer to find the contiguous areas of physical
memory to conduct the rowhammer. In response to this attack,
both Chrome and Firefox disabled the WebGL timer [12]. We
build a high resolution timer through iGPU hardware which
(1) is precise to measure cache hits/misses to conduct cache
attacks; and (2) can not be easily disabled.

IX. CONCLUDING REMARKS

We present the first microarchitectural covert channel at-
tacks that span two different components in an SoC. Each
component has a different view of the shared resource that
they use to create contention, and typically a different com-
putational model. We show that such attacks introduce novel
difficulties that arise due to this asymmetry. For example, the
LLC is inclusive on the CPU side, but non-inclusive on the
GPU side. Moreover, the indexing of the GPU cache hierarchy
is different from that of the LLC; as we create conflict sets to
overflow the L3 on the GPU, we run the risk of creating self-
interference with other sets on the LLC. We also needed to
calibrate the communication loops to improve the bandwidth
given the asymmetric pathways to access the channel. Having
experience with these channels improves our understanding of
the threats posed of microarchitectural attacks beyond a single
component which is a threat model increasing in importance
as we move increasingly towards heterogeneous computing
platforms. We created two working channels: a Prime+Probe
channel targeting the LLC, and a contention based channel
exploiting contention on the shared access pathway to the
LLC. Creating the channels required overcoming a set of
challenges that we believe will be representative of those
needed for cross-component attacks. Both channels achieve
high bandwidth and low error rates.

X. ACKNOWLEDGEMENT

Pacific Northwest National Laboratory is operated by Bat-
telle Memorial Institute for the U.S. Department of Energy un-
der Contract No. DE-AC05-76RL01830. This work was sup-
ported by the U.S. Department of Energy, Office of Advanced
Scientific Computing Research (ASCR) through the Center for
Advanced Technology Evaluation (CENATE) project, Contract
#66150B. This work is also partially supported by National
Science Foundation grants CNS-1619450, CNS-1955650 and
CNS-2053383.

���

REFERENCES

[1] “OpenCL Overview, Khronos Group,” 2018, https://www.khronos.org/
opencl/.

[2] “WebGL Overview, Khronos Group,” 2018, https://www.khronos.org/
webgl/.

[3] B. B. Brumley and R. M. Hakala, “Cache-timing template attacks,” in
Advances in Cryptology – ASIACRYPT 2009, M. Matsui, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 667–684.

[4] A. Chandrasekhar, G. Chen, P.-Y. Chen, W.-Y. Chen, J. Gu, P. Guo,
S. H. P. Kumar, G.-Y. Lueh, P. Mistry, W. Pan, T. Raoux, and K. Tri-
funovic, “Igc: The open source intel graphics compiler,” in Proceedings
of the 2019 IEEE/ACM International Symposium on Code Generation
and Optimization, ser. CGO 2019. IEEE Press, 2019, p. 254–265.

[5] J. Chen and G. Venkataramani, “Cc-hunter: Uncovering covert timing
channels on shared processor hardware,” in Proceedings of the Interna-
tional Symposium on Microarchitecture (MICRO), 2014.

[6] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
“Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,” ACM Transactions on Architecture and Code Opti-
mization (TACO), vol. 8, no. 4, pp. 1–21, 2012.

[7] D. A. O. Eran Tromer and A. Shamir, “Efficient cache attacks on aes,
and countermeasures,” in Journal of Cryptology, 2009, pp. 667–684.

[8] D. Evtyushkin and D. Ponomarev, “Covert channels through random
number generator: Mechanisms, capacity estimation and mitigations,”
in CCS, 2016.

[9] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understanding
and mitigating covert channels through branch predictors,” ACM Trans-
actions on Architecture and Code Optimization, vol. 13, no. 1, p. 10,
2016.

[10] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand pwning unit:
Accelerating microarchitectural attacks with the gpu,” in Proceedings of
IEEE Symposium on Security and Privacy, 2018, pp. 357–372.

[11] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template
attacks: Automating attacks on inclusive last-level caches,”
in 24th USENIX Security Symposium (USENIX Security 15).
Washington, D.C.: USENIX Association, Aug. 2015, pp.
897–912. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/gruss

[12] Mozilla, “WebGL timer extension,” 2020, https://developer.mozilla.org/
en-US/docs/Web/API/EXT disjoint timer query.

[13] Intel. (2014) Getting the most from opencl™ 1.2: How to increase
performance by minimizing buffer copies on intel® processor
graphics. [Online]. Available: https://software.intel.com/sites/default/
files/managed/f1/25/opencl-zero-copy-in-opencl-1-2.pdf

[14] Intel. (2014) Opencl 2.0 shared virtual memory overview.
[Online]. Available: https://software.intel.com/en-us/articles/opencl-20-
shared-virtual-memory-overview

[15] Intel. (2015) Intel processor graphics gen9 architecture. [Online]. Avail-
able: https://software.intel.com/sites/default/files/managed/c5/9a/The-
Compute-Architecture-of-Intel-Processor-Graphics-Gen9-v1d0.pdf

[16] Intel. (2019) Intel graphics compiler. [Online]. Available: https:
//github.com/intel/intel-graphics-compile

[17] Intel. (2019) Intel processor graphics gen11 architecture. [Online].
Available: https://software.intel.com/sites/default/files/managed/db/88/
The-Architecture-of-Intel-Processor-Graphics-Gen11 R1new.pdf

[18] Intel. (2019) Intel® open source hd graphics and intel
iris™ plus graphics programmer’s reference manual: Volume 5:
Memory views. [Online]. Available: https://01.org/sites/default/files/
documentation/intel-gfx-prm-osrc-kbl-vol05-memory views.pdf

[19] Intel. (2019) Intel® open source hd graphics and intel iris™
plus graphics programmer’s reference manual: Volume 7: 3d-
media-gpgpu. [Online]. Available: https://01.org/sites/default/files/
documentation/intel-gfx-prm-osrc-kbl-vol07-3d media gpgpu.pdf

[20] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse engineer-
ing of cache slice selection in intel processors,” in 2015 Euromicro
Conference on Digital System Design. IEEE, 2015, pp. 629–636.

[21] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell,
Y. Solihin, L. Hsu, and S. Reinhardt, “Qos policies and architecture
for cache/memory in cmp platforms,” in Proceedings of the 2007
ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, ser. SIGMETRICS ’07. New York,
NY, USA: Association for Computing Machinery, 2007, p. 25–36.
[Online]. Available: https://doi.org/10.1145/1254882.1254886

[22] S. Jain, I. Baek, S. Wang, and R. Rajkumar, “Fractional gpus: Software-
based compute and memory bandwidth reservation for gpus,” in 2019
IEEE Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2019, pp. 29–41.

[23] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery
timing attack on a gpu,” in IEEE International Symposium on
High Performance Computer Architecture, ser. HPCA’16. Barcelona
Spain: IEEE, March 2016, pp. 394–405. [Online]. Available: http:
//ieeexplore.ieee.org/document/7446081

[24] Z. H. Jiang, Y. Fei, and D. Kaeli, “A novel side-channel timing attack
on gpus,” in Proceedings of the on Great Lakes Symposium on VLSI,
ser. VLSI’17, 2017, pp. 167–172.

[25] M. W. Juan Fang and Z. Wei, “A memory scheduling strategy for
eliminating memory access interference in heterogeneous system,” in
The Journal of Supercomputing, vol. 76, 2020, p. 3129–3154.

[26] M. Kayaalp, K. N. Khasawneh, H. A. Esfeden, J. Elwell, N. Abu-
Ghazaleh, D. Ponomarev, and A. Jaleel, “Ric: Relaxed inclusion caches
for mitigating llc side-channel attacks,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2017.

[27] M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel, “A high-
resolution side-channel attack on last-level cache,” in Proceedings of the
53th Annual Design Automation Conference, June 2016.

[28] S. K. Khatamifard, L. Wang, S. Köse, and U. R. Karpuzcu, “A new
class of covert channels exploiting power management vulnerabilities,”
IEEE Computer Architecture Letters, vol. 17, no. 2, pp. 201–204, 2018.

[29] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Hardware-software
integrated approaches to defend against software cache-based side
channel attacks,” in Proceedings of the International Symposium on High
Performance Comp. Architecture (HPCA), February 2009.

[30] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Ar-
mageddon: Cache attacks on mobile devices,” in 25th USENIX Security
Symposium (USENIX Security 16). Austin, TX: USENIX Association,
Aug. 2016, pp. 549–564. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/lipp

[31] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. Lee,
“Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), 2016.

[32] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Security and Privacy (SP), May
2015.

[33] R. Martin, J. Demme, and S. Sethumadhavan, “Timewarp: Rethinking
timekeeping and performance monitoring mechanisms to mitigate side-
channel attacks,” in Proc. International Symposium on Computer Archi-
tecture (ISCA), 2012, pp. 118–129.

[34] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon,
“Reverse engineering intel last-level cache complex addressing using
performance counters,” in International Symposium on Recent Advances
in Intrusion Detection. Springer, 2015, pp. 48–65.

[35] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “C5: cross-
cores cache covert channel,” in International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment. Springer,
2015, pp. 46–64.

[36] H. Naghibijouybari, K. Khasawneh, and N. Abu-Ghazaleh, “Construct-
ing and characterizing covert channels on gpus,” in Proc. International
Symposium on Microarchitecture (MICRO), 2017, pp. 354–366.

[37] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: Gpu side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’18. New York, NY,
USA: ACM, 2018, pp. 2139–2153. [Online]. Available: http:
//doi.acm.org/10.1145/3243734.3243831

[38] Nvidia. (2019) Cuda c++ programming guide. [Online]. Available:
https://docs.nvidia.com/pdf/CUDA C Programming Guide.pdf

[39] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The spy in the sandbox: Practical cache attacks in javascript and their
implications,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 1406–1418.
[Online]. Available: https://doi.org/10.1145/2810103.2813708

[40] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s):
Side channel attacks on the CPU on-chip ring interconnect are
practical,” in 30th USENIX Security Symposium (USENIX Security

���

21). USENIX Association, Aug. 2021. [Online]. Available: https:
//www.usenix.org/conference/usenixsecurity21/presentation/paccagnella

[41] C. Percival, “Cache missing for fun and profit,” in BSDCan, 2005.
[42] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, and M. Tiwari,

“Avoiding information leakage in the memory controller with fixed
service policies,” in Proceedings of the International Symposium on
Microarchitecture (MICRO), Dec. 2015.

[43] P. Vila, B. Köpf, and J. F. Morales, “Theory and practice of finding
eviction sets,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 39–54.

[44] Y. Wang and G. E. Suh, “Timing channel protection for a shared memory
controller,” in Proceedings of the International Symposium on High
Performance Computer Architecture (HPCA), Feb. 2014.

[45] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture.” in Computer Security Applications Conference (ACSAC),
2006.

[46] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the International
Symposium on Computer Architecture (ISCA), 2007.

[47] Z. Weissman, T. Tiemann, D. Moghimi, E. Custodio, T. Eisenbarth, and
B. Sunar, “Jackhammer: Efficient rowhammer on heterogeneous fpga-
cpu platforms,” in arXiv:1912.11523, 2020.

[48] Q. Xu, H. Naghibijouybari, S. Wang, N. Abu-Ghazaleh, and

M. Annavaram, “Gpuguard: Mitigating contention based side and
covert channel attacks on gpus,” in Proceedings of the ACM
International Conference on Supercomputing, ser. ICS ’19. New
York, NY, USA: ACM, 2019, pp. 497–509. [Online]. Available:
http://doi.acm.org/10.1145/3330345.3330389

[49] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence pro-
tocol states vulnerable to information leakage?” in Proceedings of the
International Symposium on High Performance Computer Architecture
(HPCA), Feb. 2018.

[50] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in 23rd USENIX Security Symposium
(USENIX Security 14). San Diego, CA: USENIX Association,
Aug. 2014, pp. 719–732. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/yarom

[51] Y. Yarom, Q. Ge, F. Liu, R. B. Lee, and G. Heiser, “Mapping the intel
last-level cache.” IACR Cryptology ePrint Archive, vol. 2015, p. 905,
2015.

[52] M. K. R. Yinqian Zhang, Ari Juels and T. Ristenpart, “Cross-tenant
side-channel attacks in paas clouds,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, 2014,
pp. 990–1003. [Online]. Available: https://doi.org/10.1145/2660267.
2660356

���

