
ORTHOGONAL NONNEGATIVE MATRIX TRI-FACTORIZATION FOR COMMUNITY
DETECTION IN MULTIPLEX NETWORKS

Meiby Ortiz-Bouza and Selin Aviyente

Department of Electrical and Computer Engineering, Michigan State University
East Lansing, 48824

aviyente@egr.msu.edu

ABSTRACT

Networks provide a powerful tool to model complex systems. Re-
cently, there has been a growing interest in multiplex networks as
they can represent the interactions between a pair of nodes through
multiple types of links, each reflecting a distinct type of interaction.
One of the important tools in understanding network topology is
community detection. Existing work on multiplex community de-
tection mostly focuses on learning a common community structure
across layers without taking the heterogeneity of the different layers
into account. In this paper, we introduce a new multiplex community
detection approach that can identify communities that are common
across layers as well as those that are unique to each layer. The
proposed algorithm employs Orthogonal Non-Negative Matrix Tri-
Factorization to model each layer’s adjacency matrix as the sum of
two low-rank matrix factorizations, corresponding to the common
and private communities, respectively. The proposed algorithm is
evaluated on both synthetic and real multiplex networks and com-
pared to state-of-the-art techniques.

Index Terms— Multiplex Networks, Community Detection,
Nonnegative Matrix Tri-factorization, Low Rank Structure

1. INTRODUCTION

Many real world systems, including social and biological ones, are
often represented as complex networks capturing the interactions be-
tween multiple agents [1]. The different agents are represented as
the nodes of the network, and the relations among them are encoded
by the edges of the network. However, traditional network models
that employ simple graphs cannot capture the diverse nature of the
connectivity patterns between entities, i.e., multiple types of inter-
actions. For this reason, recently, multiplex networks that represent
multiple modes of interaction have been proposed. A multiplex net-
work is a multilayer network where all layers share the same set of
nodes but may have very different topology [2]. This model has been
used to study a large variety of systems across disciplines, ranging
from living organisms and human societies to transportation systems
and critical infrastructures [3, 4].

An important aspect of network analysis is the discovery of com-
munities defined as groups of nodes that are more densely connected
to each other than they are to the rest of the network. While a large
body of work exists on community detection [5], most of it is focused
on single layer networks. Existing community detection algorithms
for multiplex networks can be grouped into three main classes. The
first class of methods consists of simplifying the multiplex network
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into a graph by merging its layers, using a so-called flattening al-
gorithm, then applying a traditional community detection algorithm
[6, 7, 8]. While these methods are computationally efficient, the
algorithms in this class are only able to identify communities that
are common across all layers, and some spurious communities may
emerge because of the flattening process. The second class of meth-
ods is layer-by-layer methods, where traditional community detec-
tion methods are applied to each layer individually and the results
are then merged. Some examples of algorithms under this class are
ABACUS [9], PMM [10], and SC-ML [11]. As a consequence of
the layer-by-layer community detection step, these methods include
nodes in the same community only when they are part of the same
community in at least one layer. Finally, the third class of algo-
rithms operates directly on the multiplex network model. Some ex-
amples include random walk based algorithms such as LART [12]
and Infomap [13] and multilayer community quality metric opti-
mization based methods [14, 15, 16] such as Generalized Louvain
[15]. The majority of existing multiplex community detection ap-
proaches identify a partition that best fits all given layers. However,
none of these methods detect communities that are common across
layers as well as those unique to each layer, simultaneously. This is
particularly important in real world applications where the different
layers correspond to different modes of interaction and the networks
are heterogeneous. For example in social networks, a group of in-
dividuals may be well connected via friendships on Facebook; how-
ever, this common group of actors will likely, for example, not work
at the same company. In realistic situations such as these, a given
vertex community will only be present in a subset of the layers, and
different communities may be present in different subsets of layers.

In this paper, we introduce a novel framework titled Multiplex
Orthogonal Non-negative Matrix Trifactorization (MX-ONMTF) for
detecting communities that are common across layers as well as
communities that are unique to each layer, i.e., private communi-
ties. The proposed approach relies on the principle of minimizing
the normalized cut using Non-negative Matrix Factorization (NMF)
[17]. Each layer of the multiplex network is modeled as the sum of
two low-rank matrix factorizations where the first term corresponds
to the common communities and the second term corresponds to the
private communities. The resulting joint optimization problem is
solved using an iterative multiplicative update algorithm.

2. BACKGROUND

2.1. Multiplex Networks

Multiplex networks can be represented using a finite sequence of
graphs {Gl}, l ∈ L, where Gl = (Vl, El), L = {1, 2, ..., L} is the
set of layers, and Vl ⊆ {1, 2, ..., n} is the set of nodes in layer l
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[18]. Each graph Gl = (Vl, El) can be represented by an adjacency
matrix, Al ∈ Rn×n, l ∈ L.

2.2. Orthogonal Non-Negative Matrix Tri-Factorization

NMF [19] decomposes a nonnegative matrix V ∈ Rn×m into the
product of two low-rank nonnegative matrices W ∈ Rn×k and U ∈
Rm×k, such that V ≈ WUT and k � n,m. W and U are found
by solving the optimization problem

argmin
W≥,U≥0

||V −WUT ||2F .

For NMF based community detection algorithms, W and U are
the community feature matrix and the community indicator matrix,
respectively. Adding orthogonality constraints to either or both fac-
tor matrices, WTW = I and/or UTU = I , improves the perfor-
mance of NMF as orthogonality and nonnegativity force each row
of W (U ) to have only one nonzero element which implies that each
node belongs only to one community (hard clustering). Orthogonal
NMF has been used in community detection where V is usually the
adjacency matrix and k is the number of communities [20, 21].

There are several extensions of the original NMF including
Symmetric Non-Negative Matrix Tri-factorization [22] (SNMTF),
where V is approximated by USUT . The symmetric matrix
S ∈ Rk×k provides more degrees of freedom increasing the accu-
racy of the approximation whileU provides community membership
information. In this paper, we will use Orthogonal Non-negative Ma-
trix Tri-factorization (ONMTF), which is an extension of SNMTF
with orthogonality constrains on U , to formulate the community
detection problem in multiplex networks.

3. PROPOSED METHOD (MX-ONMTF)

The proposed method, MX-ONMTF, models each layer’s adjacency
matrix as a sum of low-dimensional representations of common and
private communities using ONMTF.

3.1. Problem Formulation

For a two-layer multiplex network with adjacency matrices, A1 ∈
Rn×n and A2 ∈ Rn×n, the proposed model based on ONMTF can
be formulated as

argmin
H≥0,Hl≥0,Sl≥0,Gl≥0

2∑
l=1

||Al −HSlH
T −HlGlH

T
l ||2F

s.t. HTH = I,HT
1 H1 = I,HT

2 H2 = I, l ∈ {1, 2},

(1)

where H ∈ Rn×kc and Hl ∈ Rn×kpl are the community member-
ship matrices corresponding to the common and private communi-
ties, respectively, and S1, S2, G1 and G2 are symmetric matrices.
In this formulation, it is assumed that there are kc common commu-
nities across the two layers, kp1 = k1 − kc private communities in
layer 1 and kp2 = k2− kc private communities in layer 2, where k1

and k2 are the number of communities in layers 1 and 2, respectively.

3.2. Optimization solution

The optimization problem in (1) is not convex for all variables H ,
Hl, Sl, and Gl, simultaneously. It can be solved using a multiplica-
tive update algorithm (MUA) [22] where, during each iteration, a
variable is updated while the rest are fixed. Multiplicative update
algorithms for solving NMTF with orthogonal constraints was first

addressed by [22]. In this paper, we follow a similar approach to find
the multiplicative update rules for each variable.

To find the update rules for H , Hl, Sl, and Gl, we optimize the
constrained problem introducing Lagrange multipliers Λ and Λl and
minimizing the following Lagrangian function:

L(H,Hl, Sl, Gl) =

2∑
l=1

||Al −HSlH
T −HlGlH

T
l ||2F

+ tr(Λ(HTH − I)) +

2∑
l=1

tr(Λl(H
T
l Hl − I)).

(2)

For updating H , we find∇HL as

∇HL = 4HST
1 H

THS1 + 4H1G
T
1 H

T
1 HS1 − 4A1HS1

+4HST
2 H

THS2 + 4H2G
T
2 H

T
2 HS2 − 4A2HS2 + 4HΛ.

(3)

Applying the KKT conditions∇HL = 0 and∇ΛL = 0, we obtain:
(i) Λ =

∑2
l=1(−ST

l Sl −HTHlG
T
l H

T
l HSl +HTAlHSl).

(ii) HTH = I .
Substituting (i) and (ii) in (3), we get

∇HL =

2∑
l=1

(4HlG
T
l H

T
l HSl − 4AlHSl + 4HHTAlHSl

−4HHTHlG
T
l H

T
l HSl).

(4)

As discussed in [23], if the gradient of an error function, ε, is of
the form ∇ε = ∇ε+ −∇ε−, where ∇ε+ > 0 and ∇ε− > 0, then
the multiplicative update for parameter Θ has the form Θ = Θ ∗
∇ε−

∇ε+
. It can be easily seen that the multiplicative update preserves

the non-negativity of Θ, while ∇ε = 0 when the convergence is
achieved. Following this procedure, from the gradient obtained in
Eq. (4) of the error function, we derive the following multiplicative
update rule for H

H ← H ∗
∑2

l=1(AlHSl +HHTHlG
T
l H

T
l HSl)∑2

l=1(HlGT
l H

T
l HSl +HHTAlHSl)

, (5)

where the multiplication and division are performed element-wise
and both the numerator and denominator are positive. The update
rules for H1, H2, S1, S2, G1 and G2 can be obtained in a similar
manner as follows:

Hl ← Hl ∗
AlHlGl +HlH

T
l HS

T
l H

THlGl

HST
l H

THlGT
l +HlHT

l AlHlGl
, (6)

Sl ← Sl ∗
HTAlH

HTHSlHTH +HTHlGlHT
l H

, (7)

Gl ← Gl ∗
HT

l AlHl

HT
l HlGlHT

l Hl +HT
l HSlHTHl

, (8)

for l ∈ {1, 2}. This formulation can be easily extended to L layers.

3.3. Finding the number of communities

In most NMF-based community detection algorithms, the number
of communities (k) is an input parameter. Usually this problem is
addressed by detecting communities with different values of k and
then selecting the one that gives the best results in terms of a pre-
determined quality function such as modularity.
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In this paper, we propose a two-step approach to determine the
number of communities per layer as well as the number of common
communities. First, we find the number of communities in each layer
(k1 and k2) using the eigengap rule. Next, we apply ONMTF to
each layer to obtain the individual community structure. We then
compute the correlation of the low-rank embedding matrices, i.e., the
community membership matrices, across layers to detect the number
of common communities, kc. kc is determined as the number of
positive elements of the k1 × k2 correlation matrix that are higher
than a pre-determined threshold.

3.4. Algorithm Implementation

The pseudocode for implementing the proposed optimization ap-
proach is given in Algorithm 1. The algorithm first randomly ini-
tializes H , H1, H2, S1, S2, G1 and G2 and then proceeds to update
them using Eqs. (5)-(8) over 1000 iterations or until convergence.

Algorithm 1 MX-ONMTF

Input: Adjacency matrices A1, A2

Number of common and per layer communities kc, k1, k2

Output: Community indicator matrices H , H1, and H2. Commu-
nity membership vector idx ∈ Rn.

1: for r=1 to 50 do
2: Randomly initialize H ≥ 0, Hl ≥ 0, Sl ≥ 0, Gl ≥ 0 and Sl

and Gl to be symmetric.
3: for 1000 iterations or until convergence do
4: update H according to Eq. (5)
5: update Hl for each l ∈ {1, 2} according to Eq. (6)
6: update Sl for each l ∈ {1, 2} according to Eq. (7)
7: update Gl for each l ∈ {1, 2} according to Eq. (8)
8: end for
9: for each node i in each layer l do

10: j∗ = argmaxjHij

11: if Hij∗ > max{H1ij∗ , H2ij∗} then
12: idx(i) = j∗

13: else
14: idx(i) = argmaxjHlij

15: end if
16: end for
17: Compute NMIr or QDr .
18: end for
19: Choose the partition r∗ such that r∗ = argmaxrNMI (r∗ =

argmaxrQD ).

Since the algorithm is initialized using random matrices, we re-
peat the algorithm 50 times and select the solution that yields the
maximum value of the performance metric, Normalized Mutual In-
formation (NMI) [24] for synthetic networks with available ground
truth; Modularity Density (QD) [25] for real networks or other net-
works for which ground truth information is not available.

3.5. Time complexity

The time complexity of the proposed algorithm is mostly due to the
Multiplicative Update Rules, Eqs. (5)-(8). The time complexity of
multiplying am×k matrix with a k×nmatrix, isO(mkn). There-
fore, the time complexities of (5)-(8) are O(n2(kc + kp1 + kp2)),
O(n2(kc +kpl)), O(n2kc), and O(n2kpl), respectively. Therefore,
the total complexity is O(n2k), where k = kc + kp1 + kp2 .

4. EXPERIMENTS

In this section, we present the experimental results of our method
evaluated on both a synthetic multiplex network, Multiplex Bench-
mark Network described in [26], and a real-world multiplex network,
Lazega Law Firm Social Network [27].

The results of the generated synthetic networks are evaluated
using NMI. For real-world networks, we use the Modularity Density,
QD , defined for a given network with vertex set V as [25]:

QD({V k
c=1}) =

k∑
c=1

L(Vc, Vc)− L(Vc, Vc)

|Vc|
, (9)

where {V k
c=1} is a hard partition of the network and Vc is the set

of vertices in the cth community, L(Vc, Vc) =
∑

i,j∈Vc
Aij and

L(Vc, V c) =
∑

i∈Vc,j∈V c
Aij where V c = V − Vc.

4.1. Benchmark Multiplex Networks

We generated a multiplex network with 256 nodes and two layers
based on the model described in [26]. Two common communities
across the two layers are generated by selecting 100 nodes at ran-
dom and setting the inter-layer dependency probability to p1. These
100 nodes are randomly assigned to two common communities. The
remaining nodes are assigned randomly to private communities with
inter-layer dependency probability p2 < 1 so that the private com-
munities in each layer are different. Four private communities in
layer 1 and three private communities in layer 2 were generated, for
a total of six and five communities in layers 1 and 2, respectively.
Using this configuration, we generated two sets of simulations. In
the first simulation, we evaluated the performance of our algorithm
for different noise levels by generating networks with varying values
of the mixing parameter µ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8},
which controls the density of inter-community edges, and fixed inter-
layer dependency probabilities, p1 = 1 and p2 = 0.2 to generate
the common and the private communities, respectively. In the sec-
ond simulation, we evaluated the robustness of the algorithm against
variations in the common community structure by generating net-
works with µ = 0.1 and varying inter-layer dependency probability,
p1, i.e., the common communities are allowed to vary across layers.

We compared the performance of our method to well-known
multiplex community detection algorithms from the three different
groups mentioned in Section 1, i.e., ONMTF applied to the aggre-
gated multiplex networks (Aggregated Average), Spectral Clustering
on Multi-Layer graphs (SC-ML) [11], Generalized Louvain (Gen-
Louvain) [28], and Infomap [13].

Fig. 1a shows the average NMI over 100 realizations of the net-
work with p1 = 1 and varying µ. As seen in Fig. 1a, our method
outperforms the other four methods. As GenLouvain assigns each
node-layer tuple to its own community, it cannot identify common
communities across layers. On the other hand, ONMTF applied to
the aggregated network, SC-ML, and Infomap force each physical
node across layers to the same community, thus cannot differentiate
the differences across layers. Moreover, our method is more robust
to noise as indicated by high NMI values for increasing µ.

The performance of all methods for networks with µ = 0.1
and varying p1 are reported in Fig. 1b based on the mean of the
NMI over 100 realizations of the network. As we can see in Fig.
1b, our method still outperforms the other four methods when there
is some variation in the common community across layers. This
demonstrates that our method is robust to variations of the common
community structure across layers.
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Fig. 1: Average NMI of the different methods over 100 realizations of benchmark networks: (1a) Varying values of the mixing parameter µ
and common communities generated with interlayer dependency probability p1 = 1 and (1b) Varying values of p1 and fixed mixing parameter
µ = 0.1.

Method Status Gender Office Seniority Age Practice Law school
Aggregated Average 0.0489 0.0318 0.5171 0.0956 0.0446 0.5723 0.0048

SC-ML 0.0280 0.0318 0.5828 0.0920 0.0543 0.5723 0.0051
GenLouvain 0.0350 0.0312 0.5058 0.0727 0.0395 0.5515 0.0060

Infomap 0.0192 0.0058 0.1815 0.2889 0.0071 0.0005 0.0103
MX-ONMTF 0.3902 0.4100 0.7297 0.2191 0.3024 0.5610 0.3308

Table 1: NMI scores between node attributes and the community structured detected by MX-ONMTF for the Lazega Law Firm data set.

Method Run Time (seconds)
Aggregated Average 0.00015

SC-ML 0.2636
GenLouvain 0.0184

Infomap 0.7359
MX-ONMTF 0.5343

Table 2: Average run times for different community detection meth-
ods. The average time was computed over 100 runs.

Table 2 reports the average run times for the different algorithms
considered in this paper. NMF applied to aggregated average is the
fastest method as it is applied to a single layer network and is not a
multiplex community detection method. Among the multiplex com-
munity detection methods, GenLouvain is the fastest method as its
complexity is known to be O(n log n). MX-ONMTF is faster than
InfoMap and comparable to SC-ML.

4.2. Lazega Law Firm Multiplex Network

Lazega Law Firm [27] is a multiplex social network with 71 nodes
and three layers representing Co-work, Friendship and Advice rela-
tionships between partners and associates of a corporate law firm.
For this paper, we only used the layers representing Co-work (layer
1) and Advice (layer 2) relationships. This data set also includes
metadata of some attributes of each node such as status (partner or
associate), gender, office location (Boston, Hartford, or Providence),
years with the firm, age, practice (litigation or corporate), and law
school (Harvard, Yale, UConn or other).

Applying MX-ONMTF on this network, we obtained one com-
mon community across layers 1 and 2 composed of 19 nodes col-
ored in blue as well as private communities for each layer as shown
in Fig. 2. Since this network does not have ground truth commu-
nity structure, we compute the NMI between the detected commu-
nity structure and each type of node attributes to gain better insight

Fig. 2: Common community (blue) across layers 1 and 2 and the
private communities detected by MX-ONMTF.

to the results. As we can see in Table 1, our method has the high-
est NMI values for each of the attributes, except for Practice where
Aggregated Average and SC-ML have slightly better NMI. However,
Aggregated Average and SC-ML perform considerably worse for the
rest of the attributes. This shows that our method achieves a trade-off
by detecting community structures that capture all attributes instead
of partitioning the network with respect to just one attribute.

5. CONCLUSIONS

In this paper, we proposed a community detection method for
multiplex networks based on ONMTF. The proposed method, MX-
ONMTF, detects both common and private communities across
layers, allowing us to discover the full community structure. We
also proposed a new approach for determining the number of com-
munities reducing the computational complexity of conventional
methods which perform a greedy search over a range of k values.
Results for both synthetic and real-world networks show that our
method is superior to existing methods as it does not enforce a
consensus community structure across layers while differentiating
between common and private communities. The latter is important
for real networks where there is heterogeneity in the relationships
across layers. Future work will consider extensions to more than
two layers.
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