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Modelling the pyrenoid-based CO,-concentrating
mechanism provides insights into its operating
principles and a roadmap for its engineering

into crops
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Many eukaryotic photosynthetic organisms enhance their carbon uptake by supplying concentrated CO, to the CO,-fixing
enzyme Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer this pyrenoid-based CO,-concentrating
mechanism (PCCM) into crops to increase yields. Here we develop a computational model for a PCCM on the basis of the pos-
tulated mechanism in the green alga Chlamydomonas reinhardtii. Our model recapitulates all Chlamydomonas PCCM-deficient
mutant phenotypes and yields general biophysical principles underlying the PCCM. We show that an effective and energetically
efficient PCCM requires a physical barrier to reduce pyrenoid CO, leakage, as well as proper enzyme localization to reduce futile
cycling between CO, and HCO;~. Importantly, our model demonstrates the feasibility of a purely passive CO, uptake strategy
at air-level CO,, while active HCO,~ uptake proves advantageous at lower CO, levels. We propose a four-step engineering path
to increase the rate of CO, fixation in the plant chloroplast up to threefold at a theoretical cost of only 1.3 ATP per CO, fixed,

thereby offering a framework to guide the engineering of a PCCM into land plants.

10" kilograms of carbon into the biosphere each year'—.

However, in many plants Rubisco fixes CO, at less than
one-third of its maximum rate under atmospheric levels of CO,
(Supplementary Fig. 1)*°, which limits the growth of crops such as
rice and wheat’. To overcome this limitation, many photosynthetic
organisms, including C, plants®’, crassulacean acid metabolism
(CAM) plants', algae'"'* and cyanobacteria", enhance Rubisco’s
CO, fixation rate by supplying it with concentrated CO,'*". In
algae, such a CO,-concentrating mechanism occurs within a
phase-separated organelle called the pyrenoid'®™". Pyrenoid-based
CO,-concentrating mechanisms (PCCMs) mediate approximately
one-third of global CO, fixation'®.

While previous works have identified essential molecular com-
ponents for the PCCM'%*-’, key operating principles of this mech-
anism remain poorly understood due to a lack of quantitative and
systematic analysis. At the same time, there is growing interest in
engineering a PCCM into C, crops to improve yields and nitrogen-
and water-use efficiency’”’'. Key questions are: (1) What is the min-
imal set of components necessary to achieve a functional PCCM?
(2) What is the energetic cost of operating a minimal PCCM?

To advance our understanding of the PCCM, we develop a
reaction-diffusion model on the basis of the postulated mechanism
in the green alga Chlamydomonas reinhardtii (Chlamydomonas
hereafter; Fig. 1a)*'-**: Briefly, external inorganic carbon (Ci: CO,
and HCOj;") is transported across the plasma membrane by trans-
porters LCI1 (Cre03.g162800) and HLA3 (Cre02.g097800)>***.
Cytosolic Ci becomes concentrated in the chloroplast stroma in

| he CO,-fixing enzyme Rubisco mediates the entry of roughly

the form of HCOj;™, either via conversion of CO, to HCO,™ by the
putative stromal carbonic anhydrase LCIB/LCIC (Cre10.g452800/
Cre06.g307500) complex (LCIB hereafter)*>*>* or via direct trans-
port across the chloroplast membrane by the poorly characterized
HCO," transporter LCIA (Cre06.g309000)***". It is currently not
known whether LCIA is a passive channel or a pump; therefore,
in the model we first consider it as a passive channel (denoted by
LCIA®) and later consider it as an active pump (denoted by LCIA®).
Once in the stroma, HCO;~ travels via the putative HCO,~ channels
BST1-3 (Crel6.g662600, Crel6.g663400 and Crel6.g663450)* into
the thylakoid lumen, and diffuses via membrane tubules into the
pyrenoid where the carbonic anhydrase CAH3 (Cre09.g415700)***
converts HCO,™ into CO,. This CO, diffuses from the thylakoid
tubule lumen into the pyrenoid matrix, where Rubisco catalyses
fixation. Supplementary Table 1 summarizes the acronyms of key
proteins in the Chlamydomonas PCCM.

We model the above enzymatic activities and Ci transport
in a spherical chloroplast. We assume that carbonic anhydrases
catalyse the bidirectional interconversion of CO, and HCO,",
producing a net flux in one direction where the two species are
out of equilibrium. We consider three chloroplast compartments
at constant pH values: a spherical pyrenoid matrix (pH 8, ref. *')
in the centre, a surrounding stroma (pH 8, ref. **?), and thy-
lakoids (luminal pH 6, ref. **) traversing both the matrix and
stroma (Fig. 1b and Supplementary Fig. 2). The flux balance of
intracompartment reaction and diffusion and intercompartment
exchange sets the steady-state concentration profiles of Ci species
in all compartments (Methods). To account for the effect of Ci
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Fig. 1| A multicompartment reaction-diffusion model describes the Chlamydomonas PCCM. a, Cartoon of a Chlamydomonas chloroplast with known
PCCM components. HCO;™ is transported across the chloroplast membrane by LCIA and across the thylakoid membranes by BST1-3 (referred to as

BST henceforth for simplicity). In the acidic thylakoid lumen, a carbonic anhydrase CAH3 converts HCO,~ into CO,, which diffuses into the pyrenoid
matrix where the CO,-fixing enzyme Rubisco (Rbc) is localized. CO, leakage out of the matrix and the chloroplast can be impeded by potential diffusion
barriers—a starch sheath and stacks of thylakoids—and by conversion to HCO,~ by a CO,-recapturing complex LCIB/LCIC (referred to as LCIB henceforth
for simplicity) in the basic chloroplast stroma. b, A schematic of the modelled PCCM, which considers intracompartment diffusion and intercompartment
exchange of CO, and HCO,~, as well as their interconversion, as indicated in the inset. Colour code as in a. The model is spherically symmetric and
consists of a central pyrenoid matrix surrounded by a stroma. Thylakoids run through the matrix and stroma; their volume and surface area correspond

to a reticulated network at the centre of the matrix extended by cylinders running radially outward. ¢, Concentration profiles of CO, and HCO;~ in the

thylakoid (dashed curves) and in the matrix/stroma (solid curves) for the baseline PCCM model that lacks LCIA activity and diffusion barriers. Dotted grey
line indicates the effective Rubisco K., for CO, (Methods). Colour code as in a. d, Net fluxes of inorganic carbon between the indicated compartments. The
width of arrows is proportional to flux; the area of circles is proportional to the average molecular concentration in the corresponding regions. The black
dashed loop denotes the major futile cycle of inorganic carbon in the chloroplast. Colour code as in a. For ¢ and d, LCIA®-mediated chloroplast membrane

permeability to HCO,~ kM

chlor

=10-8ms~", BST-mediated thylakoid membrane permeability to HCO,~ k!~ =10-2ms~", LCIB rate V,;=103s~" and CAH3 rate

thy

Veans=10%s7 (Methods). Other model parameters are estimated from experiments (Supplementary Table 2).

transport across the cell membrane, we simulate a broad range
of surrounding cytosolic Ci pools from which the chloroplast
can uptake Ci. We characterize the performance of the modelled
PCCM with two metrics: (1) its efficacy, quantified by the com-
puted CO, fixation flux normalized by the maximum possible
flux through Rubisco; and (2) its efficiency, quantified by the ATP
cost per CO, fixed (Methods).

Results

A baseline PCCM driven by intercompartmental pH differ-
ences. To identify the minimal components of a functional PCCM,
we build a baseline model (Fig. 1c,d), with the carbonic anhydrase
LCIB diffuse throughout the stroma, BST channels for HCO,™ uni-
formly distributed across the thylakoid membranes, the carbonic
anhydrase CAH3 localized to the thylakoid lumen within the pyre-
noid, and Rubisco condensed within the pyrenoid matrix. This
model lacks the HCO,~ transporter LCIA and potential diffusion
barriers to Ci. We first analyse modelled PCCM performance under
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air-level CO, (10 pM cytosolic); lower CO, conditions are discussed
in later sections.

CO, diffusing into the chloroplast is converted to HCO,™ in the
high-pH stroma where the equilibrium CO,:HCO," ratio is 1:80
(Methods). Since passive diffusion of HCO;~ across the chloroplast
envelope is very slow, this concentrated HCO,;~ becomes trapped
in the stroma. The BST channels equilibrate HCO,™ across the thy-
lakoid membrane, so HCO,™ also reaches a high concentration in
the thylakoid lumen (Fig. 1c). The low pH in the thylakoid lumen
favours a roughly equal equilibrium partition between CO, and
HCO;™; however, HCO,™ is not brought into equilibrium with CO,
immediately upon entering the thylakoid outside the pyrenoid,
since no carbonic anhydrase (CA) is present there. Instead, HCO,~
diffuses within the thylakoid lumen towards the pyrenoid, where
CAH3 localized within the pyrenoid radius rapidly converts HCO;~
back to CO, (Fig. 1d). This CO, can diffuse across the thylakoid
membrane into the pyrenoid matrix. This baseline model, driven
solely by intercompartmental pH differences, achieves a pyrenoidal
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Fig. 2 | Barriers to CO, diffusion out of the pyrenoid matrix enable an effective PCCM driven only by intercompartmental pH differences. a-i, A model
with no barrier to CO, diffusion out of the pyrenoid matrix (a-c) is compared to a model with thylakoid stacks slowing inorganic carbon diffusion in the
stroma (d-f) and a model with an impermeable starch sheath (g-i) under air-level CO, (10 uM cytosolic). a,d,g, Schematics of the modelled chloroplast.
b,e h, Heatmaps of normalized CO, fixation flux, defined as the ratio of the total Rubisco carboxylation flux to its maximum if Rubisco were saturated,

at varying LCIA®-mediated chloroplast membrane permeabilities to HCO;~ and varying LCIB rates. The BST-mediated thylakoid membrane permeability
to HCO;™ is the same as in Fig. 1c,d. For e and h, dashed black curves indicate a normalized CO, fixation flux of 0.5. ¢ i, Overall fluxes of HCO,~ (left)
and CO, (middle) into the chloroplast, normalized by the maximum CO, fixation flux if Rubisco were saturated, at varying LCIA®-mediated chloroplast
membrane permeabilities to HCO,~ and varying LCIB rates. Negative values denote efflux out of the chloroplast. The inorganic carbon (Ci) species with a
positive influx is defined as the Ci source (right). Axes are the same asin b, e and h.

CO, concentration approximately 2.5 times that found in a model
with no PCCM.

The baseline PCCM suffers from pyrenoid CO, leakage. The
substantial CO, leakage out of the matrix in the baseline model
(Fig. 1d) is in part due to the relatively slow kinetics of Rubisco.
During the average time required for a CO, molecule to be fixed by
Rubisco in the pyrenoid, that CO, molecule can typically diffuse a
distance larger than the pyrenoid radius (Supplementary Note I).
Therefore, most of the CO, molecules entering the pyrenoid matrix
will leave without being fixed by Rubisco (Supplementary Fig. 3).
One might think that adding LCIA® as a passive channel to enhance
HCO;" diffusion into the chloroplast could overcome this deficit
(Fig. 2a). However, even with the addition of LCIAC to our baseline
PCCM model, no combination of enzymatic activities and chan-
nel transport rates achieves an effective PCCM, that is, more than
half-saturation of Rubisco with CO, (Fig. 2b and Supplementary
Fig. 4). Thus, the pH-driven PCCM cannot operate effectively with-
out a diffusion barrier.

Barriers to pyrenoidal CO, leakage enable a pH-driven PCCM.
To operate a more effective PCCM, the cell must reduce CO,
leakage from the pyrenoid matrix. A barrier to CO, diffusion has
been regarded as essential for various CO,-concentrating mecha-
nisms*~*. Although the matrix is densely packed with Rubisco, our
analysis suggests that the slowed diffusion of CO, in the pyrenoid
matrix due to volume occupied by Rubisco can only account for a
10% decrease in CO, leakage (Supplementary Note VI.C). Thus,
we consider alternative barriers in our model.
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We speculate that thylakoid membrane sheets and the pyrenoid
starch sheath could serve as effective barriers to decrease leak-
age of CO, from the matrix. Thylakoid membrane sheets could
serve as effective barriers to CO, diffusion because molecules
in the stroma must diffuse between and through the interdigi-
tated membranes”. Indeed, our first-principle simulations sug-
gest that the thylakoid stacks, modelled with realistic geometry*,
effectively slow the diffusion of Ci in the stroma (Supplementary
Fig. 5). Evidence on the role of the starch sheath in the PCCM is
limited and mixed. While early work suggested that a starchless
Chlamydomonas mutant had normal PCCM performance in air®,
the phenotype was not compared to the appropriate parental strain.
A more recent study found that a mutant (sta2-1) with a thinner
starch sheath than wild-type strains displays decreased PCCM effi-
cacy at very low CO,”. On the basis of the latter work, we hypoth-
esize that the starch sheath that surrounds the matrix may act as a
barrier to CO, diffusion. Since the starch sheath consists of many
lamellae of crystalline amylopectin®~>*, we model it as an essentially
impermeable barrier equivalent to 10 lipid bilayers; in its presence,
most CO, leakage out of the matrix occurs through the thylakoid
tubules (Supplementary Fig. 6).

We next test whether the above two realistic diffusion bar-
riers allow for an effective pH-driven PCCM. Adding either
thylakoid stacks or a starch sheath to the baseline PCCM model
above drastically reduces CO, leakage from the matrix to the
stroma (Supplementary Fig. 7). The resulting PCCM is highly
effective under air-level CO, (10puM cytosolic) conditions:
pyrenoidal CO, concentrations are raised above the effective
half-saturation constant K, of Rubisco (Methods) using only
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Fig. 3 | Feasible inorganic carbon uptake strategies for the chloroplast depend on the environmental level of CO,. a-i, Results are shown for a model
with no barrier to CO, diffusion out of the pyrenoid matrix (a-c), a model with thylakoid stacks serving as diffusion barriers (d-f) and a model with

an impermeable starch sheath (g-i). a,d,g, Schematics of the modelled chloroplast employing LCIB for passive CO, uptake (red), or employing active
LCIAP-mediated HCO5~ pumping across the chloroplast envelope and no LCIB activity (blue). PCCM performance under air-level CO, (10 uM cytosolic)
(b,e,h) and under very low CO, (1uM cytosolic) (¢ f,i) are shown, as measured by normalized CO, fixation flux versus ATP spent per CO, fixed, for the two
inorganic carbon uptake strategies in a, d and g. Solid curves indicate the minimum energy cost necessary to achieve a certain normalized CO, fixation
flux. Shaded regions represent the range of possible performances found by varying HCO,~ transport rates and LCIB rates. Colour code as in a. In h and i,
dashed black curves indicate the optimal PCCM performance of a simplified model that assumes fast intracompartmental diffusion, fast HCO,~ diffusion
across the thylakoid membranes, and fast equilibrium between CO, and HCO;~ catalysed by CAH3 in the thylakoid tubules inside the pyrenoid (Methods).

the intercompartmental pH differential and passive Ci uptake
(Fig. 2e,h). PCCM performance with both barriers present closely
resembles the impermeable starch sheath case (Supplementary
Fig. 8); for simplicity, we omit such a combined model from
further discussion.

Optimal passive Ci uptake uses cytosolic CO,, not HCO,™.
In addition to the requirement for a diffusion barrier, the effi-
cacy of the pH-driven PCCM depends on the LCIB rate and the
LCIA®-mediated chloroplast membrane permeability to HCO,~
(Fig. 2b,e,h). Depending on LCIB activity, our model suggests two
distinct strategies to passively uptake Ci. If LCIB activity is low, CO,
fixation flux increases with higher LCIA®-mediated permeability to
HCO;", which facilitates the diffusion of cytosolic HCO,™ into the
stroma (Fig. 2¢,f,i). In contrast, if LCIB activity is high, CO, fixa-
tion flux is maximized when LCIA®-mediated permeability is low;
in this case, a diffusive influx of CO, into the chloroplast is rapidly
converted by LCIB into HCO;~, which becomes trapped and con-
centrated in the chloroplast. Under this scenario, permeability of
the chloroplast membrane to HCO,~ due to LCIA® is detrimental,
since it allows HCO;~ converted by LCIB in the stroma to diffuse
back out to the cytosol (Fig. 2¢,f1).
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Interestingly, the highest CO, fixation flux is achieved by passive
CO, uptake mediated by the carbonic anhydrase activity of LCIB,
not by passive HCO,~ uptake via LCIA® channels (Fig. 2), even
though HCO,™ is more abundant than CO, in the cytosol. The key
consideration is that the stroma (at pH 8) is more basic than the
cytosol (at pH 7.1, ref. **), which allows LCIB to equilibrate passively
acquired CO, with HCO;™ to create an even higher HCO,™ concen-
tration in the stroma than in the cytosol.

The PCCM requires active Ci uptake under very low CO,. While
the passive CO, uptake strategy can power the pH-driven PCCM
under air-level CO, (10 pM cytosolic), its Ci uptake rate is ultimately
limited by the diffusion of CO, across the chloroplast envelope.
Indeed, our simulations show that under very low CO, conditions
(1 pM cytosolic)™, a chloroplast using the passive CO, uptake strat-
egy can only achieve at most 20% of its maximum CO, fixation flux,
even in the presence of barriers to Ci diffusion (Fig. 3). Since passive
HCO;™ uptake cannot concentrate more Ci than passive CO, uptake
(Fig. 2), we hypothesize that active Ci transport is required for an
effective PCCM at very low CO,. To test this idea, we consider a
model employing active LCIA HCO;~ pumps (LCIA®) without LCIB
activity (Fig. 3a,d,g). We find that, indeed, HCO,~ pumping enables

NATURE PLANTS | VOL 8 | MAY 2022 | 583-595 | www.nature.com/natureplants
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f, Schematics of inorganic carbon fluxes for the localization patterns (i-iii) indicated in b-e. Colour code as in a and Fig. 1d. Dotted ticks in b-e denote

pyrenoid radius as in a. Simulation parameters are the same as in Fig. 1c,d.

saturating CO, fixation flux under very low CO, conditions (Fig. 3
and Supplementary Fig. 12).

Both passive and active Ci uptake can have low energy cost.
According to our model, both passive CO, uptake and active
HCO,~ pumping can support an effective PCCM under air-level
CO,. However, the latter directly consumes energy to achieve
non-reversible transport. What is the total energy cost of a PCCM
that employs active HCO,™ uptake, and how does this cost com-
pare to that of the passive CO, uptake strategy? To answer these
questions, we used a nonequilibrium thermodynamics frame-
work to compute the energy cost of different Ci uptake strategies
(Supplementary Note II and Fig. 13)*°. First, a PCCM without dif-
fusion barriers is energetically expensive regardless of the Ci uptake
strategies employed (Fig. 3a—c). Second, in the presence of diffusion
barriers, we find that the passive CO, uptake strategy can achieve
similar energy efficiency (~1 ATP cost per CO, fixed) to the active
HCO;™ uptake strategy (Fig. 3d-i). Thus, both strategies can achieve
high PCCM performance at air-level CO,; however, active HCO,~
uptake is necessary to achieve high efficacy under lower CO,.

The PCCM depends on cytosolic Ci and its chloroplast uptake.
How does Ci transport across the cell’s plasma membrane impact
the feasible Ci uptake strategies at the chloroplast level? To explore
this question in our chloroplast-scale model, we assess PCCM per-
formance under a broad range of cytosolic CO, and HCO;~ concen-
trations (Supplementary Fig. 15). Unsurprisingly, we find that the
performance of a particular chloroplast Ci uptake strategy increases
with the cytosolic level of its target Ci species. Thus, it is impor-
tant to replenish cytosolic Ci species taken up by the chloroplast.
Moreover, regardless of the makeup of the cytosolic Ci pool, a chlo-
roplast lacking both passive CO, uptake and active HCO;™ uptake
fails to achieve high PCCM efficacy, unless the cytosolic CO, con-
centration is 100 pM or higher. Creating such a pool would presum-
ably result in substantial CO, leakage across the plasma membrane
and thus high energy cost. Therefore, effective mechanisms for Ci
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uptake from the external environment to the cytosol and from cyto-
sol to the chloroplast are both essential for high PCCM performance.

Carbonic anhydrase localization alters modelled Ci fluxes. So far,
we have only considered the carbonic anhydrase localization pat-
terns that are thought to exist in Chlamydomonas under air-level
CO,**"". To assess the benefits of such localization, we vary the local-
ization of CAH3 and LCIB while maintaining the total number of
molecules of each carbonic anhydrase (Fig. 4a). We find that ectopic
carbonic anhydrase localization compromises PCCM performance.
First, LCIB mislocalized to the basic pyrenoid matrix (pH 8) con-
verts Rubisco’s substrate CO, into HCO;~, and hence decreases CO,
fixation (Fig. 4b-f, region i). Second, when CAH3 is distributed in
the thylakoids outside the pyrenoid, CO, molecules produced by this
CAH3 can diffuse directly into the stroma, making them less likely
to be concentrated in the pyrenoid and thus decreasing the efficacy
of the PCCM (Fig. 4b-f, region ii, and Supplementary Fig. 16).
Moreover, CAH3 mislocalization outside the pyrenoid decreases
PCCM efficiency as it leads to increased futile cycling of Ci between
the stroma and thylakoid, increasing the energetic cost required to
maintain the intercompartmental pH differences. Finally, concen-
trating CAH3 to a small region of thylakoid lumen in the centre of
the pyrenoid increases the distance over which HCO;™ needs to dif-
fuse before it is converted to CO,, thus lowering the CO, production
flux by CAH3 (Fig. 4b—f, region iii). All these results hold true both
at air-level CO, employing passive CO, uptake (Fig. 4) and at very
low CO, employing active HCO,™ uptake (Supplementary Fig. 17).
Thus, our model shows that proper carbonic anhydrase localization
is crucial to overall PCCM performance.

Effects of LCIB activity and localization at very low CO,. When
shifted from air levels to very low levels of CO, (~1pM dissolved),
Chlamydomonas relocalizes LCIB from diffuse throughout the
stroma to localized around the pyrenoid periphery”. To better
understand the value of LCIB localization to the pyrenoid periphery
under very low CO,, we vary both the end radius of stromal LCIB,
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the reversibility y=10-% To show a notable variation in normalized CO, fixation flux, a model with shortened thylakoid tubules is simulated (Methods).

The qualitative results hold true independent of this specific choice.

which defines how far LCIB extends towards the chloroplast enve-
lope, and the total number of LCIB molecules in a model employ-
ing a starch sheath barrier and active HCO,~ uptake (Fig. 5a).
Our analysis shows that it is energetically wasteful to allow concen-
trated CO, to leak out of the chloroplast (Supplementary Fig. 13).
Consequently, LCIB relocalized near the starch sheath increases
energy efficiency by recapturing CO, molecules that diffuse out
of the matrix and trapping them as HCO,™ in the chloroplast
(Fig. 5b—c, region i). The energy cost is higher without any LCIB for
CO, recapture (Fig. 5b-c, region iii), or with diffuse stromal LCIB,
which allows incoming HCO,™ to be converted into CO, near the
chloroplast membrane at which point it can leak back to the cytosol
(Fig. 5b—c, region ii, and Supplementary Fig. 19). Our model thus
suggests that under very low CO, and in the presence of a strong
CO, diffusion barrier around the pyrenoid, localizing LCIB at
the pyrenoid periphery allows for efficient Ci recycling, therefore
enhancing PCCM performance.

Intercompartmental pH differences are key to PCCM func-
tion. To determine the impact of thylakoid lumen and stro-
mal pH on PCCM function, we vary the pH values of the two
compartments (Fig. 6 and Supplementary Fig. 20). We find that
regardless of Ci uptake strategy, the modelled PCCM achieves
high efficacy only when the thylakoid lumen is much more acidic
than the stroma (Fig. 6a,d). Indeed, carbonic anhydrase activity
in a low-pH stroma (Fig. 6, region i) or in a high-pH intrapyre-
noid tubule lumen (Fig. 6, region ii) would lead to low concen-
trations of HCO,~ or CO,, respectively, in those compartments;
both would be detrimental to the PCCM. Interestingly, variation
in pH differentially influences the energy efficiency of the PCCM
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employing passive CO, uptake (Fig. 6a-c) and the PCCM employ-
ing active HCO,~ pumping (Fig. 6d—f). Specifically, only the latter
shows a dramatically increased energy cost when the stroma has
a relatively low pH; in this case, most HCO,~ pumped into the
stroma is converted to CO, and is subsequently lost to the cytosol
(Fig. 6e.f, regions i and ii). Thus, our results suggest that high
PCCM performance requires maintenance of a high-pH stroma
and a low-pH thylakoid lumen.

The model recapitulates Chlamydomonas PCCM mutant phe-
notypes. We next explore whether our model can account for the
phenotypes of known Chlamydomonas PCCM-deficient mutants.
We select model parameters to best represent the effect of each
mutation, assuming that the Chlamydomonas PCCM switches from
passive CO, uptake under air-level CO, to active HCO,™ uptake
under very low CO, (Supplementary Figs. 23 and 24). Our simu-
lation results show semi-quantitative agreement with experimen-
tal results for all published mutants (Supplementary Table 5) and
provide mechanistic explanations for all recorded phenotypes. For
example, our model captures that the Icib mutant fails to grow in air,
presumably due to a defect in passive CO, uptake. This phenotype
implies that Chlamydomonas does not pump HCO;™ into the chlo-
roplast under air-level CO, because a modelled lcib mutant employ-
ing HCO;~ pumping has a PCCM effective enough to drive growth
in air. Notably, the lcib mutant recovers growth under very low CO,,
which we attribute to the activation of an HCO;~ uptake system
under this condition’>""**. Indeed, knockdown of the gene encod-
ing the LCIA HCO;~ transporters in the lcib mutant background
results in a dramatic decrease in CO, fixation and growth under
very low CO,”.
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Fig. 6 | High PCCM performance requires low-pH thylakoids and a high-pH stroma. a-f, pH values of the thylakoid lumen and the stroma are
varied in a modelled chloroplast with an impermeable starch sheath employing passive CO, uptake under air-level CO, (a-¢) (10 pM cytosolic;
parameters as in Fig. 4d,e) or active HCO;~ pumping under very low CO, (d-f) (1uM cytosolic, parameters as in Supplementary Fig. 17¢,d).
Normalized CO, fixation flux (a,d) and ATP spent per CO, fixed (b,e) as functions of the pH values in the two compartments are shown.

¢ f, Schematics of inorganic carbon pools and fluxes for the pH values indicated in a, b, d and e. White stars indicate the baseline pH values

used in all other simulations.

More broadly, our model recapitulates phenotypes of
Chlamydomonas mutants lacking the HCO,~ transporter HLA3 or
the CO, transporter LCI1 at the plasma membrane. Indeed, knock-
down of the gene encoding HLA3 (simulated as a lower level of
cytosolic HCO;") leads to a dramatic decrease in PCCM efficacy
under very low CO,, presumably due to reduced HCO,~ import
into the cell and thus into the chloroplast*. In contrast, the Icil
single mutant shows a moderate decrease in PCCM efficacy under
air-level CO,, presumably due to a reduced CO, influx into the cyto-
sol and thus into the chloroplast, but no effect on the PCCM under
very low CO,, presumably due to the activation of an active HCO;~
uptake system under this condition™.

Finally, our model captures the phenotypes of Chlamydomonas
starch mutants, which survive under both air-level and very low
CO, conditions presumably because thylakoid stacks can effec-
tively block CO, leakage from the pyrenoid in the absence of a
starch sheath. The existence of non-starch diffusion barriers, such
as the thylakoid stacks, may also help explain why some other
pyrenoid-containing algae do not have a starch sheath™.

Various thylakoid architectures can support PCCM function.
The analysis of Ci fluxes in our model supports the long-held
view that the thylakoid tubules traversing the pyrenoid in
Chlamydomonas can deliver stromal HCO,™ to the pyrenoid,
where it can be converted to CO, by CAH3*>®". However, is a
Chlamydomonas-like thylakoid architecture necessary to a func-
tional PCCM? Certainly, eukaryotic algae display a variety of
thylakoid morphologies, such as multiple non-connecting paral-
lel thylakoid stacks passing through the pyrenoid, a single disc
of thylakoids bisecting the pyrenoid matrix, or thylakoid sheets
surrounding but not traversing the pyrenoid®-**. Our calculations
show that different thylakoid morphologies could in principle
support the functioning of an effective PCCM, as long as HCO;~
can diffuse into the low-pH thylakoid lumen and the thylakoid
carbonic anhydrase is localized to the pyrenoid-proximal lumen
(Supplementary Fig. 25).
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An effective PCCM needs Ci uptake, transport and trapping.
Our model identifies a minimal PCCM configuration sufficient to
effectively concentrate CO,. Next, we ask: can alternative configura-
tions of the same minimal elements achieve an effective PCCM? We
restrict our focus to PCCMs employing passive Ci uptake strategies.
We measured the efficacy and energy cost of 216 partial PCCM con-
figurations in air, varying the presence and localization of Rubisco,
thylakoid and stromal carbonic anhydrases, HCO,~ channels on the
thylakoid membranes and the chloroplast envelope, and diffusion
barriers (Supplementary Fig. 26).

Our results summarize three central modules of an effec-
tive pH-driven PCCM (Fig. 7a): (i) a stromal carbonic anhydrase
(LCIB) to convert passively acquired CO, into HCO;", (ii) a thy-
lakoid membrane HCO;~ channel (BST) and a luminal carbonic
anhydrase (CAH3) that together allow conversion of HCO,™ to CO,
near Rubisco, and (iii) a Rubisco condensate surrounded by diffu-
sion barriers. We find that PCCM configurations lacking any one
of these modules show a compromised ability to concentrate CO,
(Fig. 7b). The Chlamydomonas-like PCCM configuration is the only
configuration possessing all three modules; thus, this configura-
tion is not only sufficient but also necessary to achieve an effective
PCCM using the considered minimal elements.

Possible strategies for engineering a PCCM into land plants.
Many land plants, including most crop plants, are thought to lack
any form of CCM. Our analysis shows that a typical plant chloro-
plast configuration can only support ~30% of the maximum CO,
fixation flux through Rubisco (Supplementary Table 6). Engineering
a PCCM into crops has emerged as a promising strategy to increase
yields through enhanced CO, fixation™*'. Despite early engineering
advances including expressing individual PCCM components® and
reconstituting a pyrenoid matrix in plants®, the optimal order of
engineering steps needed to establish an effective PCCM in a plant
chloroplast remains unknown. Here we leverage our partial PCCM
configurations to propose an engineering path that results in mono-
tonic improvement of efficacy and avoids excessive energy costs.

589


http://www.nature.com/natureplants

NATURE PLANTS

ARTICLES

)

Ci uptake

Ci transport +
CO, production

Pyrenoid with
diffusion barrier

b — 20 configurations
~Without @ With @

o 1.0
. 0.8

0.6

(D 021

O,

_without @ with @

1.0

Oleocuge| & os]
0.6
02| T

0
1.0 - Without @ with @

Norm. CO, fixation flux
o
N

%
&
I
I
i

i) I“ I os
&l 31§=é=;L

Fig. 7 | An effective PCCM is composed of three essential modules. a, Schematics of the three essential modules with designated functions (same style
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HCO,™ channels and diffusion barriers in the model (see Supplementary Fig. 26).
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Fig. 8 | Proposed engineering path for installing a minimal PCCM into land plants. a, Top: schematics of the starting configuration representing a
typical plant chloroplast that contains diffuse thylakoid carbonic anhydrase, diffuse stromal carbonic anhydrase, and diffuse Rubisco, and lacks HCO;~
transporters and diffusion barriers. Bottom: the desired configuration representing a Chlamydomonas chloroplast that employs the passive CO, uptake
strategy and a starch sheath (as in Fig. 2g). b, Venn diagram showing the normalized CO, fixation flux (circle, area in proportion to magnitude) and ATP
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proposed sequential steps to transform the starting configuration into the desired configuration (see text). The starting configuration has a normalized
CO, fixation flux of 0.31 and negligible ATP cost. All costs below 0.25 ATP per CO, fixed are represented by a square of the minimal size.

To the best of our knowledge, the plant chloroplast contains dif-
fuse carbonic anhydrase and diffuse plant Rubisco in the stroma, and
lacks HCO;~ channels and diffusion barriers”. We note that plant
Rubisco has a lower K, for CO, than Chlamydomonas Rubisco; our
engineering calculations account for this and employ values from
plant Rubisco. Studies have also suggested that native plant carbonic
anhydrases are diffuse in the thylakoid lumen®, which we there-
fore assume in our modelled plant chloroplast configuration (Fig. 8,
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starting configuration). This configuration contains only one of the
three essential modules for an effective PCCM (Fig. 7a), that is, the
passive CO, uptake system.

After exploring all possible stepwise paths to install the remain-
ing two modules to achieve the Chlamydomonas-like PCCM
configuration (Fig. 8, desired configuration), we suggest the fol-
lowing path consisting of four minimal engineering steps (Fig. 8b,
arrows). The first step is the localization of plant Rubisco to a
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pyrenoid matrix, which we assume would inherently exclude the
plant stromal carbonic anhydrase, as the tight packing of Rubisco
in the matrix appears to exclude protein complexes greater than
~80kDa***. The second step is the localization of the thylakoid car-
bonic anhydrase to thylakoids that border or traverse the matrix.
These first two steps do not yield notable changes to either the effi-
cacy or the efficiency of the PCCM. The next step is to introduce
HCO," channels to the thylakoid membranes, which increases the
CO, fixation flux to ~175% of that of the starting configuration.
This step also increases the cost of the PCCM to around 4 ATPs per
CO, fixed. Such a high-cost step cannot be avoided, and all other
possible paths with increasing efficacy at each step have more costly
intermediate configurations (Fig. 8b and Supplementary Table 6).
Importantly for engineering, the increased CO, fixation flux result-
ing from this step would provide evidence that the installed chan-
nels are functional. The final step of the suggested path is to add a
starch sheath to block CO, leakage from the pyrenoid matrix, which
triples the CO, fixation flux compared with the starting configura-
tion and reduces the cost to only 1.3 ATPs per CO, fixed.

Selecting an alternative implementation order for the four mini-
mal engineering steps leads to decreased performance of the PCCM
in intermediate stages. For example, adding HCO;™ channels on the
thylakoid membranes before the stromal and thylakoid carbonic
anhydrases are localized (Fig. 8b, blue oval) leads to futile cycling
generated by overlapping carbonic anhydrases (Fig. 4, region ii).
Additionally, adding a starch sheath before HCO,~ channels are
added to the thylakoids could decrease CO, fixation (Fig. 8b, grey
oval); without channels, HCO,~ cannot readily diffuse to the thy-
lakoid carbonic anhydrase to produce CO,, and the starch sheath
impedes diffusion of CO, from the stroma to Rubisco. Thus, our
suggested path avoids intermediate configurations with decreased
efficacy or excessive energy cost.

Discussion

To better understand the composition and function of a minimal
PCCM, we developed a multicompartment reaction-diffusion
model on the basis of the Chlamydomonas PCCM. The model not
only accounts for all published Chlamydomonas PCCM mutants,
but also lays the quantitative and biophysical groundwork for under-
standing the operating principles of a minimal PCCM. Systematic
analysis of the model suggests that keys to an effective and energeti-
cally efficient PCCM are barriers preventing CO, efflux from the
pyrenoid matrix and carbonic anhydrase localizations preventing
futile Ci fluxes. The model demonstrates the feasibility of passive
CO, uptake at air-level CO,, and shows that at lower external CO,
levels, an effective PCCM requires active import of HCO,™. Both
uptake strategies can function at a low energy cost.

While not explicitly considered in our model, protons are pro-
duced in Rubisco-catalysed CO,-fixing reactions® and are con-
sumed in CAH3-catalysed HCO, -to-CO, conversions. Protons
must then be depleted in the pyrenoid matrix and replenished in
the intrapyrenoid thylakoid lumen to maintain physiological pH
values*"*. However, our flux-balance analysis shows that the con-
centrations of free protons are too low to account for the expected
proton depletion/replenishment fluxes by free proton diffusion
(Supplementary Note VI.D and Fig. 27). Thus, efficient transport of
protons must employ alternative mechanisms. One possibility, sug-
gested by recent modelling work™, is that proton carriers such as
RuBP and 3-PGA could be present at millimolar concentrations”
and hence could enable sufficient flux to transport protons between
compartments. Understanding the molecular mechanisms underly-
ing proton transport will be an important topic for future studies.

Another class of CCM is the carboxysome-based CCM (CCCM)
employed by cyanobacteria”. In the CCCM, HCO,~ becomes con-
centrated in the cytosol via active transport” and diffuses into
carboxysomes—compartments that are typically 100 to 400nm in
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diameter, each composed of an icosahedral protein shell enclosing
Rubisco”. The protein shell is thought to serve as a diffusion barrier,
which is necessary for an effective CCCM***". Whereas the pyrenoid
matrix does not appear to have a carbonic anhydrase, the carboxy-
some matrix contains a carbonic anhydrase that converts HCO,~
to CO, to locally feed Rubisco. Recent studies suggest that protons
produced during Rubisco’s carboxylation could acidify the carboxy-
some, which in turn favours the carbonic anhydrase-catalysed pro-
duction of CO,”. One may ask: what are the benefits of operating
a PCCM versus a CCCM? One possibility is that the PCCM uses
more complex spatial organization to segregate Rubisco from the
thylakoid lumen carbonic anhydrase, which allows the two enzymes
to operate at pH values optimal for their respective catalytic func-
tions. Thus, the PCCM may require a smaller Ci pool than the
CCCM to produce sufficient CO, in the vicinity of Rubisco. Indeed,
cyanobacteria appear to accumulate roughly 30mM intracellular
HCO,7*7, while Chlamydomonas creates an internal HCO;~ pool
of only 1mM’. Future experimentation comparing the perfor-
mance of the PCCM and the CCCM will advance our understand-
ing of the two distinct mechanisms.

The PCCM has the potential to be transferred into crop plants to
improve yields. Our model provides a framework to evaluate over-
all performance, considering both the efficacy and the energetic
efficiency of the PCCM (Supplementary Fig. 28), and allows us to
propose a favoured order of engineering steps. Moreover, we expect
that our model will help engineers narrow down potential chal-
lenges by providing a minimal design for a functional PCCM. If the
native plant carbonic anhydrases are inactive or absent, it might be
favourable to express and localize other carbonic anhydrases with
known activities. Additionally, a key step will be to test whether het-
erologously expressed Chlamydomonas BST channels function as
HCO;™ channels and to verify that they do not interfere with native
ion channels in plants. We hope that our model provides practical
information for engineers aiming to install a minimal PCCM into
plants, and that it will serve as a useful quantitative tool to guide
basic PCCM studies in the future.

Methods

Reaction-diffusion model. To better understand the operation of the PCCM,

we developed a multicompartment reaction-diffusion model on the basis of

the postulated mechanism in Chlamydomonas. The model takes into account

the key PCCM enzymes and transporters and the relevant architecture of the
Chlamydomonas chloroplast'. For simplicity, our model assumes spherical
symmetry and considers a spherical chloroplast of radius Ry, in an infinite cytosol.
Thus, all model quantities can be expressed as functions of the radial distance r
from the centre of the chloroplast (Fig. 1b). The modelled chloroplast consists of
three compartments: a spherical pyrenoid matrix of radius R,,, (pH 8) in the centre,
surrounded by a stroma (pH 8), with thylakoids (luminal pH 6) traversing both

the matrix and stroma (Fig. 1)*'-*’. At steady state, flux-balance equations set the
spatially dependent concentrations of CO,, HCO,™, and H,CO; in their respective
compartments (indicated by subscripts; see Supplementary Table 2 and Note I):

DV}, Ciy — jeans — jsp — Jrpemfe = 0 (1a)

Sifv
1—f

DOV, Coye — jicis — fip — roe + Jorem =0 (1b)

Sfe
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Here, C denotes the concentration of CO,, and H denotes the combined
concentration of HCO,~ and H,CO,, which are assumed to be in fast equilibrium””.
Thus, their respective concentrations are given by H~ = mH for HCO;™ and
H° = 5 H for H,CO;, where 7=10"""P is a pH-dependent partition factor
and pKa1 3.4 is the negative log of the first acid dissociation constant of H,CO,"™.
The first terms in equations (1a—1f) describe the diffusive fluxes of inorganic
carbon (Ci) within compartments. D¢ and D" respectively denote the diffusion
coefficients of CO,, and HCO;~ and H,CO, combined, in aqueous solution. In
a model with thylakoid stacks slowing Ci diffusion in the stroma, the effective
diffusion coefficients D,,“" are obtained using a standard homogenization
approach (see Supplementary Fig. 5 and Note 1.G); DS = D! otherwise.
The other flux terms (jx) in equations (1a-1f) descnbe enzymatic reactions and
intercompartment Ci transport, and the factors f, and f, describe the geometry of
the thylakoids. Their expressions are provided in subsequent sections.

The boundary conditions at r=R,, are determined by the diffusive flux of
Ci across the starch sheath at the matrix-stroma interface, that is,

—D9,Cpyr =

Dstra Csr = Kstarch (prr - Cslr) (2a)

*DHaeryr = Dma Hstr = Kgtarch ( pyr — s(r) (2b)
where 0, denotes derivative with respect to r, and the starch sheath is assumed
to have the same permeability k., for all Ci species. k,,;,— o0 when there is no
starch sheath and Ci can diffuse freely out of the matrix. &, =0 describes an
impermeable starch sheath (see Supplementary Note L.F). Similarly, Ci transport
flux across the chloroplast envelope yields the boundary conditions at r=R,,»
that is,

DS.9,Cyr = &© (Cept —

Cstr) (3a)

H - _ _ - _ _
Dstra Hgr = « (Hocy( - Hgtr) + KH (Hcyr - Hstr) + Kf:.lxlor (Hcy'[ - sttr) 4

(3b)

where Kgﬂ_m and y denote the rate and reversibility of inward HCO,™ transport
from the cytosol, representing the action of the uncharacterized chloroplast
envelope HCO,™ transporter LCIA*>; y=1 corresponds to a passive bidirectional
channel and y < 1 corresponds to an active pump. The external CO, conditions
are specified by cytosolic CO, concentration C,,,.. We set C_,,= 10 pM for air-level
CO, conditions, and C,,= 1M for very low CO, conditions. Unless otherwise
specified, all cytosolic Ci species are assumed to be in equilibrium at pH 7.1°.

Thylakoid geometry. The thylakoid geometry has been characterized by
cryo-electron tomography in Chlamydomonas*. In our model, we account for this
geometry by varying the local volume fraction f, and surface-to-volume ratio f,

of the thylakoids. These fractions describe a tubule meshwork at the centre of the
pyrenoid (r<R,,,), extended radially by N, cylindrical tubules, each of radius a,,,
(see Supplementary Note I1.C), that is,

{ (Ntubamb)/(‘lRmesh) forr < Rinesh

,and f5 = 2/ay. (4)
(N )/(47%) o= 2

forr > Rpesh

In the baseline model, the thylakoid tubules are assumed to extend to
the chloroplast envelope, that is, the outer radius of tubules R, =R, In
a model with shorter tubules, we choose Ry, = 0.4 Repor, and set f,=0
and f,=0 for r> R, Thus, the Laplace-Beltrami operators in equation
(1) are given by Vi, = r2f;'9,£,%9, for the thylakoid tubules, and by

Vg = Vi =172 (1 = £)7'9,(1 — £,)r*9, for the matrix and stroma.
Enzyme kinetics. The model considers three key Chlamydomonas PCCM enzymes,
that is, the carbonic anhydrases (CAs) CAH3 and LCIB and the CO,-fixing enzyme
Rubisco. The interconversion between CO, and HCO,™ is catalysed by both CAs
and follows reversible Michaelis-Menten kinetics™. The rate of CA-mediated
CO,-to-HCO;~ conversion is given by

. _ (VE  ca/KE) (C—K9H ™)
A(GH™) = Cnueen ) CTIM) > 5
jea( )= 14-C/KG +H™ /K™ oA ®

where ngyc , denotes the maximum rate of CA, K¢ and K™ respectively denote
the half-saturation concentrations for CO, and HCO,~, and V(n; x.ca/KG, denotes
the first-order rate constant which we refer to as the ‘rate’ of the CA (Fig. 2).
Finally, K = 10PX«—PH denotes the equilibrium ratio of CO, to HCO;~, where
the effective pKa is given by pK ¢ = 6.1°**'. The localization function Lc is equal
to one for r where CA is present and zero elsewhere. The uncatalysed spontaneous
rate of CO,-to-HCO,~ conversion, with a first-order rate constant ksp, is given by
Jsp = kSP (C — K*'H™ )". Note that negative values of j, and j,, denote fluxes of

CO,-to-HCO;™ conversion.
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The rate of CO, fixation catalysed by Rubisco is calculated from

Jroe(C) = max Rbe Kf“+C Lpe- (6)
Here, VS, ryc denotes the maximum rate, and the effective K,, (Rubisco K,, in Fig. 1)
is given by K = o KS rpe (1 4+ O/KS Rbc) to account for competitive inhibition by

0,%%, where O denotes the concentration of O,, and Kg,Rbc and K‘?,‘ rbe denote the
half-saturation substrate concentrations for CO, and O,, respectively. Ly, is equal
to one where Rubisco is localized, and zero elsewhere.

In our baseline model, we assume that CAH3 is localized in the thylakoid
tubules traversing the pyrenoid®, LCIB is distributed diffusely in the stroma®’
and Rubisco is localized in the pyrenoid matrix'®. To explore the effect of enzyme
localization, we vary the start and end radii of the enzymes while maintaining a
constant number of molecules (Figs. 4 and 5, and Supplementary Note III).

Transport of Ci across thylakoid membranes. The flux of CO, diffusing across the
thylakoid membrane from the thylakoid lumen to the matrix or stroma is given by

c
o { K (Cihy — Cpyr) forr < Ry ) ”

Jmem =

k€(Ciay — Cour) forr > Ry

where k¢ denotes the permeability of thylakoid membranes to CO,. Similarly, the
cross-membrane diffusive flux of HCO;™ and H,CO,, jf . is given by

N "+ Kff,; )(Hyy — Hpy) + & (H?hy HY,) forr < Ry
]mem = H— H— > (8)
(&% + Kihy )(H[;y Hg.) +« ( thy — str) forr > Rpye

where <" and « respectlvely denote the baseline membrane permeability to
HCO,~ and H,CO,, and Kthy denotes the additional permeability of thylakoid
membranes to HCO,~ due to bestrophin-like channels®. Note that the final terms
of equations (1a) and (1a-1c) differ by a factor of £+ f - because the cross-membrane

fluxes have a larger impact on the concentrations in the thylakoid compartment,
which has a smaller volume fraction.

Choice of parameters and numerical simulations. The model parameters were
estimated from experiment (see Supplementary Table 2 and references therein),
except for the rates of LCIB and CAH3 and the kinetic parameters of the HCO,~
transporters, which are not known. We performed a systematic scan for these
unknown parameters within a range of reasonable values (Fig. 2 and Supplementary
Fig. 4). The numerical solutions of equation (1) were obtained by performing
simulations using a finite element method. Partial differential equations were
converted to their equivalent weak forms, computationally discretized by first-order
elements® and implemented in the open-source computing platform FEniCS*. A
parameter sensitivity analysis was performed to verify the robustness of the model
results (Supplementary Fig. 30). A convergence study was performed to ensure
sufficient spatial discretization (Supplementary Fig. 31).

Energetic cost of the CCM. We computed the energetic cost using the framework
of nonequilibrium thermodynamics™ (see Supplementary Note IL.B for details).
In brief, the free-energy cost of any nonequilibrium process (reaction, diffusion,
or transport) is given by (j, —j_)In(j,/j_) (in units of thermal energy RT), where j,
and j_ denote the forward and backward flux, respectively. Summing the energetic
cost of nonequilibrium processes described in equation (1), we show that the total
energy required to operate the PCCM can be approximated (in units of RT) by

—1q

Wrcem ~ J5 ‘hy T+ ]Cmo,ln > 4 Jroeln
Here, J57H = — [Rian? (1 — £) (jLcis + jop)dr integrates

the flux of LCIB-mediated and spontaneous conversion from CO, to

HCO,™ in the stroma, with 4nr*(1 — f,)dr being the geometric factor.

JSior = 4R,k (Cote|r=Ry,, — Ceyt) denotes the flux of CO, diffusing from
the stroma back out into the cytosol. Jppe = [ ﬁ“““’ 47r* (1 — f,)jrocdr integrates
the flux of CO, fixation by Rubisco. The Iny~' and In(K}! /K:&) terms denote the
free-energy cost of pumping HCO,™ across the chloroplast envelope and pumping
protons across the thylakoid membranes, respectively. Using ATP hydrolysis
energy |AGurp| = 51.5 RTY, we compute the equivalent ATP spent per CO, fixed
as Wecem/Troe/| AGate |-

Well-mixed compartment model. To better understand the biophysical limit

of the PCCM, we consider a well-mixed compartment simplification of the full
model. Specifically, we assume that (i) the diffusion of Ci is fast in the matrix and
stroma, and therefore the concentrations of CO, and HCO;™ are constant across
radii in each of the two compartments, taking values denoted by Cpyr> Cotrs prr
and Hg; (ii) HCO,™ transport across the thylakoid membranes is fast, and thus
the thylakoid tubule concentration of HCO;™ inside the pyrenoid is equal to H,
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while the thylakoid tubule concentration outside the pyrenoid is equal to Hg,
; (iii) HCO,™ and CO, are in equilibrium (catalysed by CAH3) in the thylakoid
tubules inside the pyrenoid, and thus the CO, concentration therein is given
by Ciny = Kfl:‘yHl;,r; and (iv) the concentration of CO, in the thylakoid tubules
approaches C,, toward the chloroplast envelope. Thus, the flux-balance conditions
are described by a set of algebraic equations of 4 variables, Cpyr, Ciny, Cor and Hg,
(see Supplementary Notes IV and V). The algebraic equations are solved using the
Python-based computing library SciPy (version 1.5.0)*. The energetic cost of the

well-mixed compartment model is computed similarly as above.

Engineering paths. We are interested in how adding and removing individual
components affects the overall functioning of the PCCM. We thus measured

the efficacy and energy efficiency of 216 PCCM configurations, modulating the
presence and localization of enzymes, HCO,~ channels and diffusion barriers. Each
configuration was simulated using the reaction-diffusion model above, with the
appropriate parameters for that strategy (Supplementary Fig. 26).

To find all possible engineering paths between these configurations, we
considered a graph on which each possible configuration is a node. Nodes were
considered to be connected by an undirected edge if they were separated by one
engineering step. Thus, by taking steps on the graph, we searched all possible
engineering paths, given a start node with poor PCCM performance and a
target node with good performance. A single engineering step could be the
addition or removal of an enzyme, a channel, or a diffusion barrier, as well as the
localization of a single enzyme. The exception is the localization of Rubisco, which
we assumed can exclude LCIB from the matrix as it forms a phase-separated
condensate®. We did not consider strategies employing both a starch sheath
and thylakoid stacks as diffusion barriers. We used a custom depth-first search
algorithm in MATLAB (R2020a) to identify all shortest engineering paths between
a start and a target node.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

All data generated or analysed during this study are included in this Article and
the supplementary tables. The raw datasets have been deposited in the Zenodo
repository at https://doi.org/10.5281/zenodo.6406849.

Code availability
Custom simulation codes are available on GitHub at https://github.com/f-chenyi/
Chlamydomonas-CCM.
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